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Abstract. The Okavango River system in southern Africa
is known for its strong interannual variability of hydrolog-
ical conditions. Here, we present how this is exposed in
surface soil moisture, land surface temperature, and vegeta-
tion optical depth as derived from the Land Parameter Re-
trieval Model, using an inter-calibrated, long-term, multi-
sensor passive microwave satellite data record (1998–2020).
We also investigate how these interannual variations relate
to state-of-the-art climate reanalysis data from ERA5-Land.
We analysed both the upstream river catchment and the
Okavango delta, supported by independent data records of
discharge measurements, precipitation, and vegetation dy-
namics observed by optical satellites. The seasonal veg-
etation optical depth anomalies have a strong correspon-
dence with the MODIS leaf area index (correlation catch-
ment: 0.74, delta: 0.88). Land surface temperature anoma-
lies derived from passive microwave observations match best
with those of ERA5-Land (catchment: 0.88, delta: 0.81) as
compared to MODIS nighttime land surface temperature
(LST) (catchment: 0.70, delta: 0.65). Although surface soil
moisture anomalies from passive microwave observations
and ERA5-Land correlate reasonably well (catchment: 0.72,
delta: 0.69), an in-depth evaluation over the delta uncovered
situations where passive microwave satellites record strong
fluctuations, while ERA5-Land does not. This is further anal-
ysed using information on inundated area, river discharge,
and precipitation. The passive microwave soil moisture sig-

nal demonstrates a response to both the inundated area and
precipitation. ERA5-Land however, which, by default, does
not account for any lateral influx from rivers, only shows a
response to the precipitation information that is used as forc-
ing. This also causes the reanalysis model to miss record low
land surface temperature values as it underestimates the la-
tent heat flux in certain years. These findings demonstrate
the complexity of this hydrological system and suggest that
future land surface model generations should also include lat-
eral land surface exchange. Also, our study highlights the im-
portance of maintaining and improving climate data records
of soil moisture, vegetation, and land surface temperature
from passive microwave observations and other observation
systems.

1 Introduction

Long-term data records of key components of the climate
system, known as essential climate variables (ECV), are im-
portant for improving our understanding and predictability
of climate behaviour at different timescales (Hollmann et al.,
2013; Bojinski et al., 2014). These records can help us to de-
termine the root causes of observed climate change, e.g. nat-
ural or anthropogenic, assess its impacts and associated risks,
and support mitigation and adaptation activities. In 2008, the
European Space Agency (ESA) started the Climate Change

Published by Copernicus Publications on behalf of the European Geosciences Union.



3612 R. van der Schalie et al.: Characterising natural variability in complex hydrological systems

Initiative programme (CCI) to develop these ECVs from
satellite data records. This was done in response to the United
Nations Framework Convention on Climate Change (UN-
FCCC) need for systematic monitoring of the climate system.
Today, the CCI programme covers 21 satellite-based ECV
records (projects https://www.esa.int/, last access: Septem-
ber 2021).

Surface soil moisture (SSM) is one of these ESA CCI
ECVs. These records are based on a fusion of both pas-
sive (PMW) and active microwave satellite retrievals (Dorigo
et al., 2017). The current version 6.1 spans from 1979 un-
til 2020 (Scanlon et al., 2021), and contains three separate
SSM products, which are derived from active, passive, and a
combination of active and passive sensors. The methodology
and evaluation of the harmonization and merging of the soil
moisture retrievals from multiple satellites are described by
Gruber et al. (2019). ESA CCI SSM data have been used for
more than 10 years as the baseline for the annual evaluation
and interpretation of global SSM conditions, as reported in
the leading “State of the Climate” reports (Van der Schalie
et al., 2021a) that are published as a Supplement to the Bul-
letin of the American Meteorological Society. Three datasets
are produced as part of the passive input for the ESA CCI
SM, which is SSM (SSMMW), but also land surface temper-
ature (LSTMW), and vegetation optical depth (VODMW).

SSMMW datasets have been extensively evaluated with
ground observations, models, other satellite products, and re-
lated ECVs, like precipitation (e.g. Hirschi et al., 2021; Beck
et al., 2021; Dorigo et al., 2015; Al-Yaari et al., 2019; Al-
bergel et al., 2013; Loew et al., 2013). VODMW has been
used in multiple studies with a focus on seasonal and inter-
annual vegetation dynamics (e.g. Liu et al., 2015; Moesinger
et al., 2020; Teubner et al., 2019) or specifically on L-band
VOD characteristics (e.g. Schwank et al., 2021; Bousquet et
al., 2021; Rodríguez-Fernández et al., 2018). Research on the
quality of LSTMW (e.g. Holmes et al., 2009, 2015) remains
limited. The robustness of the interannual variability signals
within these multi-decadal data records is still not always
clear and a combined assessment of all three variables is nec-
essary for understanding these datasets, as the current joint
retrieval algorithm makes their values fundamentally inter-
twined (Owe et al., 2008). Such information provides unique
opportunities for both monitoring and seasonal forecasting,
e.g. over Africa (e.g. Cook et al., 2021).

