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Abstract. This study introduced a novel Dynamically
Normalized Objective Function (DYNO) for multivariable
(i.e., temperature and velocity) model calibration problems.
DYNO combines the error metrics of multiple variables into
a single objective function by dynamically normalizing each
variable’s error terms using information available during the
search. DYNO is proposed to dynamically adjust the weight
of the error of each variable hence balancing the calibration
to each variable during optimization search. DYNO is ap-
plied to calibrate a tropical hydrodynamic model where tem-
perature and velocity observation data are used for model cal-
ibration simultaneously. We also investigated the efficiency
of DYNO by comparing the calibration results obtained with
DYNO with the results obtained through calibrating to tem-
perature only and with the results obtained through calibrat-
ing to velocity only. The results indicate that DYNO can bal-
ance the calibration in terms of water temperature and veloc-
ity and that calibrating to only one variable (e.g., temperature
or velocity) cannot guarantee the goodness-of-fit of another
variable (e.g., velocity or temperature) in our case. Our study
implies that in practical application, for an accurate spatially
distributed hydrodynamic quantification, including direct ve-
locity measurements is likely to be more effective than using
only temperature measurements for calibrating a 3D hydro-
dynamic model. Our example problems were computed with
a parallel optimization method PODS, but DYNO can also
be easily used in serial applications.

1 Introduction

Lake hydrodynamic models simulate the hydrodynamic or
thermodynamic processes in lakes and reservoirs that are im-
portant for simulating water quality in aquatic ecosystems
(Chanudet et al., 2012). These simulation models (e.g., hy-
drodynamic modeling) play a critical role in managing wa-
ter bodies, as they are built to support the simulation of the
spatial and temporal distributions of specific water quality
variables (e.g., nutrients, chlorophyll a), and to study the re-
sponse of a water body to different future management sce-
narios. The parameters of these models usually need to be
calibrated to measured data in order to adequately represent
local effects and hydrodynamic processes. Model calibration
is a vital step in complex hydrodynamic modeling of lakes
and other aquatic systems.

Model calibration of lake hydrodynamic models is mainly
done manually (also called “trial and error”), where ex-
perts tune the parameters and simultaneously evaluate the
goodness-of-fit between the simulation output and observa-
tions. This process is subjective, time-intensive, and requires
extensive expert knowledge (Afshar et al., 2011; Xia et al.,
2021; Solomatine et al., 1999; Fabio et al., 2010; Baracchini
et al., 2020). The challenges associated with manual calibra-
tion have encouraged the application of auto-calibration to
lake hydrodynamic models, where the calibration is set up as
an inverse problem to minimize the error between the sim-
ulation and observations. Some studies (e.g., Gaudard et al.,
2017, Luo et al., 2018, Ayala et al., 2020 and Wilson et al.,
2020) have applied automatic calibration to one-dimensional
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(1D) hydrodynamic lake models where water temperature is
the variable that is simulated and calibrated. These 1D mod-
els are relatively cheap to run, enabling the use of automatic
calibration methods that typically require many simulation
evaluations to determine suitable parameter sets (e.g., differ-
ential evolution used in Luo et al., 2018 and Monte Carlo
sampling used in Ayala et al., 2020). However, 1D models are
unable to simulate the horizontal spatial distribution and can-
not capture the 3D processes, and thus may not be suitable
for certain studies. Consequently, 2D or 3D models are pre-
ferred for studying the spatial–temporal distribution of wa-
ter variables and are increasingly used to study lakes around
the world (Chanudet et al., 2012; Galelli et al., 2015; Hui
et al., 2018; Soulignac et al., 2017; Wahl and Peeters, 2014;
Xu et al., 2017; Baracchini et al., 2020). The calibration of
3D models, however, is considerably more challenging than
calibration of 1D models, since 3D models are significantly
more expensive computationally and they also involve more
complicated physical processes (such as advection of flows).

The computationally expensive character of 3D lake mod-
els makes traditional optimization methods, such as differ-
ential evolution and Monte Carlo sampling, unsuitable for
automatic calibration because these methods usually require
many evaluations to get an acceptable solution. Surrogate-
based optimization is highly suitable for such problems
(Bartz-Beielstein and Zaefferer, 2017; Lu et al., 2018; Razavi
et al., 2012) and recent studies have applied surrogate-based
optimization methods to parameter estimation of hydrody-
namics models. Surrogate-based optimization methods use a
cheap-to-run surrogate approximation model (of the calibra-
tion objective) fitted with all known (i.e., already evaluated)
values of the original expensive objective function, to guide
the optimization search and reduce the number of evaluations
required on the expensive simulations. For example, Xia et
al. (2021) proposed a new optimization method called PODS
(parallel optimization with dynamic coordinate search using
surrogates) suitable for computationally expensive problems,
and applied it to automatic calibration of 3D hydrodynamic
lake models. More elaborate discussions on surrogate-based
optimization algorithms can be found in Xia et al. (2021), Xia
and Shoemaker (2021), Razavi et al. (2012), Bartz-Beielstein
and Zaefferer (2017), and Haftka et al. (2016).

Computational intensity is not the only critical challenge
associated with parameter estimation of 3D hydrodynamic
lake models. Parameter estimation of these models is also a
multisite and multivariable calibration problem, i.e., obser-
vation data are usually available at multiple locations and
the underlying models simulate multiple variables (e.g., tem-
perature and velocity). Moreover, simultaneous calibration
of multiple variables is desired due to complex interactions
between the different variables. For instance, temperature
and velocity are interdependent variables of a hydrodynamic
lake model, since water temperature affects the movement
of water, and water velocity affects the distribution of water
temperature. However, most prior research studies have cali-

brated hydrodynamic models to only temperature. This might
be because temperature measurements are relatively less ex-
pensive to obtain compared with velocity measurements,
and often temperature measurements are available to help
predict water quality phenomena. Wahl and Peeters (2014)
use the measured water temperatures to calibrate a 3D hy-
drodynamic model of Lake Constance. Kaçýkoç and Bey-
han (2014) calibrate the temperature of Lake Egirdir with a
hydrodynamic model, the flow simulation of which is used
for modeling of the lake water quality. Marti et al. (2011)
and Xue et al. (2015) also only used temperature data for
calibration of hydrodynamic lake models. Moreover, these
studies use manual calibration for parameter estimation. Xia
et al. (2021) use automatic calibration for parameter estima-
tion, but they only use water temperature observations in the
calibration process. Reproducing the water level is also a pa-
rameter estimation approach that pseudo-considers flow dy-
namics in calibration; however, a calibrated model that cor-
rectly simulates the observed water level does not necessar-
ily reproduce the observed 3D flow field accurately (Wag-
ner and Mueller, 2002; Parsapour-Moghaddam and Rennie,
2018). Amadori et al. (2021) investigated the use of different
sources of temperature data (from in-suite observations, mul-
tisite high-resolution profiles, and remote sensing data) to
compensate for the scarcity of velocity measurements. This
is a practicable approach when there are no velocity data
available and there are such different sources of temperature
data available. However, when there are no high-quality re-
mote sensing data (e.g., because of cloud) or a large amount
of high-resolution profiles of temperature measurements, it
is still challenging to verify the spatial simulation of hydro-
dynamic quantities.

Hydrodynamic lake models predict the velocities through-
out a water body. Accurate velocity simulations are thus
important for understanding the spatial distribution of wa-
ter quality problems (e.g., algal blooms) in sizeable lakes.
Hence, during the calibration of these models, it is useful to
know whether efforts to measure velocity directly are justifi-
able even if temperature data are already available. We will
examine the extent to which direct measurement of veloci-
ties justifies the extra effort by giving more accurate results
for hydrodynamics models. We will also look at the error
of the spatial distribution of hydrodynamics associated with
calibrating to temperature only, which is rarely studied in the
literature.

There are a few studies that attempt to calibrate hy-
drodynamic lake models to both temperature and velocity.
Chanudet et al. (2012) attempted to calibrate both tempera-
ture and velocity sequentially (using manual calibration), i.e.,
they calibrate water temperature first and then the current ve-
locities. Baracchini et al. (2020) performed two sequential
steps in the automatic calibration of temperature and veloc-
ity, and the velocity calibration is based on the results ob-
tained from temperature calibration. However, one problem
with such two-step sequential approaches, either by manual
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or auto-calibration, is that the calibration of the second vari-
able might significantly alter the calibration quality of the
first variable. This is especially true for multivariable calibra-
tion problems, where the multiple variables being calibrated
are sensitive to the parameters being calibrated. Other exam-
ples of such multivariable calibration problems include wa-
tershed model calibration (Franco et al., 2020) and seawater
intrusion model calibration (Coulon et al., 2021), among oth-
ers. These multivariable problems require calibration frame-
works that enable the simultaneous calibration of all vari-
ables rather than calibrating one variable and then the sec-
ond.

