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Abstract. Model intercomparison studies are carried out to
test and compare the simulated outputs of various model se-
tups over the same study domain. The Great Lakes region is
such a domain of high public interest as it not only resembles
a challenging region to model with its transboundary loca-
tion, strong lake effects, and regions of strong human impact
but is also one of the most densely populated areas in the
USA and Canada. This study brought together a wide range
of researchers setting up their models of choice in a highly
standardized experimental setup using the same geophysi-
cal datasets, forcings, common routing product, and loca-
tions of performance evaluation across the 1×106 km2 study
domain. The study comprises 13 models covering a wide
range of model types from machine-learning-based, basin-
wise, subbasin-based, and gridded models that are either lo-
cally or globally calibrated or calibrated for one of each of
the six predefined regions of the watershed. Unlike most hy-
drologically focused model intercomparisons, this study not
only compares models regarding their capability to simulate
streamflow (Q) but also evaluates the quality of simulated ac-
tual evapotranspiration (AET), surface soil moisture (SSM),

and snow water equivalent (SWE). The latter three outputs
are compared against gridded reference datasets. The com-
parisons are performed in two ways – either by aggregating
model outputs and the reference to basin level or by regrid-
ding all model outputs to the reference grid and comparing
the model simulations at each grid-cell.

The main results of this study are as follows:

1. The comparison of models regarding streamflow re-
veals the superior quality of the machine-learning-based
model in the performance of all experiments; even for
the most challenging spatiotemporal validation, the ma-
chine learning (ML) model outperforms any other phys-
ically based model.

2. While the locally calibrated models lead to good perfor-
mance in calibration and temporal validation (even out-
performing several regionally calibrated models), they
lose performance when they are transferred to locations
that the model has not been calibrated on. This is likely
to be improved with more advanced strategies to trans-
fer these models in space.
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3. The regionally calibrated models – while losing less
performance in spatial and spatiotemporal validation
than locally calibrated models – exhibit low perfor-
mances in highly regulated and urban areas and agri-
cultural regions in the USA.

4. Comparisons of additional model outputs (AET, SSM,
and SWE) against gridded reference datasets show that
aggregating model outputs and the reference dataset to
the basin scale can lead to different conclusions than a
comparison at the native grid scale. The latter is deemed
preferable, especially for variables with large spatial
variability such as SWE.

5. A multi-objective-based analysis of the model per-
formances across all variables (Q, AET, SSM, and
SWE) reveals overall well-performing locally calibrated
models (i.e., HYMOD2-lumped) and regionally cal-
ibrated models (i.e., MESH-SVS-Raven and GEM-
Hydro-Watroute) due to varying reasons. The machine-
learning-based model was not included here as it is not
set up to simulate AET, SSM, and SWE.

6. All basin-aggregated model outputs and observations
for the model variables evaluated in this study are avail-
able on an interactive website that enables users to visu-
alize results and download the data and model outputs.

1 Introduction

Model intercomparison projects are usually massive un-
dertakings, especially when multiple (independent) groups
come together to compare a wide range of models over large
regions and a large number of locations (Duan et al., 2006;
Smith et al., 2012; Best et al., 2015; Kratzert et al., 2019c;
Menard et al., 2020; Mai et al., 2021; Tijerina et al., 2021).
The aim of such projects is diverse. It might be to identify
models that are most appropriate for certain objectives (e.g.,
simulating high flows or representing soil moisture) or to
study the differences in model setups and implementations
in detail.

Intercomparison projects are also well suited for intro-
ducing new models through the inherent benchmarking with
other models (Best et al., 2015; Kratzert et al., 2019c;
Rakovec et al., 2019). In particular, the recent successful ap-
plication of data-driven models in hydrologic applications
necessitate standardized experiments – such as model inter-
comparison studies – to make sure that the models are using
the same information and strategies to enable fair compar-
isons.

Several model intercomparison have been carried out over
subdomains (here called regions) of the Great Lakes in the
past (Fry et al., 2014; Gaborit et al., 2017a; Mai et al., 2021)

under the umbrella of the Great Lakes Runoff Intercompar-
ison Projects (GRIP). The GRIP projects were envisioned
since the Great Lakes region with its transboundary location
leads to (a) challenges such as finding datasets that are con-
sistent across borders or models that are only set up on either
side of the border, (b) challenges in the modeling itself due
to, for example, climatic conditions driven by large lake ef-
fects and substantial areas of heavy agricultural land use and
urban areas, and (c) a high public interest since the Great
Lakes watershed is one of the most densely populated areas
in Canada (32 % of the population) and the USA (8 % of the
population; Michigan Sea Grant, 2022). Another reason for
the high public interest is that changes in runoff to the Great
Lakes have implications for water levels, which have under-
gone dramatic changes (from record lows in 2012–2013 to
record highs in 2017–2020) in recent decades. The afore-
mentioned GRIP projects were set up over regions of the
entire Great Lakes watershed, i.e., Lake Michigan (GRIP-
M; Fry et al., 2014), Lake Ontario (GRIP-O; Gaborit et al.,
2017a), and Lake Erie (GRIP-E; Mai et al., 2021), and pri-
marily investigated the model performances regarding sim-
ulated streamflow even though studies show that additional
variables beyond streamflow might be helpful to improve re-
alism of models (Demirel et al., 2018; Tong et al., 2021).

Previous GRIP studies have pointed out limitations regard-
ing the conclusions that can be drawn. In particular, the last
study (GRIP-E by Mai et al., 2021) listed the following chal-
lenges in the concluding remarks:

I. There was only a short period of forcings (5 years) to
calibrate and evaluate the models.

II. There was only a comparison of streamflow but no ad-
ditional variables like soil moisture.

III. Even though all models use the same forcings, all other
datasets (soil texture, vegetation, basin delineation, etc.)
were not standardized.

Hence, model differences might be due to different quality
input data but not due to differences in models themselves.
The study presented here will address these previous GRIP
study limitations. Furthermore, this study demonstrates some
unique intercomparison aspects that are not necessarily com-
mon practice in large-scale hydrologic model intercompari-
son studies. Key noteworthy aspects of this intercomparison
study are as follows:

1. Datasets used. Hydrologic and land surface models
need data to be set up (e.g., soil and land cover) and
to be forced (e.g., with precipitation). The forcing data
have, at best, a high temporal and spatial resolution,
a complete coverage of the domain of interest, a long
available time period, and no missing data. In this study,
models will be using common datasets for these forc-
ings, and all geophysical datasets are required to set up
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the various kinds of models. A recently developed 18-
year-long forcing dataset will be employed (Gasset et
al., 2021). This addresses limitations (I) and (III) above.

2. Variables compared. Models are traditionally only eval-
uated for one primary variable (e.g., streamflow). In this
study, models will be evaluated regarding variables be-
yond streamflow such as evapotranspiration, soil mois-
ture, and snow water equivalent. This addresses limita-
tion (II) above.

3. Method of comparison. A model intercomparison might
include various model types, e.g., lumped models vs.
semi-distributed or conceptual vs. physically based vs.
data driven. To compare these models – especially when
not only comparing time series like streamflow – model
agnostic methods are needed (meaning methods that do
not favor one type of model over others). We will per-
form comparisons on different scales and use metrics to
account for these issues. This addresses an issue associ-
ated with limitation (II).

4. Types of models considered. Model intercomparison
studies traditionally use conceptual or physically based
hydrologic models. The rising popularity and success of
data-driven models in hydrologic science (e.g., Herath
et al., 2021; Nearing et al., 2021; Feng et al., 2021),
however, warrant the inclusion of such models in such
studies, given that the data-driven, machine-learning-
based models face the same information and input data
as traditional models to guarantee a fair comparison.
A machine-learning-based model was included in this
study to demonstrate the advantages and limitations
of state-of-the-art machine-learning-based models com-
pared to conceptual and physically based models.

5. Communication of results. Large studies with many
models and locations at which they are compared lead to
vast amounts of model results. During such a study, it is
challenging for collaborators to process and compare all
results. After the study is completed, it is equally chal-
lenging to present all results in detail in a paper such
that the data and results are accessible to others. In this
study, we shared data through an interactive website,
which was first internally accessible during the study
and then publicly shared to enhance data sharing, ex-
ploring, and communication with a broader audience.

The remainder of the paper is structured as follows. Sec-
tion 2 presents the materials used and methods applied
including a description of datasets, models, metrics, and
types of comparative analyses. Section 3 describes and dis-
cusses the results of the analyses performed, while Sect. 4
summarizes the conclusions that can be drawn from the
experiments performed here. Note that this work is ac-
companied by an extensive Supplement, primarily provid-
ing more details for model setups, and an interactive web-

site (http://www.hydrohub.org/mips_introduction.html, last
access: 6 July 2022) (Mai, 2022), for sharing and exploring
comparative results.

2 Materials and methods

This section first describes the study domain (Sect. 2.1),
datasets used to set up and force models (Sect. 2.2), and the
common routing product produced for this study and used
by most of the models (Sect. 2.3). A brief description of
the 13 participating models can be found in Sect. 2.4. The
datasets used to calibrate and validate the models regarding
streamflow and the datasets to evaluate the models beyond
streamflow are introduced in Sects. 2.5 and 2.6, respectively,
followed by Sect. 2.7, which defines the metrics to determine
the models’ ability to simulate the variables provided in these
datasets using two different approaches, depending on which
spatial aggregation is applied (Sect. 2.8). A multi-objective
analysis described in Sect. 2.9 is performed to augment the
previous single objective analyses that evaluated the perfor-
mance across the four variables independently. The data used
(e.g., model inputs) and produced (e.g., model outputs) in
this study are made available through an interactive website,
for which features are explained in Sect. 2.10.

2.1 Study domain

The domain studied in this work is the St. Lawrence River
watershed, including the Great Lakes basin and the Ottawa
River basin. The five Great Lakes located within the study
domain contain 21 % of the world’s surface fresh water and
approximately 34 million people in the USA and Canada live
in the Great Lakes basin. This is about 8 % of the USA’s pop-
ulation and about 32 % of Canada’s population (Michigan
Sea Grant, 2022). The study domain chosen consists of six
major regions, i.e., the five local lake regions (i.e., regions
that are partial watersheds and do not include upstream areas
draining into upstream lakes) draining into Lake Superior,
Lake Huron, Lake Michigan, Lake Erie, and Lake Ontario,
and one region that is defined by the Ottawa River watershed.
The latter was included as it was important to some collabo-
rators to evaluate how well models performed on this highly
managed/human-impacted watershed. Furthermore, the Ot-
tawa River flow has implications for Lake Ontario outflow
management.

The study domain (including the Ottawa River watershed)
is 915 798 km2 in size, of which 630 844 km2 (68.9 %) are
land, while 284 954 km2 (31.1 %) are water bodies. These es-
timates are derived using the common routing product used
in this study; more information about this product can be
found in Sect. 2.3. The outline of the study domain is dis-
played in Fig. 1.

The land cover of land areas (water bodies excluded) is
dominated by forest (71 %) and cropland (6.2 %), estimated
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based on the North American Land Change Monitoring Sys-
tem (NALCMS; NACLMS, 2017). The soil types of land
areas (water bodies excluded) are dominated by sandy loam
(47.3 %), loam (19.1 %), loamy sand (11.5 %), and silt loam
(10.5 %). These estimates are derived using the vertically
averaged soil data based on the entire soil column up to
2.3 m from the Global Soil Dataset for Earth System Mod-
els (GSDE; Shangguan et al., 2014) dataset, and soil classes
are based on the United States Department of Agriculture’s
(USDA) classification. The elevation of the Great lakes wa-
tershed (including the Ottawa River watershed) ranges from
17 to 1095 m. The mean elevation is 270 m, and the median is
247 m. These estimates are derived using the HydroSHEDS
90 m (3 arcsec) digital elevation model (DEM) data (Lehner
et al., 2008). These datasets – NALCMS, GSDE, and Hy-
droSHEDS – summarize the common datasets used by all
partners in this study to setup models. More details about the
datasets are provided in Sect. 2.2.

2.2 Meteorologic forcings and geophysical datasets

All models contributing to this study used the same set of me-
teorologic forcings and geophysical datasets to set up and run
their models. Additional datasets required to set up specific
models had to be reported to the team and made available
to all collaborators in order to make sure everyone would
have the chance to use that additional information as well.
The common datasets used here were determined after the
preceding Great Lakes Runoff Intercomparison project for
Lake Erie (GRIP-E; Mai et al., 2021) in which contributors
were allowed to use datasets of their preference. The team
for the Great Lakes project (Great Lakes Runoff Intercom-
parison Project Phase 4: the Great Lakes – GRIP-GL) eval-
uated all datasets used by all models in GRIP-E and decided
together which single dataset to commonly use in GRIP-GL.
This led to the situation in which most models had to be set
up again as, for all models, at least one dataset differed from
what was used in GRIP-E and what was decided to be used
in GRIP-GL. The common datasets are briefly described in
the following.

The Regional Deterministic Reanalysis System v2
(RDRS-v2) was employed as meteorologic forcing (Gasset
et al., 2021). RDRS-v2 is an hourly and 10 km by 10 km me-
teorologic forcing dataset covering North America (Fig. 2a).
Forcing variables such as precipitation, temperature, humid-
ity, and wind speed, among others, are available from Jan-
uary 2000 until December 2017 through the Canadian Sur-
face Prediction Archive (CaSPAr; Mai et al., 2020b). The
dataset has been provided to all the participating groups in
two stages. First, only data for the calibration period (January
2000 to December 2010) were shared. Second, after finaliz-
ing the calibration of all models, the data were shared for the
validation period (January 2011 until December 2017). This
allowed for a true blind (temporal) validation of the models.
This was possible since the RDRS-v2 dataset was not pub-

licly available when the GRIP-GL project started, and the
participating groups (except the project leads) did not have
access to the data. The forcings were aggregated according to
the needs of each model. For example, lumped models used
aggregated basin-wise daily precipitation and minimum and
maximum daily temperature instead of the native gridded,
hourly inputs.

The HydroSHEDS dataset (Lehner et al., 2008) was used
as the common digital elevation model (DEM) for the
project. It has a 3 arcsec resolution which corresponds to
about 90 m at the Equator. Since the upscaled HydroSHEDS
DEMs with 15 arcsec (500 m) and 30 arcsec (1 km) are con-
sistent with the best-resolution dataset, the collaborators
were allowed to pick the resolution most appropriate for
their setup. The DEM was then postprocessed to the spe-
cific needs of each model. For example, some lumped mod-
els required the average elevation of each watershed as an in-
put. The data were downloaded from the HydroSHEDS web-
site (https://www.hydrosheds.org, last access: 6 July 2022),
cropped to the study domain, and provided to the collabora-
tors.

The Global Soil Dataset for Earth System Models (GSDE;
Shangguan et al., 2014) was used as the common soil dataset
for all models in this study. This dataset, with a 30 arcsec
spatial resolution (approximately 1 km at the Equator), con-
tains eight layers of soil up to a depth of 2.3 m. The data
were downloaded directly from the website mentioned in
the Shangguan et al. (2014) publication and preprocessed for
the needs of the collaborators and models. For example, the
data were regridded to the grid of the meteorologic RDRS-v2
forcings, as this was the grid for which most distributed mod-
els were set up. Some other models required the aggregation
of soil properties to specific (fixed) layers different to those
distributed. The project leads also converted the soil textures
provided to soil classes as this was required by a few mod-
els. All these data products were converted to a standardized
NetCDF format and shared with the collaborators.

As a common land cover dataset for all models, the
North American Land Change Monitoring System (NAL-
CMS) product including 19 land cover classes for North
America was used. The dataset has a 30 m by 30 m resolu-
tion and is based on Landsat imagery from 2010 for Mex-
ico and Canada and from 2011 for the USA. The data can
be downloaded from a website (NACLMS, 2017). The data
were downloaded, cropped to the study domain, and saved
in a common TIFF file format. Furthermore, model-specific
postprocessing of the data included regridding to model grids
and aggregation of the land cover classes to the eight classes
common in MODIS. Those datasets were saved in standard
NetCDF file formats and provided to the collaborators.