The purpose of this paper is to improve insight into the in-
terannual signals of the SSMMW, LSTMW and VODMW by
presenting a case study over a region with a complex hydro-
logical system, i.e. the Okavango, and how their skill com-
pares to state-of-the-art climate reanalysis data from ERA5-
Land (Muñoz Sabater, 2019; Muñoz-Sabater et al., 2021).
ERA5-Land aims to quantify the water and energy cycles
over land in a consistent manner, therefore, allowing the
characterization of trends and anomalies. Although ERA5-
Land (E5) data are known to be of high quality in many re-
gions around the globe, for use in any specific regions, these

need to be properly evaluated. Therefore, this dataset does
not only function as a benchmark in this study, but will also
be analysed in more detail to evaluate its ability to prop-
erly detect the natural dynamics and variability in the Oka-
vango and how this compares to the signal of the passive
microwave-based datasets. Other datasets are used as sup-
port for determining which dataset (i.e. either PMW or E5L
estimates of the same variable) is more likely to reflect true
conditions. This research can help to improve the synergy
between Earth Observation (EO) datasets and land surface
models, and to identify both strengths and shortcomings of
either one.

More specifically, the Okavango delta and Okavango River
catchment in southern Africa were selected as the study ar-
eas. The Okavango delta (Republic of Botswana, 2013) con-
sists of permanent marshlands and seasonally flooded plains,
and is one of the few endorheic “delta” systems (geomor-
phologically, Okavango delta is an alluvial fan, Kgathi et
al., 2006) that does not flow into the ocean. It is an excep-
tional example of the interaction between climatic, hydro-
logical, and biological processes leading to a unique mix of
flora and fauna, and has therefore been included in the UN-
ESCO World Heritage List since 2014. Three features in the
local hydrological system stand out, i.e. the strong interan-
nual variability, the lateral water influx component of the
Okavango River into the delta, and the seasonal character-
istics with a lag between rainfall, river discharge, and flood-
ing. Unfortunately, it is expected that global warming will
affect this natural variability in the hydrological cycle over
the Okavango delta (Wolski et al., 2012, 2014), for example,
reducing high-water periods like in 2009–2011. These kinds
of negative impacts increase the need for reliable monitoring
capabilities.

The structure of the paper is as follows. Section 2 intro-
duces the study area and includes the exact regions of inter-
est (ROIs) that are used for the data extraction. Section 3.1
describes the passive microwave data and other data sources.
Section 3.2 explains the methodology concerning the inter-
calibration (Sect. 3.2.1), the Land Parameter Retrieval Model
(LPRM, Sect. 3.2.2), the evaluation of the dataset anomalies
(Sect. 3.2.3), and the evaluation of the river, flood, and pre-
cipitation contribution to SSM anomalies over the Okavango
delta (Sect. 3.2.4). Sections 4–6 provide the Results, Discus-
sion and Conclusions of these different steps.

2 Research area

With a length of approximately 1600 km, the Okavango
River is one of the largest in southern Africa (Muzungaire et
al., 2012). The river is known globally for its large terminat-
ing inland “delta”. The Okavango delta is a large seasonally
pulsed inland wetland, a mixture of aquatic vegetation, open
water, and dry land with an actively inundated area covering
a part of the 28 000 km2 alluvial cone (Ringrose et al., 1988).

Hydrol. Earth Syst. Sci., 26, 3611–3627, 2022 https://doi.org/10.5194/hess-26-3611-2022

https://www.esa.int/


R. van der Schalie et al.: Characterising natural variability in complex hydrological systems 3613

Figure 1. The research area comprising ROI1 (a part of the upstream area of the Cubango and the Cuito rivers) and ROI2 (the surrounding of
the Okavango delta) in relation to the Okavango drainage basin (grey). The black dot marks the location of the discharge station at Mohembo.

In line with both the interannual variation in local and
upstream rainfall and the longer term effects of surface–
groundwater interactions, substantial interannual variability
in the delta’s inundated area was recorded over the period
1932–2000 (Wolski and Murray-Hudson, 2008), with an-
nual minima of about 3000 km2 up to annual maxima of
12 000 km2 (Wolski et al., 2017; Gumbricht et al., 2004; Mc-
Carthy et al., 2003). Whereas estimates for the total annual
water budget stemming from direct rainfall in the Okavango
delta ranges between 25 % to 50 %, the Okavango River in-
flow accounts for the other 50 % to 75 % (McCarthy et al.,
1998, 2000; Ashton, 2000; Ashton and Neal, 2003; Wolski
et al., 2006).

In this study, we focus on only two perennial rivers in
the Okavango catchment – the Cubango River and the Cuito
River (Ashton and Neal, 2003). Data were extracted from the
catchment area within ROI1 of Fig. 1. These rivers originate
in Angola and are a vital lifeline to the Okavango delta, with
an average yearly inflow at Mohembo of 9863 millions of m3

(approximately 300 m3 s−1) in the period 1932–2001 and a
71.4 % contribution to the total water budget of the delta.

The Angolan part of the basin is characterized by a sub-
tropical climate, while in Botswana and Namibia, parts are
classified as semi-arid (Kgathi et al., 2006). During drought
years in the 1980s and 1990s, the annual inflow at Mo-
hembo reduced up to 45 % (McCarthy et al., 2000; Ash-
worth, 2002; Ashton, 2003; Ashton and Neal, 2003), which
then coincided with proportional declines of the Okavango
delta outflow to the Thamalakane and Boteti rivers (Ashton,
2000; Ashworth, 2002; Ashton and Neal, 2003). Throughout

these periods, a growing water demand arose in Botswana
and Namibia (MGDP, 1997; Ashton, 2003). Overall, the dry
phase was caused by multi-decadal oscillations in rainfall
and was likely related to processes of internal variability in
the climate system (Wolski et al., 2012).

ROI1 and ROI2 were chosen to study how their signifi-
cantly different water influxes affect the signal of the data
sources used in the evaluation. The delta is of particular in-
terest as it is mostly driven by a strong and highly variable
lateral influx from the Okavango River that creates a pattern
of seasonally varying wetness that is asynchronous or off-
phase with the rainy season.