There are studies that simultaneously calibrate both tem-
perature and velocity variables of hydrodynamic models.
However, these use a trial-and-error (manual) mechanism
for calibration (Råman Vinnå et al., 2017; Soulignac et al.,
2017; Jin et al., 2000; Paturi et al., 2014). Manual cali-
bration of multiple hydrodynamic variables simultaneously
is even harder than calibration of a single variable. A key
challenge for automatic calibration of multivariable calibra-
tion problems is in defining a suitable objective function.
Traditional approaches typically formulate the goodness-of-
fit of multiple variables into a single objective function by
adding weights between the goodness-of-fit of multiple vari-
ables and solve the problem with single objective optimiza-
tion (SOO) techniques (Afshar et al., 2011; Pelletier et al.,
2006). However, a drawback of this approach is that the rel-
ative error magnitude of each variable of the new solutions
found will probably vary during the search, making it diffi-
cult to determine appropriate weights since they need to be
determined or defined a priori, i.e., before optimization.

Another approach for calibration of multivariables is us-
ing multiobjective optimization (MOO) techniques (Afshar
et al., 2013). However, multiobjective techniques are com-
monly used to optimize multiple sub-objectives that have
a trade-off between each sub-objective (Akhtar and Shoe-
maker, 2016; Reed et al., 2013; Alfonso et al., 2010; Giu-
liani et al., 2016; Herman et al., 2014). For the multivariable
hydrodynamic calibration problems, however, it is not appar-
ent that there is usually a trade-off between the fit of mul-
tiple variables. Moreover, MOO is considerably more com-
putationally difficult than SOO and typically requires many
more objective function evaluations. Thus, MOO may not be
desired for computationally expensive calibration problems,
especially when a significant trade-off between the objectives
may not be present. Consequently, multivariable calibration
utilizing efficient SOO algorithms, while balancing the cal-
ibration to each variable equally during calibration, is a re-
search area of significant value.

We introduce a new dynamically normalized objective
function (DYNO) for automatic multivariable calibration.
The error of each variable (e.g., temperature and velocity
of hydrodynamic models) is dynamically normalized by us-
ing the information on variable error of the evaluations found
during the optimization search process. In this way, the bal-

ance between the calibration of each variable is dynamically
adjusted. We tested the efficiency of DYNO on a computa-
tionally expensive hydrodynamic lake model of a tropical
reservoir, which takes 5 h to run per simulation. DYNO is
coupled into a recent parallel surrogate optimization algo-
rithm, PODS (Xia et al., 2021), and successfully applied for
the calibration of multiple variables of the hydrodynamic
model. Using DYNO, we investigate the impact of using
temperature and/or velocity observations on model accu-
racy. Since velocity measurements are usually not included
in standard lake monitoring systems (whereas temperature
measurements are included), real velocity observations are
seldom available (Amadori, et al, 2021). Real observations
for velocity are not available in our case as well. Hence, we
conducted our investigation based on synthetic observations
generated from a calibrated model. It is worthwhile to revisit
and validate this analysis with real velocity measurements if
they are available in the future.

2 Methodology

2.1 Multivariable calibration problem description

The calibration problems investigated in this study are multi-
site (i.e., observations are available from multiple locations),
multivariable (e.g., temperature and velocity for hydrody-
namics) problems, and are defined mathematically as follows
(the variable and function definition are given in Table 1):

min
X∈θF(X|K)= F ({fk(X)|k ∈K}) (1)

fk(X)= fk

({
gj

(
Simk

j (X),Objkj
)
|j = 1, · · ·, M

})
. (2)

Note that the notation zi in Eq. (2) is simply meant to imply
the function on the left depends on the finite series of quan-
tities inside the braces { }.

The set of parameters X being calibrated in this study in-
cludes nine parameters (d = 9). Details of these parameters
are provided in Table 2 in Sect. 2.4. The two variables cali-
brated in this study are velocity and temperature, for which
data exist for different spatial locations and time points.

We investigate different calibration formulations, where
either one or both of these variables are calibrated. Con-
sequently, K = [Tem] means that water temperature obser-
vation is used for calibration, i.e., water temperature is the
variable that is being calibrated; K = [V el] means velocity
observation is used for calibration; K = [Tem,V el] means
that both temperature and velocity observations are used for
model calibration, i.e., both variables are being calibrated si-
multaneously. The objective function in each scenario is dis-
cussed in Sect. 2.5.
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Table 1. Notation and definitions of variables and functions in Eqs. (1) and (2).

Variable Description

K The set of variables whose observation data are used in calibration. For
example, K = [Tem] means that water temperature observation is used for
calibration, i.e., water temperature is the variable that is being calibrated;
K = [V el] means velocity observation is used for calibration; K =
[Tem,V el] means that both temperature and velocity observations are used
for model calibration

k The symbol for elements in K variable (e.g., water temperature or velocity,
k = Tem or k = V el). k ∈K

X A d dimensional parameter vector restricted to parameter space 2, where d
is the number of parameters to be optimized. X = (x1, x2, . . . , xd )

2 The parameter space is defined by the upper and lower limits on each
parameter (Xmax and Xmin, respectively)

M The total number of observation locations (or sites)

j The index for observation location. j = 1, . . . ,M

Simk
t,j
(X) The simulation output of variable k at location j at time step t given the

parameter vector X

Objk
t,j

The observation (data) of variable k at location j at time step t

Simk
j
(X) The simulation time series output of variable k at location j at times

t = 1, . . . ,N given the parameter vector X.

Simk
j
(X)=

(
Simk1,j (X), . . ., Simk

N,j
(X)

)
Objk

j
The observation (data) time series of variable k at location j at times

t = 1, . . . ,N . Objk
j
=

(
Objk1,j , . . ., Objk

N,j

)
N The total time steps of the observation data

t The index for time steps. t = 1, . . . ,N

Function Description

F(X|K) The calibration objective function given the observation data of variables
in K for calibration. F(X|K) is a composite function of fk(X)

fk(X) The error function of variable k over multiple site. fk(X) is a composite

function of gj
(

Simk
j
(X), Objk

j

)
for sites j = 1, . . . ,M

gj

(
Simk

j
(X), Objk

j

)
Goodness of fit between time series simulation output Simk

j
(X) and

observation Objk
j

of variable k at location j . When k = Tem, normalized
root mean square error (NRMSE) is utilized for gj (•). When k = V el,
normalized Fourier norms of root mean square error (FNs) is used for
gj (•)

2.2 DYNO for model calibration with multiple
variables

One major issue for model calibration with multiple vari-
ables is how to formulate the error of multiple variables with
a single objective function. In practice, different variables
(e.g., temperature and velocity) usually have different physi-

cal units and magnitudes of error. Their error functions can-
not be summed up directly into a single objective function if
we wish to give the error of each variable an equal weight
in the overall objective function. The respective error func-
tions have to be normalized. There are goodness-of-fit met-
rics that can normalize the error of different variables (e.g.,
normalized root mean square error (NRMSE) and Kling–
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Gupta efficiency (KGE, Gupta et al., 2009)). However, it is
still possible that the highest attainable value (or distribution)
of NRMSE (or KGE) across the parameter space for one vari-
able maybe be much higher than the highest attainable value
(or distribution) of NRMSE (or KGE) of another variable.
Hence, how to balance such differences among multiple vari-
ables is still important even when the normalized goodness-
of-fit metrics are used.

We propose a new general objective function, DYNO, for
the multivariable calibration problem. Let ψ be the set of
evaluations found so far by the optimization, DYNO (as
shown in Eq. 3) normalizes the error of each variable fk(X)
with its upper and lower bound, fmax

k and fmin
k , of all evalu-

ations in ψ . Since true values of bounds are not known, fmax
k

and fmin
k are dynamically updated during the optimization

search after each iteration. The mathematical formulation of
the multivariable calibration problem, with DYNO, is as fol-
lows:

minF(X|K)=
∑
k∈K

fk(X)− f
min
k (X)

fmax
k (X)− fmin

k (X)
(3)

fmax
k (X)=max {fk(X) for all X ∈ ψ} (4)

fmin
k (X)=min {fk(X) for all X ∈ ψ} , (5)

where fmax
k (X) and fmin

k (X) are the maximum and mini-
mum values, respectively, of fk(X) for all evaluations in ψ .
fmax
k (X) and fmin

k (X) have to be updated dynamically in
each iteration during optimization. A detailed description of
the implementation of Eq. (3) in the algorithm (i.e., PODS)
tested in this study is given in Sect. 2.6.

2.3 Study site and data

We use a 3D model of a tropical reservoir as an example
to test the efficiency of DYNO for multivariable calibration
problems and to study the impact of using temperature and/or
velocity data for model calibration. The horizontal bound-
ary of the studied reservoir is given in Fig. 1a and b. The
reservoir has over 250 ha of water surface with a maximum
depth of about 22 m. One online water quality profiler sta-
tion (STN. A1) was installed in the middle of the reservoir.
The water temperature data at the station are available at
various depths. The model is built for the simulation of the
year 2013. One-year measured temperature data were used
for model calibration in a previous study (Xia et al., 2021).
We use this calibrated model to create synthetic observation
data since the real velocity measurements are not available.
We first assume a set of “true” model parameters XR . The
value of XR is based on manual calibration by experts and is
listed in Table 2. The spatial and temporal observation data
for the hypothetical lake are synthetically generated based
on the “true” model parameters XR . The synthetic observa-
tion data for the hypothetical temperate lake are generated
by running the simulation model for 1 year with the vector of
model parameters XR . The simulation output is then saved

hourly in N time steps for multiple variables, i.e., tempera-
ture and velocity (K = [Tem,V el]) atM locations (specified
in Fig. 1). In our study case, N = 8761 andM = 12 with dif-
ferent depths of five hypothetical sensor stations (STN. A1
and STN. B1–4 as shown in Fig. 1a and b).

