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Abstract. Lowland rivers and shallow aquifers are closely
coupled, and their interactions are crucial for maintaining
healthy stream ecological functions. To explore river–aquifer
interactions and the lowland hydrological system in three
Belgian catchments, we apply a combined approach of base-
flow separation, impulse response modeling, and time series
analysis over a 30-year study period at the catchment scale.
Baseflow from hydrograph separation shows that the three
catchments are groundwater-dominated systems. The recur-
sive digital filter methods generate a smoother baseflow time
series than the graphical methods. Impulse response model-
ing is applied using a two-step procedure. The first step of
groundwater level response modeling shows that groundwa-
ter level in shallow aquifers reacts fast to the system input,
with most of the wells reaching their peak response during
the first day. There is an overall trend of faster response time
and higher response magnitude in the wet (October–March)
than the dry (April–September) periods. The second step of
groundwater inflow response modeling shows that the system
response is also fast and that simulated groundwater inflow
can capture some variations but not the peaks of the separated
baseflow time series. The time series analysis indicates that
groundwater discharge to rivers is likely following ground-
water level time series characteristics, with a strong trend
and seasonal strengths, in contrast to the streamflow, which
exhibits a weak trend and seasonality. The impulse response
modeling approach from the groundwater flow perspective
can be an alternative method to estimate the groundwater in-
flow to rivers, as it considers the physical connection between

river and aquifer to a certain extent. Further research is rec-
ommended to improve the simulation, such as giving more
weight to wells close to the river and adding more drainage
dynamics to the model input.

1 Introduction

In riverine environments, streamflow quantity and water
quality are often largely influenced by groundwater (GW) via
flow and solute exchange. River–aquifer interactions impact
the stream ecological functions, as a lot of vegetation types
are highly dependent on a healthy flow regime and nutrient
level. Moreover, these interactions are directly linked to and
influenced by changes in climate, land use, land cover, wa-
ter management policies, and other human activities. Emerg-
ing hydrological stresses, such as observed record droughts
in recent decades in Europe, have already resulted in low
stream discharge, stream stage, and groundwater level (Fu et
al., 2020; Hänsel et al., 2019; Spinoni et al., 2017; Laaha et
al., 2017). Therefore, understanding river–groundwater inter-
actions and exploring their temporal evolution are of crucial
importance and can provide insights and assistance for future
environmental management decisions to minimize potential
adverse effects and maintain a healthy hydro-ecological bal-
ance.

Lowland catchments in temperate regions are character-
ized by flat topographies and shallow groundwater tables.
Rivers and groundwater in these catchments are closely cou-
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pled and influenced by climatic drivers, such as precip-
itation (Van Walsum et al., 2002). Previous studies con-
ducted on lowland river–aquifer interactions have their dis-
tinctive objectives and applied methodologies. For exam-
ple, to quantify the exchange fluxes, there are hydraulic or
heat tracer approaches (Krause et al., 2012) or event-based
hydrochemical and isotopic tracer methods (Poulsen et al.,
2015). Process modeling approaches are often used to sim-
ulate river–aquifer interactions. The ubiquitous and open-
source numerical groundwater modeling code MODFLOW
has, for instance, several options for two-way surface wa-
ter and groundwater interactions (Niswonger and Prudic,
2005; Di Ciacca et al., 2019; Nützmann et al., 2013). More
fully integrated models that take the physics of the surface
and subsurface domains into account, such as HydroGeo-
Sphere (Alaghmand et al., 2016), also exist. Comprehen-
sive reviews on approaches and applications for better un-
derstanding river–groundwater interactions can be found in
recent papers and books (Brunner et al., 2017; Cushman and
Tartakovsky, 2016; Barthel and Banzhaf, 2016).

In Belgium, research projects with a focus on river–aquifer
interactions have been intensively carried out in the Aa River,
a typical Flemish lowland river, using various methods, such
as heat tracer, riverbed hydraulic conductivity measurements,
and numerical modeling approaches (Anibas et al., 2009,
2011, 2015, 2017; Ghysels et al., 2018, 2021; Schneidewind
et al., 2016). However, these applications are limited to stud-
ies with a relatively small spatial scale (e.g., at the point scale
or a short river segment) and are difficult to upscale due to the
complexity of small-scale heterogeneity in riverbed materials
and river morphology (Ghysels et al., 2018). The research pe-
riods of these projects cover relatively short temporal scales,
where field data were collected on a few days in chosen
seasons (summer and winter) or for a maximum of a few
years. Very few studies have assessed the river–aquifer inter-
actions at a larger spatial and temporal scale in Belgian low-
land catchments using methods other than baseflow separa-
tion techniques (Zomlot et al., 2015; Batelaan and De Smedt,
2007). Furthermore, little research has been carried out in
the selected lowland catchments (see Sect. 2) with respect to
river–aquifer interaction studies, the outcome of which is im-
portant for assessing the potential for groundwater-sensitive
species in the framework of ecological studies and manage-
ment practices at these sites.

In this study, we present a combined approach of base-
flow separation, impulse response modeling, and time series
analysis to gain insights into the hydrological system and
the interactions between rivers and shallow aquifers over a
30-year period in three temperate lowland catchments. Com-
pared with a distributed hydrological model, a lumped im-
pulse response model is less time-consuming to construct and
can be more effective to transform the input impulse to yield
an accurate prediction of the system output (Long, 2015; Ol-
sthoorn, 2007; von Asmuth and Knotters, 2004). The objec-
tives are to (1) simulate the groundwater level in response to

system input of precipitation and air temperature; (2) sim-
ulate the groundwater inflow to rivers in response to sys-
tem input of groundwater level and compare the estimated
groundwater inflow with the separated baseflow from differ-
ent baseflow separation techniques; and (3) investigate the
temporal variation, trend, and seasonality of the meteorolog-
ical and hydrological variables that characterize the lowland
hydrological system. If this combined approach can be suc-
cessfully applied in these three specific catchments, it can
potentially be applied to catchments with similar conditions
worldwide.