3 Material and methods

3.1 Data

3.1.1 Passive microwave observations

The three main variables that are used for the analy-
sis are surface soil moisture (SSMMW), vegetation optical
depth (VODMW), and land surface temperature (LSTMW).
These variables are derived from passive microwave obser-
vations from multiple satellite sensors that observe in similar
frequencies and overlap in time.

The Advanced Microwave Scanning Radiometer for EOS
(AMSR-E, Kawanishi et al., 2003) is a 12-channel, six-
frequency, passive microwave radiometer developed by the
Japan Aerospace Exploration Agency (JAXA) and was ac-
tive between 2002 and 2011. AMSR-E is part of the payload
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Table 1. Overview and characteristics of passive microwave satellite sensors used in the study.

Sensor Provider Temporal Bands Spatial Swath Equatorial Data Footprint
coverage coverage width crossing level size

time (X, Ka)

Advanced Microwave JAXA/ Jul 2002– C, X, Global 1445 km Asc: 13:30 L2A v3 40 km,
Scanning Radiometer for NASA Oct 2011 Ku, K, Desc: 01:30 11 km
EOS (AMSR-E) on AQUA Ka, W

Advanced Microwave JAXA/ May 2012– C, X, Global 1450 km Asc: 13:30 L1R 33 km,
Scanning Radiometer 2 NASA ongoing Ku, K, Desc: 01:30 10 km
(AMSR2) on Global Change Observation Ka, W
Mission 1st – Water (GCOM-W1)

Tropical Rainfall Measuring NASA Jan 1998– X, Ku, 40◦ N to 780 km (897 Varies (non L1C 50 (58) km,
Mission’s (TRMM) Dec 2013 K, Ka, 40◦ S after orbit polar-orbit) (XCAL, 13 (14) km
Microwave Imager (TMI) W boost 2001) Berg et

al., 2016)

Table 2. Results of the multiple linear regression for estimating the relationships between the z-score anomalies of SSM, PR, ORD, and
ODIAMD over ROI2.

Prediction Input 1 Input 2 Correlation RMSE Weight Weight
input 1 input 2

SSMMW PRE5 ORD 0.78 0.49 0.53 0.58
PRIM ORD 0.70 0.50 0.49 0.52
PRE5 ODIAMD 0.84 0.43 0.44 0.67
PRIM ODIAMD 0.81 0.44 0.40 0.67

SSME5 PRE5 ORD 0.87 0.37 0.88 0.17
PRIM ORD 0.64 0.57 0.74 0.16
PRE5 ODIAMD 0.87 0.38 0.88 0.16
PRIM ODIAMD 0.65 0.56 0.71 0.19

carried onboard the Aqua (EOS PM-1) NASA scientific re-
search satellite, which has a polar orbit with a 01:30/13:30 LT
equatorial crossing time for ascending/descending swaths.
AMSR-E was launched to obtain data to improve our un-
derstanding of global-scale water and energy cycles and
played a key role in the development of soil moisture re-
trieval algorithms. For the technical specifics, see Table 1.
Only descending brightness temperature data were used for
this study, as due to the thermal equilibrium during night-
time, these are more stable and of higher quality (Owe et al.,
2008; Van der Schalie et al., 2021b).

The Advanced Microwave Scanning Radiometer 2
(AMSR2, Imaoka et al., 2012) onboard the GCOM-W1
satellite is the follow-up of AMSR-E and was launched
in 2012. Although incorporating improvements, both the
general setup and orbital characteristics (e.g. overpass times)
are similar to AMSR-E (see Table 2). However, there is a gap
between AMSR-E and AMSR2 of about 9 months, making a
direct intercalibration of time series complicated.

To overcome this gap and to extend the passive microwave
observation record back to 1998, we make use of the Tropical
Rainfall Measuring Mission’s (TRMM, Kummerow et al.,
1998) Microwave Imager (TMI). TMI observes in X-band

and higher frequencies. TRMM is not in a polar orbit be-
cause of its focus on the tropical regions and, therefore, does
not cover the entire globe. Data are only available between
40 ◦N and 40 ◦S, and due to its orbital characteristics, have
a variable crossing time (see Table 1). To find a good bal-
ance between data availability and data stability (the more
stable temperature distribution between the soil and vegeta-
tion close to thermal equilibrium), only brightness tempera-
ture data were used that had a local overpass time between
22:30 and 04:30 LT, to best match AMSR-E and AMSR2.

For this study, we use VODMW and SSMMW derived from
X-band brightness temperature data due to its availability on
all three sensors, while Ka-band is the main frequency used
for the LSTMW. All brightness temperatures were collected
and gridded into a 0.25◦ grid for the study area.

3.1.2 Ancillary datasets

In our analysis, we use several ancillary datasets to determine
the ability of passive microwave-based satellite data records
to correctly capture interannual variations. These ancillary
datasets are split into two types.
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Firstly, data were used from the ERA5-Land climate re-
analysis model (Muñoz Sabater, 2019; Muñoz-Sabater et al.,
2021), which is an enhanced resolution (9 km× 9 km) land-
only offline rerun of the ECMWF ERA5 climate reanalysis
(Hersbach et al., 2020). SSME5, LSTE5, and PRE5 were ex-
tracted. For both SSME5 and LSTE5, the Layer 1 (0–7 cm)
was used. LAIE5 was excluded from the analysis as it only
contained a climatology based on satellite EOs (no inter-
annual variability). ERA5-Land data were extracted from
the Copernicus Climate Change Service (C3S) Climate Data
Store (CDS). As it has an hourly resolution, the values clos-
est to the satellite overpasses were chosen. Data cover the
complete period from 1998 to 2020.