The saved hourly simulated output time series is denoted
as 0 = {Simk

j (X
R),k ∈K = [Tem,V el],j = 1, . . ., M},

which as defined (in Table 1) contains information for each
time step, t = 1, . . . N . Thus 0 is used as observation data
for model calibration, i.e., Objk,k ∈K = [Tem,V el] in
Eq. (1). In the test of optimization for calibration, the true
values of the parameter vector XR are not provided to the
optimization. The optimization will, instead, search for
the best set of X that will minimize the objective function
F(X|K), where K = [Tem], [V el], or [Tem,V el]. Hence
the goal of automatic calibration via optimization is to obtain
an optimum calibration X∗ that results in simulation model
output, Simk

j (X),k ∈K , j = 1, . . . ,M , (see Eqs. 1 and 2)
that is close to the synthetic observation time series data
in 0.

The temperature and velocity simulation results in the
year 2013 based on the “true” model parameters (shown in
Table 2) show temporal and spatial variation, as presented in
Fig. 1a–d. Figure 1a and b show the temperature and horizon-
tal velocity distribution at the surface layer. Figure 1c and d
show the distribution of temperature and velocity magnitude
at STN. A1. There is obvious temperature stratification in the
vertical direction (as shown in Fig. 1c). We have five sam-
pling locations across the reservoir. The observation data at
these five locations are used to calibrate the model parame-
ters.

2.4 Hydrodynamic model and calibration parameters

The description of the hydrodynamic model is given in Xia et
al., (2021). The hydrodynamic model is built with Delft3D-
FLOW (Deltares, 2014). The Delft3D-Flow hydrodynamic
model used was set up by the water utilities’ employees and
consultants, including the domain construction, input data
preparation, and model configuration. The grid coordinate
system is based on Cartesian coordinates (Z grid), which
have horizontal coordinate lines that are almost parallel with
density interfaces to reduce the artificial mixing of scalar
properties such as temperature. The number of grid points
in the x direction is 65, the number of grid points in the y
direction is 67, and the number of layers in vertical is 19. A
single 1-year simulation takes about 5 h to run in serial order
on a Windows desktop with CPU Intel Core i7-4790.

There are nine tunable model parameters (listed in Table 2)
in the model. The first five parameters in Table 2 are related
to the turbulence calculation. The k-ε closure model (Uitten-
bogaard et al., 1992) was chosen as the turbulence closure
model to calculate the viscosity and diffusivity of the wa-
ter. The calculation of the viscosity and diffusivity involves
five parameters: (1) background viscosity in horizontal di-
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Figure 1. Hydrodynamic model simulation results (with “true” model parameters) for the year 2013. (a) Simulated temperature spatial
distribution with sampling locations. (b) Simulated velocity spatial distribution with sampling locations. (c) Time–depth plot of simulated
temperature at STN. A1. (d) Time–depth plot of velocity magnitude at STN. A1. Z-A1 is the maximum water depth at station A1.

Table 2. Model parameters used in calibration. XR denotes the true solution used to generate synthetical temperature and velocity observa-
tions at multiple sites.

Parameter Parameter Description (unit) Physical Range XR

vector process
X

x1 vback
H Background viscosity in

3D turbulence

0.1–1.0a,b,d,e 0.5
horizontal direction (m2 s−1)

x2 Dback
H Background eddy diffusivity in 0.1-1.0a,b,d,e 0.5

horizontal direction (m2 s−1)

x3 vback
V Background viscosity in 0–0.005a,b,c,e 5.00× 10−5

vertical direction (m2 s−1)

x4 Dback
V Background eddy diffusivity in 0–0.005a,b,c,e 5.00× 10−5

vertical direction (m2 s−1)

x5 Loz Ozmidov length scale (m) 0–0.05a,b,e 0.015

x6 HSecchi Secchi depth (m)
Heat flux

0.1–2.0a,e,f 1

x7 ce Dalton number (–) 0.001–0.002a,b,c,e 0.0013

x8 cH Stanton number (–) 0.001–0.002a,b,c,e 0.0013

x9 n Manning coefficient (m−1/3 s−1) Roughness 0.02–0.03a,b,e 0.022

a Deltares (2014); b Chanudet et al. (2012); c Wahl and Peeters (2014); d Råman Vinnå et al. (2017); d Soulignac et al. (2017); e Pijcke (2014).
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rection vback
H , (2) vertical direction vback

V , (3) the background
eddy diffusivity in horizontal directionDback

H , (4) vertical di-
rection Dback

V , and (5) the Ozmidov length Loz. These pa-
rameters affect both the velocity and the temperature. The
vertical exchange of horizontal momentum and mass is af-
fected by vertical eddy viscosity and eddy diffusivity coef-
ficients (Elhakeem et al., 2015). The horizontal velocities
are affected by the horizontal eddy viscosity and diffusivity
coefficients (Chanudet et al., 2012). Chanudet et al. (2012)
highlighted that the most impactful parameter for tempera-
ture is the background vertical eddy viscosity and the Ozmi-
dov length Loz also has a significant effect on the thermal
stratification by affecting the vertical temperature mixing.

The next three parameters in Table 2 are related to the sim-
ulation of surface heat flux. In the heat flux model, the evapo-
rative heat flux and heat convection by forced convection are
parameterized by the Dalton number ce and Stanton num-
ber cH , respectively, which are also in the list of calibration
parameters. The Secchi depth HSecchi (also included in Ta-
ble 2) is another parameter required by the ocean heat flux
model. Secchi depth is related to the transmission of radia-
tion in deeper water and thus affects the vertical distribution
of heat in the water column (Chanudet et al., 2012). Heat
fluxes through the reservoir bottom were not simulated in the
current model. The last parameter is the Manning coefficient,
which affects the roughness of the bottom of the lake and has
a direct impact on velocity.

All of these nine parameters affect (either directly or in-
directly) the thermal and current activity in the water body.
These are also the parameters included in the routine model
calibration by local experts and, thus, are included in the cal-
ibration process in our study. The calibration range for these
parameters (given in Table 2) is suggested by Singapore wa-
ter utilities employees and consultants. Some of these pa-
rameters might be spatiotemporally variant (such as Secchi
depth, Ozmidov length scale, Dalton number, and Stanton
number). Considering these parameters as time- or space-
varying parameters will substantially increase the number
of decision variables in optimization. Considering that the
reservoir in our study is relatively small and is located in a
tropical region where there is no significant seasonal vari-
ation, we consider these parameters to be constant across
space and time.

2.5 Calibration problem formulation

Three scenarios are considered to investigate the impact of
model calibration against temperature and/or velocity obser-
vations (as discussed in Sect. 2.1). The first two scenarios
calibrate to only one variable, and the last scenario calibrates
both variables simultaneously. This section gives the detailed
calibration formulations of these three scenarios.

2.5.1 Model calibration with one variable

The objective functions for Cali-Tem and Cali-Vel scenarios
are summarized in Eqs. (6)–(11), where only observations of
one variable are included in the calibration.

F(X|K = [Tem])= fTem(X) (6)

fTem(X)=

M∑
j=1

NRMSETem
j (X) (7)

NRMSETem
j (X)=

√
1
N

N∑
t=1

[
SimTem

t,j (X)−ObjTem
t,j

]2

1
N

N∑
t=1

ObjTem
t,j

(8)

F(X|K = [V el])= fV el(X) (9)

fV el(X)=

M∑
j=1

FNsV elj (X) (10)

FNsV elj (X)=

√
1
N

N∑
t=1

∥∥∥SimV el
t,j (X)−ObjV elt,j

∥∥∥2

2√
1
N

N∑
t=1

∥∥∥ObjV elt,j

∥∥∥2

2

, (11)

where, NRMSETem
j (X) and FNsV elj (X) denote the NRMSE

of temperature (described in Eq. 8), and normalized FNs
of velocity vectors (described in Eq. 11) at locations j .
SimV el

t,j (X) and ObjV elt,j denote the simulated velocity given
a parameter vector X and observed velocity, respectively, at
time step t and location j . SimV el

t,j (X) and ObjV elt,j are 3D vec-
tors. ‖−‖2 in Eq. (11) is the Euclidean norm used to quantify
the size of a vector.

The temperature and velocity data are taken at different
depths of multiple stations, and their magnitude at different
locations might be different due to spatial variation. Hence,
the fitness at each location should be normalized before be-
ing summed into the objective function. For water temper-
ature, NRMSE (as described in Eq. 8) is used to quantify
and normalize the error between the simulated and observed
data. For velocity, normalized FNs (as described in Eq. 11)
are used to measure the error between the model-simulated
and observed data (corresponding simulated and observed
velocity data points are 3D vectors). The calculation of the
FN follows the description in Beletsky et al. (2006), Huang
et al. (2010), Paturi et al. (2014), and Råman Vinnå et
al. (2017).