2 Study area

The study focuses on three temperate lowland catchments
in northeastern and central Belgium: the Zwarte Beek, the
Herk and Mombeek (the main tributary of the Herk), and the
Dijle catchments (Fig. 1). They are sub-catchments of the
Scheldt River basin and cover an area of approximately 95,
272, and 893 km2, respectively. The elevation ranges are
21–148 m TAW (Tweede Algemene Waterpassing) for the
Zwarte Beek, 25–133 m TAW for the Herk and Mombeek,
and 9–177 m TAW for the Dijle. The highest point in the
Zwarte Beek (148 m TAW) is the spoil tip of a coal mine. The
climate of the area is humid temperate. The average annual
precipitation, observed between 1990 and 2019 from nearby
meteorological stations (Fig. 1a), is 824, 773, and 706 mm
for the Zwarte Beek, the Herk and Mombeek, and the Dijle,
respectively (KMI, 2020). The average monthly precipitation
data show that August and December are the wettest months,
with respective precipitation values of 81 and 87 mm for the
Zwarte Beek, 85 and 79 mm for the Herk and Mombeek,
and 81 and 72 mm for the Dijle (Fig. 2). April is the driest
month with 48, 45, and 39 mm of precipitation for the three
abovementioned catchments, respectively (Fig. 2). The aver-
age daily air temperature is approximately 11 ◦C for the three
catchments during the same observation period (KMI, 2020).
The hottest and coldest months are July and January, with
an average monthly air temperature of around 19 and 4 ◦C,
respectively (Fig. 2). The average annual potential open wa-
ter evaporation varies between 662 and 675 mm, of which
the summer (June–August) potential evaporation accounts
for approximately 85 % of the total amount (Batelaan and
De Smedt, 2007).

Both the Zwarte Beek and the Herk and Mombeek are
tributaries of the Demer River (Fig. 1a). The Demer joins
the Dijle at Rotselaar and then heads towards the Scheldt
Estuary in Antwerp (Fig. 1a). The streamflows of the stud-
ied river segments are measured at the catchment outlet
(Fig. 1a). The average daily streamflows are 1.05 m3 s−1 for
the Zwarte Beek, 1.44 m3 s−1 for the Herk and Mombeek,
and 6.65 m3 s−1 for the Dijle. The streamflow varies between
0.001 and 7.03 m3 s−1 for the Zwarte Beek, between 0.06 and
20.4 m3 s−1 for the Herk and Mombeek, and between 1.23
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Figure 1. Location of the studied catchments in (a) the Scheldt River basin, including (b) the Zwarte Beek, (c) the Herk and Mombeek, and
(d) the Dijle, and the cross-sectional sketches of the hydrogeological layers (DOV, 2020) and piezometers in each catchment. The digital
terrain model (DTM) is from Geopunt Vlaanderen (https://www.geopunt.be/, last access: 18 October 2020).

Figure 2. The average monthly precipitation and air temperature of
the three catchments, based on daily observations between 1990 and
2019 (KMI, 2020).

and 29.1 m3 s−1 for the Dijle (Fig. 3a). The flow duration
curve (FDC) plots the cumulative frequency of the stream-
flow and represents the variability of streamflow in a catch-
ment (Vogel and Fennessey, 1994), with a flat slope indicat-
ing a groundwater-feeding surface storage and a steep slope
revealing a flashy flow regime dominated by direct runoff
(Searcy, 1959). The flat slope of the FDCs (Fig. 3a) indicates
that these perennial rivers have a strong groundwater-feeding
feature. The monthly average streamflows show that there
is some seasonality in the time series – specifically, higher
flows are observed during the winter months (December–
February) than during other seasons in all three catchments
(Fig. 3b). For the Dijle catchment alone, the monthly average
streamflows are relatively low in the spring (March–May)
and relatively high in both the summer and winter during the
30-year study period (Fig. 3b).

Figure 3. The (a) flow duration curve (FDC) and (b) average
monthly streamflow in the three catchments.

According to the Flanders subsurface database DOV
(Databank Ondergrond Vlaanderen) and lithostratigraphic
units, the Zwarte Beek catchment mainly developed in sandy
Neogene sediments, and the Boom and Kortrijk Clay for-
mations (Fig. 1b) represent two aquitards (DOV, 2020; Laga
et al., 2001). The surficial geology outside the floodplain is
dominated by sand, whereas the floodplain itself is domi-
nated by sand and peat (DOV, 2020). The streambed material
varies from coarse sand upstream to fine sand downstream,
as observed during field trips. The Herk and Mombeek catch-
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Figure 4. An illustration of the methodology used in this study. PCA is the abbreviation for principle component analysis.

ment (Fig. 1c) developed mostly in sandy Paleogene sedi-
ment with the Boom Clay Formation at shallow depth in the
northern part (Laga et al., 2001). The top of the imperme-
able basement consists of marl and clay from the Heers and
Hannut formations (DOV, 2020; Laga et al., 2001). The surfi-
cial geology outside the floodplain is dominated by loam and
sandy loam, whereas the floodplain itself is characterized by
loam and clay sediments (DOV, 2020). The riverbed of the
Mombeek tributary consists mainly of clay, as observed dur-
ing field trips. The Dijle Valley (Fig. 1d) mainly developed
in Paleogene and Neogene sands, but continued incision is
the reason why the floodplain has reached the very imperme-
able clay of the Kortrijk Formation below (DOV, 2020). The
shallow geology outside the floodplain is dominated by loam
and sandy loam deposits, and the floodplain itself consists of
loam, sand, clay, and peat (DOV, 2020).

The major land uses are crop (24.4 %), meadow (23.6 %),
and urban area (15.2 %) for the Zwarte Beek catchment;
meadow (56.0 %), orchard (21.1 %), and crop (11.3 %)
for the Herk and Mombeek; and crop (35.6 %), meadow
(28.1 %), and urban area (19.7 %) for the Dijle in 2012 (DOV,
2020). The urban coverage is relatively low in all three catch-
ments. The upstream area of the Zwarte Beek is within a
military domain with little built-up area. There are also sev-
eral natural reserves within these catchments. Since 1990, the
Belgium government has carried out nature-based solutions
for floodplain restoration and “zero management” polices to
reduce the human impact on catchments such as the Dijle
(Turkelboom et al., 2021); therefore, the three catchments
mostly experienced natural conditions during the study pe-
riod.

3 Methodology

An illustration of the methodology is shown in Fig. 4. First
of all, precipitation, air temperature, groundwater level, and
streamflow data were collected and imputed where neces-
sary. Afterwards, imputed precipitation and air temperature
were used as system input for the first case in the impulse re-
sponse model, and the system output was calibrated with the
observed groundwater level. Only well-fitted groundwater
level time series were retained and further used to generate
a representative groundwater level time series via principle
component analysis in each catchment. This time series was
applied as system input for the second case in the impulse
response model. The model output of simulated groundwa-
ter inflow to rivers was calibrated with separated baseflow
obtained from hydrograph separation approaches. Finally,
time series analysis was carried out to investigate the tempo-
ral variation, trend, and seasonality of the hydrological vari-
ables. Detailed explanations can be found in the following
sections.