2.3 Routing product

The GRIP-GL routing product is derived from the Hy-
droSHEDS DEM (Lehner et al., 2008), drainage directions,

Hydrol. Earth Syst. Sci., 26, 3537–3572, 2022 https://doi.org/10.5194/hess-26-3537-2022

https://www.hydrosheds.org


J. Mai et al.: Great Lakes model intercomparison GRIP-GL 3541

Figure 1. Study domain and streamflow gauging locations. In total, 212 streamflow gauging stations (dots) located in the Great Lakes
watershed, including the Ottawa River watershed (gray area in panels a and b), have been used in this study. Note that all selected gauging
stations eventually drain to one of the Great Lakes or the Ottawa River, and none are downstream of any of the Great Lakes. Hence, most
models do not simulate the areas of the Great Lakes themselves. Panel (a) shows the location of stations used for calibration regarding
streamflow, where 66 of them are downstream of a low human impact watershed (objective 1; large black dots), and 104 stations are most
downstream, draining into one of the five lakes or the Ottawa River (objective 2; smaller dots with a white center). In total, there are
141 stations used for calibration, as 29 stations are both low human impact and most downstream (large black dots with white center;
141= 66+ 104− 29). Panel (b) shows the 71 validation stations, of which 33 are low human impact, 52 are most downstream, and 14 are
both low human impact and most downstream (71= 33+52−14). The number of stations is added in parenthesis to the labels in the legend.
Panel (c) shows the six main regions of the study domain, i.e., the Lake Superior region (SUP), the Lake Michigan region (MIC), the Lake
Huron region (HUR), the Lake Erie region (ERI), the Ottawa River region (OTT), and the Lake Ontario watershed (ONT).

and flow accumulation. All of them are in 3 arcsec (90 m) res-
olution. The GRIP-GL routing product is generated by Bas-
inMaker (Version 1.0; Han, 2021), which is a set of Python-
based geographic information system (GIS) tools for sup-
porting vector-based watershed delineation, discretization,
and simplification and incorporating lakes and reservoirs into
the network. This toolbox has been successfully applied for
producing the Pan-Canadian (Han et al., 2020) and North
American routing product (Han et al., 2021b). More detailed
information, a user manual, and tutorial examples can be
found on the BasinMaker website (Han et al., 2021a).

In this study, we used the HydroSHEDS DEM, flow di-
rection, and flow accumulation at the 3 arcsec resolution for
BasinMaker to delineate the watersheds and discretize them
into subbasins. The HydroLAKES database, which provides
a digital map of lakes globally (Messager et al., 2016), is
used in the watershed delineation as well. The Terra and
Aqua combined Moderate Resolution Imaging Spectrora-
diometer (MODIS) Land Cover Type (MCD12Q1) Version
6 data (USGS, 2019) is used in BasinMaker to estimate the
Manning’s n coefficient for the floodplains. The global river
channel bankfull width database developed by Andreadis et
al. (2013) is used to calculate geometry characteristics of
river cross sections.

This routing product is compatible with other hydrologi-
cal models (i.e., runoff-generating models at any resolution,
either gridded or vector based) when the Raven hydrologic
modeling framework (Craig et al., 2020) is used as the rout-
ing module. The routing product contains adequate informa-
tion for hydrologic routing simulation, including the rout-

ing network topology, attributes of watersheds, lakes, and
rivers, and initial estimates for routing parameters (e.g., Man-
ning’s coefficient). The key to routing arbitrary-resolution
spatiotemporal runoff fluxes through Raven is the derivation
of grid weights to remap the fluxes of runoff onto the rout-
ing network discretization. A workshop on how to couple
the models participating in this study with the Raven frame-
work in routing-only mode was held in October 2020. Af-
ter that workshop, all models except one decided to use the
common routing product and route their model-generated
runoff through the Raven modeling framework. The GEM-
Hydro-Watroute model (see the list of models in Sect. 2.4
and Table 1) was the only model to use its native rout-
ing scheme. Preliminary calibrated versions of, for exam-
ple, the subbasin-based Soil and Water Assessment Tool
(SWAT) were tested with and without Raven-based routing
across 13 individually calibrated basins. These tests con-
firmed that SWAT showed notably improved streamflow pre-
dictions when their water fluxes for routing were handled
with Raven-based routing in comparison to their native lake
and channel routing approaches (Shrestha et al., 2021).

The common routing product includes the explicit repre-
sentation of 573 lakes (214 located in calibration basins and
359 in validation basins). Small lakes with a lake area less
than 5 km2 were not included to achieve a balance between
lake representation and computational burden. BasinMaker
requires a threshold of flow accumulation to identify streams
and watersheds. We used a flow accumulation value of 5000
for this parameter. Generally, the smaller this value, the more
subwatersheds and tributaries will be identified.
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Figure 2. Meteorologic forcing data and auxiliary datasets. (a) The meteorologic forcings are provided by the Regional Deterministic
Reanalysis System v2 (RDRS-v2; 10 km; hourly; Gasset et al., 2021). The figure shows the mean annual precipitation derived for the
18 years during which the dataset is available and used in this study (2000–2017). The forcing inputs are preprocessed as needed by the
models, e.g., aggregated to basin averages or aggregated to daily values. (b) Actual evapotranspiration estimates and (c) surface soil moisture
from the Global Land Evaporation Amsterdam Model (GLEAM v3.5b; 25 km; daily; Martens et al., 2017) and (d) snow water equivalent
estimates from the ERA5-Land dataset (Muñoz Sabater, 2019; 10 km; daily) have been used to evaluate the calibrated model setups. All
datasets have been cropped to the study domain (black line). The actual evapotranspiration and surface soil moisture (panels b and d) are
not available over the lake area (missing grid cells). Panels (b–d) show the mean annual estimates for the auxiliary variables. The average
soil moisture (panel c) is based on summer time steps only (June to October), while for the snow water equivalent annual mean only values
larger than 1 mm of daily snow water equivalent were considered. In both cases, this is what was considered to evaluate model performance
regarding these variables.

The routing product was prepared at three equivalent spa-
tial scales. First, the routing networks for each of the 212
gauged basins (141 calibration basins and 71 validation
basins) were individually delineated. The gauged basins were
discretized into 4357 subbasins (2187 for calibration basins
and 2170 for validation basins) with an average size of about
220 km2 (221 km2 for calibration basins and 215 km2 for
validation basins). The 573 lake subbasins are further dis-
cretized into one land and one lake hydrological response
unit (HRU) per lake subbasin. Second, for models that were
regionally calibrated, for ease of simulating entire regions at

once, the above gauge-based routing networks were aggre-
gated into six regional routing networks. Importantly, at all
212 gauge locations, the regional routing networks has up-
stream routing networks that are equivalent to the individual
routing networks for each gauge. Third, the global setup for
the entire Great Lakes region was prepared but not used by
any of the collaborators. More details about the streamflow
gauge stations are given in Sect. 2.5.
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2.4 Participating models

The 13 models participating in this study are listed in Ta-
ble 1, including the (a) co-authors leading the model setups,
calibration, validation, and evaluation, (b) calibration strat-
egy, (c) routing scheme used, and (d) temporal and (e) spa-
tial resolution of the models. The models are grouped ac-
cording to their major calibration strategy. The first group
is the machine-learning-based model, which also happens to
be the only model with a global setup (Sect. 2.4.1); the sec-
ond group is comprised of the seven models that are locally
calibrated (Sect. 2.4.2), and the third group is the five models
that followed a regional calibration strategy (Sect. 2.4.3). The
calibration strategy (local, regional, and global) and calibra-
tion setup (algorithm, objective, and budget) was subject to
the expert judgment of each modeling team. The main goal
of this project was to deliver the best possible model setup
under a given set of inputs; the standardization and enforce-
ment of calibration procedures would have limited this sig-
nificantly due to the wide range of model complexity and
runtimes. The models are briefly described below, including
a short definition of these three calibration strategies. More
details about the models can be found in the Supplement, in-
cluding the lists of parameters that have been calibrated for
each model.

Please note that the model names follow a pattern. The last
part of the name indicates whether the model does not require
routing (e.g., XX-lumped), used the common Raven routing
(e.g., XX-Raven), or used another routing scheme (i.e., XX-
Watroute).

2.4.1 Machine-learning-based model

– LSTM-lumped. One model based on machine learn-
ing, a Long Short-Term Memory network (LSTM), was
contributed to this study. The model is called LSTM-
lumped throughout this study. LSTM networks were
first introduced by Hochreiter and Schmidhuber (1997)
and used for rainfall–runoff modeling by Kratzert et al.
(2018). The model was set up using the NeuralHydrol-
ogy Python library (Kratzert et al., 2022). An LSTM is
a deep-learning model that learns to model relevant hy-
drologic processes purely from data. The LSTM setup
used in this study is similar to that from Kratzert et al.
(2019c) and has been successfully applied for stream-
flow prediction in a variety of studies (e.g., Klotz et
al., 2021; Gauch et al., 2021; Lees et al., 2021). The
model inputs are nine basin-averaged daily meteoro-
logic forcing data (precipitation, minimum and maxi-
mum temperature, u/v components of wind, etc.), nine
static scalar attributes derived for each basin from these
forcings for the calibration period (mean daily precipi-
tation, fraction of dry days, etc.), 10 attributes derived
from the common land cover dataset (fraction of wet-
lands, cropland, etc.), six attributes derived from the

common soil database (sand, silt, and clay content, etc.),
and five attributes derived from the common digital el-
evation map (mean elevation, mean slope, etc.). The
aforementioned data and attributes are based solely on
the common dataset (Sect. 2.2). Streamflow is not part
of the input variables. A full list of attributes used can be
found in Sect. S3.1 in the Supplement. The LSTM setup
follows a global calibration strategy, which means that
the model was trained for all 141 calibration stations at
the same time, resulting in a single trained model for the
entire study domain that can be run for any (calibration
or validation) basin as soon as the required input vari-
ables are available. The LSTM training involved fitting
around 300 000 model parameters. This number should,
however, not be directly compared to the number of pa-
rameters in traditional hydrological models because the
parameters of a neural network do not explicitly corre-
spond to individual physical properties. The training of
one model takes around 2.75 h on a single graphics pro-
cessing unit (GPU). The Supplement contains the full
list of inputs, and a more detailed overview of the train-
ing procedure (Sect. S3.1). Unlike process-based hydro-
logic models, the internal states of an LSTM do not have
a direct semantic interpretation but are learned by the
model from scratch. In this study, the LSTM was only
trained to predict streamflow, which is why it did not
participate in the comparison of additional variables in
this study. Note, however, that even though the model
does not explicitly model additional physical states, it
is nevertheless possible – to some degree – to extract
such information from the internal states with the help
of a small amount of additional data (Lees et al., 2022;
Kratzert et al., 2019a).

2.4.2 Locally calibrated models

The following models follow a local calibration strategy, i.e.,
the models are trained for each of the 141 calibration sta-
tions individually. This leads to one calibrated model setup
per basin. In order to simulate streamflow for basins that are
not initially calibrated (spatial or spatiotemporal validation),
the model needs a calibrated parameter set to be transferred
to the uncalibrated basin. This parameter set is provided by a
(calibrated) donor basin. All locally calibrated models in this
study used the same donor basins for the validation basins, as
described in Sect. 2.5. The individual models will be briefly
described in the following (one model per paragraph). More
details for each model can be found in the Supplement.

– LBRM-CC-lumped. The Large Basin Runoff Model
(LBRM) – described by Crowley (1983), with recent
modifications to incorporate the Clausius–Clapeyron re-
lationship, LBRM-CC, described by Gronewold et al.
(2017) – is a lumped conceptual rainfall–runoff model
developed by NOAA Great Lakes Environmental Re-
search Laboratory (GLERL) for use in the simulation of
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Table 1. List of participating models. The table lists the participating models and the lead modelers responsible for model setups, calibration,
and validation runs. The models are separated into three groups (see headings in the table), namely machine learning (ML) models which
are all globally calibrated, hydrologic models that are calibrated at each gauge (local calibration), and models that are trained for each
region, such as the Lake Erie or Lake Ontario watershed (regional calibration). Note that the temporal and spatial resolution of the fluxes
of the land surface scheme (LSS) can be different from the resolutions used in the routing (Rout.) component. All LSS grids are set to the
RDRS-v2 meteorological data forcing grid of around 10 km by 10 km. The two numbers given in the column specifying the spatial resolution
(XXX+YYY) correspond to the spatial resolution of the models regarding calibration basins (XXX) and validation basins (YYY).

Model Lead Calibr. Routing Temporal Spatial
name modeler(s) strategy scheme resolution resolution

Machine learning model(s) (global calibration):

LSTM-lumped Gauch, Klotz, and Kratzert Global None Daily Basins (141+ 71)

Hydrologic and land surface model(s) with the calibration of each gauge individually (local calibration):

LBRM-CC-lumped Waddell and Fry Local None Daily Basins (141+ 71)
HYMOD2-lumped Rasiya Koya and Roy Local None Daily Basins (141+ 71)
GR4J-lumped Mai and Craig Local None Daily Basins (141+ 71)
HMETS-lumped Mai and Craig Local None Daily Basins (141+ 71)
Blended-lumped Mai, Craig, and Tolson Local None Daily Basins (141+ 71)
Blended-Raven Mai, Craig, and Tolson Local Raven Daily LSS – subbasins (2187+ 2170)

Rout. – subbasins (2187+ 2170)
VIC-Raven Shen and Tolson Local Raven LSS – 6 h LSS – grid (10 km)

Rout. – daily Rout. – subbasins (2187+ 2170)

Hydrologic and land surface model(s) with the calibration of entire regions (regional calibration):

SWAT-Raven Shrestha and Seglenieks Regional Raven Daily LSS – subbasins (3230+ 2268)
Rout. – subbasins (2187+ 2170)

WATFLOOD-Raven Shrestha and Seglenieks Regional Raven Hourly LSS – grid (10 km)
Rout. – subbasins (2187+ 2170)

MESH-CLASS-Raven Temgoua and Princz Regional Raven LSS – 30 min LSS – grid (10 km)
Rout. – daily Rout. – subbasins (2187+ 2170)

MESH-SVS-Raven Gaborit and Princz Regional Raven LSS – 10 min LSS – grid (10 km)
Rout. – 6 h Rout. – subbasins (2187+ 2170)

GEM-Hydro-Watroute Gaborit Regional Watroute LSS – 10 min LSS – grid (10 km)
Rout. – hourly Rout. – grid (1 km)

total runoff into the Great Lakes (e.g., used by the U.S.
Army Corps of Engineers in long-term water balance
monitoring and seasonal water level forecasting). The
model will be referred to as LBRM-CC-lumped here-
after. Inputs to LBRM-CC-lumped include daily are-
ally averaged (lumped) precipitation, maximum temper-
ature, and minimum temperature, as well as the con-
tributing watershed area. All these inputs are based on
the common dataset described in Sect. 2.2. For each
basin, LBRM-CC-lumped’s nine parameters were cali-
brated against the Kling–Gupta efficiency (KGE; Gupta
et al., 2009) using a dynamically dimensioned search
(DDS) algorithm (Tolson and Shoemaker, 2007) run for
300 iterations within the OSTRICH optimization pack-
age (Matott, 2017). A list of the calibrated nine param-
eters is given in Table S3 in the Supplement. LBRM-
CC-lumped was modified for this project to output ac-
tual evapotranspiration (AET) in addition to the conven-
tional outputs, which included snow water equivalent.

LBRM does not provide a soil moisture as a volume per
volume. Accordingly, we used the LBRM-CC-lumped
upper soil zone moisture (mm) as a proxy for surface
soil moisture. It should be noted that, subsequent to the
posting of model results, an error was found in the cali-
bration setup that resulted in ignoring an important con-
straint on the proportionality constant controlling poten-
tial evapotranspiration (PET; see Lofgren and Rouhana,
2016 for an explanation of this constraint). In addition,
the LBRM-CC-lumped modeling team found that an
improved representation of the long-term average tem-
peratures applied in the PET formulation improves the
AET simulations in some tested watersheds (PET is a
function of the difference between daily temperature
and long-term average temperature for the day of year).
The impact of these bug fixes on the performance re-
garding streamflow or other variables like evapotranspi-
ration across the entire study domain is not yet clear
and will need to be confirmed through the recalibration
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of the model. Accordingly, accounting for these PET
modifications may improve the LBRM-CC-lumped per-
formance in simulating AET in future studies. Because
LBRM/LBRM-CC is conventionally used for simulat-
ing seasonal and long-term changes in runoff contri-
butions to the lakes’ water balance, the evaluation has
previously focused on simulated runoff; simulated AET,
surface soil moisture (SSM), and snow water equivalent
(SWE) are not typically evaluated. However, LBRM
studies, such as those by Lofgren and Rouhana (2016)
and Lofgren et al. (2011), did evaluate simulated AET,
leading to the development of the LBRM-CC-lumped.
More model details are given in Sect. S3.2 in the Sup-
plement.