2.5.2 DYNO for model calibration with multiple
variables

In the Cali-Both scenario, both temperature and velocity
are calibrated simultaneously, which can be treated as a bi-
objective function problem. The objective function in the
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Table 3. Summary of objective function formulations for different calibration scenarios.

Scenario Variables used Objective function Objective
name for calibration function

formula

Cali-Tem Temperature F(X|K = [Tem]) Eqs. (6)–(8)
Cali-Vel Velocity F(X|K = [V el]) Eqs. (9)–(11)
Cali-Both Temperature and velocity F(X|K = [Tem,V el]) Eq. (12)

Cali-Both scenario (as shown in Eq. 12) applies the DYNO
proposed in Eq. (3). The error functions for water temper-
ature, i.e., fTem(X), and velocity, i.e., fV el(X), are the ob-
jective functions of the Cali-Tem scenario (Eq. 7) and the
Cali-Vel scenario (Eq. 10), respectively. The temperature and
velocity errors are dynamically normalized with their upper
and lower bounds during the search of the optimization algo-
rithm before being summed into a single objective function.
The mathematical formulation of the objective function in
the Cali-Both Scenario (based on Eq. 3) is as follows:

F(X|K = [Tem,V el])=
fTem(X)− f

min
Tem(X)

fmax
Tem (X)− f

min
Tem(X)

+
fV el(X)− f

min
V el (X)

fmax
V el (X)− f

min
V el (X)

, (12)

where the maximum and minimum of fTem(X) and fV el(X)
are updated after each optimization iteration (since new pa-
rameter sets are sampled in each optimization iteration).
As the number of iterations increases, the denominators in
Eq. (12) also increase since the optimization method finds
better minimum objective function values. Hence the individ-
ual objective function components (for each variable) scale
dynamically to maintain an approximately equal weight of
the terms related to temperature and velocity.

As defined in Eqs. (6)–(12), three calibration formulations
are investigated in this study. Table 3 gives a summary of
these calibration formulations.

2.6 Implementation of DYNO with PODS

In this section, we describe the implementation details for
incorporating DYNO into a new efficient parallel surrogate
optimization algorithm, PODS (described in Fig. 2). PODS
(Xia et al., 2021) is a parallel version of the serial DYCORS
(DYnamic COordinate search using Response Surface mod-
els) algorithm introduced by Regis and Shoemaker (2013).
DYCORS is an iterative surrogate method (such methods
are sometimes also called “response surface optimization
methods”, where cheap surrogates of the expensive objective
are built to improve optimization efficiency), designed for
optimization of computationally expensive black-box func-
tions within a limited number of evaluations. DYCORS uses
RBF (radial basis function) as surrogates to efficiently ex-
plore the parameter space and propose promising new so-

lutions for expensive evaluation in each algorithm iteration.
The RBF-guided search methodology of DYCORS is de-
signed for high-dimensional black-box optimization within
a limited number of evaluations of computationally expen-
sive real objective functions. PODS, like DYCORS, is de-
signed for black-box optimization problems that are high-
dimensional and computationally expensive and have multi-
ple local minima. Xia et al. (2021) show that PODS is con-
siderably more efficient than other parallel global optimiza-
tion methods in obtaining good solutions with fewer objec-
tive function evaluations, which is very important for expen-
sive objective functions like hydrodynamics models. PODS
parallelized the serial DYCORS algorithm by following the
master–worker framework (as shown in Fig. 2). This par-
allelization strategy of the algorithm enables simultaneous
function evaluations on multiple processors (cores) in batch
mode, which reduces the wall-clock time of the optimization
process. This can greatly speed up the calibration of compu-
tationally expensive models and make the calibration of some
extremely expensive models computationally tractable.

The PODS algorithm begins the optimization from an ini-
tial experiment design where a random initial set of eval-
uation points are generated with the Latin hypercube de-
sign (LHD). These evaluation points are distributed ran-
domly to P workers for simulation evaluations. Each worker
will calculate the error or objective function of each vari-
able {fk(Xi)|k ∈K} based on Eq. (2) and return them to the
master. This step (W3 in Fig. 2) for DYNO-based PODS is
different from the original PODS. In the original PODS, only
the final objective function value (instead of the error of each
variable) is returned to the master.

After the master collects the results of all the
P evaluations, it will add these new results into the his-
tory list ψ that saves all evaluation results found in previous
iterations. The history list of ψ is not in the original PODS
and it is necessary for the calculation of the DYNO objective
function (F(X|K), X) (as shown in Eq. 3). For instance, the
maximum and minimum value of the error of each variable
fmax
k (X) and fmin

k (X), respectively, are dynamically chang-
ing with the increase of the history list ψ . The objective
function value F(X|K) for all evaluations found in current
and previous iterations needs to be recalculated because of
the update of fmax

k (X) and fmin
k (X). And the best solution

found so far is identified based on the newly calculated
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Figure 2. Diagram of the implementation of DYNO with the paral-
lel algorithm PODS. P is the number of processors available. The
green texts (i.e., steps W3, M1–5) are changes made on PODS to
incorporate DYNO. The rest of the text follows the original PODS
method.

F(X|K). When only one variable (e.g., temperature or
velocity) is considered in the objective function, the best
solution is the evaluation with the lowest error between
the simulation output and observations of the variable
considered. In cases where multiple variables are considered
in calibration, the best solution should be the evaluation with
the smallest value of F(X|K) after considering the error of
multiple variables (as shown in Eq. 3). Because the objective
function value for all evaluations in ψ changed after each
iteration, the RBF is also rebuilt with these new objective
function values of all evaluated solutions (F(X|K), X).
The rebuilt RBF surrogate is used for the generation of the
evaluation points for the next iteration.

PODS with DYNO implementation uses the RBF surro-
gate in the same way as the original PODS does. PODS first
generates a large number of candidate points around the best
solution found so far (refer to Sect. 2.2 in Xia et al., 2021).
The algorithm then selects P evaluation points from these
candidate points on the basis of their estimated objective
function F̂ (X|K) based on the RBF surrogate and the mini-
mum distance from all previous evaluation solutions in ψ . A
lower estimated objective function F̂ (X|K) is better since it
is more likely to lead to solutions with lower objective func-
tion value. Moreover, candidate points that are far from previ-

ous solutions are also preferred since they help the algorithm
to explore regions of the solution domain that were not ex-
plored in previous iterations. These unexplored regions could
possibly be regions where better solutions are located. The
consideration of estimated objective function F̂ (X|K) and
distance information are both considered when selecting the
candidate points through a weighted score based on these two
aspects. For detailed information on the implementation of
evaluation point selection criteria, one can refer to Sect. 2.3
in Xia et al. (2021). The selected P evaluation points are
then distributed to P workers for evaluations, and the iter-
ation loop continues until the stopping criteria are met (e.g.,
the computing budget is finished).

In summary, the implementation of DYNO affects the se-
lection of the best solution found so far and also the surro-
gate model (these steps are W3 and M1–5, as highlighted
in green in Fig. 2). We should stress that the fitting of the
surrogate model is computationally inexpensive compared
with the runtime of the expensive objective function. Hence
it does not affect the overall algorithm runtime.

2.7 Experiment setup

All computational experiments in this study are imple-
mented on a single node on the National Supercomputer Cen-
ter (NSCC) of Singapore, which is a Linux-based platform
with dual Intel Xeon E5-2690 v3 processors, with each node
having 24 cores. Hence, we set the number of processors P to
be 24. Due to the stochastic nature of the optimization algo-
rithm (i.e., PODS) used in this study, multiple optimization
runs are executed for each calibration experiment in Table 3.
Considering that the calibrated hydrodynamic model in this
study is extremely expensive, we perform three optimization
trials for each calibration experiment (see Table 3 for a list of
experiments). Furthermore, to remove any initial sampling
bias, each concurrent optimization trial for the three calibra-
tion experiments is initialized with the same Latin hypercube
experimental design (thus the calibration in each scenario
starts from the same initial solutions). We also investigated
the performance of different forms of DYNO on the Cali-
Both scenario.

We set the same evaluation budget (i.e., the maximum
number of hydrodynamic model runs) for each trial and cal-
ibration scenario (i.e., Cali-Tem, Cali-Vel, and Cali-Both).
The maximum number of hydrodynamic model runs in each
trial is 192, which is 8 iterations with 24 evaluations in each
iteration. Our result indicates that eight iterations is a suffi-
cient calibration budget, as the calibration progress plot in
Fig. S1 in the Supplement shows that the optimization exper-
iments almost converged in the last few iterations.

The computational time of one simulation is approxi-
mately 5 h on a Windows desktop with a CPU Intel Core i7-
4790 processing unit. However, when running 24 simulations
simultaneously on the multicore platform, the computational
time gets longer because of the limited cache memory re-
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Table 4. Summary table of the solution obtained by PODS for
each scenario (Cali-Both, Cali-Vel, and Cali-Tem). fTem(X

∗
|K)

and fV el(X∗|K) are the temperature error fTem(X
∗) and veloc-

ity error fV el(X∗) (calculated in Eq. (7) and Eq. (10), respectively,
with the optimal solution X∗ obtained in each trial). The mean and
standard deviation of fTem(X

∗
|K) and fV el(X∗|K) among three

trials are reported. The variable error is bold in each scenario when
the observation of the variable is included in the calibration in each
scenario. (Some terms defined in Table 1).