3.1 Data preparation

3.1.1 Data collection

The daily precipitation and daily air temperature were ob-
tained from KMI (Koninklijk Meteorologisch Instituut) at the
closest meteorological station for each catchment (Fig. 1a).
The daily streamflow time series were accessed from https:
//www.waterinfo.be (last access: 10 March 2020) via the
“wateRinfo” R package interface (Van Hoey, 2020) and from
the river gauging station at the catchment outlet (Fig. 1a).
These time series cover one climatic cycle of 30 years (1 Jan-
uary 1990–31 December 2019).
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The groundwater levels were obtained from the piezo-
metric observation network of INBO (Instituut voor Natuur-
en Bosonderzoek), DOV, and DEE (Département de
l’Environnement et de l’Eau) and represented 82 %, 11 %,
and 7 % of the total number of 343 wells, respectively
(Fig. 1b, c, d). The groundwater level time series from INBO
are recorded daily. Mostly of the groundwater levels from
the DOV are measured monthly, and the rest are recorded bi-
weekly. The observations from the DEE are generally mea-
sured on a weekly basis, and the rest are measured on a
monthly basis.

In the Zwarte Beek and the Herk and Mombeek, the av-
erage groundwater depths to the water table are 0.6 and
3.1 m, respectively, and the observations are all from shal-
low aquifers, with a groundwater depth to the water table of
less than 17.8 m. In the northern Flemish part of the Dijle
catchment, the groundwater level time series are located in
the very shallow part of the aquifer, with an average depth
to the water table of 1.1 m. In the southern Walloon region
of the Dijle catchment, where the elevation differences are
larger than in the north, we obtained a very limited number of
observations (23) from DEE (Fig. 1d) and included them all
to avoid data absence in that region. The groundwater depth
to the water table there has a mean value of 25.3 m. The time
spans of the groundwater level observations vary between 2
and 30 years, with an average of 16.2 years. Time series that
covered short periods (e.g., a few months) or were very dis-
continuous were excluded. With a monthly frequency, time
series consisting of at least 90 data points were considered to
be adequate, which corresponded to one-fourth (7.5 years) of
the full time period.

3.1.2 Data imputation

The missing values in the raw time series were imputed, as
required for further analysis. The imputation techniques ap-
plied in this study were (1) linear or local polynomial regres-
sion models for estimations based on different time series
and (2) ordered quantile normalization for rescaling different
time series (Fan and Gijbels, 2018; Peterson and Cavanaugh,
2019). A time series of a nearby station that survived the
quality checks and has less missing values is used as the ref-
erence series to check first if a linear regression model would
be adequate (R2

≥ 0.7). If it is not satisfactory, a local poly-
nomial regression model is applied instead. When the linear
regression model is not adequate, another option is to per-
form ordered quantile normalization. The marginal distribu-
tion of the target series is, in this case, approximated, using
days with observations in both series, by transforming both
with ordered quantile normalization and making the two dis-
tributions identical with respect to statistical properties (Pe-
terson, 2021).

3.2 Baseflow separation

Baseflow separation divides the streamflow into the com-
ponents that originate from (1) quick flow (the sum of wa-
ter derived from precipitation that contributes to the stream
soon after rainfall events) and (2) baseflow (groundwater dis-
charge or other delayed sources) (Hall, 1968; Nathan and
McMahon, 1990; Piggott et al. 2005). The main separation
techniques include (1) graphic methods, which pick out the
low-flow points from the hydrographs and link them together
as the baseflow component (Sloto and Crouse, 1996; Rut-
ledge, 1998), and (2) digital filter methods, which filter out
a low-frequency signal representing baseflow and a high-
frequency signal attributed to quick flow (Nathan and McMa-
hon, 1990; Arnold and Allen, 1999; Eckhardt, 2005, 2008;
Jakeman and Hornberger, 1993). The baseflow index (BFI)
gives the ratio of the baseflow to the total streamflow. It
is an indicator of the catchment flow regime, with high in-
dices (> 0.9) for permeable catchments with a very stable
flow regime and low indices (0.15–0.2) for impermeable
catchments with a flashy flow regime (Tallaksen and Van La-
nen, 2004). Although it is difficult to validate the separated
baseflow and there is lack of presentation of the physical
processes of the river–aquifer exchange (Sloto and Crouse,
1996; Batelaan and De Smedt, 2007; Killian et al., 2019),
baseflow separation is still a fast, efficient, and widely used
approach to quantitatively estimate the baseflow at the catch-
ment scale.

In this study, we used different baseflow separation meth-
ods to provide an idea of the range of potential outcomes. The
selected approaches were (1) graphical separation techniques
from HYSEP (Hydrograph Separation Program; Sloto and
Crouse, 1996), including the fixed-interval, sliding-interval,
and local-minimum technique; (2) the one-parameter digital
filter method from Nathan and McMahon (1990), where the
filter parameter is taken as 0.925; and (3) the two-parameter
digital filter method from Eckhardt (2005, 2008), as this
method agrees well with tracer-based (e.g., dissolved sil-
ica) hydrograph separation in lowland catchments (Gonza-
les et al., 2009). The filter parameter is set as 0.98, and the
BFImax parameter is chosen as 0.80 for the Eckhardt method,
as recommended by other research conducted using the same
method in Flanders (Zomlot et al., 2015).

3.3 Impulse response modeling

3.3.1 Model overview

A lumped parameter impulse response model can effec-
tively transform a hydrological system input to yield an ac-
curate prediction of the corresponding system output, and
the impulse response function (IRF) estimated in the model
can provide mechanistic insights into the hydrological sys-
tem, such as the peak response time and magnitude (Ol-
sthoorn, 2007; von Asmuth and Knotters, 2004; Young,
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2013). The impulse response model used in this study is
the Rainfall-Response Aquifer and Watershed Flow Model
(RRAWFLOW; Long, 2015). RRAWFLOW includes two
processes: (1) the process of recharge generation from pre-
cipitation, denoted as precipitation recharge in this study, and
(2) the process of precipitation recharge transitioning into a
system response such as groundwater level or spring flow
(Long and Mahler, 2013; Long, 2015).