Secondly, independent observational datasets are used,
which have the sole purpose of functioning as a benchmark.
These consist of the Okavango River discharge measure-
ments (ORD, Okavango Research Institute, 2021), Okavango
delta inundated area (ODIAMD), leaf area index (LAIMD,
Yang et al., 2006) and nighttime LST (LSTMD, Wan, 2014)
from the Moderate Resolution Imaging Spectroradiome-
ter (MODIS), and precipitation from the NASA Global Pre-
cipitation mission’s Integrated Multi-satellitE Retrievals for
GPM (IMERG) product (PRIM, Huffman et al., 2015).

A majority of the water entering the Okavango delta orig-
inates from the delta inlet at Mohembo. Therefore, we use
ORD from the Mohembo station (see Fig. 1) to indicate the
long-term variability of the lateral inflow into the delta. Mea-
surements using E-type gauge plates are done on a regular
(fortnightly) basis by the Botswana Department of Water Af-
fairs and the data are shared by the Okavango Research Insti-
tute of the University of Botswana. The advantage of using
this dataset is that it has a long historical record dating back
to 1974. For this study, data were extracted for the 1998–
2020 period.

ODIAMD represents the inundated area in the Okavango
delta and is derived from shortwave infrared (SWIR) obser-
vations from the MODIS sensor (Wolski et al., 2017). More
specifically, data for band b7 from the MCD43A4 product
were used. Reflectances of training areas are used to dy-
namically determine the threshold used for the derivations
of the inundation. An automated and up-to-date monitoring
tool for the flooding extent can also be found online (http:
//www.okavangodata.ub.bw/, last access: 22 May 2022).

The LAIMD is defined as the one-sided green leaf area
per unit of ground area (Chen and Black, 1992; Yang et al.,
2006). The LAIMD for the study area, including both the
drainage catchment and the delta, was extracted from the
MOD15A2H Version 6 MODIS dataset. This is an 8-daily
product that uses the best available pixel within the 8 d pe-
riod. The product has a spatial resolution of 500 m and the
mean was extracted for the complete ROIs.

One kilometre nighttime, about 01:30 LT surface temper-
ature from MODIS, was extracted from the MYD11A2.006
product, which is based on the average over 8 d of all avail-
able LSTMD observations. For this study, the mean values

of the two areas were extracted. The temporal coverage is
from February 2000 to the end of 2020 for the LAIMD and
July 2002 to the end of 2020 for the LSTMD.

For PRIM, data were used from the Integrated Multi-
satellitE Retrievals for GPM (IMERG, Huffman et al., 2015),
which are produced at 0.1◦ resolution. IMERG is a unified
algorithm that provides rainfall estimates based on a combi-
nation of observations from multiple passive microwave sen-
sors, infrared sensors, and precipitation gauges. Mean daily
data were used from the GPM_3IMERGDF version 6, cov-
ering June 2000 to December 2020.

3.2 Methods

3.2.1 Intercalibration of PMW brightness
temperatures

The intercalibration of AMSR-E, AMSR2, and TRMM is
based on the methodology described in Van der Schalie et
al. (2021b). In this approach, a two-step linear regression
model is used, which first defines a global slope and after-
wards a local intercept. Secondly, it uses a cost function that
not only minimizes the differences between brightness tem-
peratures of the individual polarizations, i.e. vertical (V ) and
horizontal (H ), but also for the ratio between the two. This
is because the Land Parameter Retrieval Model (LPRM, see
next section) used for the SSMMW, VODMW, and LSTMW
retrievals is very sensitive to the polarization ratio. Inconsis-
tencies in this ratio between different sensors can lead to an
imbalance in how the radiative transfer model distinguishes
between the emission from the soil and vegetation, respec-
tively, leading to biases in the resulting retrievals. This inter-
calibration methodology was previously only applied only to
the Ku-, K-, and Ka-band, but is here also used for applica-
tion to the X-band data in the same way.

More specifically, the following cost function is mini-
mized in the linear regression instead of a standard least
squares approach:

Err=
∑

RMSE TBH+
∑

RMSE TBV

+

∑
RMSE MPDI, (1)

with:

RMSE TBH/V =

√√√√√ T∑
t=1

(
TBs1H/V−

(
α ·TBs2H/V+β

))
T

(2)

RMSE MPDI=√√√√√√ T∑
t=1

(
TB

s1
V −TBs1H

TB
s1
V +TB

s1
H
−

(
α·TB

s2
V +β

)
−

(
α·TB

s2
H +β

)
(
α·TB

s2
V +β

)
+

(
α·TB

s2
H +β

)
)

T
, (3)

where TB is the brightness temperature for the two polariza-
tions and from the base (s1) and calibrated (s2) satellite. The
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α and β are the slope and intercept for the linear regression.
The T refers to the time steps with overlapping observations
for a single location.

After retrieving sensor-specific SSMMW, VODMW and
LSTMW from the inter-calibrated TB, a linear regression is
applied between the different sensors using their respective
overlap to remove any leftover inconsistencies. Improved
inter-calibration between sensors can lead to a reduced need
for break corrections (e.g. Preimesberger et al., 2020) and
help to better address related issues at the source.