Scenarios The composite error
of each variable

(temperature or velocity)

fTem(X
∗
|K) fV el(X

∗
|K)

Mean (SD) Mean (SD)

Cali-Both K = [Tem,V el] 0.014 (0.003) 1.939 (0.165)
Cali-Vel K = [V el] 0.087 (0.023) 2.809 (0.319)
Cali-Tem K = [Tem] 0.024 (0.005) 5.888 (1.435)

sources (as discussed in Xia and Shoemaker, 2022a). Cache
memory is a small amount of much faster memory than main
memory. The wall-clock time for one iteration with 24 cores
simultaneously running is about 12 h if using the default pro-
cess scheduling of the nonuniform memory access (NUMA)
multicore system. We used the mixed affinity scheduling pro-
posed by Xia and Shoemaker (2022a), and the wall-clock
time is reduced to about 8 h per iteration. The mixed affin-
ity scheduling changed the default affinity setting by setting
a hard affinity on the simulation of each PDE model (i.e., fix-
ing the process of each PDE simulation to one core). This ap-
proach proved to be efficient for memory usage and reduced
the simulation time. More details about the mixed affinity
scheduling and the NUMA system can be found in the study
by Xia and Shoemaker (2022a). Hence, the wall-clock time
of each trial takes about 64 h (8 iteration× 8 h/iteration).

3 Numerical results and discussion

3.1 Comparison of calibrating to temperature and/or
velocity

3.1.1 Final solutions in goodness-of-fit metrics

We first compare the three calibration formulations in terms
of goodness-of-fit metrics for both temperature and velocity.
Table 4 summarizes this comparison for the three formula-
tions, i.e., (i) Cali-Tem, (ii) Cali-Vel, and (iii) Cali-Both (see
definition in Table 3), with PODS used as the optimization
algorithm and with a budget of 192 simulations.

The mean as well as the standard deviation of both tem-
perature error fTem(X

∗
|K) (calculated as Eq. 7) and velocity

error fV el(X∗|K) (calculated as in Eq. 10) over three trials
are reported in Table 4, for all three calibration scenarios.X∗

in Table 4 denotes the optimal calibration solution obtained

by PODS in each trial for a given scenario (defined by the set
of variables K). The solution with the lowest variable error
(fTem(X

∗) or fV el(X∗)) is highlighted in bold in Table 4.
Table 4 reports the variable errors of both temperature and
velocity for all formulations to understand the impact of ex-
cluding or including a variable in the calibration formulation.
Please note that the temperature error, fTem(X|K = [Tem]),
reported in Table 4, is exactly the calibration objective func-
tion in the Cali-Tem scenario (F(X|K = [Tem]) as shown in
Eq. 7). Similarly, the velocity error fV el(X|K = [Tem]) is
exactly the calibration objective function in the Cali-Vel sce-
nario (i.e., F(X|K = [V el]) as shown in Eq. (10). We use the
word “variable error” instead of “objective function value”
when referring to the values in Table 4 in subsequent discus-
sions since we are in part looking at the impact of using data
from one variable to predict another variable for which we
do not have data. It is also worth mentioning that the value
in Table 4 is a sum of temperature or velocity error at multi-
ple (in total 12) locations. Hence the error at each location is
smaller than the value in the table.

Table 4 shows that the solution obtained when calibrating
to temperature observation only (Cali-Tem) has smaller tem-
perature errors but larger velocity errors than that if calibrat-
ing to velocity observation data only (Cali-Vel). However, it
is surprising that when calibrating to both temperature and
velocity (Cali-Both), the solution obtained by PODS has the
lowest temperature and lowest velocity error compared with
calibrating to either temperature observation or velocity ob-
servation only. This might be because calibrating to temper-
ature will help to improve the fit of velocity and vice versa.
This makes sense because water temperature and velocity are
two related variables in hydrodynamic modeling, and they
affect each other. Velocity is the fundamental variable of hy-
drodynamics with directional information not provided by
temperature; temperature (via the heat flux model) may also
affect the velocity field since it affects water density. Our
analyses here are based on physical models, which are built
based on physics laws and knowledge humans have acquired
over hundreds of years. Our findings here are in line with the
study by Baracchini et al. (2020), who also suggested having
both temperature and velocity for a complete system calibra-
tion.

3.1.2 Visual comparison of calibration errors

The above analysis is based on the average variable error
statistics only (i.e., fTem(X

∗
|K) and fV el(X∗|K)), of the

best results obtained from PODS (over multiple trials) for
all calibration scenarios. In order to further analyze the dif-
ference between calibration formulations (in terms of their
effectiveness in calibrating both temperature and velocity),
we visually compare the best calibration solutions (X∗) ob-
tained by PODS for each scenario, i.e., Cali-Tem, Cali-Vel,
and Cali-Both. We select one representative optimal solu-
tion (X∗) from three trials in each scenario for this compar-
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Figure 3. Scatter plot of velocity error 1V el in horizontal (X and Y direction) between simulated velocity SimV el
t,j
(X∗) and observed

velocity ObjV el
t,j

at location j . Each dot denotes the velocity error 1V el of location j at one time step. j = surface layer of STN. A1 for
upper panel and j =STN. B1 for lower panel. X∗ is the optimal solution found by PODS in each scenario: Cali-Tem (red dots), Cali-Vel
(black dots), and Cali-Both (blue dots) as listed in Table S1. The “true” solution is on or near the intersection of the two perpendicular black
lines. An initial uncalibrated solution (cyan dots) is plotted for reference.

ison. An initial uncalibrated solution is included in the com-
parison. The parameter value of the uncalibrated solution (in
Table S1 in the Supplement) uses the mean of the calibration
range in Table 2.

The objective function value in terms of temperature and
velocity composite error (over multiple locations) (fTem(X)

and (fV el(X), as formulated in Eqs. 7 and 10, respectively)
and the corresponding parameter configuration (X∗) of the
selected solution (among three trials) are plotted in Fig. 5
and reported in Table S1. In general, the solution in the Cali-
Both scenario is closer to the true solution than solutions in
the other two scenarios in terms of parameter values. Cali-
brated values proposed by the Cali-Both scenario are closest
(relative to other scenarios) to the true values for four param-
eters (i.e., Dback

H , Dback
V , HSecchi, cH ). Moreover, besides the

Manning coefficients, the calibrated values proposed by the
Cali-Both scenario are not the worst (relative to the other two
scenarios) for any other parameter. By contrast, calibrated
values proposed by the Cali-Tem scenario are the worst (i.e.,
the parameter values are farthest from the true solution, rela-
tive to other scenarios) for five parameters (i.e., vback

H , Dback
H ,

vback
V ,Dback

V , ce) and calibrated parameter values for the Cali-
Vel scenarios are the worst for Loz, HSecchi, cH . This indi-
cates that calibrating to both temperature and velocity can
help to prevent the value of the nine calibration parameters
from being very far from the corresponding value for the true
solution.

The horizontal velocity error 1V el (2D) between simu-
lated velocity SimV el

t,j (X
∗) and observed velocity ObjV elt,j (in

the horizontal plane) is plotted as scatter plots of time series
in Fig. 3 (for all calibration scenarios). The temperature er-
ror 1Tem between simulation temperature SimTem

t,j (X
∗) and

observed temperature ObjTem
t,j is plotted as a time series (for

each calibration scenario) in Fig. 4.
The error plots for the two sampling locations at multiple

depths (i.e., surface layers of station STN. A1 and STN. B1
as shown in Fig. 1)) are visualized in Figs. 3 and 4 (for
1 year). Since the velocity error 1V el at a particular time
and location is a vector (and not a scalar like temperature)
and velocity error in three dimensions (for a time series) is
hard to represent visually, Fig. 3 only plots the velocity error
(for 1 year) 1V el in the horizontal plane (i.e., X and Y di-
rections only). Moreover, each dot represents the error at one
point in time during the study period.

Figure 3 plots the difference between the simulated veloc-
ity (for the optimized parameter values obtained from Cali-
Tem (red scatter points), Cali-Vel (black scatter points), and
Cali-Both (blue scatter points) scenarios) and observed ve-
locity. Ideally, the error for each scatter point should be zero,
i.e., at the intersection of the two lines. Figure 3 illustrates
that calibrating to temperature data only (red scatter plot)
results in a larger velocity error 1V el, relative to velocity
error when calibrating to velocity data only (Cali-Vel sce-
nario, i.e., black scatter plot) or to both velocity and tempera-
ture data (Cali-Both scenario, i.e., blue scatter plot). Figure 3
also shows that solutions of all the three scenarios improved
the temperature fit compared with the initial solution, which
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Figure 4. Time series plots of temperature error 1T between simulated water temperature and SimTem
t,j

(X∗) and observed water temper-

ature (ObjTem
t,j

) at location j where j = surface layer of STN4 for left panel and j =STN1 for the right panel. X∗ is the optimal solution
found by P-DYCORS in each scenario: Cali-Tem (red lines), Cali-Vel (black lines), and Cali-Both (blue lines) as listed in Table S1. An initial
uncalibrated solution (cyan lines) is plotted for reference.

demonstrates the effectiveness of the optimization calibra-
tion.