During the first nonlinear process, the precipitation
recharge is estimated using a unitless soil–moisture index, s
(Long and Mahler, 2013). This s (≤ 1.0) represents the frac-
tion of precipitation that infiltrates and becomes precipitation
recharge. As the preceding rainfall events have impacts on
soil moisture, the past rainfall record is counted and weighted
by an exponential decay function (Jakeman and Hornberger,
1993). Detailed equations and parameterization can be found
in Long and Mahler (2013).

During the second process, the response of the hydrologi-
cal system to the precipitation recharge is estimated by con-
volution (Long, 2015), which is the superposition of a se-
ries of IRFs that are initiated at the time of each impulse and
scaled proportionally by the magnitude of the corresponding
impulse (Olsthoorn, 2007; Long and Mahler, 2013; von As-
muth et al., 2002). The discrete form of the convolution inte-
gral for uniform time steps used in RRAWFLOW is

yi =1t

i∑
j=0

βjhi−juj +ψi + d0 i, j = 0, 1, . . ., N, (1)

where hi−j is the IRF; uj is the input; j and i are time step
indices corresponding to system input and output, respec-
tively; 1t (T) is the time step duration; N (unitless) is the
number of time steps in the output record; βj (unitless) is
an optional scaling coefficient of IRF; ψi is the error com-
ponent resulting from inaccuracy in measurement, sampling
intervals, or model simplification assumptions; and d0 is a
hydraulic-head datum (L) for groundwater level simulation
(Long, 2015). In this process, precipitation recharge (uj ) is
assumed to be the only forcing that can cause an increase in
the hydraulic head to be above d0 (Long, 2015).

Hydrological system dynamics can be approached by dif-
ferent types of parametric IRFs. In this study, we use para-
metric gamma functions, as they tend to work well and allow
us to easily evaluate the fitted parameters. The gamma func-
tion and gamma distribution function in RRAWFLOW are as
follows:

0(η)=

∞∑
t=0

tη−1e−tdt, (2)

γ (t)=
ληtη−1e−ηt

0(η)
, (3)

h(t)= εγ (t). (4)

Here, 0 and γ are the gamma function and gamma distribu-
tion function, respectively; λ (unitless) and η (unitless) are

shape parameters; t (T) is the time centered on each dis-
crete time step; h is the scaled gamma distribution function;
and ε (unitless) is the scaling coefficient that compensates
for the system response when there is not a one-to-one re-
lation between system input and output (Olsthoorn, 2007;
Long, 2015). RRAWFLOW allows the use of two superposed
gamma distribution functions, which represent the compo-
nents of quick flow and slow flow in the hydrological system,
and it also allows the system records to be divided into two
periods, namely dry and wet periods (Long, 2015).

The “L-BFGS-B” (limited-memory Broyden–Fletcher–
Goldfarb–Shanno bound) method is used for RRAWFLOW
optimization, which allows one to work with lower and up-
per parameter bounds (Byrd et al., 1995). The Nash–Sutcliffe
efficiency (NSE) is used for the evaluation of the simulated
time series (Nash and Sutcliffe, 1970). A NSE of 1 means
a perfect model fit, a NSE of 0 indicates that the model has
the same predictive power as the mean of the time series in
terms of the sum of the squared error, and NSE< 0 means
that the predictive power is worse than that of the observed
mean (Nash and Sutcliffe, 1970).

We use RRAWFLOW to explore the hydrological sys-
tem response of groundwater level to meteorological forcing
(Sect. 3.3.2) and groundwater inflow response to groundwa-
ter level as system input (Sect. 3.3.3), under natural condi-
tions. The model parametrization and modifications to the
original RRAWFLOW code are discussed below.

3.3.2 Groundwater level response modeling

Groundwater level response modeling consists of precipi-
tation recharge generation and recharge transitioning into
groundwater level. The system input is precipitation and air
temperature data, and the system output is compared with
groundwater level observations. The model time step inter-
val is daily, which is determined by the input time series
of precipitation and air temperature. A warm-up period of
6 years was added (1984–1989), using the data record from
the first 6 years (1990–1995). This estimated warm-up pe-
riod can largely reduce the antecedent effects of the system
before it is fully incorporated into the simulation.

To better represent the transient characteristics of the
hydrological system, the dry (April–September) and wet
(October–March) periods are defined, due to the very differ-
ent evapotranspiration effects within the year (Fig. 2). Dif-
ferent gamma distribution functions are also used to repre-
sent quick and slow components. In total, four gamma distri-
bution functions are used in the simulation, representing the
quick flow and slow flow processes during both the dry and
wet periods. In each gamma distribution function, there are
three parameters to be optimized: two shape parameters (λ
and η, Eq. 3) and one scaling coefficient (ε, Eq. 4). The
double-gamma IRFs representing dry (hdry) and wet (hwet)
periods are shown below:
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hdry(t)= ε1
λ
η1
1 t

η1−1e−η1t

0(η1)
+ ε2

λ
η2
2 t

η2−1e−η2t

0(η2)
; (5)

hwet(t)= ε3
λ
η3
3 t

η3−1e−η3t

0(η3)
+ ε4

λ
η4
4 t

η4−1e−η4t

0(η4)
. (6)

Here, the subscripted numbers “1” and “2” are used for the
respective quick and slow components during dry period, and
“3” and “4” are used for the respective quick and slow com-
ponents during the wet period. Besides the 12 parameters
from the IRFs (Eqs. 5, 6), the hydraulic-head datum parame-
ter (d0, Eq. 1) is also included for optimization.

Although the IRFs can have infinite length, we define that
the system has a maximum memory of 6 years for an impulse
in order to avoid long-term trends or human interference ef-
fects from biassing the fitted IRFs. The whole 30-year period
is used for model calibration, as we are doing exploratory
rather than confirmatory analysis here.

3.3.3 Groundwater inflow response modeling

Groundwater inflow response modeling simulates the pro-
cess of groundwater discharge to rivers. Fitted groundwater
levels from the previous step are used for this process. As
there are many groundwater level time series in each catch-
ment, we introduce a single representative groundwater level
time series in order to reduce the dimensionality of the prob-
lem. The representative groundwater level time series was
obtained by extracting the first principle component of the
fitted groundwater level time series, so as to represent the
catchment status in terms of groundwater level.