– HYMOD2-lumped. HYMOD2 (Roy et al., 2017) is
a simple conceptual hydrologic model simulating
rainfall–runoff processes on a basin scale. Due to its
lumped nature, it will be referred to as HYMOD2-
lumped hereafter. It produces daily streamflow at basin
level (lumped) by using daily precipitation and PET.
The latter is calculated in this study using the Harg-
reaves method (Hargreaves and Samani, 1985) using
the minimum and maximum daily temperatures. Addi-
tionally, the version of HYMOD2-lumped used in this
study includes snowmelt and rain–snow partitioning, for
which temperature and relative humidity data are re-
quired. The basin drainage area and latitude were the
other two bits of information relevant for the version of
the model implemented in this study. All forcing data
and geophysical basin characteristics used are provided
in the common dataset (Sect. 2.2). In total, 11 model pa-
rameters are calibrated against the KGE using the shuf-
fled complex evolution (SCE) algorithm (Duan et al.,
1992). The SCE was set up with two complexes and a
maximum of 25 (internal) loops, and the algorithm con-
verged on average after 1800 model evaluations. One
calibration trial was performed for each basin. The list
of the 11 calibrated parameters is provided in Table S4
in the Supplement. The model variables for AET and
SWE are vertically lumped and saved as model outputs
to evaluate them against reference datasets. The proxy
variable used for SSM is the storage content in the non-
linear storage tank (C) from which the runoff is de-
rived (see the schematic diagram of HYMOD2 shown
in Fig. 4 of Roy et al., 2017). This storage content is
written as a function of the height of water in the tank
as follows: C(t)= Cmax×(1−(1−(H(t)/Hmax))

1+b).
H and Hmax represent the height and maximum height
of water, respectively, while b is a unitless shape param-
eter, and Cmax is the maximum storage capacity. Addi-
tional model details can be found in Sect. S3.3 in the
Supplement.

– GR4J-lumped, HMETS-lumped, and Blended-lumped.
The models GR4J (Perrin et al., 2003), HMETS (Martel

et al., 2017), and the Blended model (Mai et al., 2020a)
are set up within the Raven hydrologic modeling
framework (Craig et al., 2020). The models are set
up in the lumped mode and will therefore be called
GR4J-lumped, HMETS-lumped, and Blended-lumped,
respectively, hereafter. The three models run on a daily
time set up. The forcings required are daily precipita-
tion and minimum and maximum daily temperature.
The models require the following static basin attributes
which are all derived based on the common set of
geophysical data (Sect. 2.2): basin center latitude
and longitude in degrees (◦), basin area in kilometers
squared (km2), basin average elevation in meters (m),
basin average slope in degrees (◦), and fraction of
forest cover in the basin (only HMETS-lumped and
Blended-lumped). The models are calibrated against
KGE using the DDS algorithm. The models GR4J-
lumped and HMETS-lumped were given a budget of
500 model evaluations per calibration trial, while the
Blended-lumped model, which has more parameters
than the other two models, was given a budget of 2000
model evaluations per trial. In total, 50 independent
calibration trials per model and basin were performed;
the best trial (largest KGE) was designated as the
calibrated model. The tables of calibrated parameters
can be found in Tables S5–S7 in the Supplement. For
model evaluation, the model outputs for actual evapo-
transpiration (AET) are saved using the Raven custom
output AET_Daily_Average_BySubbasin.
The surface soil moisture SSM is de-
rived using the saved custom output
SOIL[0]_Daily_Average_BySubbasin,
which is water content2 in millimeters (mm) of the top
soil layer and is converted using the unitless porosity
φ and soil layer thickness τ0 in millimeters (mm) into
the unitless soil moisture SSM=2/(φ · τ0)). The
snow water equivalent estimate is the custom Raven
output SNOW_Daily_Average_BySubbasin.
Additional details for these three models can be found
in Sects. S3.4–S3.6 in the Supplement.

– Blended-Raven. The semi-distributed version of the
above Blended model is also set up within the Raven
hydrologic modeling framework. The set up is simi-
lar to the Blended-lumped model, with the difference
that, instead of modeling each basin in a lumped mode,
here, each basin is broken into subbasins (2187 in to-
tal across all calibration basins and 2170 overall in val-
idation basins), and these subbasins were further dis-
cretized into two different hydrologic response units
(lake and non-lake). The simulated streamflows are
routed between subbasins using the common routing
product (Sect. 2.3) within Raven and is hence called
Blended-Raven hereafter. The model produces simula-
tion results at the subbasin level but outputs are only
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saved for the most downstream subbasins (141 calibra-
tion; 71 validation). The model uses the same forcing
variables (gridded and not lumped) and basin attributes
as the Blended-lumped model. Calibration, validation,
and evaluation are exactly the same as described for the
Blended-lumped model above. The model parameters
calibrated can be found in Sect. S3.7 and Table S8 in
the Supplement.

– VIC-Raven. The Variable Infiltration Capacity (VIC)
model (Liang et al., 1994; Hamman et al., 2018) is a
semi-distributed macroscale hydrologic model that has
been widely applied in water and energy balance stud-
ies (Newman et al., 2017; Xia et al., 2018; Yang et
al., 2019). In this study, VIC was forced with the grid-
ded RDRS-v2 meteorological data, including precipi-
tation, air temperature, atmospheric pressure, incoming
shortwave radiation, incoming longwave radiation, va-
por pressure, and wind speed at the 6 h time step and
10 km by 10 km spatial resolution. Other data, such
as topography, soil, and land cover, are derived from
those datasets, as described in Sect. 2.2. VIC was used
for runoff generation simulation at grid cell level, and
the resultant daily gridded runoff and recharge fluxes
were aggregated to subbasin level for the Raven rout-
ing, which then produced daily streamflow at the outlet
of each catchment. The VIC model using Raven rout-
ing will be referred to as VIC-Raven hereafter. In to-
tal, 14 parameters of the VIC-Raven model were cali-
brated at each of the 141 calibration catchments using
the DDS algorithm to maximize the objective metric of
the KGE. The optimization is repeated for 20 trials, each
with 1000 calibration iterations, and the best result out
of 20 was designated as the calibrated model. The VIC
model outputs including the soil moisture, evaporation,
and snow water equivalent in snowpack are dumped for
model evaluation. A list of the 14 calibrated model pa-
rameters and more details about the VIC-Raven setup
can be found in Table S9 and Sect. S3.8 in the Supple-
ment, respectively.

2.4.3 Regionally calibrated models

Models following the regional calibration strategy focused
on simultaneously calibrating model parameters to all cali-
bration stations within a region (rather than estimating pa-
rameters for each gauged basin individually). All regionally
calibrated models utilized the same six subdomains (here
called regions) which are the Ottawa River watershed and
the local watersheds of Lake Erie, Lake Ontario, etc. (see
Fig. 1c). This results in six model setups for the whole study
domain for each of the regionally calibrated models. These
models can be run for validation stations using those regional
setups as soon as it is known in which region the validation
basin is located.

– SWAT-Raven. The Soil and Water Assessment Tool
(SWAT) was originally developed by the U.S. Depart-
ment of Agriculture and is a semi-distributed, physi-
cally based hydrologic and water quality model (Arnold
et al., 1998). For each of the six regions, the geo-
physical datasets (DEM, soil, and land use), as pre-
sented in Sect. 2.2, were used to create subbasins which
were further discretized into hydrologic response units.
Subbasin-averaged daily forcing data (maximum and
minimum temperature and precipitation), as presented
in Sect. 2.2, were then used simulate land–surface pro-
cesses. The vertical flux (total runoff) produced at the
subbasin spatial scale was then fed to a lake and river
routing product (Han et al., 2020), integrated into Raven
modeling framework (Craig et al., 2020), for subse-
quent routing. Note that the SWAT subbasins and rout-
ing product subbasins are not equivalent, and hence,
aggregation to routing product subbasins was neces-
sary, similar to the aggregation for gridded models. The
integrated SWAT-Raven model was calibrated against
daily streamflow using the OSTRICH platform (Ma-
tott, 2017) by optimizing the median KGE values of
all the calibration gauges in each region using 17
SWAT-related and two Raven related parameters. See
Sect. S3.9 and Table S10 in the Supplement for fur-
ther details of the parameters and model. The calibra-
tion budget consisted of three trials, each with 500 iter-
ations, and the best result out of the three trials was des-
ignated as the calibrated model. SWAT-simulated daily
actual evapotranspiration, volumetric soil moisture (ag-
gregated for the top 10 cm), and snow water equivalent
at the subbasin spatial scale were used to further evalu-
ate the model.

– WATFLOOD-Raven. WATFLOOD is a semi-
distributed, gridded, physically based hydrologic
model (Kouwen, 1988). A separate WATFLOOD
model for each of the six regions (Fig. 1c) was
developed using the common geophysical datasets
and hourly precipitation and temperature data at a
regular rotated grid of about 0.09 decimal degrees
(≈ 10 km). Model grids were further discretized into
grouped response units. Hourly gridded runoff and
recharge to lower zone storage (LZS) were aggregated
to the subbasin level for the Raven routing, which
then produced hourly streamflow at the outlet of each
catchment. Streamflow calibration and validation of
the integrated WATFLOOD-Raven was carried out
using the same methodology (different parameters) as
described in the previous section for SWAT-Raven. We
refer to Sect. S3.10 and Table S11 in the Supplement
for further details of the 11 WATFLOOD and 6 Raven
parameters used during model calibration. Actual
evapotranspiration and snow water equivalent are direct
outputs of the WATFLOOD model and were used to
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evaluate the model. Volumetric soil moisture, however,
is not a state variable of the model. Hence, the rescaled
upper zone storage (UZS) was used as a proxy to
qualitatively evaluate the volumetric soil moisture.

– MESH-CLASS-Raven. MESH (Modélisation Environ-
nementale communautaire-Surface and Hydrology) is a
community hydrologic modeling platform maintained
by Environment and Climate Change Canada (ECCC;
Pietroniro et al., 2007). MESH uses a grid-based mod-
eling system and accounts for subgrid heterogeneity us-
ing the grouped response units (GRUs) concept from
WATFLOOD (Kouwen et al., 1993). GRUs aggregate
subgrid areas by common attributes (e.g., soil and vege-
tation characteristics) and facilitate parameter transfer-
ability in space (e.g., Haghnegahdar et al., 2015). The
MESH model setup here is using the Canadian Land
Surface Scheme (CLASS) to produce grid-based model
outputs, which are passed to the Raven routing to gen-
erate the streamflow at the locations used in this study.
The model will hence be referred to as MESH-CLASS-
Raven hereafter. The following meteorologic forcing
variables from the RDRS-v2 dataset (Sect. 2.2) are used
to drive CLASS: incoming shortwave radiation, incom-
ing longwave radiation, precipitation rate, air tempera-
ture, wind speed, barometric pressure, and specific hu-
midity (all provided at or near surface level). The model
simulates vertical energy and water fluxes for vegeta-
tion, soil, and snow. The MESH-CLASS-Raven grid is
the same as the forcing data (≈ 10 km by 10 km) and
produces outputs at an hourly time step. The MESH-
CLASS streamflow outputs were aggregated to a daily
time step and then aggregated to subbasin level for the
Raven routing, which then produced daily streamflow
at the outlet of each subbasin. Streamflow calibration
and validation of the integrated MESH-CLASS-Raven
model was carried out using the same methodology (dif-
ferent parameters) as described in the previous sections
for SWAT-Raven and WATFLOOD-Raven. The calibra-
tion algorithm chosen is the DDS algorithm, with a sin-
gle trial and a maximum of 240 iterations (per region).
A list of the 20 model parameters calibrated is avail-
able in Sect. S3.11 and Table S12 in the Supplement.
The calibration was computationally time-consuming
(at least 2 weeks for each region). For model evalua-
tion, the MESH output control flag was used to acti-
vate the output of the daily average auxiliary variables
(AET, SSM, SWE). The actual evapotranspiration (AET
in mm) was directly computed by the model while the
surface soil moisture (SSM in m3 m−3) was obtained by
adding the volumetric liquid water content of the soil (in
m3 m−3) to the volumetric frozen water content of the
soil (in m3 m−3). The snow water equivalent (SWE in
mm) was obtained by adding the snow water equivalent
of the snowpack at the surface (in mm), with liquid wa-

ter storage held in the snow (e.g., meltwater temporarily
held in the snowpack during melt; in mm).

– MESH-SVS-Raven. The MESH (Modélisation Envi-
ronnementale communautaire-Surface and Hydrology)
model not only includes the CLASS land surface
scheme (LSS) but also the soil, vegetation, and snow
(SVS; Alavi et al., 2016) LSS and the Watroute rout-
ing scheme (Kouwen, 2018). MESH allows, for exam-
ple, us to emulate the GEM-Hydro-Watroute model out-
side of ECCC informatics infrastructure. In this study,
however, the hourly MESH-SVS gridded outputs of to-
tal runoff and drainage were provided to the Raven
routing scheme, which is computationally less expen-
sive than the Watroute routing scheme (more info in
Sect. S3.13 in the Supplement). The model will be re-
ferred to as MESH-SVS-Raven hereafter. The follow-
ing meteorological forcing variables from the RDRS-
v2 dataset (Sect. 2.2) are used to drive the SVS LSS
(same as that used for MESH-CLASS-Raven): incom-
ing shortwave radiation, incoming longwave radiation,
precipitation rate, air temperature, wind speed, baro-
metric pressure, and specific humidity. SVS also needs
geophysical fields such as soil texture, vegetation cover,
slope, and drainage density. All of these variables were
derived from the common geophysical datasets used
for this project (Sect. 2.2), except for drainage den-
sity, which is derived from the National Hydro Net-
work (NHN) dataset over Canada (Natural Resources
Canada, 2020) and from the National Hydrography
Dataset (NHD) dataset over the United States of Amer-
ica (USGS, 2021). In this study, the MESH-SVS-Raven
grid is the same as the forcing data (around 10 km by
10 km), and SVS was run using a 10 min time step. The
Raven routing was used with a 6 h time step. Routing
results were aggregated to a daily time step for model
performance evaluation. MESH-SVS-Raven was cali-
brated using a global calibration approach (Gaborit et
al., 2015) but applied for each of the six regions of the
complete area of interest, therefore resulting in what is
called in this study a regional calibration method. The
objective function consists of the median of the KGE
values obtained for the calibration basins located in a
region. The calibration algorithm consists of the DDS
algorithm, with a single calibration trial and a maximum
of 240 iterations, which took about 10 d to complete for
each region. The list of the 23 parameters calibrated is
provided in Sect. S3.12 and Table S13 in the Supple-
ment. Regarding the MESH-SVS-Raven auxiliary vari-
ables required for additional model evaluation, daily av-
erages valid from 00:00 to 00:00 UTC were computed
based on the hourly model outputs. For surface soil
moisture (SSM), the average of the first two SVS soil
layers was computed in order to obtain simulated soil
moisture values valid over the first 10 cm of the soil col-
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umn, which is the depth to which the GLEAM SSM val-
ues correspond. AET is a native output of the model,
and the average SWE over a grid cell was computed
based on a weighted average of the two SVS snow-
packs, where SVS simulates snow over bare ground and
low vegetation in parallel to snow under high vegetation
(Alavi et al., 2016; Leonardini et al., 2021).

– GEM-Hydro-Watroute. GEM-Hydro (Gaborit et al.,
2017b) is a physically based, distributed hydrologic
model developed at Environment and Climate Change
Canada (ECCC). It relies on GEM-Surf (Bernier et al.,
2011) to represent five different surface tiles (glaciers,
water, ice over water, urban, and land). The land tile
is represented with the SVS LSS (Alavi et al., 2016;
Husain et al., 2016; Leonardini et al., 2021). GEM-
Hydro also relies on Watroute (Kouwen, 2018), a 1D
hydraulic model, to perform 2D channel and reservoir
routing. The model will be referred to as GEM-Hydro-
Watroute in this study. It was preferred to use its native
gridded routing scheme of Watroute during this study,
instead of the common Raven routing scheme used by
other hydrologic models, in order to investigate the po-
tential benefit of calibration for the experimental ECCC
hydrologic forecasting system named the National Sur-
face and River Prediction System (NSRPS; Durnford
et al., 2021), which relies on GEM-Hydro-Watroute.
GEM-Surf forcings are the same as those used for
MESH-SVS-Raven, except that GEM-Surf needs both
wind speed and wind direction (available in RDRS-
v2), and surface water temperature and ice cover frac-
tion (taken from the analyses of the ECCC Regional
Deterministic Prediction System). Regarding the geo-
physical fields needed by GEM-Surf, they consist of
the same as those used for MESH-SVS-Raven, except
that some additional fields are required, like surface
roughness and elevation (taken or derived from the com-
mon geophysical datasets used in this project). More-
over, the Watroute model used here mainly relies on Hy-
droSHEDS 30 arcsec (≈ 1 km) flow direction data (Hy-
droSHEDS, 2021), Global Multi-resolution Terrain Ele-
vation Data 2010 (GMTED2010; USGS, 2010), and on
Climate Change Initiative Land Cover (CCI-LC) 2015
vegetation cover (ESA, 2015). The surface component
of GEM-Hydro-Watroute was employed here with the
same resolution as the forcings (≈ 10 km) and with a
10 min time step, with outputs aggregated to hourly af-
terwards. The Watroute model used here has a 30 arcsec
(≈ 1 km) spatial resolution and a dynamic time step
comprised between 30 and 3600 s. Daily flow aver-
ages were used when computing model performances.
GEM-Hydro-Watroute is computationally intensive; it
was not optimized to perform long-term simulations
but is rather oriented towards large-scale forecasting.
Moreover, the Watroute routing scheme is computa-

tionally expensive, and its coupling with the surface
component is not optimized either. See Sect. S3.13
in the Supplement for more information about GEM-
Hydro-Watroute computational time. It is therefore very
challenging to calibrate GEM-Hydro-Watroute directly.
Several approaches have been tried to circumvent this
issue in the past, and each approach has its own draw-
backs (see Gaborit et al., 2017b; Mai et al., 2021). In
this study, a new approach is explored, consisting of cal-
ibrating some SVS and routing parameters with MESH-
SVS-Raven, transferring them back in GEM-Hydro-
Watroute (more information in Sect. S3.13 and Ta-
ble S14 in the Supplement), and further manually tuning
Watroute Manning coefficients afterwards. However,
because this approach leads to different performances
for MESH-SVS-Raven and GEM-Hydro-Watroute for
several reasons explained in Sect. S3.13 in the Supple-
ment, they are presented here as two different models.
Exactly the same approach as for MESH-SVS-Raven
was used for GEM-Hydro-Watroute streamflow valida-
tion and for the additional model evaluation variables.