Figure 4 shows the temperature error of solutions from
three different calibration scenarios: Cali-Tem (red time se-
ries), Cali-Vel (black time series), and Cali-Both scenarios
(blue time series). The errors between simulated and ob-
served water temperature at the surface, middle, and bottom
layers of two stations (STN. A1 and STN. B1) are plotted.
In general, the temperature error of the solution in the Cali-
Both scenario is generally close to 0 ◦C for all the layers and
stations shown. The solution in the Cali-Tem scenario also
achieved temperature errors close to 0 ◦C in the middle and
bottom layer at STN. A1, but it has larger temperature er-
rors than the solution in the Cali-Both at the surface layer
of STN. A1 and all layers of STN. B1. The solution in the
Cali-Vel scenario generally overestimated the water temper-
ature in all locations (i.e., all the surface, middle, and bottom
layers at both stations). The temperature error of the solu-
tion in the Cali-Vel scenario is much larger than that of the
solution in Cali-Tem and Cali-Both scenarios in the middle
and bottom layers of both stations. The temperature error at
most times, for the Cali-Vel scenario, is greater than 0.1 ◦C.
This might be because both the Stanton and Dalton numbers
are underestimated in the Cali-Vel scenario when compared
with the true solution (XR) (as shown in Fig. 5). The Dalton
number Ce affects the evaporative heat flux modeling and the
Stanton number CH influences the convective heat flux mod-

eling in the Delft3D-FLOW model (Deltares, 2014). For the
solution in Cali-Vel, a smaller Stanton number CH (shown
in Fig. 5) might lead to underestimated convective heat flux,
which will lead to the overestimation of the water temper-
ature. In summary, calibrating to temperature and velocity
(i.e., Cali-Both) gives the best solution in terms of tempera-
ture error compared with calibrating to temperature or veloc-
ity only (i.e., Cali-Tem or Cali-Vel). Calibrating to velocity
only (Cali-Vel) gives the worst result in terms of temperature
fit. Simulation of vertical temperature, vertical velocity, ver-
tical eddy diffusivity, and vertical eddy viscosity (Figs. S2–
S5) also shows that the solution in the Cali-Both scenario
is much better than solutions in the Cali-Tem and Cali-Vel
scenarios. For example, the solution in the Cali-Both sce-
nario can almost capture the vertical time-varying temper-
ature profiles of the true solution. By contrast, calibrating to
one variable did not fully capture the vertical time-varying
temperature profiles (e.g., April–May for the Cali-Tem sce-
nario; March–May and August–September for the Cali-Both
scenario in Fig. S2). The solution in the Cali-Both scenario
also gives much smaller vertical velocity, eddy diffusivity,
and eddy viscosity error than solutions in the other two sce-
narios (in Figs. S3–S5). The results indicate that using both
temperature and velocity data in model calibration also helps
to improve the complex time-varying vertical mixing behav-
ior.
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Figure 5. Parallel axis plot for the parameter value and the composite error of temperature and velocity of calibration solutions under different
scenarios (Cali-Tem, Cali-Vel, and Cali-Both). True solution defined in Table 2 is given for reference. Smaller variable errors (fTem(X), see
Eq. 5 and fV el(X), see Eq. 8) are better, and the variable errors of the true solution (XR) are zero (for both fTem(X) and fV el(X)). The
parameter symbols are defined in Table 2.

3.2 Optimization search dynamics under different
calibration scenarios

We further analyze the calibration progress of PODS for
Cali-Tem, Cali-Vel and Cali-Both, to understand the calibra-
tion convergence speeds of the three formulations. The pur-
pose of the calibration progress analysis is to visualize the
improvement in calibration quality of both temperature and
velocity variables from the LHD, for all three formulations.
As discussed in the experiment setup section, we conducted
eight iterations of the optimization search. This is a reason-
able number of iterations for our case, given that (1) the
problem is computationally expensive (one experiment takes
about 64 h to run and there are nine experiments) and (2) the
calibration progress plot in iterations (Fig. S1) indicates that
the optimization search almost converged in eight iterations.

Figure 6 plots the calibration progress of the three formu-
lations (i.e., Cali-Tem, Cali-Vel, and Cali-Both) using PODS.
Each subplot in Fig. 6 corresponds to the different concur-
rent optimization trials (i.e., trials of the stochastic optimiza-
tion method using the same initial points from LHD) for
each formulation. The best solutions are near the origin of
each graph. Moreover, Fig. 6 plots the progress (quantified
by visualizing both temperature and velocity errors) of the
best solution found (measured in terms of the objective func-
tion value in each calibration scenario) during the search.
Figure 6 indicates that when calibrating to temperature or
velocity only, the optimization search cannot guarantee the
improvement of the fit of another variable. For example, in
Fig. 6a, when calibrating to velocity only, the temperature

error of the best solution found at the end of the optimiza-
tion search stage is worse than the temperature error of the
best solution found after the initial LHD, even though there
is improvement in terms of velocity fit. Similarly, when cal-
ibrating to temperature only, the improvement in velocity fit
is also not significant (for instance, in Fig. 6a). When cali-
brating to the fit of both temperature and velocity using the
DYNO formulation, the fit of both temperature and velocity
improves in all trials, and the improvement remains balanced
during the optimization search. Figure 6 also indicates that
the final solution found in Cali-Both scenarios dominates the
best solution found by PODS in Cali-Tem and Cali-Vel in
terms of both temperature and velocity fit.

Figure 6 also shows that when calibrating to one variable,
the optimization search is easily convergent (i.e., the best
solution does not continue improving after a few iterations
even in terms of the fit of the variable considered in cali-
bration). For example, in Fig. 6a, when calibrating to tem-
perature only, the best solution in terms of temperature error
does not improve much (in the last few iterations). The rea-
son might be that when the velocity error is large, it is less
likely that the temperature fit would be improved further. By
contrast, when calibrating to both temperature and velocity,
the optimization search continues improving in both the tem-
perature and velocity fit. Hence only considering one vari-
able in the calibration, it is difficult to get a solution that has
small (or close to zero) errors of the variable considered. We
should also stress that even though the optimization gets a
solution that has zero error in one variable, it does not mean
that the error of another variable would be zero. The reason
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Figure 6. Calibration progress plot of the best solution found (in terms of objective function value) during optimization search by PODS
when calibrating to temperature only (Cali-Tem), calibrating to velocity only (Cali-Vel), and calibrating to both temperature and velocity
(Cali-Both). Three random trials (i.e., T1, T2, and T3) are plotted in (a)–(c). Lower velocity and temperature error are better. The yellow
markers are evaluation points in the initial experiment design using LHD. Besides solutions in LHD, only the best solution in each of the
optimization iterations is plotted (i.e., markers joined by lines). The line links the best previous solution in one iteration to the best solution
in next iteration. The arrow indicates the direction from the previous solution to the next solution.

is that only the observation in part of the simulation space
is used for calibration (not the observation data at each grid
and each time step of the simulation space that are used to
calculate the temperature error). Thus, the temperature error
may be zero at these observation locations, while the temper-
ature error is not zero at other locations where observation is
not used in the calibration. In this case, getting a temperature
error of zero for the observation locations cannot guarantee
the velocity error is zero.

It is also important to understand the “frequency” or like-
lihood with which PODS can find good temperature and ve-
locity calibrations via the three different formulations pro-
posed in this study. Hence, we also do a comparative fre-
quency analysis of the errors (for velocity or temperature) of
all evaluated points (Xi, i = 1, . . . , 3×Nmax) from all trials
(three trials) of PODS when using different calibration for-
mulations (see Table 3). The purpose of this frequency anal-
ysis is to understand the likelihood with which the three dif-
ferent formulations can obtain good velocity and temperature
calibrations. The frequency analysis results are presented in
Fig. 7 via visualizations of empirical histograms of both ve-
locity error and temperature error (from all solutions of three
trials of PODS) for each calibration scenario.

Figure 7 plots the error distribution of all the evalu-
ated points over three trials (576 evaluations) for each sce-
nario: Cali-Tem (K = [Tem]), Cali-Vel (K = [V el]), and
Cali-Both (K = [Tem,V el]). The different subplots in Fig. 7
provide a visualization of the velocity (vertical axis) and tem-
perature (horizontal axis) error distribution via hexagonal bin
(hexbin) plots (inside the square) and error histograms (out-
side the square) for each of the calibration scenarios. The
number inside each hexbin denotes the number of evaluated
points (for that combination of temperature error and veloc-

ity error) located in that hexbin. Furthermore, the hexbin with
a larger number of evaluated points is highlighted with a
darker shade. The temperature histogram columns (above the
square) represent the sum of all the hexbins inside the square
directly beneath the number in the column. For the velocity
histogram (on the right side of the square), the column height
depends on the sum of all the hexbins in the row to the left of
the number.