As this study focuses on anomalies at a seasonal timescale,
the temporal coverage obtained by the current three sensors
is sufficient. However, as was shown by Van der Schalie et
al. (2021b) and as is done for the passive microwave-based
data input for the ESA CCI SM, other sensors like GPM,
FengYun-3B, and FengYun-3D can be included without is-
sues, resulting in improved revisit times and coverage.

3.2.2 Land Parameter Retrieval Model

The Land Parameter Retrieval Model (LPRM, Owe et al.,
2008) is a retrieval algorithm that simultaneously solves for
SSMMW, VODMW, and LSTMW without the use of any an-
cillary data sources on vegetation or temperature. The model
is based on the tau omega (τ–ω) model (Mo et al., 1982),
which simulates the top-of-atmosphere brightness tempera-
tures by modelling the individual contribution of the soil,
vegetation, and atmosphere. LPRM mainly distinguished it-
self from other algorithms through the analytical derivation
of the VOD (Meesters et al., 2005) and the use of Ka-band
observations for the LSTMW (Holmes et al., 2009). Here, we
use version 6.0 of LPRM, as developed by Van der Schalie et
al. (2017).

LPRM is currently the main algorithm used for all the
passive microwave-based SSM retrievals in ESA CCI SM
(Dorigo et al., 2017). Due to its unique analytical solu-
tion for the derivation of VODMW that uses no external
source of information for the vegetation, LPRM has also
been used in several studies of long-term vegetation dynam-
ics (Liu et al., 2012, 2015), land degradation (Liu et al.,
2013; Van Marle et al., 2017), and the development of cli-
mate data records of VODMW, like the VOD Climate Archive
(VODCA, Moesinger et al., 2020).

3.2.3 Evaluation of anomalies

To have a better understanding of the quality of the different
datasets in detecting interannual variability and anomalies,
a two-step comparison analysis is done. First, the anomalies
are visualized over time and their dynamics assessed. Sec-
ond, the relations between related datasets are quantified us-
ing correlations and visualized using density plots. This is
done separately for the catchment and the delta.

The SSMMW is compared to the SSME5, both representa-
tive of the moisture conditions in the first few centimetres of

the soil. As this is a direct comparison, in this step, the focus
will be on their similarity and differences without analysing
what causes them. Additionally, an extensive analysis is con-
ducted (Sect. 3.2.4) to determine which of the datasets most
likely reflects the ground conditions based on their relation
to ORD, ODIAMD, and PR.

For VODMW, there is a comparison with another regu-
larly used satellite-based dataset, LAIMD. Theoretically, the
VODMW represents the attenuation of the microwave emis-
sion through the vegetation cover, which is related to both the
structure and moisture content of the vegetation. The LAIMD
is representative of the projected single-sided green leaf area
per unit ground area. Although VOD and LAI are fundamen-
tally different, it is assumed that for dynamic and sparsely to
moderately vegetated regions, i.e. excluding forests, the X-
band also mostly measures the response of the leaves with
the microwave signal via the vegetation water content (Jack-
son and Schmugge, 1991). Further defining the quality and
ability of VODMW to detect interannual variability can be
especially useful in improving the applicability and under-
standing of independent vegetation data records based on
passive microwave observations like VODCA (Moesinger et
al., 2020).

Here, the anomalies of LST from three different sources,
e.g. passive microwave (LSTMW), model (LSTE5), and ther-
mal infrared (LSTMD) are evaluated. These represent slightly
different parts of the soil surface, being 0–7, 0–0.1, and 0 cm
(skin), respectively. The mismatch in depth is also a rea-
son why we choose nighttime comparisons as there is much
more thermal stability. When looking over longer periods
(e.g. weeks, months), we assume that the slightly different
definitions of the soil temperature should still show a simi-
larity in underlying anomalies, as in correlating well.

Because the focus is on the (seasonal) variability over a
multi-decadal time span, a 91 d moving average (±45 d) is
first applied to the datasets. The climatology for the anomaly
calculation is based on the 2003–2020 period, as the LSTMD
is only available from 2003 onward and the overall consis-
tency for the baseline is preferred. As the window for the
moving average is 91 d, little impact is assumed from data
loss due to cloud cover in the MODIS datasets.

It is worth keeping in mind that none of these datasets pro-
vide the “truth” or measure exactly the same quantity, there-
fore, differences are to be expected. In the analysis compo-
nent (see the following section), extra attention will be given
to a specific case in the Okavango delta where a clear diver-
gence is observed between the different SSM datasets.

3.2.4 Analysis of river flooding and precipitation
contribution to soil moisture anomalies in the
Okavango delta

As further in this study (Sect. 4.1) the signal of the two SSM
data sources (SSMMW and SSME5) is shown to diverge over
the Okavango delta, an in-depth analysis is set up to explain
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the main drivers of their respective signals. This can help to
better understand what the SSM datasets represent and give
users insight into how to use them for their research activities
and applications.

The first step is to directly compare the SSM datasets to
the ORD, ODIAMD, and both PRE5 and PRIM. These datasets
can provide insight into what is the driver of the SSM anoma-
lies in this region. As described in Sect. 2, about 50 %–75 %
of the total influx of water into the Okavango delta comes
from the ORD, while PR, on average, contributes 25 %–
50 %, so we expect to see this reflected in the SSM either
via the ORD or the ODIAMD signals.

Following this, a multiple linear regression exercise is
conducted. This is done to look into the influence of the
ODIAMD, ORD, and PR signals on the SSMMW and SSME5
anomalies in the delta. This allows us to determine the drivers
of the SSM anomalies and more importantly, how they dif-
fer between the two. Instead of using the absolute anoma-
lies in this analysis, the z-score is preferred as this normal-
ization removes issues with conversion of units and can be
interpreted as standardized anomalies. A visualization will
also be made of the climatologies from the different datasets,
including their 10 and 90 percentiles, to further define the
connection and time lag between the signals of the different
parameters.