2.5 Model calibration and validation setup and
datasets

The models participating in this study were calibrated and
validated based on streamflow observations made available
by either Water Survey Canada (WSC) or the U.S. Geo-
logical Survey (USGS). The streamflow gauging stations
selected for this project had to have at least a (reported)
drainage area of 200 km2 (to avoid too flashy watershed re-
sponses in the hydrographs) and less than 5 % of missing
(daily) data between 2000 and 2017, which is the study pe-
riod, i.e., warmup period (January to December 2000), cali-
bration period (January 2001 to December 2010), and valida-
tion period (January 2011 to December 2017). The low por-
tion of missing data was to avoid not having enough data to
properly estimate the calibration and validation performance
of the models. It is known that the calibration period (2001–
2010) is a dry period, while the validation period (2011–
2017) is known to be very wet (US Army Corps of Engi-
neers: Detroit District, 2020a). This might have an impact on
model performances – especially in temporal validation ex-
periments. In this study, no specific method has been applied
to account for these trends in the meteorologic forcings.

Besides a minimum size and data availability, the stream-
flow gauges need to be either downstream of a low human
impact watershed (objective 1) or most downstream of areas
draining into one of the five Great Lakes or into the Ottawa
River (objective 2). If a watershed is most downstream and
human impacts are low, the station would hence be classi-
fied as both objective 1 and 2. Objective 1 was defined to
give all models – especially the ones without the possibil-
ity to account for watershed management rules – the ability
to perform well. Objective 2 was chosen since the ultimate
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goal of many operational models in this region is to estimate
the flow into the lakes (or the Ottawa River). This classifi-
cation of gauges was part of the study design that ended up
not being evaluated in this paper. This is because each of the
modeling teams decided to build their models using all ob-
jective 1 and objective 2 stations treated the same way. As
such, our results do not distinguish performance differences
for these two station and/or watershed types. The informa-
tion is included here so that followup studies, by our team
and others, can evaluate this aspect of the results.

The stations were selected such that they are distributed
equally across the six regions (five lakes and the Ottawa
River) and would be used for either calibration (cal) or val-
idation (val). The assignment of a basin to be either used
for calibration or validation was done such that two-thirds
of the basins (141) are for training, and the remaining basins
(71) are for validation. There are 33 stations located within
the Lake Superior watershed (21 cal; 12 val), 45 within the
Lake Huron watershed (29 cal; 16 val), 35 stations within the
Lake Michigan watershed (27 cal; 8 val), 48 locations within
the Lake Erie watershed (36 cal; 12 val), 31 stations within
the Lake Ontario watershed (21 cal; 10 val), and 20 stations
located within the Ottawa River watershed (7 cal; 13 val).
The location of these 212 streamflow gauging stations is dis-
played in Fig. 1. A list of the 212 gauging stations, including
their area, region they are located in, objectives they were
selected for, and whether they were used for calibration or
validation is given in Table S15 in the Supplement.

To summarize the steps of calibration and validation of all
models regarding streamflow, we provide the following list:

A. Calibration was performed for 141 calibration locations
for the period January 2001 to December 2010 (2000
was discarded as warmup).

B. Temporal validation was performed for 141 locations
where models were initially calibrated but are now eval-
uating the simulated streamflow from January 2011 un-
til December 2017.

C. Spatial validation was performed for 71 validation lo-
cations from January 2001 until December 2010.

D. Spatiotemporal validation was performed for 71 valida-
tion locations from January 2011 until December 2017.

The temporal validation (B; basin known but time period not
trained) can be regarded as being the easiest of the three val-
idation tasks (assuming climate change impacts are not too
strong, no major land cover changes happened, etc.). The
spatial validation (C; time period trained but location un-
trained) can be regarded as being more difficult, especially
for locally calibrated models, given that one either needs
a global/regional model setup or a good parameter transfer
strategy for ungauged/uncalibrated locations. The spatiotem-
poral validation (D) can be regarded as being the most diffi-
cult validation experiment as both the location and time pe-

riod were not included in model training. The two latter val-
idation experiments, including the spatial transfer of knowl-
edge, provide an assessment of the combined quality of a
model which, in this context, includes the model structure/e-
quations, calibration approach, and regionalization strategy.

All locally calibrated models used the same (simple) donor
basin mapping for assigning model parameter values from
the calibrated basins to other basins used for spatial and spa-
tiotemporal validation. The donor basins were assigned using
the following strategy: (a) if there exists a nested basin (ei-
ther upstream or downstream) that was trained, then use that
basin as donor, (b) if there are multiple of those nested candi-
dates, then use the one that is the most similar with respect to
drainage area, and (c) if there is no nested basin trained, then
use the calibration basin which spatial centroid is the closest
to the spatial centroid of the validation basin. There are cer-
tainly more appropriate/advanced ways to do regionalization,
but the main objective was to ensure that the models used the
same approach. We wanted to avoid favoring a few models
by testing more advanced approaches with them and then ap-
plying that method to other models which might have favored
other strategies. The donor basin mapping is provided in Ta-
ble S16 in the Supplement.

The WSC and USGS streamflow data were downloaded by
the project leads, the units were converted to be consistent in
cubic meters per second (m3 s−1), and then shared with the
team in both CSV and NetCDF file formats to make sure all
team members used the same version of the data for calibra-
tion. Note that at first only the data from the 141 calibration
locations was shared. The validation locations and respective
observations were only made available after the calibration
of all models was finished to allow for a true blind (spatial
and spatiotemporal) validation.

2.6 Model evaluation setup and datasets

In order to assess the model performance beyond stream-
flow, a so-called model evaluation was performed. Model
evaluation means that a model was not (explicitly) trained
against any of the data used for evaluation. We distinguish
model evaluation from the model validation of streamflow
because, when building the models, although the modeling
teams knew their model would be assessed based on stream-
flow validation, they did not know in advance that additional
variables beyond streamflow would be assessed against other
observations (this was only decided later in the study). It is
not known if the models have been trained in previous stud-
ies against any of the observations we use for validation or
model evaluation. Any model previously using such data to
inform model structure or process formulations might have
an advantage relative to another model whose structural de-
velopment did not involve testing in this region. Such kinds
of model developments are, however, the nature of model-
ing in general and are assumed to determine the quality of a
model that is to be assessed here exactly.
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The evaluation datasets were chosen based on the follow-
ing criteria: (a) they had to be gridded to allow for a consis-
tent evaluation approach across all additional variables, (b)
the time step of the variables preferably had to be daily to
match the time step of the primary streamflow variable, (c)
they had to be available over the Great Lakes for a long time
period between 2001 and 2017 (study period) to allow for
a reliably long record in time and space, (d) they had to be
open source to allow for the reproducibility of the analysis,
(e) they had to be variables typically simulated in a wide
range of hydrologic and land surface models, and (f) they
had to have been at least partially derived on distributed ob-
servational datasets for the region (e.g., ground or satellite
observations).

There were two evaluation variables taken from the
GLEAM (Global Land Evaporation Amsterdam Model)
v3.5b dataset (Martens et al., 2017). GLEAM is a set of al-
gorithms using satellite observations of climatic and envi-
ronmental variables in order to estimate the different com-
ponents of land evaporation and surface and root zone soil
moisture, potential evaporation, and evaporative stress con-
ditions. The first variable used in this project is actual evap-
otranspiration (AET; variable E in the dataset; see Fig. 2b)
given in millimeters per day (mmd−1), and the second vari-
able is surface soil moisture (SSM; variable SMsurf in the
dataset; see Fig. 2c) given in cubic meters per cubic meter
(m3 m−3) and valid for the first 10 cm of the soil profile.
Both variables are available over the entire study domain on
a 0.25◦ regular grid and for the time period from 2003 until
2017 with a daily resolution.

The third evaluation variable is snow water equivalent
(SWE) which is available in the ERA5-Land dataset (Muñoz
Sabater, 2019, variable sd therein; see Fig. 2d). ERA5-
Land combines a large number of historical observations into
global estimates of surface variables using advanced model-
ing and data assimilation systems. ERA5-Land is available
for the entire study period and domain on a daily temporal
scale and a 0.1◦ regular grid. The data are given in meters
of water equivalent and have been converted to converted
to kilograms per square meter (i.e., millimeter) to allow for
comparison with model outputs.

The ERA5-Land dataset was chosen over the available
ground truth SWE observations like the CanSWE dataset
(Canadian historical Snow Water Equivalent dataset; Vion-
net et al., 2021) because (a) the ERA5-Land dataset is
available over the entire modeling domain, while CanSWE
is only available for the Canadian portion, (b) the ERA5-
Land dataset is gridded, allowing for similar comparison ap-
proaches as used for AET and SSM, and (c) the ERA5-Land
dataset is available on a daily scale, while the frequency of
data in CanSWE varies from biweekly to monthly, which
would have limited the number of data available for model
evaluation. We, however, provide a comparison of the ERA5-
Land and CanSWE observations by comparing the grid cells
containing at least one snow observation station available in

CanSWE and derive the KGE of those two time series over
the days on which both datasets provide estimates. The re-
sults show that 83 % of the locations show an at least medium
agreement between the ERA5-Land SWE estimates and the
SWE observations provided through the CanSWE dataset
(KGE larger than or equal 0.48). A detailed description and
display of this comparative analysis can be found in Sect. S1
in the Supplement.

These three auxiliary evaluation datasets were downloaded
by the project leads and merged into single files from annual
files, such that the team only had to deal with one file per
variable. The data were subsequently cropped to the mod-
eling domain and then distributed to the project teams in
standard NetCDF files with a common structure, e.g., spa-
tial variables are labeled in the same way, to enable an eas-
ier handling in processing. Besides these preprocessing steps,
the gridded datasets were additionally aggregated to the basin
scale, resulting in 212 files – one for each basin – to allow for
not only a grid-cell-wise comparison but also a basin-level
comparison. The reader should refer to Sects. 2.7 and 2.8
for more details on performance metrics and basin-wise/grid-
cell-wise comparison details, respectively.

2.7 Performance metrics

In this study, the Kling–Gupta efficiency (KGE; Gupta et al.,
2009) and its three components α, β, and r (Gupta et al.,
2009) are used for streamflow calibration and validation and
model evaluation regarding AET, SSM, and SWE. The com-
ponent α measures the relative variability in a simulated ver-
sus an observed time series (e.g., Q(t) or AET(x′,y′, t) or
SWE(x′,y′, t) of one grid cell (x′,y′)). The component β
measures the bias of a simulated versus an observed time se-
ries while the component r measures the Pearson correlation
of a simulated versus an observed time series. The overall
KGE is then based on the Euclidean distance from its ideal
point in the untransformed criteria space and converting the
metric to the range of the Nash–Sutcliffe efficiency (NSE),
i.e., optimal performance results in a KGE and NSE of 1 and
suboptimal behavior is lower than 1. The KGE is defined as
follows:

KGE= 1−
√
(1−α)2+ (1−β)2+ (1− r)2 ∈ (−∞,1]. (1)

To make comparisons easier, we transformed the range of
the KGE components to match the range of the KGE. We
introduce the following component metrics:

KGEα = 1−
√
(1−α)2

= 1−
√
(1− σysim/σyobs)

2 ∈ (−∞,1] (2)
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KGEβ = 1−
√
(1−β)2

= 1−
√
(1− ysim/yobs)2 ∈ (−∞,1] (3)

KGEr = 1−
√
(1− r)2 ∈ (−∞,1], (4)

with y being a time series (either simulated, sim, or observed,
obs) and r being the Pearson correlation coefficient.

We use the overall KGE to estimate the model perfor-
mances regarding streamflow (components are shown in the
Supplement only), AET, and SWE. For surface soil mois-
ture, we used the correlation component of KGE (KGEr )
since most models do not explicitly simulate soil moisture
but only saturation or soil water storage in a conceptual soil
layer where depth is not explicitly modeled. We therefore
agreed to report only the standardized soil moisture simu-
lations, which are defined as follows:

SSM′ =
SSM−µSSM

σSSM
, (5)

where µSSM is the mean, and σSSM denotes the standard
deviation of a surface soil moisture time series. The mean
and variance of those standardized time series SSM′ hence
collapse to 0 and 1, respectively, and the KGE components
β and α are noninformative. The Pearson correlation r ,
however, is informative. Note that the Pearson correlation
for standardized and non-standardized datasets is the same
(r(SSM′)= r(SSM)).

Several levels of model performance are introduced in this
study to allow for a categorization of results and models. The
thresholds defined in the following for the individual compo-
nents have been chosen based on expert opinions and reflect
the subjective level of quality expected from the models. The
levels can be adapted depending on the stronger or looser ex-
pectations. The thresholds of the components are then com-
bined to the (derived) thresholds for KGE.

We defined a medium performance to not over- or under-
estimate bias and variability by more than 30 %. A correla-
tion is expected to be at least 0.7. All performances below
this are regarded as poor quality. A good performance is de-
fined as bias and variability being over- or underestimated at
most by 20 % and a correlation being at least 0.8. An excel-
lent performance is defined as not more than 10 % over- or
underestimation in the variability or bias and a correlation of
at least 0.9. The resulting ranges for the KGE and its three
component performances are derived using Eqs. (1)–(4) and
summarized in Table 2. These performance levels are con-
sistently used throughout this study to categorize the model
performances regarding streamflow and additional variables.

2.8 Basin-wise and grid-wise model comparisons for
individual simulated variables

We decided to use two approaches to compare the model out-
puts with streamflow observations and the reference datasets

for AET, SSM, and SWE in order to account for the wide
range of spatial discretization approaches used by the partic-
ipating models. In total, six models were set up in a lumped
mode (basin-wise output), two models operated on a sub-
basin discretization, and five models are set up in a gridded
mode where the model grids do not necessarily match the
grid of the AET, SSM, or SWE reference datasets. Please
refer to Table 1 for the spatial resolution of the individual
models.

In the calibration and validation phases of the project
(Sect. 2.5), the simulated time series of streamflow are com-
pared in the traditional way with the observed time series
of streamflow at gauging stations. We used the Kling–Gupta
efficiency metric (Eq. 1) to compare the simulated daily
streamflow estimates with the corresponding observations.

In the evaluation phase (Sect. 2.6) the additional vari-
ables were compared to their simulated counterparts. The
additional variables chosen for evaluation are gridded and
on a daily timescale. Model evaluation for additional vari-
ables is compared with the following two strategies. The
first comparison is performed basin-wise, meaning that ref-
erence datasets and simulations are both aggregated to basin
level, e.g., gridded evapotranspiration AET(x,y, t) is aggre-
gated to area-weighted mean evapotranspiration AET(t) of
all grid cells that contribute to a basin domain. This results
in 212 observed time series per variable and 212 simulated
time series per model and variable. The corresponding basin-
wise observed and simulated time series are then compared
using KGE (Eq. 1) for evapotranspiration and snow water
equivalent and the Pearson correlation coefficient (Eq. 4) for
surface soil moisture. The second comparison strategy is to
compare all models in a grid-cell-wise manner, thereby ap-
propriately enabling the evaluation of how well distributed
models can simulate spatial patterns within basins. In this ap-
proach, all model outputs are regridded to the grid of the ref-
erence datasets (i.e., 0.25◦ regular grid for GLEAM’s evapo-
transpiration and surface soil moisture and 0.1◦ regular grid
for ERA5-Land’s snow water equivalent). Regridding is here
meant as the areally weighted model outputs contributing to
each grid cell available in the reference datasets; no higher-
order interpolation was applied. The reference (gridded) and
simulated (regridded) time series are then compared for each
grid cell, leading to a map of model performance per variable
(i.e., KGE(x,y)). Again, the KGE is used for evapotranspi-
ration and snow water equivalent and the Pearson correlation
coefficient for surface soil moisture.

Note that also lumped models and models that are based
on a subbasin discretization are regridded to the reference
grids. In those cases, each grid cell is overlaid with the
(sub)basin geometries, and the area-weighted contribution of
the (sub)basin-wise outputs to the grid cell are determined.