The model was set up with the representative groundwa-
ter level as the system impulse and separated baseflow as
the system response. A 6-year warm-up period (1984–1989)
was again added, using the representative groundwater level
time series for the period between 1990 and 1995. As the
groundwater discharge to streamflow happens beneath the
land surface, without the pronounced wet–dry period distinc-
tions from the effects of evapotranspiration, a time-invariant
model is assumed for this modeling process. Thus, only two
gamma distribution functions are used to represent the quick
and slow components. The compound IRF (hcomp) is shown
below:

hcomp(t)= εq
λ
ηq
q t

ηq−1e−ηqt

0
(
ηq
) + εs

λ
ηs
s t

ηs−1e−ηst

0(ηs)
, (7)

where the subscripted letters “q” and “s” represent the quick
and slow components, respectively.

Furthermore, a modification is made to the original code: a
constant drainage level is subtracted from the input ground-
water level. This operation turns the representative ground-
water level into a proxy for the hydraulic gradient. The mod-
ified convolution integral has the following form:

ymod
i =1t

i∑
j=0

βjhi−j
(
uj − d0

)
+ψi . (8)

Hence, there are seven parameters to be optimized: three pa-
rameters (λ, η and ε) for each of the two gamma distribution
functions and the drainage level, which was actually imple-
mented by using the hydraulic-head datum d0. This allowed
the modification to be made with minimal code adjustments.

3.4 Time series analysis

Hydrological time series usually have strong seasonal varia-
tions and can be decomposed using an additive approach to
study the temporal evolution of the different components. In
this study, we apply the Seasonal and Trend decomposition
with Loess (STL) method to decompose the time series into
three components: (1) a trend-cycle component, (2) a sea-
sonal component, and (3) a reminder component (Cleveland
et al., 1990). The additive decomposition of the target time
series has the following form:

yt = Tt+ St+Rt, (9)

where yt is the seasonal time series, Tt is the smoothed trend-
cycle component, St is the seasonal component, and Rt is the
remainder component (Cleveland et al., 1990).

The features of the STL decomposition are summarized
using two parameters:

1. the strength of the trend, calculated as

Ft =max
(

0,1−
Var(Rt)

Var(Tt+Rt)

)
, (10)

with Ft close to 0 representing a weak trend and Ft close
to 1 representing a strong trend; and

2. the strength of the seasonality, calculated as

Fs =max
(

0,1−
Var(Rt)

Var(St+Rt)

)
, (11)

with Fs close to 0 indicating weak seasonality and Fs
close to 1 indicating a strong seasonality (Hyndman and
Athanasopoulos, 2021).

The decomposed hydrological variables include precipita-
tion, representative groundwater level, streamflow, and sepa-
rated baseflow. The trend analysis uses a window of 365 con-
secutive daily observations to estimate the trend-cycle com-
ponent on a yearly basis. This span allows for the retention
of sufficient fluctuation in the data. The seasonal component
analysis takes 365 d as its periodic cycle and a window of
11 consecutive years for estimating the seasonality.

4 Results

4.1 Separated baseflow

Figures 5–7 show the temporal evolution of the separated
baseflow on a daily basis and the comparison of the stream-
flow and baseflow using different methods in the three catch-
ments. The fixed-interval and sliding-interval approaches
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Figure 5. The separated baseflow and streamflow time series over the 30-year study period in the Zwarte Beek.

Figure 6. The separated baseflow and streamflow time series over the 30-year study period in the Herk and Mombeek.

yield slightly higher estimated mean BFIs than other meth-
ods, as they capture quite a large amount of baseflow from the
peak flows and high-flow periods in the streamflow record
(panels a and b in Figs. 5–7). The local-minimum and Eck-
hardt methods result in slightly lower mean BFIs than the
previous two methods, as they tend to filter out the large im-

pact of high-streamflow events on the baseflow (panels c and
d in Figs. 5–7). The estimated mean BFI from the Nathan
approach is the lowest among all the methods, and the sepa-
rated baseflow time series has less amplitude variation over
time and is less influenced by high streamflows than the other
methods (Figs. 5e, 6e, 7e). The mean BFIs over the 30-year
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period range between 0.73 and 0.86 for the Zwarte Beek, be-
tween 0.70 and 0.82 for the Herk and Mombeek, and between
0.77 and 0.84 for the Dijle.

4.2 Impulse response modeling of the hydrological
system

4.2.1 Groundwater level response modeling

Altogether, 100 groundwater level time series in the Zwarte
Beek, 45 in the Herk and Mombeek, and 198 in the Dijle
were used for the groundwater level response modeling. The
positive NSEs (0–1) of the simulated time series comprise
89 %, 95 %, and 83 % of all the simulations in the Zwarte
Beek, the Herk and Mombeek, and the Dijle, respectively.
The overall model performance is better in the Zwarte Beek
and the Herk and Mombeek than in the Dijle. Considering the
balance between evaluating model performance and allowing
sufficient simulated time series to compute the representa-
tive groundwater level, we considered the simulations with
a NSE> 0.3 as satisfactory. This allowed 70 simulated time
series for the Zwarte Beek, 38 for the Herk and Mombeek,
and 108 for the Dijle to be retained. Examples of the retained
groundwater level time series for each catchment are shown
in Fig. 8. The time series for the Zwarte Beek and the Herk
and Mombeek (Fig. 8a, b) seem to be reproduced by the im-
pulse response model in a very detailed way (NSEs> 0.8),
whereas the time series for the Dijle (Fig. 8c) seems to ex-
hibit very low levels in the middle or second half of the year
and can apparently not be captured in a straightforward man-
ner with impulse response modeling.

The IRF curves from the modeling are shown in Fig. 9
for each retained groundwater level time series for the three
catchments. Based on these IRFs, we extracted the peak
time, representing the time it takes for the groundwater level
response to reach its maximum value due to precipitation
recharge, and the corresponding peak response (Fig. 10).

In the Zwarte Beek, approximately 73 % (51 of 70) of the
retained groundwater level wells in the dry period (April–
September) and 61 % (43 of 70) of the retained groundwater
level wells in the wet period (October–March) reached their
peak response on the first day (panels a and b in Figs. 9–10).
This indicates a very fast response to precipitation recharge
in the shallow aquifer. The rest of the level time series had
a peak time ranging between 2 and 548 d during the dry pe-
riod (Fig. 10a) and between 2 and 98 d during the wet pe-
riod (Fig. 10b). On average, it takes 45 d in the dry period
(Fig. 10a) and 10 d in the wet period (Fig. 10b) for the shal-
low aquifer to obtain its maximal response to precipitation
recharge. For the response magnitude, 1 mm of precipita-
tion recharge can cause a maximal immediate groundwater
level rise of between 0.01 and 25.7 mm during the dry period
(Fig. 10a) and of between 0.8 and 14.0 mm during the wet pe-
riod (Fig. 10b). The mean peak responses are 3.9 and 5.3 mm
for the dry and wet seasons, respectively (Fig. 10a, b). A rel-

atively higher immediate increase in the groundwater level
occurs in the wet period compared with the dry period.