4 Results

4.1 Soil moisture

Figure 2 shows the anomalies of SSMMW and SSME5 over
the Okavango catchment and delta, with Fig. 2e and f com-
paring them directly to each other in a density plot. In both
areas, the two datasets correlate moderately well, 0.72 and
0.70, respectively. In the delta however, a mismatch occurs
on some occasions, leading to a visible flat line in the den-
sity plot where the anomalies of SSMMW vary, while the
anomalies of SSME5 are close to zero (Fig. 2e). The SSMMW
anomalies over the catchment and SSME5 anomalies over
both the catchment and delta seem to have clear short-term
variability, as can be seen from the peaks in the wet season,
while the dry season remains mostly stable around zero. Only
the anomalies of SSMMW over the delta diverge from this and
show a more multi-year variation, with highs in the years
around 2011 and lows in the early and late periods of the
time period. These cases will be further analysed in Sect. 4.4
in combination with the ORD and PR.

The absolute range of the anomalies differs to some ex-
tent between the two products: SSMMW anomalies range
between −0.03 and 0.025 m3 m−3 in the catchment and
−0.05 and 0.05 m3 m−3 in the delta, whereas SSME5 anoma-
lies range between −0.10 and 0.06 m3 m−3 in the catchment
and −0.08 and 0.10 m3 m−3 in the delta. However, the dy-
namics of the signal are very similar.

4.2 Vegetation optical depth

Figure 3 shows the anomalies of VODMW and LAIMD over
the Okavango catchment and delta, with Fig. 3e and f again
showing a direct comparison in a density plot. The two
datasets have a 0.74 correlation over the catchment and up
to 0.88 in the delta. Generally, a similar pattern is visible for
both regions. One exception can be seen during the 2008 to
2011 period in the catchment, where the VODMW anomaly
remains high throughout multiple years, while the overall
above average LAIMD anomalies fluctuate to a greater extent.
The lowest values in the delta were detected early in the study
period, with VODMW recording an almost −0.08 anomaly
during 1998 and 2003. This 2003 event is also seen in the
LAIMD dataset, while no data are available for 1998. In more
recent years, no negative anomalies of that strength have
been recorded.

4.3 Land surface temperature

Figure 4a and b show the anomalies of LSTMW over the Oka-
vango catchment and delta, with Fig. 4b–g showing a direct
comparison in a density plot between LSTMW, LSTE5, and
LSTMD (time series of LSTE5 and LSTMD anomalies can be
found in the Appendix, Fig. A1). Because of the high corre-
lation between LSTMW and LSTE5 of 0.88 in the catchment
and 0.81 in the delta, the decision was made to only show the
LSTMW time series to focus more on the density plots of the
three different products. The correlation of LSTMW against
LSTMD is much lower, with 0.64 and 0.26 for both regions,
showing a low relation in the catchment. LSTE5 compares
better to LSTMD with a correlation of 0.70 in the catchment
and 0.65 in the delta, however, this is still significantly lower
than the comparison with LSTMW. The absolute ranges in the
anomalies as detected by the three products are very similar.

The slightly lower correlation of LSTMW against LSTE5
in the delta is mostly caused by the period 2010 and 2011,
when the LSTE5 anomaly (between −1 and 1 ◦C) is smaller
than that of LSTMW (between −3 and −1 ◦C). This break-
away is clearly visible in the density plot of Fig. 4f on the
lower left side. Below-average temperatures are recorded for
a prolonged period between 2006 and 2014 in both regions.
For the delta, the highest temperature anomalies are recorded
in 2019 and 1998. In the catchment, this is seen in 2015
and 2019.

4.4 River and precipitation contribution to soil
moisture anomalies in the Okavango delta

Figure 5a–c shows the anomalies of the ORD, ODIAMD, and
PRE5 over the delta, which have visibly different signals. The
ORD shows a strong multi-year signal with especially high
values recorded from 2009 to 2012. Outside of that period,
with the exception of 2004, values generally lie below the
2003 to 2020 climatology. The OIADMD shows a signal that
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Figure 2. SSMMW and SSME5 absolute anomalies over the Okavango catchment (a, b, e), with the intensity of the colouring based on the
z-score of the positive (blue) and negative (red) anomalies and the Okavango delta (c, d, f) in time series and density plots. A daily time step
is used from the moving average dataset.
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Figure 3. VODMW and LAIMD anomalies over the Okavango catchment (a, b, e), with the intensity of the colouring based on the z-score
of the positive (green) and negative (brown) anomalies and the Okavango delta (c, d, f) in time series and density plots. A daily time step is
used from the moving average dataset.
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Figure 4. LSTMW time series over the Okavango catchment and the Okavango delta (a, b), with the intensity of the colouring based on the
z-score of the positive (red) and negative (blue) anomalies. For the density plots; LSTMW compared to LSTE5 (c, f), LSTMW compared to
LSTMD (d, g), and LSTE5 compared to LSTMD (e, h). A daily time step is used from the moving average dataset for the density plots.

is relatively similar to that of the ORD, however, smoother
with less variability and lagging behind. The PRE5 over the
delta shows mostly values around 0 mm during this 2009 to
2012 period, and otherwise varies more dynamically from
year to year with values above and below the climatology.
Additional PRE5 and PRIM anomaly time series over both
the catchment and the delta can be found in the Appendix
(Fig. A2).