Basin-wise comparisons match a lumped modeling per-
spective, while grid-cell-wise comparisons are a better ap-
proach for distributed models. The authors are not aware
of past studies including grid-cell-wise comparisons across
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Table 2. Performance levels. The table shows the ranges per metric to qualify as excellent, good, medium, or poor performance. The KGE
component thresholds (Eqs. 2–4) are defined independently, while the overall KGE is the result of the thresholds combined through Eq. (1).

Poor Medium Good Excellent
performance performance performance performance

KGEα (−∞,0.70) [0.70,0.80) [0.80,0.90) [0.90,1.0]
KGEβ (−∞,0.70) [0.70,0.80) [0.80,0.90) [0.90,1.0]
KGEr (−∞,0.70) [0.70,0.80) [0.80,0.90) [0.90,1.0]
KGE (−∞,0.48) [0.48,0.65) [0.65,0.83) [0.83,1.0]

multiple models. This may be due to regridding being a te-
dious task – especially considering a wide range of model in-
ternal spatial discretizations. The regridding was performed
by the project leads to ensure a consistent approach across all
models. The team members provided the project leads with
their model outputs using the native model grid in a standard-
ized NetCDF format that the group had agreed on.

2.9 Multi-objective multi-variable model analysis

Besides analyzing model performances individually for the
variables of streamflow, actual evapotranspiration (AET),
surface soil moisture (SSM), and snow water equivalent
(SWE), a multi-objective analysis considering the perfor-
mance of all variables at the same time was performed. Con-
sidering that performance metrics for these four variables are
available, each of these can be considered an objective, and
modelers would like to see all objectives optimized. From
a multi-objective perspective, model A can only be identi-
fied to be truly superior compared to model B when it is
superior in at least one objective with all other N − 1 objec-
tives being at least equal to model B. In this case, model A
is said to dominate model B, and model B is dominated by
model A. When multiple models A,B,C, . . .,M are under
consideration, model A is dominated when there is at least
one other model that dominates model A, otherwise model
A is non-dominated (e.g., no model is objectively superior
to model A). The set of non-dominated models forms the
so-called Pareto front, which is of unique interest as it de-
fines the set of models for which no objective decision can
be made about which model is better than the others. The-
oretically, any number between 1 and M models can form
the Pareto front. A visual depiction of Pareto fronts in a 2D
example can be found in Sect. S2 and Fig. S2 in the Supple-
ment.

The Pareto analysis, i.e., computing the set of models on
the Pareto front, is carried out for each of the 212 basins.
TheN = 4 objectives are KGE of basin-wise AET and SWE,
KGEr of SSM derived for the entire period from 2001 to
2017, and the basin-wise KGE regarding streamflow derived
for the validation period from 2011 to 2017. The validation
period was chosen for streamflow to allow for a fair com-
parison with the evaluation variables, as those have never
been used for model training. Including the calibration period

(2001 to 2010) for streamflow would have implicitly favored
models that are easier to calibrate.

In this analysis, the score for each model is defined by the
number of times that a model is part of the Pareto front (i.e.,
not dominated by another model). A perfect score is achieved
if a model is a member of the non-dominated set of models
in 212 of the 212 Pareto analyses (100 %); the lower limit of
this score is zero (0 %).

In order to shed some light on the reasons for the high/low
scores of individual models, the Pareto analysis was repeated
with only N = 3 metrics at a time. Streamflow as a primary
hydrologic response variable was included each time, while
one of the three evaluation variables was left out. This results
in three additional scores for each model besides the score
that is derived using all N = 4 variables.

2.10 Interactive website

During the 2 years of this project, an interactive website was
developed as an interactive tool to explore study results and
data beyond what can be shown in individual static plots. It
is, for example, challenging to show the 212 times 13 hydro-
graphs for the calibration and validation periods or to com-
pare individual events at a specific location between a subset
of models.

The website (Mai, 2022) hosts all results for basin-wise
model outputs of streamflow, AET, SSM, and SWE. The
basin-specific time series can be displayed and a specific
event analyzed by magnifying the time series plots.

Additional basin characteristics, such as mean precipita-
tion or temperature and slope or basin elevation, can be
shown through the dropdown menu to color specific mark-
ers on the website. The user also has the option to choose to
rank the selected models in this dropdown menu.

The website was used during the project to easily com-
municate results with team members and allow all modeling
teams to explore model differences and features. We hope
that the website helps with user engagement, since all data
and model outputs can be displayed without the necessity
of downloading, processing, and plotting results of interest.
While we see the potential to expand the characteristics and
data displayed on this website, we focused on displaying
only data produced and used in this study. Additional models
might be added to this website at a later point. New calibra-
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tion and validation results produced with revisions to these
GRIP-GL models will be posted on HydroHub if the respec-
tive modeling teams decide to recalibrate their models. A
requirement is that the models are set up and run with the
common dataset (Sect. 2.2), and the models are calibrated,
validated and evaluated at the required locations and for all
four variables. The website will incorporate updates to the
datasets (for example, resulting from improved calibration or
bug fixes) as they become available.

3 Results and discussion

The results of the four different comparative analyses per-
formed in this study are presented in this section. The dis-
cussion of each analysis will be presented right after the re-
sults to improve readability. Section 3.1 will present the re-
sults and insights gained through the analysis of model per-
formances regarding streamflow. The performances are com-
pared for all 13 participating models and the four experi-
ments listed in Sect. 2.5, i.e., calibration, temporal valida-
tion, spatial validation, and spatiotemporal validation. Sec-
tion 3.2 will focus on the outcomes of the analysis of the
models’ performance regarding the three additional variables
(actual evapotranspiration, surface soil moisture, and snow
water equivalent) when the outputs of each model are lumped
to the basin scale, while Sect. 3.3 will analyze the perfor-
mance at the grid cell scale. Section 3.4 will present the re-
sults of the multi-objective multi-variable model analysis in
order to integrate the model performance across the four vari-
ables into one overall metric per model to allow for a high-
level model intercomparison. Then, Sects. 3.2–3.4 include
analyses of model performances regarding the auxiliary vari-
ables. Those will hence be based on only 12 models since the
machine-learning-based LSTM-lumped model is not trained
to output such intermediate variables and would need fitting
with additional data to predict them.

3.1 Model performance regarding streamflow

The results of the streamflow performances across all mod-
els and location are presented in Fig. 3. The figure contains
one panel for each of the experiments performed to com-
pare the models. Each panel will be described and discussed
in one of the following sections, e.g., Sect. 3.1.1 describes
the calibration results, Sect. 3.1.2 describes the results of the
temporal validation, Sect. 3.1.3 the spatial validation, and
Sect. 3.1.4 the spatiotemporal validation. Results are sum-
marized in Sect. 3.1.5.

3.1.1 Experiment A: calibration

First, all modeling groups were asked to calibrate their mod-
els regarding streamflow at 141 streamflow gauging stations
during the time period starting from January 2001 until De-
cember 2010. The forcings for the year 2000 were pro-

vided but assigned as the warmup period and not included.
It was known a priori that the models would be assessed
by KGE and the median KGE across all stations. The re-
sults are shown in Fig. 3a. Therein, the models (y axis) are
grouped according to the three types of calibration schemes
(globally, locally, or regionally calibrated) while the gauges
(x axis) are grouped according to the lakes/river that they
ultimately drain into. The only globally calibrated model,
i.e., LSTM-lumped, has almost perfect scores for all gauges.
This is not surprising, as these are training results that
could theoretically be trained to achieve a KGE of 1.0 ev-
erywhere with ML models. Due to this, these results are
usually not even shown in the ML community. They are
added here for completeness. The locally calibrated group of
models, i.e, LBRM-CC-lumped, HYMOD2-lumped, GR4J-
lumped, HMETS-lumped, Blended-lumped, Blended-Raven,
and VIC-Raven, shows median KGE performances between
0.80 (VIC-Raven) and 0.88 (Blended-lumped). Interestingly,
there is no indication that semi-distributed locally calibrated
models perform better (or worse) than the lumped models
as, for example, the semi-distributed VIC-Raven model is
the one with the lowest performance (median KGE of 0.80),
while the semi-distributed Blended-Raven is one of the best
(median KGE of 0.86). Nevertheless, all locally calibrated
models exhibit good or excellent performance levels (see Ta-
ble 2), and we do not want to read too much into minor dif-
ferences in the KGE performance. There are no major dif-
ferences between the six drainage regions for these models,
and no location can be identified that appears to have bad
KGE values across all locally calibrated models, which usu-
ally indicates data issues for this streamflow gauge rather
than a model issue. The regionally calibrated models, i.e.,
SWAT-Raven, WATFLOOD-Raven, MESH-CLASS-Raven,
MESH-SVS-Raven, and GEM-Hydro-Watroute show an ex-
pected lower performance than the locally calibrated group
of models. The KGE performances spread between 0.50 and
0.63 and can hence be classified as medium quality (see Ta-
ble 2). The main reason why GEM-Hydro-Watroute has
a significantly lower performance than MESH-SVS-Raven,
despite the former mainly relying on parameters calibrated
with the latter, is believed to be due to a bug that was present
in the MESH-SVS-Raven model and related to the reading of
vegetation cover from the geophysical files provided to the
model. Note that this bug was not present in previous stud-
ies (Gaborit et al., 2017b; Mai et al., 2021), as it was due to
the specific NetCDF format used with MESH-SVS-Raven in-
put/output files during this work. This led to the SVS LSS not
using the right information for vegetation cover during cali-
bration and therefore led to calibrated parameters that were
not optimal for SVS inside GEM-Hydro-Watroute, where the
reading of vegetation cover was done properly. It is expected
that, when the bug is fixed and MESH-SVS-Raven is recal-
ibrated, both MESH-SVS-Raven and GEM-Hydro-Watroute
will exhibit better scores regarding the auxiliary evapotran-
spiration variable and that GEM-Hydro-Watroute streamflow
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Figure 3. Model performance regarding streamflow. The performance is shown for (a) the 141 calibration stations and (b) the 71 validation
locations for the calibration period. The results for the validation period of the calibration and validation sites are shown in panels (c)
and (d), respectively. In summary, panel (b) shows the spatial validation, panel (c) shows the temporal validation, and panel (d) shows the
spatiotemporal validation across the locations (x axis) and the 13 models (y axis). The locations are grouped according to their location within
the six watersheds (vertical black lines) of Lake Erie (ERI), Lake Huron (HUR), Lake Michigan (MIC), Lake Ontario (ONT), Ottawa River
(OTT), and Lake Superior (SUP). The horizontal black lines separate the machine-learning-based global LSTM model from the models that
are calibrated locally and the models that are calibrated per region. The performance is quantified using the Kling–Gupta efficiency (KGE).
The median KGE performance of each model for each of the four evaluation scenarios is added as labels to each panel. The thresholds
for medium, good, and excellent performance classifications are added as labels to the color bar. Figures showing the results of the three
components of KGE (bias, variability, and correlation) can be found in Figs. S3–S5 in the Supplement. For the spatial distribution of these
results and the simulated and observed hydrographs, please refer to the website (http://www.hydrohub.org/grip-gl/maps_streamflow.html,
last access: 6 July 2022).

performances will be closer to the performances of MESH-
SVS-Raven. A revised version of both models will be posted
on HydroHub when this is done. Because this bug was dis-
covered after this study was completed, there was no time left
to restart the work for MESH-SVS-Raven and GEM-Hydro-
Watroute. However, new results for both models could be
added to the website in the near future. Some basins seem to
be difficult to model across all the regionally calibrated mod-
els. These basins are watersheds (a) with strong flow regula-
tion (e.g., 02BD002 and 02DD010), (b) that are located in ur-
ban areas (e.g., 02HA006, 02HA007, 02HC049, 04166500,
and 04174500), and (c) in agricultural regions in the USA
(e.g., 04085200 and 04072150). Such basins appear in all re-

gions except the Ottawa region (OTT), which is an indicator
that the basins selected for calibration in the Ottawa River
watershed may not be strongly regulated or may not include
significant urban areas. Hence, the set of basins might not be
very representative when models are validated in this region.

3.1.2 Experiment B: temporal validation

After calibration, we performed three validation experi-
ments. The first and easiest validation test was temporal val-
idation using the same basins as in calibration but evaluat-
ing the performance for the time period from January 2011
to December 2017 (Fig. 3c). As expected, the KGE per-
formance is decreasing for all models. The median KGE
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of the machine learning model decreases by 0.15, but the
model still maintains a median KGE of 0.82 which is the
best overall median KGE of all models in the temporal val-
idation experiment. The performances of the locally cali-
brated models are all very similar among each other, with
median KGE values between 0.74 and 0.79. The two Blended
model setups (Blended-lumped and Blended-Raven) lose the
most skill compared to calibration but are still the two best-
performing models in this group together with HYMOD2-
lumped (median KGE of 0.79, 0.76, and 0.76, respectively).
The differences in the performance across the regionally cal-
ibrated models are larger. The best is WATFLOOD-Raven
(median KGE of 0.62; decreased by 0.01 compared to
calibration), while MESH-CLASS-Raven and GEM-Hydro-
Watroute show the lowest median KGE values overall (me-
dian KGE of 0.45 and 0.46, respectively). Overall, the pattern
of basins with a low performance and a good performance are
similar to the patterns seen in the calibration (see the collo-
cation of red and blue cells in Fig. 3a and c), indicating that
the performance decrease in the temporal validation is sim-
ilar for all stations, and no station deteriorates significantly
when the time period is changing.

3.1.3 Experiment C: spatial validation

The second, more challenging, validation experiment was to
run models in the calibrated time period but at locations that
were not used (or even known) during calibration (Fig. 3b).
The ML-based model loses more of its overall performance
than in temporal validation (decrease by 0.21 vs. 0.15) but
is still significantly better than all other models (median
KGE of 0.76 vs. the second-best (Blended-lumped) model
with a median KGE of 0.61). The locally calibrated mod-
els show similar (medium) performances among themselves,
with some gauges performing consistently poorly (the en-
tire column is red), which can be attributed to the fact that
all models used the same – probably not the most suitable –
donor basin to transfer the parameters to the basin in ques-
tion in order to derive a streamflow estimate. It is expected
that the overall performance of the locally calibrated models
could be improved by a more sophisticated approach deter-
mining the donor basins. It is unlikely that the poor perfor-
mance of some locations is a model-specific problem as the
locally calibrated models are diverse in setup and complex-
ity (e.g., compare the conceptual GR4J-lumped and semi-
distributed, physically based VIC-Raven). It should be men-
tioned that the two regions with large sets of calibrated basins
and fewer basins in validation (e.g., Lake Michigan (MIC)
and Lake Erie (ERI) watersheds) show much better results
and fewer stations with poor performance across all models.
This is very likely due to the fact that the pool the donor
basin can be chosen from is very large, and the likelihood
of assigning a similar basin is higher. In contrast, the region
of the Ottawa River basin had only a limited set of basins
for calibration, which was previously discussed to be poten-

tially not very representative as the calibration set did not
contain highly managed basins or basins in urban or agri-
cultural areas. Besides that, the set of validation basins is
all widespread in space, and in many cases, the only avail-
able donor basin is far away and thus unlikely to be a good
proxy for the validation location. The regionally calibrated
models do not show as strong a loss of performance when
validated spatially. The median KGE decreases on average
by 0.16 (0.10 if outlier KGE of MESH-CLASS-Raven is ig-
nored), while the median KGE of locally calibrated models
is decreasing by 0.27 (spatial validation performance com-
pared to the respective median performance during calibra-
tion). The overall performance of the regionally calibrated
models (median KGE between 0.47 and 0.52, while ignoring
the outlier median KGE of 0.17 for MESH-CLASS-Raven)
is much closer to the performance of the locally calibrated
models (median KGE between 0.52 and 0.61) in the spatial
validation compared to the larger performance gap in the cal-
ibration.

3.1.4 Experiment D: spatiotemporal validation

The third validation experiment is the spatiotemporal valida-
tion (Fig. 3d) in which the models are assessed for (a) basins
that are not calibrated and (b) a time period that was not used
for calibration. The spatiotemporal validation is a combina-
tion of the two previous (temporal and spatial) validation ex-
periments and is hence regarded as the most challenging vali-
dation experiment that the models undergo in this study. The
spatiotemporal validation shows consistent results with the
two previous experiments. Almost all models degrade in per-
formance compared to the spatial validation but not as much
as the skill was reduced when comparing temporal validation
with spatial validation. Some models even slightly increase
their median performance (by at most 0.03) compared to the
spatial validation (i.e., GR4J-lumped, WATFLOOD-Raven,
MESH-CLASS-Raven, and MESH-SVS-Raven), but we do
not want to read too much into this, as the skill of those mod-
els was already poor to begin with. Again, the performance of
the regionally calibrated models is much closer to the average
performance of the locally calibrated models as compared to
the large performance gaps in calibration and temporal vali-
dation. As expected, the results generally show temporal val-
idation to be easier task than spatial (or spatiotemporal) vali-
dation. The overall performance of locally calibrated models
is expected to improve when a more sophisticated method to
determine donor basins is applied.