In the Herk and Mombeek, around 42 % (16 of 38) of the
groundwater level time series in the dry period and 71 % (27
of 38) of the groundwater level time series in the wet period
reached their peak response on the first day (panels c and d in
Figs. 9–10). For the rest, the range of the peak time is larger
in the dry period (2–570 d; Fig. 10c) than in the wet period
(2–104 d; Fig. 10d). The mean peak time is 81 and 15 d for
the dry and wet periods, respectively (Fig. 10c, d). There-
fore, there is a clear trend toward a much faster response of
the shallow aquifer to precipitation recharge in the wet period
than in the dry period. Regarding the peak response magni-
tude, the range is between 0.8 and 18.4 mm for 1 mm of pre-
cipitation recharge in the dry period (Fig. 10c) and between
2.6 and 32.3 mm in the wet period (Fig. 10d). The mean peak
magnitudes are 5.4 and 12.0 mm for the dry and wet periods,
respectively (Fig. 10c, d). There is a general spatial trend
observed in this catchment. If an observation well is closer
to the river or the groundwater depth to the water table is
smaller, the peak time is relatively shorter and the peak re-
sponse is higher.

During the dry period in the Dijle, approximately 68 % (73
of 108) of the observation wells reached their peak response
on the first day, whereas the remaining wells varied between
2 and 574 d (Figs. 9e, 10e). During the wet period, around
59 % (64 of 108) of the observation wells reached their peak
response on the first day, and the other wells peaked between
2 and 528 d (Figs. 9f, 10f). The mean peak time is 159 and
27 d for the dry and wet periods, respectively (Fig. 10e, f).
The peak response ranges between 0.02 and 31.1 mm for the
dry period (Fig. 10e) and between 0.6 and 36.1 mm for the
wet period (Fig. 10f) for 1 mm of precipitation recharge. The
mean peak response magnitudes are 4.9 and 9.2 mm for the
dry and wet periods, respectively (Fig. 10e, f).

4.2.2 Groundwater inflow response modeling

The retained groundwater level time series from the previous
simulations are used to generate a time series of the ground-
water level in order to represent groundwater storage over the
entire catchment. The extracted first principle component of
the simulated groundwater levels explains 83 %, 91 %, and
79 % of the total variance for the Zwarte Beek, the Herk
and Mombeek, and the Dijle, respectively (Fig. 11b, d, f).
The representative groundwater level time series has a mean
of zero, and the level is rescaled to a relative elevation (in
meters, dividing the scores of the first principle component
by the sum of the loadings) because only the level differ-
ences are relevant for the groundwater inflow response mod-
eling (Fig. 11a, c, e). This time series can be interpreted in-
tuitively as the relative difference between the groundwater
level across the catchment at a certain point in time and the
average groundwater level.
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Figure 7. The separated baseflow and streamflow time series over the 30-year study period in the Dijle.

Figure 8. Selected observed and simulated groundwater level time series for impulse response modeling: (a) ZWAP062 in the Zwarte Beek
(NSE= 0.838), (b) MOMP012 in the Herk and Mombeek (NSE= 0.857), and (c) DYLP021 in the Dijle (NSE= 0.583).

The mean NSEs of simulated baseflow time series are
0.325 for the Zwarte Beek, 0.384 for the Herk and Mombeek,
and 0.146 for the Dijle. The Eckhardt and Nathan methods
work better than other methods in the Zwarte Beek, with NSE
values of 0.385 and 0.377, respectively. The Nathan method
yields a higher NSE of 0.478 than other methods in the Herk
and Mombeek. In the Dijle, the Eckhardt method performs
better than other methods, with a NSE of 0.212. The IRFs
extracted from the modeling show that there is basically an
immediate response in the first time step, and the responses

for a few days are already negligible. This means that our im-
pulse response model basically falls back to a linear regres-
sion model of the groundwater inflow as a function of the
representative groundwater level, where the intercept and the
slope are related to the drainage level and impulse response
function value for the first time step, as shown in Table 1.
The mean peak response, calculated as the mean value of the
slopes in Table 1, shows an average change of 0.95 m3 s−1

of baseflow in the Zwarte Beek, 0.69 m3 s−1 in the Herk and
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Figure 9. Impulse response functions (IRFs) derived from the groundwater level response modeling for the dry (April–September) and wet
(October–March) periods in the three catchments.

Mombeek, and 2.2 m3 s−1 in the Dijle as a response to a 1 m
change in the groundwater level.

The simulated time series of groundwater inflow to the
river tend to be smoother than the separated baseflow time
series (Figs. 12, 13, 14). For the Zwarte Beek, the simu-
lated groundwater inflow for the first 2 decades (1990–2009)
can capture most of the low points, whereas there are some
continuous periods with overestimation for the last decade
(2010–2019) (Fig. 12). In the Herk and Mombeek, the simu-
lated groundwater inflow time series seem to match well with

the separated baseflow between 2005 and 2010, and major
model overestimation occurs in the first decade (Fig. 13). For
the Dijle, the differences between the simulated groundwater
inflow and separated baseflow are relatively large compared
with the other catchments. For periods with decreased or in-
creased fluctuations in separated baseflow (e.g., 1996–1999
or 2000–2008), the groundwater inflow variation is less in-
tense (Fig. 14).
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Figure 10. Peak time and peak groundwater level response derived from the groundwater level response modeling for the dry (April–
September) and wet (October–March) periods in the three catchments.

Table 1. The linear regression fit of the groundwater inflow as a function of the representative groundwater level in each catchment. The
term “level” refers to the representative groundwater level; “Fixed interval”, “Sliding interval”, “Local minimum”, “Eckhardt”, and “Nathan”
refer to the different separation techniques.