Although SSMMW and SSME5 anomalies have an overall
correlation of 0.69 in the delta, Fig. 2f shows many occasions

where the SSMMW had negative or positive anomalies, while
the SSME5 did not diverge from the climatology. To better as-
sess what causes this opposite signal, the climatology (using
±15 d moving average) of different parameters are provided
in Fig. 6, including their 10 % and 90 % percentiles. Here,
one can see the difference in the dynamics between SSMMW
(Fig. 6a) and SSME5 (Fig. 6b). The SSME5 shows a clear re-
lation to the PR datasets (Fig. 6g and h), while the SSMMW
still picks up a moisture signal between April and Septem-
ber. When looking at the ORD and OIADMD, these are the
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Figure 5. ORD, ODIAMD, and PRE5 time series over the Okavango delta (a–c), with the intensity of the colouring based on the z-score of
the positive (blue) and negative (red) anomalies.

moisture-related signals that still show strong variability in
this time of the year, indicating that the SSMMW could also
contain information from other sources than PR. On a side
note, Fig. 6 shows that besides matching well with long-
term anomalies, LSTMW and VODMW also have a strong
matching intraseasonal signal with LSTE5 and LAIMD, re-
spectively.

Table 2 presents the results of a multiple linear regres-
sion to determine the drivers of the observed/modelled SSM
anomaly signal in the delta, using ODIAMD, ORD, and PR as
inputs. The z-score anomalies are used to improve the com-
parability between the different datasets and their weight.
The results show that the weighting for SSMMW consists of
a balance between the PR in the delta and the ODIAMD, with
an overall slightly higher weight for the ODIAMD, and lead-
ing to a maximum correlation of 0.84 when using PRE5 over
PRIM. This leads to a RMSE of about 0.44 for the z-score.
The SSME5 anomalies are clearly driven by the PRE5 anoma-
lies, reaching a correlation of 0.87. The correlation strongly
decreases to 0.64 when the PRE5 is replaced with PRIM,
which reflects back in the RMSE of the z-score anomalies,
which increases from about 0.37 to 0.57.

5 Discussion

Over both the delta and the catchment, a remarkably strong
relationship between the LAIMD and VODMW was ob-
served, even though fundamentally, they measure two differ-
ent things. The relationship is slightly weaker over the catch-

ment where you see more of a buffer effect in the VODMW
dataset as compared to the LAIMD. This could be caused by
a buildup of woody biomass as this would theoretically be
better detected with the VODMW than with the LAIMD. The
period of sustained high VODMW in the catchment during
the 2008 to 2012 period aligns well with the PRE5, which
recorded 5 years of above-average rainfall over the catch-
ment. The ORD shows this increase above the climatology
starting only the year afterwards (from 2009 to 2012), show-
ing the lagged response of the system after a prolonged drier
period.

The VODMW signal in the delta is more complex: the
peaks in VODMW do not coincide with prolonged time spans
of high water availability, but seem to peak during shorter
periods of increased water availability during overall condi-
tions with medium to low ODIAMD. This can be explained by
what the VOD represents: in this case, it is related to biomass
that is above the surface. During prolonged periods of high
water, a larger extent of these regions are flooded. Therefore,
within the 0.25◦ pixel, data that are not corrected for dynamic
water bodies, the vegetation covered by these flooded areas
might not be properly measured by the VODMW signal as it is
also known that VODMW values can be underestimated dur-
ing flooded conditions (Bousquet et al., 2021). Note that the
negative SSMMW and ORD anomalies in 2019 have not led
to the same intensity of vegetation decline, while in 2019, the
ODIAMD was at a record low in the last 20 years. With the
very strong relationship over the delta between the anoma-
lies of both VODMW and LAIMD – two independent satellite-
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Figure 6. ROI2 mean climatology (coloured thick line) and both 10 % and 90 % percentiles (black dashed lines) for SSMMW (a), SSME5 (b),
LSTMW (c), LSTE5 (d), VODMW (e), LAIMD (f), PRIM (g), PRE5 (h), ODIAMD (i), and ORD (j). Data using a±15 d moving average were
plotted to distinguish between intraseasonal signals.

observed datasets – these observations very likely reflect the
conditions on the ground. These results show that future use
of even longer VODMW records can help monitor complex
regions like the Okavango catchment and delta. For example,
following the progress on VODCA – which aims to build a
data record similar to the ESA CCI SSM for VODMW – fu-
ture releases will also include the latest calibrated datasets as
used here.

Three different sources of LST were tested over the Oka-
vango catchment and delta. The highest correlation can
be found between the LSTE5 and LSTMW, which most
likely best represent the actual ground conditions. Although
LSTMD performs less well, the better correlation of LSTMD
against LSTE5 than LSTMW might indicate that the over-
all best performing dataset is the LSTE5. However, in
many cases, an observation-based long-term dataset (e.g. the
LSTMW) is still preferred. For example, in 2010 and 2011,
the LSTMW has the lowest temperature anomalies on record

in the delta, going to −3 K, while the LSTE5 remains more
neutral. This is most likely caused by the lack of lateral wa-
ter influx modelling from the ORD and following ODIAMD
in ERA5-Land (Muñoz-Sabater et al., 2021), as shown in
Sect. 4.4. The lack of moisture input into the model can lead
to an underestimation of the latent heat flux and overestima-
tion of the sensible heat flux, leading to an unrealistically
high LSTE5.