3.1.5 Summary of streamflow performance
experiments

In summary, the machine-learning-based LSTM-lumped
model is by far the best model, not only in calibration but
also in every validation scenario. The model skill is excellent
in calibration and spatial and temporal validation and can
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still be classified as good in spatiotemporal validation. The
highest-ranking spatial and spatiotemporal validation perfor-
mance levels of the LSTM model is noteworthy, given that
their model training involved fitting roughly 300 000 model
parameters. LSTM training procedures were therefore in-
credibly and, to many co-authors, surprisingly successful at
avoiding overfitting.

The LSTM-lumped model shows significant improve-
ments (especially in validation) compared to the preceding
LSTM model in the GRIP-E project (Mai et al., 2021, called
ML-LSTM therein). This is due to several reasons, which
include the following: (a) more training data (streamflow lo-
cations and forcings) were available in the GRIP-GL project,
which is a known ingredient to guarantee good performance
of data-driven models, (b) the team setting up the model
gained expertise, and (c) additional basin characteristics were
used to train the models (Table S2 in the Supplement). Be-
sides the excellent skill of the model throughout, another ad-
vantage is its global setup, which means that it is easy to
obtain streamflow at stations beyond the ones used here for
validation. This strong performance of the LSTM-lumped
model is in line with results from prior studies (Kratzert et
al., 2019b).

The locally calibrated models – mostly conceptual and fast
– might be a good starting point for streamflow estimates,
especially with a more advanced donor basin mapping. Un-
less sophisticated parameter transfer methods are tested and
employed, locally calibrated models are not well suited for
simulations in ungauged areas due to their lack of spatial ro-
bustness. The impact of more sophisticated donor basin map-
ping methods will be evaluated in a followup study. The per-
formance level of the locally calibrated models can be clas-
sified as excellent to good in calibration, good in temporal
validation, and medium in spatial and spatiotemporal valida-
tion. Even though the models are (strictly speaking) not the
same as in the previous GRIP-E project, similar trends were
found there as well. In GRIP-E, the calibration performances
in calibration were good (median KGE of 0.63 to 0.78 for
most models, excluding SWAT), and a significant decrease
in the temporal validation was the only validation performed
in GRIP-E (median KGE values between 0.44 to 0.68 ex-
cluding SWAT).

The regionally calibrated models are more stable – mean-
ing that they lose less performance relatively – compared to
locally calibrated models and have the advantage that they
provide setups over entire regions. This makes it straightfor-
ward to derive streamflow estimates for ungauged/untrained
locations (spatial and spatiotemporal validation). The region-
ally calibrated models show medium performance levels in
calibration, medium performances in temporal validation,
and medium (on the verge of poor) performances in spatial
and spatiotemporal validation, with the exception of MESH-
CLASS-Raven which is poor in both. MESH-SVS-Raven
and WATFLOOD-Raven perform very well compared to the
other regionally calibrated models. The latter model is no-

table, as this was the model that showed the weakest valida-
tion performance during GRIP-E. The regionally calibrated
models generally have their lowest performances in man-
aged, urban, and agricultural basins. This might be an indi-
cation that all these models could be improved (a) if associ-
ated processes like reservoir operation rules, tile drainage, or
handling of processes over impervious/sealed areas are bet-
ter represented in those models and (b) if models would be
specifically trained for such basins since the representation
of only two to three basins with those specific characteristics
within the entire set of calibration basins of a region might
not be sufficient to constrain/calibrate all parameters required
for those processes. In other words, the models that were re-
gionally calibrated during this work following a geographical
subdivision of the whole domain into six regions may instead
benefit from being calibrated over all agricultural, urban, and
natural basins of the whole domain, following a morpholog-
ical instead of a geographical subdivision.

Regarding possibility (a), a strong improvement of GEM-
Hydro-Watroute was, for example, noticed when using the
Dynamically Zoned Target Release (DZTR) reservoir model
(Yassin et al., 2019) to represent regulated reservoirs in
Watroute, for gauges 02KF005 (Ottawa River, with nine
upstream managed reservoirs), 02DD010 (Lake Nipissing),
and 02AD012 (Lake Nipigon). In this study, GEM-Hydro-
Watroute was the only model to include a reservoir regula-
tion model in its routing scheme, for basins whose gauges
are 02KF005, 02DD010, and 02LB005, and probably bene-
fited from it for these gauges. However, given that this unique
strategy was only applied in 3 of the 212 studied basins, it
had little impact on overall GEM-Hydro-Watroute compara-
tive performance.

Regarding improvement possibility (b), a significant loss
of performance can be noticed for the Ottawa region, even
with regionally calibrated models, regarding spatial valida-
tion. In this region, only a few calibration basins were se-
lected, and these generally include agricultural areas and
were therefore not representative of the general morphology
of the region, which is generally forested (natural) and re-
flected in the validation basins.

Please note that all hydrographs and performance esti-
mates of the four experiments regarding streamflow per-
formance can be found on the interactive website associ-
ated with this work (http://www.hydrohub.org/grip-gl/maps_
streamflow.html, last access: 6 July 2022). The users can
compare hydrographs at all locations for models of interest
and zoom in on specific time periods/events. Followup stud-
ies could look at the performance of subsets of models for
specific events or under specific, e.g., low or high flow, con-
ditions.
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3.2 Basin-wise model performance regarding auxiliary
variables

In this section, the performance of models regarding addi-
tional variables at the basin scale (comparable to stream-
flow) will be analyzed for 12 models. The 13th model, i.e.,
machine-learning-based LSTM-lumped, is not (yet) able to
provide estimates for those variables and will not be consid-
ered for the remaining analyses. The basin-wise comparison
of additional variables implies that the reference datasets and
the subbasin-based and gridded model outputs were aggre-
gated to basin level. Once the outputs and reference datasets
are aggregated in space, the resulting daily time series are
compared. The 212 calibration and validation locations are
compared without distinguishing them (as done for stream-
flow) since the additional variables were never calibrated,
and their performances are therefore of validation quality.
The results for the three additional variables are presented
in Fig. 4. Each panel of Fig. 4 represents the results for one
of the three variables and will be discussed one by one in the
following three sections (Sects. 3.2.1–3.2.3). The last section
(Sect. 3.2.4) will summarize these results and discussions.

3.2.1 Basin-wise comparison of actual
evapotranspiration

Regarding actual evapotranspiration (AET), the locally cali-
brated models exhibit, on average, a lower performance than
the regionally calibrated, physically based models (Fig. 4a).

The only exception is the HYMOD2-lumped model. Dur-
ing its development, the focus was on improving the real-
ism of simulated AET, which was achieved by introducing
a model structure in HYMOD2-lumped that produced simu-
lated AET results closely approximating GLEAM AET (Roy
et al., 2017). In other words, the HYMOD2-lumped model
was implicitly preinformed by this dataset, which would
explain the superior performance seen here. Note that all
evaporation-related (and other) parameters were recalibrated
using only streamflow observations in this study and were
not reused from the development stage presented by Roy et
al. (2017).

Besides the HYMOD2-lumped with a median KGE of
0.72, only regionally calibrated models show good perfor-
mance levels (above KGE of 0.65), i.e., SWAT-Raven with
a median KGE of 0.74, MESH-SVS-Raven with a median
KGE of 0.68, and GEM-Hydro-Watroute with a median
KGE of 0.70. This is notable as these aforementioned re-
gionally calibrated models showed consistently lower perfor-
mances regarding streamflow compared to the locally cal-
ibrated models. Regarding MESH-SVS-Raven and GEM-
Hydro-Watroute, it is possible that their performance regard-
ing AET could be even slightly better once the bug present
in MESH-SVS-Raven and affecting vegetation cover during
this work is fixed (see Sect. 3.1.1). Note that this bug proba-

bly affected these two models to a lower degree for the other
auxiliary variables.

The other models exhibit medium performance levels
above KGE values of 0.48. The two exceptions with poor
performance levels are GR4J-lumped with a median KGE of
0.44 and LBRM-CC-lumped with a median KGE of 0.15.

The significantly low performance of LBRM-CC-lumped
was surprising. Subsequent to the posting of model results,
an error was found in the calibration setup that resulted in
an important constraint on the proportionality constant con-
trolling PET being ignored (see Lofgren and Rouhana, 2016,
for an explanation of this constraint). In addition, the LBRM-
CC-lumped team has found that an improved representation
of the long-term average temperatures applied in the PET for-
mulation would improve results in some watersheds (PET is
a function of the difference between daily temperature and
long-term average temperature for the day of year). Accord-
ingly, this may improve the LBRM-CC-lumped performance
in simulating AET in future studies.

Note that there are no clusters of stations/basins in which
several models perform exceptionally well or badly, which
in turn means that the differences between models are indeed
model specific and not caused by any general problem with
data at certain stations. Furthermore, there are no difference
between regions, i.e., models in one region performing sig-
nificantly better or worse than in other regions, which means
that models perform similarly in all geographic regions no
matter the amount of human impact or land use or if sta-
tions where originally calibrated or only validated regarding
streamflow.

3.2.2 Basin-wise comparison of surface soil moisture

The model performances regarding surface soil moisture
are consistent both across models and locations (Fig. 4b).
The performance levels can be classified as poor (KGEr
of lower than 0.7) for LBRM-CC-lumped (0.59), HMETS-
lumped (0.63), Blended-lumped (0.67), Blended-Raven
(0.68), SWAT-Raven (0.66), and WATFLOOD-Raven (0.50).
Even though they are classified as poor, correlation coeffi-
cients of above 0.6 for some largely conceptual models are
surprising – especially given that most do not even explicitly
simulate soil moisture internally but convert simulated water
contents into proxy soil moisture estimates.

The other models show medium performance levels
(KGEr of at least 0.7), i.e., HYMOD2-lumped (0.70),
GR4J-lumped (0.70), VIC-Raven (0.72), MESH-CLASS-
Raven (0.76), MESH-SVS-Raven (0.76), and GEM-Hydro-
Watroute (0.76). It is notable that the four models that per-
form best are all physically based models that explicitly sim-
ulate soil moisture as a state variable.

WATFLOOD-Raven seems to be an outlier with its poor
median KGEr performance of 0.50. Especially stations lo-
cated in the Lake Erie watershed show low correlation values
compared to the reference dataset, which can be explained by
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Figure 4. Basin-wise model performance regarding auxiliary variables. The performance of 12 models (y axis) is shown for (a) actual
evapotranspiration, (b) surface soil moisture, and (c) snow water equivalent. The model outputs are aggregated to the 212 basins (x axis)
used in this study (141 calibration locations and 71 validation locations). The performance is evaluated for observations available between
2001 and 2017 (the overall period used for streamflow calibration and validation). The Kling–Gupta efficiency (KGE) is used to evaluate
the simulations of actual evapotranspiration and snow water equivalent, while the Pearson correlation is used for the (standardized) surface
soil moisture. The color bar in each panel is organized such that blue (red) colors indicate good (poor) performance. The machine-learning-
based LSTM model is not simulating these additional variables and is hence not included. The basins (x axis) are grouped into six regions
of the Lake Erie (ERI), Lake Huron (HUR), Lake Michigan (MIC), Lake Ontario (ONT), Ottawa River (OTT), and Lake Superior (SUP)
watersheds. The basin order is the same across the three panels. The horizontal black line separates models that are calibrated locally from
models that are calibrated per region. For the spatial distribution of these results and the simulated and reference time series, please refer to
the website (e.g., the website for actual evapotranspiration; http://www.hydrohub.org/grip-gl/maps_aet.html, last access: 6 July 2022).
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the fact that WATFLOOD does not explicitly simulate SSM,
and therefore, the rescaled Upper Zone Storage (UZS) was
used as a proxy for SSM. Specific parameter settings were
chosen to mimic the behavior in urban areas (i.e., low value
of infiltration coefficient and low value of upper zone reten-
tion limiting UZS) and restricting fluctuations in the UZS as
this would be expected for SSM, but these parameter settings
are likely not enough to fully capture SSM dynamics in urban
areas.

There are – similar to AET – no significant performance
differences between regions. No basin can be identified as
an outlier with significantly lower or higher performance,
which indicates that all models are in good agreement with
the GLEAM-v3.5 soil moisture reference dataset, and no in-
consistency can be diagnosed.

3.2.3 Basin-wise comparison of snow water equivalent

The most diverse model performance across models and lo-
cations can be observed for snow water equivalent (Fig. 4c).
One model performs poorly (median KGE below 0.48),
seven models show an overall medium performance (KGE at
least 0.48), while the other four models perform well (KGE
at least 0.65).

The overall best-performing models are GEM-Hydro-
Watroute (median KGE of 0.71), Blended-Raven (median
KGE of 0.70), MESH-SVS-Raven (median KGE of 0.65),
and Blended-lumped (median KGE of 0.65). This repre-
sents an interesting mix of models, as they are (a) physically
based and distributed (GEM-Hydro-Watroute and MESH-
SVS-Raven), (b) conceptual and lumped (Blended-lumped),
and (c) conceptual and distributed (Blended-Raven). It hence
shows that even simplified, lumped, and conceptual models
have the potential to simulate basin-scale SWE with a similar
quality as more complex, distributed models.

The models with the weakest performance are VIC-Raven
(median KGE of 0.47), GR4J-lumped (median KGE of 0.49),
HMETS-lumped (median KGE of 0.49), and LBRM-CC-
lumped (median KGE of 0.50). Again, these are simulta-
neously conceptual/lumped and physically based/distributed
models. The weakly performing models are exclusively lo-
cally calibrated and might have suffered from poor donor
basin mapping. However, other locally calibrated models like
the two Blended models used the same (potentially inappro-
priate) donor basins and show superior performance.

SWE is the only variable that reveals clear differences in
performance between regions. The Lake Superior (SUP) wa-
tershed is the region where all models show good perfor-
mance at all location, whereas in other regions, e.g., in the
Lake Huron (HUR) watershed, several locations show poor
performance across most models. The locations with poor
performance (red color across most models) are located in
the same geographical area, i.e., the land area south of Lake
Huron, north of Lake Erie, and west of Lake Ontario which is
– besides being the most densely populated area of the Great

Lakes watershed – heavily impacted by lake effects in precip-
itation and complex precipitation phase (Mekis et al., 2020),
which affects snow accumulation and melt. Another reason
for the poor performances of the models in this region might
be the quality of the forcing datasets which are known to have
problems in lake areas. It is not surprising that most mod-
els exhibit lower performances in these regions compared to
elsewhere.

It is, however, notable that some models, e.g., the lo-
cally calibrated Blended-Raven model and the regionally
calibrated WATFLOOD-Raven model perform exceptionally
well at locations where other models deteriorate in perfor-
mance, even though it does not use special snow processes
but the basic formulation of the temperature index model
(Anderson, 1973). The Blended-Raven model is not using
any special algorithm to simulate snow processes. It indeed
uses the same algorithmic representation as the Blended-
lumped model, which is slightly worse at these locations.
But the subbasin discretization of the Blended-Raven model
(only difference to the Blended-lumped model) seems to im-
prove performances at several locations.

3.2.4 Summary of basin-wise comparisons of auxiliary
variables

In summary, the common assumption that distributed, physi-
cally based models are intrinsically of superior quality when
evaluating model states beyond streamflow cannot be con-
firmed in all cases.

For actual evapotranspiration, a locally calibrated, con-
ceptual model (HYMOD2-lumped) shows exceptional per-
formance on par with more complex models (i.e., SWAT-
Raven, MESH-SVS-Raven, and GEM-Hydro-Watroute).
Even though, for surface soil moisture, physically based
models are generally best (i.e., MESH-CLASS-Raven,
MESH-SVS-Raven, and GEM-Hydro-Watroute), the less
complex and locally calibrated models (i.e., HYMOD2-
lumped, GR4J-lumped, and VIC-Raven) can lead to compa-
rable performances when SSM is standardized, as described
in Sect. 2.7 and evaluated based on its correlation with ob-
servations. Indeed, when looking at the true KGE for ac-
tual SSM values, only MESH-SVS-Raven and GEM-Hydro-
Watroute showed reasonable performances (not shown here),
partly because SVS represents the actual SSM values over
thin superficial soil layers. However, a physically based
model (WATFLOOD-Raven) shows an outlier with a poor
performance across all locations for SSM. For snow water
equivalent, there are as many locally calibrated/conceptual
models performing well as there are physically based mod-
els, i.e., Blended-lumped and Blended-Raven vs. MESH-
SVS-Raven and GEM-Hydro-Watroute.

The analysis of basin-aggregated estimates might, how-
ever, favor models that are set up and run on this (basin)
scale. The distributed/gridded models might be indeed su-
perior when the subgrid variability is analyzed. Hence, the
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next section will focus on analyzing the models on the na-
tive, gridded resolution of the reference dataset rather than
aggregating models and reference dataset to basin scale.