The temperature and error velocity distribution visualiza-
tions of Fig. 7 clearly show that calibrating to both tem-
perature and velocity data (see Fig. 7c, i.e., error distribu-
tion for the Cali-Both scenario) provides good temperature
and velocity calibrations with a higher frequency. Figure 7c
shows that it is highly likely that both temperature and veloc-
ity errors are lower (indicated by darker hexbins with tem-
perature error fTem(X|K) less than 0.05 and velocity error
fV el(X|K) less than 4). Consequently, Fig. 7c also illustrates
that the newly proposed DYNO (see Eq. 3) works effectively,
in this case, to calibrate multiple variables simultaneously.

Figure 7 also illustrates that it is better to calibrate the hy-
pothetical hydrodynamic model to velocity data rather than
temperature data (see Fig. 7a and b) (if data for both variables
are not available). Figure 7a indicates that calibrating to tem-
perature only (i.e., the Cali-Tem scenario) results in a greater
likelihood that velocity error would be high (see the velocity
error histogram in Fig. 7a). However, Fig. 7b illustrates that
the errors in temperature when calibrating to velocity only
(Cali-Vel) are likely to be relatively small in magnitude (see
the temperature error histogram of Fig. 7b).

From the above discussion, we can conclude that calibrat-
ing to both temperature and velocity data with the newly pro-
posed DYNO (implemented within the efficient surrogate al-
gorithm PODS) is effective in obtaining a balanced calibra-
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Figure 7. Distribution plot of all the evaluated points found by PODS (over three trials) in terms of temperature composite error fTem(X|K)
and velocity composite error fV el(X|K) in each scenario: Cali-Tem (K = [Tem]), Cali-Vel (K = [V el]), and Cali-Both (K = [Tem,V el]).
The number inside each hexagon represents the number of evaluated points located in that hexagon (e.g., with the combination temperature
and velocity error associated with the corresponding values on the axes.) A darker color in the hexagon means a larger number of evaluated
points is located in that hexagon. The bar plot along the upper x axis (fTem(X|K)) shows the distribution of the evaluation points in terms of
temperature error only. The bar plot along the y axis (fV el(X|K)) is the distribution of the evaluation points in terms of velocity error only.
The number above the bar shows how many evaluated points are located in that bin. Smaller error (fTem(X|K) or fV el(X|K)) is better. The
true solution (fTem(X

R
|K), fV el(XR |K)) is the origin of each subplot.

tion of both temperature and velocity variables. In real-world
hydrodynamic lake applications, if available, both tempera-
ture and velocity data should be used for lake hydrodynamic
model calibration. However, the very common practice of
calibrating only to temperature data is shown to be unable
to reproduce the flow dynamics well. This supports the extra
effort and expense to collect velocity data that is expected to
give a beneficial effect.

3.3 Impact of different forms of normalization on the
performance of DYNO

This section investigates the impact of using different forms
of normalization in the new objective function DYNO on op-
timization search performance. In Eq. (3), the error of each
variable is normalized by the maximum and minimum values
fmax
k (X) and fmin

k (X) of fk(X), respectively, among all the
evaluations examined so far. One concern of using the maxi-
mum value fmax

k (X) is that the objective function can be af-
fected by extremely bad evaluation points. Another approach
is to use the median value fmedian

k (X) of fk(X) among all the
evaluations examined so far as a replacement of fmax

k (X) to
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Figure 8. Calibration progress plot in terms of the best solution found during optimization search when using DYNO-N1 and DYNO-N2
as the objective function. Three random trials (T1, T2, and T3) are plotted in (a)–(c). Lower velocity and temperature error are better. This
figure uses the same format as Fig. 6.

normalize the error of each variable. We refer to DYNO us-
ing the median value fmedian

k (X) as “DYNO-N2” (as shown
in Eq. 13) to differentiate it from DYNO using the maximum
value fmax

k (X) (as shown in Eq. 3), which we refer to as
“DYNO-N1” in the following text.

F(X|K)=
∑
k∈K

fk(X)− f
min
k (X)

fmedian
k (X)− fmin

k (X)
(13)

fmedian
k (X)=med {fk(X) for all X ∈ ψ} , (14)

where fmedian
k (X) and fmin

k (X) are the median and mini-
mum values of fk(X), respectively, among all the evaluations
evaluated so far, and hence they are updated dynamically in
each iteration during optimization.

The implementation of DYNO-N2 is similar to the imple-
mentation of DYNO-N1 (Eq. 3). The only change is replac-
ing the calculation related to fmax

k (X) with fmedian
k (X). We

tested the relative efficiencies of DYNO-N1 and DYNO-N2,
by comparing three calibration trials, of each DYNO variant
(using PODS), where each concurrent calibration trial was
initialized using the same LHD. Figure 8 shows the progress
of PODS with the two forms of DYNO as the objective func-
tions. Figure 8 is similar in design to Fig. 6, and indicates
that both forms of DYNO are able to balance the calibra-
tion on temperature and velocity. There are two trials where
PODS with DYNO-N1 (using fmax

k (X) for normalization)
found a better solution than PODS with DYNO-N2 (using
fmedian
k (X) for normalization).
The results here indicate that DYNO-N1 is not adversely

affected by the bad solution. A reason for this may be that
PODS typically do not generate extremely bad solutions (i.e.,
outlier solutions with extremely large errors), since the algo-
rithm search is concentrated around the best solution found
so far. However, if other optimization algorithms are used
for calibration, especially algorithms that explore the search
space more, there might be a higher likelihood of encounter-
ing outlier or extremely bad solutions during the optimiza-

tion search. Consequently, the performance of such an al-
gorithm with DYNO-N2 might be better than with DYNO-
N1, which might need further investigation. The outlier solu-
tions here mean solutions (obtained during the optimization
search phrase) that have much larger errors than other solu-
tions found so far. Outlier or extremely bad solutions are also
likely to occur for calibration problems where the model out-
put is very sensitive to the calibration parameters (i.e., a small
change in model parameters can cause huge changes in the
model output that leads to much worse solutions).

3.4 Value of velocity measures in 3D lake model
calibration

High-quality hydrodynamic simulations (e.g., thermal struc-
ture, current velocities, flow advection, and vertical mixing)
are vital for accurate spatial modeling of water quality in
lakes. The hydrodynamic process influences the transport
and production or transformation of biological and chemical
components. Hence, if the simulation of flow dynamics is not
accurate enough, there is no way to achieve accuracy in the
simulation of water quality. Previous studies use mostly tem-
perature observations for the 3D hydrodynamic lake model
calibration. Whereas velocity data are less commonly used
compared with temperature data for model calibration.

Our results in Sect. 3.1 indicate that calibrating to temper-
ature data only cannot guarantee accuracy in velocity simula-
tion in our case. Not using velocity data in model calibration
(i.e., using temperature data in model calibration only) may
thus lead to large velocity errors (as indicated in Fig. 3). The
inclusion of velocity measurements in calibration not only
reduces velocity error but also helps improve the tempera-
ture fit. For example, in Fig. 4, when calibrating to both tem-
perature and velocity data, the temperature error is smaller
than the temperature error when calibrating to temperature
data only. This is most obvious in the surface layers of both
STN. A1 and STN. B1, where the temperature error when
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calibrating to both temperature and velocity (i.e., Cali-Both)
is much smaller compared to calibrating to temperature only
(i.e., Cali-Vel). The better result (better fit of temperature as
well as velocity) in Cali-Both demonstrates the effectiveness
of using velocity measures in 3D hydrodynamic lake model
calibration. The comparison of calibrated parameter values
in Cali-Both and Cali-Tem scenarios (in Fig. 5) also demon-
strates the value of using velocity data besides temperature
data in model calibration. In Fig. 5, we can see that the cal-
ibrated value of viscosity and diffusivity parameters in Cali-
Both is much closer to the true value than that in Cali-Tem.
This shows that the use of velocity measures helps to im-
prove the calibration of these viscosity and diffusivity pa-
rameters. Our analysis is based on synthetic observation data
from the physical model since we do not have real velocity
measurements. These physical models are based on physics
laws. The analysis from modeling can provide some implica-
tions for the real-world situation. Hence, it is worthwhile to
repeat the analysis based on real data if there are real velocity
measurements available in the future.

The risk of using only temperature data without velocity
data, even for accurately simulating water temperature, is
that temperature simulation is affected by both the flow dy-
namics and the heat transfer process. The fit of temperature
data is a result of the combination of these two processes.
However, the fit of the temperature data cannot guarantee ac-
curate simulation of each of the processes, although accurate
simulation of each process does guarantee the fit of tempera-
ture data. The velocity observation hence is valuable to help
improve the flow dynamics simulation of the model, which
is not only important for temperature simulation but also for
simulation of other water-quality substances (e.g., biological
and chemical components). Our research implication of the
use of velocity observations is also in line with the study of
Baracchini et al. (2020), who also suggest having both tem-
perature and current velocity for complete system calibra-
tion.