In the delta, 2015, 2016, and 2019 have been warm com-
pared to the years before. The LSTMW and LSTE5 both show
that these are not unique occurrences as similar high values
have been detected on multiple occasions before 2006. These
seem to occur during periods of lower ODIAMD, which
shows dry anomalies of varying strength in these years. The
catchment does see its highest and more prolonged peaks
only in the last years, i.e. 2015 and 2019. These high peaks
coincide with the strongest negative anomalies found for both
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SSMMW and SSME5, linking the high temperature and re-
duced moisture availability.

The precipitation-driven SSM in the catchment aligns
closely with SSMMW and SSME5 datasets. Especially in the
period after 2010, the signal in the anomalies is very simi-
lar. Before 2010, it appears that the SSMMW shows slightly
stronger dynamics than SSME5. In the delta, a mismatch is
clearly seen between SSME5 and SSMMW, especially with
regard to the duration of the dry and wet peaks, but also in
their intensity. With the knowledge that about 50 %–75 % of
the water flux into the delta comes from the ORD, and about
25 %–50 % from the PR, an analysis using z-score anoma-
lies was conducted to determine the driving signals behind
the SSM anomalies, using the ORD, ODIAMD, and PR as
inputs. For SSME5, an almost one-to-one relationship was
found with the PR, with little to no effects from the ORD
or ODIAMD. The SSMMW anomalies, on the other hand, are
almost equally driven by PR and ODIAMD, which is much
closer to the actual balance between the ORD and PR water
fluxes for the delta, as expected from literature.

The almost one-to-one relationship between the SSME5
and PRE5, and lack of signal related to the ORD due to the
missing lateral water influx modelling, or alternatively dy-
namic open water bodies using the ODIAMD, in ERA5-Land,
indicates that in a complex region like the Okavango delta,
important forcings are missing. This, for example, could also
cause the difference in LSTMW and LSTE5 in 2010 and 2011
(not shown) as the model cannot correctly convert the incom-
ing radiation into sensible and latent heat fluxes when the
moisture conditions are inaccurate, leading to a false increase
of LST. On the other hand, while the SSMMW signal provides
users with a better representation of total moisture conditions
within the catchment, it can also not be interpreted as a pure
SSM signal here as it includes moisture information driven
by the ODIAMD. In a dynamic environment such as the Oka-
vango delta, users should therefore clearly define what they
require of such datasets to avoid unwanted side effects.

6 Conclusion

The anomalies of three different parameters, i.e. SSMMW,
LSTMW, and VODMW, were evaluated against other satellite-
observed datasets and data from the ERA5-Land climate re-
analysis. Although SSMMW and SSME5 correlate moderately
well, structural differences were detected over the Okavango
delta, where SSMMW contains a clear multi-year signal that
is not in the SSME5. To determine the cause of this mis-
match, an analysis was conducted to determine the impact of
three sources of water into the Okavango delta, i.e. the ORD,
ODIAMD, and the PR, on the SSM signal. The SSMMW sig-
nal appears to be driven about equally by the ODIAMD and
the PR, while SSME5 is almost fully driven by the PRE5. This
indicates that ERA5-Land does not properly include the lat-

eral influx of the Okavango River and, therefore, the use of
SSMMW is preferred in this region.

For the VODMW, a direct comparison against LAIMD was
made. Although the two parameters measure two differ-
ent physical characteristics of the vegetation, their anoma-
lies show a similar response, which were reflected back in
their strong correlations (0.74 and 0.88). Over the catchment,
a stronger multi-year signal was detected in the VODMW,
which could be related to the buildup of biomass, to which
VODMW is theoretically more sensitive. For the delta, both
datasets are impacted by the increase in open water during
long wet periods that can suppress the observed vegetation.
This strong similarity, as observed between the two datasets,
indicates that it is very likely they are both representative for
the in situ conditions.

LSTMW was shown to be of good quality and correlated
well with LSTE5 (> 0.8). LSTMD still managed to reach a
significant correlation with LSTE5, but not with LSTMW, in-
dicating that in general LSTE5 could be of the highest quality
of the three when looking at the temporal signal. However, at
the record low values in LSTMW over the delta in 2010–2011,
corresponding to the peak years of the ORD and ODIAMD,
it seems that LSTE5 cannot properly model the sensible and
latent heat fluxes because it is missing the lateral water com-
ponent. This can have a large impact on detecting extremes,
which are especially important in the current changing cli-
mate.

The findings of this research show the importance of not
only relying on climate reanalysis, but also the need for fur-
ther development and maintenance of observational datasets
like the ones derived from passive microwave observations.
For example, within the ESA CCI soil moisture datasets, but
also the development of new climate data records (CDRs)
on VODMW like VODCA. Their ability to properly detect
anomalies and extremes is very valuable in climate research
and can especially help to improve our insight in com-
plex regions where the current climate reanalysis datasets
reach their limitations. With microwave data being avail-
able from 1978 onwards, the data can be used for long-term
climate studies, near-real-time applications, e.g. monitoring
complex natural systems like the Okavango delta, and to
constrain climate reanalysis through data assimilation tech-
niques to overcome known model weaknesses.
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Appendix A

Figure A1. LSTE5 (a, b) and LSTIM (c, d) time series over the Okavango catchment and the Okavango delta, with the intensity of the
colouring based on the z-score of the positive (red) and negative (blue) anomalies.

Figure A2. Time series of PRE5 over the Okavango delta (a) and PRIM over both the Okavango catchment and delta (b, c), with the intensity
of the colouring based on the z-score of the positive (blue) and negative (red) anomalies.
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