Note that all time series and metrics are available
on the websites associated with this study. The web-
sites are especially insightful, as they provide a spatial
representation of the stations, which is not available in
Fig. 4. On the websites, the users will be able to iden-
tify the region where, for example, the weaker-performing
snow water equivalent basins are located. There is one
website for each additional variable analyzed here, i.e.,
actual evapotranspiration (http://www.hydrohub.org/grip-gl/
maps_aet.html, last access: 6 July 2022), surface soil
moisture (http://www.hydrohub.org/grip-gl/maps_ssm.html,
last access: 6 July 2022), and snow water equivalent
(http://www.hydrohub.org/grip-gl/maps_swe.html, last ac-
cess: 6 July 2022).

3.3 Grid-cell-wise model performance regarding
auxiliary variables

In this section, the results of the model comparisons for the
three additional variables are presented. In contrast to the
previous section, the variables are compared at the grid cell
scale rather than per basin. This means that all model outputs
were regridded to the grid of the corresponding reference
dataset. The performance metrics are then compared at each
grid cell, leading to maps of performances presented in Fig. 5
for actual evapotranspiration, Fig. 6 for surface soil mois-
ture, and Fig. 7 for snow water equivalent. The results will
be presented for only 12 models as the machine-learning-
based LSTM-lumped model did not simulate these additional
variables. The results will be presented and discussed in the
following three sections (Sects. 3.3.1–3.3.3), while the last
section summarizes the findings (Sect. 3.3.4).

3.3.1 Grid-cell-wise comparison of actual
evapotranspiration

The results of the grid-cell-wise comparisons regarding ac-
tual evapotranspiration (Fig. 5) are consistent with the basin-
wise comparisons discussed before (see Sect. 3.2.1 and
Fig. 4a). The best models (visually and by numbers) are
the locally calibrated HYMOD2-lumped and the regionally
calibrated SWAT-Raven. Other models with a good perfor-
mance are MESH-SVS-Raven and GEM-Hydro-Watroute,
while the weakest models are the two locally calibrated
LBRM-CC-lumped and GR4J-lumped models. Note that the
median performance per model is not exactly the same as the
performance value for the basin-wise comparison (Sect. 3.2;
Fig. 4). This is due to the fact that the basin-wise perfor-
mances are derived as being the median over 212 basins,
while in the grid-cell-wise comparisons they are derived over
the 1213 grid-cells that appear in the reference dataset and
are available in all 12 model outputs.

The grid-cell-wise analysis provides more insights into
where results are good or weak spatially. In general, the lo-
cally calibrated models (LBRM-CC-lumped to VIC-Raven)
exhibit discontinuous (patchwork) patterns of performance,
as expected, while the regionally calibrated models (SWAT-
Raven to GEM-Hydro-Watroute) are more seamless – at least
within each of the six main regions. The discontinuous nature
of model outputs (and hence their performance when com-
pared to continuous fields of observations) has been reported
in the literature before (e.g., Mizukami et al., 2017; Yang et
al., 2019).

The locally calibrated LBRM-CC-lumped model shows
poor performance (median KGE of 0.14) in large regions
(likely to improve once the error in the calibration setup
is resolved and a better representation of long-term aver-
age temperatures is in place; see details in Sect. 2.4.2).
The HYMOD2-lumped model performs (very) well (me-
dian KGE of 0.76) everywhere (almost no red cells in entire
domain). The GR4J-lumped model exhibits a poor perfor-
mance (median KGE of 0.39), with deficiencies especially in
northern latitudes but also south of Lake Ontario and Lake
Erie. The HMETS-lumped model with its medium perfor-
mance level (median KGE of 0.53) has a patchwork perfor-
mance due to its local calibration and the transfer of param-
eter sets to validation basins. The latter are the reason for
the patchy red regions, especially in the Ottawa River basin,
as that region might not have had enough basins for train-
ing (as discussed earlier). The Blended-lumped and Blended-
Raven models both exhibit medium performance levels (me-
dian KGE of 0.58 and 0.56, respectively), with their spa-
tial patterns of performance being similar. This is expected,
given the very similar nature of these two models. The pat-
terns are patchy but overall good, except in validation basins,
which might be caused by a (potentially) inappropriate donor
basin being assigned. The VIC-Raven model’s medium per-
formance (median KGE of 0.57) is the lowest in validation
basins and west and north of Lake Erie. The latter might be
due to the model’s weakness in simulating AET over urban
areas.

The regionally calibrated SWAT-Raven exhibits a me-
dian KGE of 0.73 and hence performs comparably well
as the locally calibrated HYMOD2-lumped with almost no
weak-performing (red) grid cells. The WATFLOOD-Raven
shows a medium performance level (median KGE of 0.56),
with the weakest performance around Lake Erie (highly ur-
ban and agricultural) and within the Ottawa River water-
shed (potentially caused by not enough basins for train-
ing). The medium-performing MESH-CLASS-Raven model
(median KGE of 0.60) shows similar behavior in the Lake
Erie watershed to the WATFLOOD-Raven and the MESH-
SVS-Raven model. It has some further deficiencies around
Lake Superior. The MESH-SVS-Raven model is performing
well (median KGE of 0.66), with the lowest performance
in regions of heavy agricultural activity southwest of Lake
Erie. The GEM-Hydro-Watroute with its good overall per-
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formance (median KGE of 0.66) shows the weakest per-
formances over (a) the Ottawa River watershed due to lim-
ited training data/basins in this region, which were not suffi-
cient to calibrate the model in this region appropriately, and
(b) the agricultural regions southwest of Lake Erie. Again,
MESH-SVS-Raven and GEM-Hydro-Watroute could proba-
bly have a slightly better AET performance if the bug present
in MESH-SVS-Raven and affecting vegetation cover during
this work were fixed (see Sect. 3.1.1).

3.3.2 Grid-cell-wise comparison of surface soil
moisture

The results of the comparison of grid-cell-wise model out-
puts with the gridded reference dataset of surface soil mois-
ture (Fig. 6) are consistent with the results previously dis-
cussed for the basin-wise comparisons (see Sect. 3.2.2 and
Fig. 4b) but allow for a more detailed analysis of the regions
of poor performance, which might help to point to potential
model improvements.

Note that the median performances per model are not ex-
actly the same values as the ones reported for the basin-wise
comparison, since those are derived as the median over 212
basins, while here they are derived over the 1213 grid cells
that appear in the reference dataset and are available in all
12 model outputs. Also note that the following discussion of
results will list the individual models in reverse order com-
pared to their appearance in the panels of Fig. 6 due to the
more natural flow of the discussion.

The regionally calibrated MESH-CLASS-Raven, MESH-
SVS-Raven, and GEM-Hydro-Watroute models are visually
(and by numbers) the best performing. Their performance
levels (median KGEr of 0.73, 0.71, and 0.72, respectively)
can be classified as medium. The three spatial performance
patterns look very similar, which can be explained by the fact
that CLASS and SVS share similarities regarding soil mois-
ture processes. The soil moisture estimates are especially
poor around Lake Erie and within the parts of the Ottawa
River watershed that were not calibrated (northeastern part
of the Great Lakes basin) because of the persistence of the
variability in soil properties in this region. The other region-
ally calibrated model SWAT-Raven is performing well in the
southern parts of the Great Lakes watershed and has a lower
performance in northern parts of the Ottawa River watershed
and the Lake Superior region.

Most locally calibrated models show similar performances
(median KGEr of 0.62 to 0.65) with some patchwork patterns
of weak performances, especially in regions that are poten-
tially located in validation basins. The HMETS-lumped has
a consistently lower performance overall (median KGEr of
0.59), compared to the Blended-lumped and Blended-Raven
models, which is interesting as the Blended model struc-
ture of the those two models was built upon the HMETS-
lumped model. The improvement shows the added value
of the Blended structure upon the original fixed HMETS-

lumped model structure. The LBRM-CC-lumped model has
the overall weakest performance, mostly due to its lower
performance across the Ottawa River basin, which is con-
sistent with the weak performance of this model regarding
the actual evapotranspiration discussed earlier. Several av-
enues have been identified after posting the model results for
LBRM-CC-lumped that may, after recalibration, improve the
LBRM-CC-lumped performance in future studies.

3.3.3 Grid-cell-wise comparison of snow water
equivalent

The performance of the grid-cell-wise model outputs com-
pared to a gridded reference dataset of snow water equivalent
(Fig. 7) are consistent overall with the results previously dis-
cussed for the basin-wise comparisons (see Sect. 3.2.3 and
Fig. 4c). The results, however, highlight the large variability
in performances in space and across models.

Note that the median performances per model are not ex-
actly the same values as the ones for the basin-wise compar-
isons. The latter are derived as being the median over 212
basins, while here they are derived over the 6174 grid cells
that appear in the reference dataset and are available in all 12
model outputs.

In contrast to the two previous variables analyzed, the dif-
ference between the basin-wise and the grid-cell-wise com-
parisons are significant for some models. We label differ-
ences equal to or larger than 0.05 in median KGE as be-
ing significant. All significant differences are improvements
compared to the basin-wise performances, i.e., LBRM-CC-
lumped increases performance from a median KGE of 0.50 to
0.59, GR4J-lumped from 0.49 to 0.65, VIC-Raven from 0.47
to 0.58, SWAT-Raven from 0.54 to 0.61, MESH-CLASS-
Raven from 0.57 to 0.71, and MESH-SVS-Raven from 0.65
to 0.74. This behavior can be explained as follows. In total,
193 of the 212 basins used in this study have similar drainage
areas between 300 and around 5000 km2, 11 basins have a
drainage area between 5000 and 10 000 km2, 6 basins are
between 10 000 and 20 000 km2 in size, and the two largest
basins have a drainage area of 25 000 and 90 000 km2. The
second-largest basin covers the entire northernmost part of
the Lake Superior watershed and is draining towards stream-
flow gauge 02AD012, while the largest basin is draining to-
wards streamflow gauge 02KF005 within the Ottawa River
basin. It covers large parts of the domain east of the Geor-
gian Bay and north of Lake Ontario (see the website for the
drainage domain of all streamflow locations). The largest
(90 000 km2) basin covers around 15 % of the entire do-
main analyzed in the grid-cell-wise comparisons; the second-
largest basin (25 000 km2) covers around 4 % of the domain.
Hence, if a model is performing well in theses areas, it will
contribute to 19 % of the entire KGE score, while in a basin-
wise comparison, it is only two of 212 basins, which equals
to around 1 % of the overall score. It can be seen in Fig. 7 that
models that have good (blue and dark blue) performances in,
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Figure 5. Grid-cell-based model performance regarding actual evapotranspiration. The performance of 12 models (panels) regarding actual
evapotranspiration (AET) is shown. The model outputs are regridded to the grid of the reference dataset (here GLEAM v3.5b; variable E).
Only grid cells that are available in the reference dataset and all 12 models are displayed (1213 grid cells in total) and used to derive the
Kling–Gupta efficiency (KGE) metrics based on all available observations between January 2001 and December 2017. The median KGE
across space is added as a label at the top of each panel. The color bar has labels added to categorize the performance into medium, good,
and excellent. The machine-learning-based LSTM model is not displayed, as this is the only model not simulating actual evapotranspiration
explicitly.

for example, the Ottawa River watershed (northeastern part
of the Great Lakes watershed), exhibit a significant gain re-
garding the median KGE performance when derived per grid
cell.

This result emphasizes the importance of decisions made
to evaluate model performances. Basin-wise comparisons
seem to be easier to communicate and derive – especially for
a wide range of models with different underlying model dis-
cretizations. But comparisons that use the native resolution
of reference datasets (here gridded) might be more appropri-
ate. We showcase here that even models that are not set up in
gridded mode, i.e., lumped and subbasin-based models can
be converted to a grid scale to match the resolution of the
reference datasets. The results also show that lumped mod-
els not necessarily deteriorate when compared on a grid cell
scale. The results indeed suggest quite the contrary since, for
example, models like LBRM-CC-lumped and GR4J-lumped
increase their median KGE score because they predicated the
snow water equivalent accurately in these large basins.

The detailed analysis of the models (again in reverse order)
shows that the regionally calibrated GEM-Hydro-Watroute,
MESH-SVS-Raven, and MESH-CLASS-Raven models per-
form equally and exhibit a good performance level (median
KGE of 0.72, 0.74, and 0.71, respectively). Main areas of
weak performance are the most densely populated area of
the study domain, i.e., the region north and west of Lake Erie
and south of Lake Huron/Georgian Bay. The WATFLOOD-
Raven shows a medium, patchy performance overall (median
KGE of 0.58). No specific areas of weak or excellent per-
formance can be identified. SWAT-Raven’s medium overall
performance (median KGE of 0.61) pattern looks similar to
the two MESH and the GEM-Hydro-Watroute models, with
overall larger and more pronounced weaker areas.

The locally calibrated VIC-Raven with its overall medium
performance (median KGE of 0.58) shows a different pat-
tern of weak regions. The low-performing regions are now
mostly located in the Ottawa River basin and east of Lake
Superior. The weaker-performing regions seem to be mostly
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Figure 6. Grid-cell-based model performance regarding surface soil moisture. The performance of 12 models (panels) regarding surface soil
moisture (SSM) is shown. The model outputs are regridded to the grid of the reference dataset (here GLEAM v3.5b; variable SMsurf).
Only grid cells that are available in the reference dataset and all 12 models are displayed (1213 grid cells in total) and used to derive the
Pearson correlation coefficients (KGEr ) based on all available summer month observations (June to October) between 2001 and 2017. The
median KGEr across space is added as a label at the top of each panel. The color bar has labels added to categorize the performance into
medium, good, and excellent. The machine-learning-based LSTM model is not displayed, as this is the only model not simulating surface
soil moisture explicitly. Note that only VIC-Raven, SWAT-Raven, MESH-CLASS-Raven, MESH-SVS-Raven, and GEM-Hydro simulate
(surface) soil moisture explicitly, while the remaining models used proxy variables for soil moisture. All SSM estimates were standardized
to account for the proxy nature of the variables (Eq. 5) and, hence, only the correlation coefficients (KGEr ) are reported here.

forested, which might indicate that the calibration based on
only streamflow is not properly constraining parameters gov-
erning the evolution of snow in forested environments in
VIC. The Blended-lumped and Blended-Raven models show
a similar, good performance compared to each other (me-
dian KGE of 0.66 and 0.68, respectively), while the dis-
tributed Blended-Raven is slightly superior in most regions
(especially west of Lake Michigan and west and north of
Lake Erie). This highlights again the added value of a dis-
tributed model setup compared to its lumped counterpart (at
least for the Blended model). The HMETS-lumped model
with its medium overall performance (median KGE of 0.53)
shows similar weak regions but is more pronounced (weaker)
than the two Blended models which, again, demonstrates the
added value of the Blended model structure as the Blended
models are based upon the HMETS model with added struc-
tural flexibility. The LBRM-CC-lumped, HYMOD2-lumped,

and GR4J-lumped models show comparable medium perfor-
mances (median KGE of 0.59, 0.62, and 0.65, respectively)
with weakest performances in the southern part of the Great
Lakes watershed and consistently better performances above
around 46◦ N.

Most notable is that, even though the most complex phys-
ically based models (MESH-CLASS-Raven, MESH-SVS-
Raven, and GEM-Hydro-Watroute) show the best perfor-
mance overall, some locally calibrated and more conceptual
models are not significantly weaker (e.g., Blended-Raven).
Especially in regions where the physically based models are
weak (e.g., corridor between Lake Huron and Lake Erie),
those conceptual, local models perform much better. There
is the potential that, when more sophisticated approaches are
applied to assign donor basin mappings, these locally cal-
ibrated models might significantly improve relative to the
more complex models.
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Figure 7. Grid-cell-based model performance regarding snow water equivalent. The performance of 12 models (panels) regarding snow water
equivalent (SWE) is shown. The model outputs are regridded to the grid of the reference dataset (here ERA5-Land; variable sd). Only grid
cells that are available in the reference dataset and all 12 models are displayed (6174 grid cells in total) and used to derive the Kling–Gupta
efficiency (KGE) values based on all available observations larger than 1 mm of daily SWE between January 2001 and December 2017. The
median KGE across space is added as a label at the top of each panel. The color bar has labels added to categorize the performance into
medium, good, and excellent. The machine-learning-based LSTM model is not displayed, as this is the only model not simulating snow water
equivalent explicitly.

3.3.4 Summary grid-cell-wise comparisons of auxiliary
variables

The grid-cell-wise comparisons lead, in general, to simi-
lar conclusions to the basin-wise evaluation with more de-
tailed insights regarding spatial performance distributions.
The main conclusion – as seen for the snow water equivalent
variable – is that one needs to be aware of the underlying as-
sumptions when results are compared on a basin scale, i.e.,
when outputs are spatially aggregated before the comparison.
This leads to situations where (a) large basins will have the
same weight when compared to smaller basins and (b) large
variability in the performances within a basin can cancel each
other out when aggregated in space before the performance
is evaluated. The impact of this depends on the resolution
and spatial variability of the reference dataset; it seems that
actual evapotranspiration and surface soil moisture are more
robust, i.e., similar on basin and grid scale, while snow water

equivalent led to large differences between the two methods
of comparison.