3.5 Possibilities for other applications

In this study, we only demonstrate how DYNO can be incor-
porated into the PODS parallel surrogate global optimization
algorithm (see Sect. 2.6). However, the new objective func-
tion DYNO could also be easily utilized with other heuris-
tic optimization methods (e.g., serial or parallel versions of
the genetic algorithm (Davis, 1991) and differential evolu-
tion (Tasoulis et al., 2004) for effective calibration of other
multivariable calibration problems. We have not provided a
precise methodology for incorporating DYNO into other op-
timization methods, however, because the incorporation of
DYNO depends on the structure of an optimization method,
and structures of optimization methods vary greatly. We il-
lustrated in Sect. 2.6 and Fig. 3 how components of parallel
PODS are modified in order to use DYNO. Other optimiza-

tion methods could be modified in a similar way to incorpo-
rate DYNO for use in multivariable calibration.

Also, there are numerous other model calibration
paradigms in general hydrology and water resources (be-
sides the hydrodynamic model calibration) where simulta-
neous multivariable and multisite calibrations are required.
Some examples of such multivariable and multisite calibra-
tion problems include watershed model calibration (Franco
et al., 2020; Odusanya et al., 2019), seawater intrusion model
calibration (Coulon et al., 2021), and water quality model
calibration (Xia and Shoemaker, 2021; Xia and Shoemaker,
2022b) among others. In these problems, there are usually
multiple constituents (e.g., substances) to be calibrated and
the observations are usually available at multiple locations.
Our new DYNO can potentially be used to calibrate them
simultaneously. A popular calibration strategy for such prob-
lems in general hydrology is to use multiobjective calibration
where it is assumed that a trade-off exists between multiple
hydrologic responses (e.g., high flow, low flow, water bal-
ance, water quality etc.)

Using multiobjective algorithms, however, to calibrate hy-
drologic and watershed quality models may not be the most
suited strategy for some case studies because (i) multiobjec-
tive calibration can be computationally intensive if underly-
ing simulations are computationally expensive and (ii) mean-
ingful trade-offs between different objectives may not ex-
ist. Kollat et al. (2012) demonstrate that prior multiobjec-
tive calibration exercises may have over-reported the num-
ber of meaningful trade-offs in hydrologic model calibration.
DYNO is a reasonable alternative to classic multiobjective
calibration in calibration problems where the trade-off be-
tween multiple-component calibration objectives is not sig-
nificant, because (i) a balance between multiple constituent
objectives is maintained with DYNO and (ii) a single ob-
jective algorithm can be used with DYNO, which is com-
putationally more efficient than a multiobjective algorithm.
This is especially true for multiconstituent watershed model
calibration problems where the achievable objective func-
tion ranges for different constituents (e.g., flow, sediment,
phosphorus etc.) are quite different. Multiple prior studies
(Moriasi et al., 2007, 2015) highlight that achievable ranges
of statistical calibration measures (e.g., Nash–Sutcliffe effi-
ciency (NSE), bias etc.) are significantly different for differ-
ent constituents (e.g., streamflow, sediment, total phospho-
rus etc.). Moriasi et al. (2015) note that in most watershed
model case studies, the achievable range of NSE for stream-
flow is higher than the achievable range for total phospho-
rus. Hence, DYNO may be extremely effective in balancing
simultaneous calibration of streamflow and phosphorus for
such case studies. We believe that there is immense potential
in the application of DYNO for multiconstituent watershed
model calibration.

DYNO is also applicable to multiconstituent calibration
problems where sampling locations and temporal frequen-
cies for the different constituents are different. For instance,
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in real-world hydrodynamic settings, it is very likely that
sampling locations and frequencies of temperature and ve-
locity observations are different. This is also true for water-
shed sampling settings, where sampling locations and fre-
quencies for water quality (e.g., phosphorus) constituents
are, typically, less than sampling distributions of streamflow.
While the synthetic experiments of this study assume iden-
tical sampling locations and frequencies for temperature and
velocity, DYNO requires the observations of multiple con-
stituents (e.g., temperature and velocity in our case). It is
worth mentioning that DYNO does not require the same
number of locations or same time frequency for different ob-
servation constituents. This is because DYNO first calculates
the composite error of each constituent separately and then
normalizes the composite error of each constituent dynami-
cally, to balance the calibration of each constituent. This fea-
ture of DYNO allows it to be used in cases where different
constituents are measured in different locations or time fre-
quencies.

4 Future work

Our analysis of the role of temperature and velocity mea-
surements in 3D hydrodynamic model calibration is based on
synthetic observation data generated from models. We think
it is worthwhile to further investigate the role of tempera-
ture and velocity measurements in hydrodynamic model cal-
ibration if there are velocity measurements available in the
future. Moreover, the synthetic observation data used in our
analysis did not account for the measurement uncertainty of
the observation data. Further investigations related to the im-
pact of measurement errors on the calibration setup proposed
here will also be beneficial. It is important to note that the
measurement uncertainty and distribution of different vari-
ables could be different (and, thus, our new objective func-
tion formulation DYNO could be very useful in balancing the
calibration process in such a scenario). For example, Barac-
chini et al. (2020) reported that the measured and computed
velocity value (at a magnitude of 1 cm s−1 for velocity in the
hypolimnion layer) is close to velocity measurement uncer-
tainty 0.8 cm s−1 (the velocity measurement instrument pre-
cision) while the computed and measured temperature value
is an order of magnitudes larger relative to temperature mea-
surement uncertainty in their study. The difference in terms
of measurement accuracy and measurement value could lead
to a different magnitude of error function value for each vari-
able (temperature or velocity). (In their study, the error func-
tion is the square of temperature (or velocity) difference be-
tween the computed and measured value divided by the ob-
servational uncertainty). Baracchini et al. (2020) pointed out
that such discrepancy hinders the use of different kinds of
data (e.g., temperature and velocity) simultaneously because
the impact of velocity on the cost function is almost negli-
gible compared with temperature observations. Hence, they

carried out a separate discussion for both types of observation
data. Their argument is true if the calibration objective func-
tion is a sum of temperature or velocity error function with a
fixed weight. In this case, the difference in the magnitude of
the error function value might lead to a biased calibration to
the variable that has a larger impact on the error function.

However, our proposed new objective function DYNO dy-
namically normalizes the error function value of each vari-
able using the maximum and minimum value of each vari-
able’s error function value obtained during the calibration
and hence balances the impact of each variable on the ob-
jection function. Therefore, DYNO is designed to work well
in scenarios where the error function values of each variable
are significantly different due to differences in measurement
uncertainty and the distribution of each variable’s observa-
tions.

Another possible future work is the consideration of the
spatial–temporal variability of calibration parameters (such
as Secchi depth, Ozmidov length scale, Dalton number, and
Stanton number). We considered them as constant param-
eters in our study to simplify the problem. This is reason-
able since our study area is relatively small and there is not
much seasonal variation. In cases where the study areas are
large and there is significant seasonal variation, there might
be a need to consider these parameters as space- and time-
varying calibration parameters. The consideration of space
and time variability will, of course, increase the number of
decision variables for the optimization problems, which will
bring more challenges. In that case, new methods on how to
reduce the parameter dimensions might be needed (e.g., de-
signing some low-dimensional controlling parameters, like
curve number in hydrology (Bartlett et al., 2016), to repre-
sent the high-dimensional space–time variability of these pa-
rameters).

5 Conclusions

We conclude that the DYNO objective function that we
propose is a new effective way of balancing the calibra-
tion to different variables (i.e., temperature and velocity) in
optimization-based calibration. It is possible that the magni-
tudes of goodness-of-fit measures for different variables are
very different (which may fluctuate during the optimization
search), and thus the optimization search cannot maintain the
balance between different variables. Hence DYNO dynami-
cally modifies the objective function, for multivariable cal-
ibration, so that the error for each variable is dynamically
normalized in each iteration. This is to ensure that the search
gives approximately equal weight to each variable (e.g., ve-
locity and temperature).

The proposed DYNO is tested in this study for simulta-
neous temperature and velocity calibration of a lake model.
Moreover, DYNO is integrated with the PODS algorithm for
testing on expensive hydrodynamic lake model calibration in
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parallel. The results indicate that using DYNO ensures a bal-
anced calibration between temperature and velocity. We pro-
vide a detailed analysis to illustrate that DYNO balances the
weight between different objectives dynamically, and thus al-
lows for a balanced parameter search during optimization.

We conclude that calibrating to the error of one vari-
able (either temperature or velocity) cannot guarantee the
goodness-of-fit of another variable in our case. Of course,
the most accurate predictions can be obtained by having both
temperature and velocity data. These comparisons are possi-
ble because we have, via synthetic simulation, the true solu-
tion for the lake model. Our analysis suggests that for prac-
tical applications, both temperature and velocity data might
need to be considered for model calibration. The common
practice of calibrating only to temperature data might not be
sufficient to reproduce the flow dynamics accurately, and ex-
tra effort and expense to collect velocity data are expected
to give a beneficial effect. However, our analysis is based on
synthetical data from models, hence it is worthwhile to fur-
ther investigate the role of temperature and velocity in model
calibration with real temperature and velocity measurements.

There are many possible future areas for the application of
this method. DYNO would be effective for other multivari-
able and multisite calibration problems (especially for prob-
lems with many variables). Future research could apply the
DYNO methods to other problems and use other optimiza-
tion algorithms.
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