Catchment Inflowfixed interval Inflowsliding interval Inflowlocal minimum InflowEckhardt InflowNathan
∼ level ∼ level ∼ level ∼ level ∼ level

Zwarte Beek y = 1.03x+ 0.92 y = 1.04x+ 0.92 y = 0.98x+ 0.89 y = 0.92x+ 0.79 y = 0.8x+ 0.71
Herk and Mombeek y = 0.75x+ 1.02 y = 0.76x+ 1.02 y = 0.69x+ 0.97 y = 0.74x+ 0.98 y = 0.52x+ 0.81
Dijle y = 2.16x+ 5.3 y = 2.26x+ 5.3 y = 2.07x+ 5.22 y = 2.65x+ 5.08 y = 1.88x+ 4.83
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Figure 11. The representative groundwater level (relative elevation) time series and the variance proportions of the first five principle com-
ponents in each catchment.

Figure 12. The comparison between the simulated groundwater inflow and the separated baseflow in the Zwarte Beek.

4.3 Time series analysis

Precipitation has little trend over the 30-year period, and
the magnitudes of the extracted trend components are much
smaller than the raw time series (Figs. 15a, 16a, 17a, 18).
There is some level of seasonality observed for precipitation,
and the amplitudes of the seasonal components vary a lot be-
tween different years (Figs. 15b, 16b, 17b, 18). The repre-
sentative (Rep.) groundwater level time series has a strong
trend and seasonal strengths, and it is located in the cluster
formed by the individual (Indiv.) groundwater level time se-
ries, which indicates that it is a good representation of the

catchment status in terms of groundwater level (Fig. 18).
The trend component curve itself does not show a continu-
ous positive nor negative trend over the whole 30-year pe-
riod; rather, it demonstrates varying trend directions during
different periods (Figs. 15c, 16c, 17c). The seasonal strength
of the representative groundwater level is close to that of the
air temperature (Fig. 18). The streamflow demonstrates some
level of trend and seasonality (panels e and f in Figs. 15–17).
The trend and seasonal strengths of the separated baseflow
time series are moderate, and the different baseflow time se-
ries fall somewhere between the streamflow and representa-
tive groundwater level (Fig. 18). This indicates that there is
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Figure 13. The comparison between the simulated groundwater inflow and the separated baseflow in the Herk and Mombeek.

Figure 14. The comparison between the simulated groundwater inflow and the separated baseflow in the Dijle.

a range of outcomes, in terms of trend and seasonal compo-
nents, that varies from more similar to the streamflow char-
acteristics to closer to the representative groundwater level
characteristics. It seems that the Nathan approach provides
baseflow with a closer link to the representative groundwater
level.

5 Discussion

5.1 Baseflow and groundwater inflow estimation

As important indicators of river–aquifer interactions, base-
flow and groundwater inflow to rivers are estimated here

Hydrol. Earth Syst. Sci., 26, 3629–3649, 2022 https://doi.org/10.5194/hess-26-3629-2022



M. Lu et al.: Exploring river–aquifer interactions and hydrological system response 3643

Figure 15. The trend and seasonal components of the decomposed precipitation, representative groundwater level, streamflow, and separated
baseflow in the Zwarte Beek.

Figure 16. The trend and seasonal components of the decomposed precipitation, representative groundwater level, streamflow, and separated
baseflow in the Herk and Mombeek.

using the streamflow record and the groundwater level, re-
spectively. However, the estimation of groundwater inflow
to rivers still relies on the baseflow estimation, as separated
baseflow is used as the dependent variable in the modeling
exercise.

Baseflow separation is a subjective process that is based
on different mathematical techniques, rather than the phys-

ical processes governing river–aquifer exchange (Sloto and
Crouse, 1996; Batelaan and De Smedt, 2007; Killian et
al., 2019). Three methods from HYSEP select the mini-
mum values of the hydrograph with an interval using differ-
ent algorithms (Sloto and Crouse, 1996). Alternatively, the
Nathan and Eckhardt methods use parameters that have some
physical connection to the catchment characteristics, such
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Figure 17. The trend and seasonal components of the decomposed precipitation, representative groundwater level, streamflow, and separated
baseflow in the Dijle.

Figure 18. Trend and seasonal strengths of the precipitation, air temperature, representative groundwater level, individual groundwater level,
streamflow, and separated baseflow in the three catchments.

as the flow status of streams within the year (perennial or
ephemeral) and the permeability of the aquifers (Nathan and
McMahon, 1990; Arnold and Allen, 1999; Eckhardt, 2005).

Despite the methodological differences, the mean BFIs of
the separated baseflow time series are never less than 0.70 in
the three catchments (Figs. 5, 6, 7). These high BFIs indi-
cate that the studied catchments are groundwater-dominated
lowland systems, which is also reflected in the flat slope
of the FDCs (Fig. 3a). The mean BFI ranges of the three
catchments agree well with a previous study by Batelaan
and De Smedt (2007), where the range are 0.81–0.83 for
the Zwarte Beek, 0.79–0.81 for the Demer (the Herk and
Mombeek is part of Demer), and 0.81–0.87 for the Dijle, us-

ing the Sloto and Crouse method (Sloto and Crouse, 1996).
In our study, the Eckhardt and Nathan methods generate
relatively smooth baseflow time series when compared to
the graphical HYSEP methods (Figs. 5, 6, 7). Zomlot et
al. (2015) conducted baseflow separation in 11 selected re-
gional catchments in Flanders and also found that the one-
or two-parameter recursive digital filter methods generated
slightly lower mean BFIs than the local-minimum method
from HYSEP.

Estimated groundwater inflow time series through impulse
response modeling can capture part of the variation in the
separated baseflow but do not reproduce the peaks in the sep-
arated baseflow very well. This is consistent with the fact that
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the separated baseflow from hydrographs is actually the total
baseflow, which includes groundwater inflow as well as other
slower-moving water that sustains streamflow between rain-
fall events. The difference between the separated baseflow
and the obtained groundwater inflow can roughly be seen as
the delayed water release from storages other than those in
the aquifer. In this context, the impulse response modeling
approach from the groundwater flow perspective can allow
one to estimate the groundwater inflow to the river and sepa-
rate it from the total baseflow.

5.2 Impulse response modeling of the hydrological
system

To the best of our knowledge, this is the first study that has
used a two-step approach with lumped parameter impulse re-
sponse modeling to estimate groundwater inflow to rivers in
a temperate lowland hydrological system.