In contrast to basin-wise comparisons, the grid-cell-wise
comparisons enhance analysis of spatial inconsistencies
(patchwork patterns), which are most apparent in locally cal-
ibrated models but to some extent also visible for regionally
calibrated models. The spatial analysis improves the identifi-
cation of the reasons of weak model performances due to the
more intuitive comparison with, for example, land use types
or urban areas. This identification of regions with poor per-
formance might lead to more targeted model improvements
– especially when other models are able to simulate vari-
ables in those regions. The regions of weaker performance
for the auxiliary variables and models used here can be ex-
plained with poor donor basin selection, urban and agricul-
tural land use, and regions for which not enough calibration
basins were used during training (Ottawa River region).

It cannot be confirmed that physically based models are
always better performing than more conceptual models. It
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might be beneficial to use locally calibrated, simplified mod-
els to augment physically based models.

The variability in model performance (meaning the degree
of patchwork patterns) looks reasonable even for lumped
models; no large discontinuities can be observed. This is
most likely be caused by the large set and good spatial distri-
bution of locations (basins) used for training. A smaller set
or a more clustered selection of training basins would have
led to larger regions of weak performance, as can be seen of
the Ottawa River basin where this indeed impacted the over-
all performance. We encourage followup studies to look into
more local comparisons of the model outputs derived here
and provided as open datasets.

3.4 Multi-objective multi-variable analysis of model
performances

The multi-objective analysis of model performances is to
consolidate the results of the models that provided simu-
lated streamflow and the three additional variables (Fig. 8).
Hence, the machine-learning-based LSTM-lumped model is
not included here as it only estimated streamflow. The per-
formances at the basin scale are evaluated to make sure that
all four variables are handled equally (no grid-cell-wise per-
formance metrics). In the same vein, only streamflow sim-
ulations of the validation period are used, ensuring that the
Pareto analysis is based only on validation/evaluation data.

The results are shown for all four variables (Fig. 8a) and
for groups of three variables each, where one of the addi-
tional variables of AET, SSM, or SWE is discarded (Fig. 8b–
d, respectively). The latter three are included to discuss
whether a good (or weak) model performance is exclusively
due to a superior performance of one of those additional vari-
ables.

The results show that the locally calibrated models per-
form better (without any exception) for the calibration basins
(orange bars) compared to the validation basins (red bars).
Exactly the opposite is happening for the regionally cali-
brated models (light blue bars for calibration basins vs. dark
blue bars for validation basins), which highlights the stronger
spatial robustness of regionally or globally calibrated frame-
works, even though the parameter transfer strategy employed
here with locally calibrated models could be improved. Only
when surface soil moisture is not included does the perfor-
mance of two regionally calibrated models (MESH-SVS-
Raven and GEM-Hydro-Watroute) drop for the set of vali-
dation basins.

The results, including all four variables (Fig. 8a), indicate
that HYMOD2-lumped is the locally calibrated model (red
colored bars) with the highest overall performance, followed
by the Blended-Raven and the VIC-Raven model. The best
overall regionally calibrated model is GEM-Hydro-Watroute,
followed by MESH-SVS-Raven. MESH-CLASS-Raven is
third best in calibration but is outperformed by SWAT-Raven
for the validation basins due to SWAT-Raven’s significant

improvement for validation basins. Models with a poor per-
formance overall are the two locally calibrated LBRM-CC-
lumped and HMETS-lumped and the regionally calibrated
WATFLOOD-Raven.

In this study, HYMOD2-lumped and SWAT-Raven
achieve their maximum performance when their exception-
ally good performance for actual evapotranspiration (AET)
is taken into account, as can be seen by their significant per-
formance loss (both −39 %) when this variable is not in-
cluded in the multi-objective analysis (Fig. 8b). This means
that these two models are usually part of the Pareto front of
non-dominated models because no other model is as good
at simulating AET. Similarly, the performance of the fol-
lowing model would have been significantly lower if sur-
face soil moisture (SSM) were not included in the analy-
sis (Fig. 8c): GR4J-lumped (−25 %), MESH-CLASS-Raven
(−36 %), MESH-SVS-Raven (−29 %), and GEM-Hydro-
Watroute (−26 %). This, in turn, means that these models
perform comparably better than other models regarding sur-
face soil moisture. A significant drop in performance can be
detected for the Blended-Raven model (−25 %) when the
snow water equivalent is not considered (Fig. 8d), show-
ing that this model outperforms several others for snow esti-
mates.

The models for which the overall performance is mainly
due to a single specific variable’s performance (HYMOD2-
lumped and SWAT-Raven for AET, MESH-CLASS-Raven or
MESH-SVS-Raven or GEM-Hydro-Watroute for SSM, and
Blended-Raven for SWE) are considered good starting points
to study in order to improve models with a lower perfor-
mance for these variables. This is due to the fact that the re-
moval of a variable and a simultaneous drop in performance
of a model can only be caused by this model often dominat-
ing other models with respect to this variable. Note that the
models with good performance for specific variables listed
above are not necessarily the models that are the best for this
variable (Sect. 3.2), e.g., GEM-Hydro-Watroute is slightly
better than Blended-Raven for SWE (see Fig. 4c; median
KGE values of 0.71 and 0.70, respectively). However, there
is a significant number of basins for which Blended-Raven
is better than the GEM-Hydro-Watroute model (and most
other models), especially in the Lake Huron (HUR) and Lake
Erie (ERI) watershed. This leads to the fact that the Blended-
Raven is on the Pareto front for all of those basins since it is
outperforming so many other models in those basins, even
though GEM-Hydro-Watroute is better (by median). Even
though GEM-Hydro-Watroute can definitely be considered
state of the art for SWE simulations, one might want to study
why Blended-Raven is so much better in those basins. The
Pareto analysis was performed to reveal results like this.

The four Pareto analyses collectively show that three
models appear notably less frequently in the group of
non-dominated models, i.e., LBRM-CC-lumped, HMETS-
lumped, and WATFLOOD-Raven. They show deficiencies in
more than one variable (e.g., multiple instances where the
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frequency in which they are non-dominated falls between
10 % and 35 % of the 212 basins). Using these models as is
for additional applications in the Great Lakes region without
revisions/recalibration would warrant careful justification.

Locally calibrated models – especially HYMOD2-
lumped, Blended-Raven, and VIC-Raven – show equivalent
(if not better) results for calibration basins compared to the
best regionally calibrated models, but generally significantly
lower performances for validation basins. The performance
of locally calibrated models is likely to improve for valida-
tion basins with a revised donor basin mapping.

4 Conclusions

We present a carefully designed framework to compare mod-
els of different types (lumped, gridded, and subbasin-based,
conceptual and physically based, locally, regionally, and
globally calibrated) consistently. The framework includes us-
ing the same data to set up and force the models, using
(mostly) the same routing, and the same methods of model
performance estimation regarding streamflow and additional
variables such as actual evapotranspiration (AET), surface
soil moisture (SSM), and snow water equivalent (SWE). The
strong focus on standardizing datasets and methods leads to
observed performance differences that are, to a large extent,
specific to the model or specific to subjective model building
decisions (e.g., calibration details) rather than performance
differences between models caused by input data of different
quality or inconsistencies in the postprocessing simulation
outputs.

The majority of modeling teams learned about a poor as-
sumption they made, which was a data processing error or a
bug in their model code, as a direct result of them interacting
with other study co-authors not on their modeling team. First
of all, this is evidence of the value of model intercomparison
studies for collectively improving hydrologic model quality.
Second of all, this suggests that, whenever possible, model
intercomparisons should be iterative so as to enable teams to
make changes to their model/approach. This is of course a
challenge given that most study co-authors received no fund-
ing explicitly supporting their participation in the model in-
tercomparison.

Overall, this study generates a valuable model intercom-
parison dataset (fully documented input and model output
datasets). This allows new models to be added to the inter-
comparison by future researchers. Just as important is that
this rich dataset is available for followup studies focused
on learning why we saw the differences we did (e.g., given
dominant LSTM-lumped performance for streamflow, which
LSTM model build decisions were most important?). Our
analysis and conclusions below are necessarily focused on
reporting observed performance similarities and differences
among the models.

The metrics for evaluating the model performance for each
of the variables are presented together with a multi-objective-
based Pareto method to integrate all performance metrics
proposing an objective approach to evaluate model across
all four variables, leading to insights for specific models and
groups of models. Furthermore, not only the calibration per-
formance of the models regarding streamflow but also the
performances in three different validation experiments (tem-
poral, spatial, and spatiotemporal validation) are produced.
The additional variables (AET, SSM, and SWE) are evalu-
ated for all stations, and the entire time period at once as the
models were not trained using those data.

The results show that the globally calibrated machine-
learning-based LSTM-lumped model is superior, regarding
streamflow, in all experiments. The model does, however,
not simulate any of the additional variables (AET, SSM, and
SWE) as it is purely data driven and not calibrated using data
other than streamflow. It is hence not possible to evaluate the
overall model performance (based on all four variables). It is
likely that a small amount of additional data would already
suffice to fit the model to these additional variables (Lees et
al., 2022).

The locally calibrated (and mostly conceptual) models –
with their advantage of being easy to set up and computa-
tionally efficient to allow for high-budget calibration experi-
ments – show good performances in calibration and temporal
validation and medium performances as soon as streamflow
is evaluated at stations that have not been calibrated. Interest-
ingly, it can be shown that the worst-performing locally cal-
ibrated model is performing on average better than the best
regionally calibrated (more complex and physically based)
models regarding streamflow. Furthermore, the locally cal-
ibrated models are not necessarily performing worse than
physically based models when evaluated for the three addi-
tional variables (AET, SSM, and SWE), which, for SSM, is,
however, due to the standardization of the variable and the
fact that it was evaluated based on correlation in this study,
since most conceptual models do not explicitly represent
actual SSM values for superficial soil. The top-performing
models, when considering all four variables analyzed here,
are GEM-Hydro-Watroute, HYMOD2-lumped, and MESH-
SVS-Raven. It is also clear that regionally calibrated mod-
els show a stronger spatial robustness than locally calibrated
models when looking at the multi-objective evaluation of the
four variables and comparing the drop in performance be-
tween calibration and validation basins. It is, however, ex-
pected that, for locally calibrated models, the spatial valida-
tion performance and the performance regarding additional
variables can be improved with a more sophisticated donor
basin mapping strategy, which is the objective of an ongoing
followup study. Unless such improved transfer methods are
in place, it seems advisable to not use locally calibrated mod-
els for ungauged basins, as their spatial transfer can lead to
poor performances at single gauges (in contrast to the median
performance across many stations as analyzed here).
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Figure 8. Multi-objective analysis of model performances. The 12 models (x axis) that provided streamflow (Q) simulations and results
for the three additional variables – actual evapotranspiration (AET), surface soil moisture (SSM), and snow water equivalent (SWE) – are
analyzed using a multi-objective analysis to determine the number of times a model is superior in at least one of the considered performance
metrics. This measure of non-dominance (y axis) is derived using (a) all four variables (Q, AET, SSM, and SWE), (b) considering all
variables but not AET, (c) all variables but not standardized SSM, and (d) all variables except SWE. The metrics are derived for time
periods not used during calibration, i.e., 2011 to 2017 for streamflow and 2001 to 2017 for all other variables. The estimates are derived
using the basin-wise performances presented in Figs. 3 and 4. The derived percentages of non-dominance are added as labels above each
bar in black. The percentages are derived for calibration basins (lighter colored bars) and validation locations (darker shaded bars). Panels
(b–d) additionally show a gray labeled percentage value on top of the gray horizontal line, which indicated perfect model skill. Those gray-
colored percentage values indicate how the model skill changed compared to the skill when all four variables are used (panel a). The models
are grouped into models that locally calibrated each basin independently (red bars) and models that calibrated all locations of each region
simultaneously (blue bars).
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The regionally calibrated (and physically based) models
are advantageous as they are set up over an entire region,
and simulated parameter fields (including the additional vari-
ables) are more realistic (i.e., continuous) since they do not
exhibit the patchwork pattern caused by local setups. These
setups also allow for a seamless prediction of streamflow at
ungauged/untrained locations and hence overcome the prob-
lem of the donor basin mapping intrinsically. These models
are, however, more time-consuming to set up and calibrate.
The results show that regionally calibrated models are among
the top-performing models (e.g, GEM-Hydro-Watroute and
MESH-SVS-Raven), when all four variables are considered,
while they are consistently outperformed by the locally cali-
brated models regarding streamflow, even if streamflow per-
formances between the best regionally calibrated and locally
calibrated models become much closer when looking at val-
idation basins over the validation period (corresponding to
the most difficult spatiotemporal validation evaluation per-
formed here). Most regionally calibrated models show defi-
ciencies in basins that contain highly managed waterbodies,
urban areas, and in regions with predominantly agricultural
land use, especially on the USA side of the Great Lakes. Lim-
ited training data provide another reason for weaker model
performance, as shown for the Ottawa River basin. It is ex-
pected that physically based distributed models could there-
fore strongly benefit from additional process representation
(e.g., tile drains in agricultural areas, artificial drainage net-
works in urban areas, etc.) and from a better subdivision of
a large domain to perform regional calibration, for example,
by calibrating basins with a similar dominant land cover type
simultaneously (e.g., agricultural, urban, and natural) rather
than by calibrating very different basins in the same region
at the same time. More work is needed to assess the feasi-
bility and efficiency of such a methodology, however. Re-
garding water management, the representation of reservoir
regulation, which is generally done in the routing scheme
directly, but could probably be integrated inside machine-
learning-based models as well, could improve performances
for heavily regulated watersheds.

Top-performing models, when all variables are consid-
ered together, are the locally calibrated HYMOD2-lumped
(closely followed by Blended-Raven and VIC-Raven) and
the regionally calibrated GEM-Hydro-Watroute and MESH-
SVS-Raven (closely followed by SWAT-Raven and MESH-
CLASS-Raven), while the worst-performing models are
LBRM-CC-lumped, HMETS-lumped, and WATFLOOD-
Raven. From the multi-objective analysis, including the
additional variables (AET, SSM, and SWE; Sect. 3.4),
we learned that some models perform exceptionally
well for additional variables compared to other compo-
nents of that model (HYMOD2-lumped and SWAT-Raven
for AET, MESH-CLASS-Raven, MESH-SVS-Raven, and
GEM-Hydro-Watroute for SSM, and Blended-Raven for
SWE). When looking at the specific performances for
each individual additional variable (Sects. 3.2 and 3.3),

the best models are HYMOD2-lumped, SWAT-Raven,
MESH-SVS-Raven, and GEM-Hydro-Watroute for AET,
HYMOD2-lumped (based on basin-wise only), GR4J-
lumped (based on basin-wise only), VIC-Raven (based
on basin-wise only), MESH-CLASS-Raven, MESH-SVS-
Raven, and GEM-Hydro-Watroute for SSM, and Blended-
lumped (based on basin-wise only), Blended-Raven, MESH-
CLASS-Raven (based on grid-cell-wise only), MESH-SVS-
Raven, and GEM-Hydro-Watroute for SWE.

The comparison of the two approaches to determine the
model performance regarding gridded additional variables,
i.e., grid-cell-wise and basin-wise comparison, shows that
one needs to be aware of underlying assumptions when ag-
gregating gridded/distributed model outputs spatially. This
especially holds when basins are of a very different size or
variables exhibit large variability in space (such as SWE).

Across all models, it can be shown that most models show
lower model performances (across all variables) in urban and
agricultural regions and in regions where snow is difficult
to simulate due to urban areas and strong lake effects (e.g.,
eastern shoreline regions of Lake Huron, Lake Erie, and Lake
Ontario).

The results and data produced in this study are made avail-
able through an interactive website to encourage followup
studies and facilitate the communication of the results with
a broad audience (beyond the hydrologic modeling commu-
nity) and to encourage the use of those data for more detailed
analyses and followup studies.

Future work will focus on (among others) testing more ad-
vanced donor basin mappings for the locally calibrated mod-
els, comparing the model outputs for additional variables at
regions where performance is low in order to identify reasons
behind the poor performance, fixing identified bugs in several
models and/or improving calibration methods leading to im-
proved models, adding additional models to the website once
they become available, and furthering calibration efforts, in-
cluding the additional variables besides streamflow, to further
improve model realism.

Code and data availability. The code and data used for this anal-
ysis are made available on the Federated Research Data Reposi-
tory (FRDR; https://doi.org/10.20383/103.0598; Mai et al., 2022).
The basin-scale results of this study are available at http://www.
hydrohub.org/mips_introduction.html#grip-gl (Mai, 2022). Basin-
Maker, used for producing the routing product, is available at
http://hydrology.uwaterloo.ca/basinmaker/ (Han et al., 2021a). The
Raven hydrologic modeling framework used for routing in most
models and for the simulation of GR4J-lumped, HMETS-lumped,
Blended-lumped, and Blended-Raven is available at http://raven.
uwaterloo.ca (Craig, 2022).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-26-3537-2022-supplement.
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