For the groundwater level response modeling process, the
lowland aquifers react rather fast to the system input. A large
number of wells reach their peak response during the first day
in the three catchments. For the sake of comparison, we give
the response time in groundwater level due to precipitation
recharge, estimated in another study (Gonzales et al., 2009)
using the impulse response functions by Venetis (Venetis,
1970) and Olsthoorn (Olsthoorn, 2007). A confined coarse
sandy aquifer in a Dutch lowland catchment, with an average
length of 800 m, average thickness of 10 m, hydraulic con-
ductivity of 30 m d−1, and storativity of 1.37× 10−3, has a
groundwater response delay of approximately 16 h (0.67 d)
for a precipitation event of around 8 mm (Gonzales et al.,
2009). This is consistent with the fast-response behavior of
most wells in our simulations, with a peak response during
the first day. As the time step of our model is daily, we are not
able to capture a peak response time shorter than 1 d. If the
model input and level observation time series have a higher
resolution, the peak response time will probably be less than
1 d, especially for the shallow unconfined lowland aquifers.

In the Herk and Mombeek, we observed the tendency for a
faster and higher peak response when the well was closer to
the river and the groundwater depth was closer to the surface.
As the majority of the groundwater level wells were closer to
the striped alluvial clay sediment along the river, we saw an
impact of the sediment materials on the impulse response.
When rainfall events occur, a shallow well close to the river
experiences some buffering effect from the clayey sediment
in the floodplain close to the river, which delays the process
causing the activated groundwater to flow quickly towards
the river. This can lead to a faster and higher response in the
near-river groundwater level.

During the groundwater inflow response modeling, the
system response is fast and linear. As mentioned before, es-
timating groundwater inflow from a groundwater perspective
can be a promising option. However, further research is rec-
ommended to improve the simulation. When extracting the

first principle components from the simulated groundwater
level time series, more weight can be assigned to wells lo-
cated close to the river and less weight can be given to wells
at a distance, for instance, as shallow groundwater closer
to the river tends to follow local pathways and contributes
more to the river. This makes the generated groundwater
level more representative of the near-river status. A second
improvement can be made in the model itself: instead of us-
ing a constant drainage level, dynamic drainage level time
series could, for instance, be included by adjusting relevant
input codes.

5.3 Time series analysis

Although there have been several observed drought events
in Europe in recent years (e.g., 1992, 2003, 2015, and 2018)
(Hänsel et al., 2019; Fu et al., 2020), and our annual precipi-
tation time series show low levels for some years in Belgium
(e.g., 1996, 2003, 2013 and 2018), the precipitation trend is
still small over the 30-year observation window. Under tem-
perate humid climates, precipitation has some seasonal vari-
ations, but these variations are not strong. On the contrary,
the trend and seasonality in the groundwater level time series
are pronounced. This is due to the strong seasonal impacts of
air temperature, which heavily influences the evapotranspira-
tion process in the unsaturated zone. When the precipitation
recharge reaches the shallow aquifer, the groundwater level
time series inherits similar seasonal patterns from air temper-
ature. Thus, we observe strong seasonality in the representa-
tive groundwater level time series.

The trend and seasonal strengths in streamflow lay be-
tween the two ends of precipitation and groundwater level
(Fig. 18), which agrees with the fact that streamflow is the
end product of the combined influences of groundwater in-
flow, precipitation, and other flow components. We also ob-
serve that groundwater inflow to rivers is a process in which
the groundwater (in terms of the representative groundwa-
ter level), with strong trend and seasonal strengths, con-
tributes to the streamflow, where the trend and seasonal sig-
nals are intervened by the quick flow component, leading to
a weak trend and seasonality in streamflow (Fig. 18). From
the groundwater inflow response modeling perspective, the
groundwater inflow to rivers is a fast process, and it tends to
carry a relatively strong trend and seasonal strengths from the
groundwater as well as contributing to the total baseflow. The
differences in the trend and seasonality strengths of the base-
flow and groundwater level are the influences of other de-
layed sources contributing to baseflow. As the trend and sea-
sonality of the baseflow from the Nathan method are closer
to those of the groundwater level, it is more in line with the
groundwater inflow from the groundwater-level-based ap-
proach, and it may be the best baseflow separation method
to estimate groundwater inflow in this context.
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6 Conclusions

Through a combined approach of baseflow separation, im-
pulse response modeling, and time series analysis, we gained
better insights into the river–aquifer interactions and the low-
land hydrological system in the three catchments.

The graphical HYSEP (fixed-interval, sliding-interval, and
local-minimum methods) and recursive digital filter ap-
proaches (Nathan and Eckhardt methods) yield high mean
BFIs (≥ 0.70), indicating a strong groundwater-dominated
feature in the study area. The recursive digital filter meth-
ods generate a relatively smoother baseflow time series than
the graphical HYSEP ones.

We explored the lowland hydrological system with im-
pulse response modeling using two steps: (1) the ground-
water level response to system input of precipitation and
air temperature and (2) the groundwater inflow response to
system input of groundwater level. For the first process, the
groundwater level in shallow aquifers reacts fast to the sys-
tem input, with most of the wells reaching their peak re-
sponse during the first day. There is an overall trend toward
a faster response time and higher response magnitude in the
wet than in the dry periods in the study areas. In the Herk and
Mombeek, the streambed and stream bank consist of clay
materials, which have some buffering effects for the near-
river hydraulic interactions. Thus, there is a tendency toward
a faster peak time and higher peak response when the well is
closer to the river and the groundwater depth is closer to the
surface.

During the second process, the system response is fast, and
the simulated groundwater inflow can capture some varia-
tions, although not the peaks of the separated baseflow. The
differences between the separated baseflow and the simulated
groundwater inflow is delayed water release from other inter-
mediate storages. As the groundwater inflow estimation from
the groundwater perspective considers the physical connec-
tion between the river and aquifer in the subsurface to some
extent, it can be an alternative method to assess the ground-
water contribution to rivers.

The trend and seasonality analysis of the time series shows
that the groundwater inflow to rivers is a process in which the
strong trend and seasonal characteristics of the groundwater
level are intervened by the quick flow component, resulting
in streamflow with a weak trend and seasonality. By compar-
ing the strengths of the decomposed components, the Nathan
approach seems to provide baseflow estimates that are more
closely related to groundwater inflow in this lowland setting.

Based the performance of the combined approach at our
study sites, we consider that this approach has further poten-
tial to be applied to similar lowland catchments with small
area coverages under natural conditions or under conditions
with limited human impacts.
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