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S1 Comparison of gridded ERA5-Land SWE estimates and ground-truth SWE observations from CanSWE database

The ERA5-Land SWE estimates (Muñoz Sabater, 2019) were compared with the SWE observations available in the version

2 of the CanSWE dataset (Vionnet et al., 2021). CanSWE combines historical manual (snow surveys) and automatic SWE

measurements collected across Canada by different provincial and territorial agencies as well as hydro-power companies.

CanSWE is an evolving dataset. Please refer to the following repository to check for version updates of the dataset: https:5

//10.5281/zenodo.4734371.

In this study, only manual SWE measurements were used to make sure that the snow data would be available over the period

from 2000 to 2017. In Ontario and Quebec, manual SWE data are collected on a biweekly to monthly basis. The times series

of ERA5-Land SWE estimates were extracted at the grid cells corresponding to the snow observation locations available in

CanSWE. Only stations with at least 34 observations (i.e., on average at least two observations per year during the study period10

from 2001 to 2017) were kept in the analysis. A total of 272 stations was considered and the results are shown in Fig. S1.

Figure S1. Comparison of ERA5-Land and CanSWE snow water equivalent estimates. Panel (A) displays the spatial distribution of the

Kling-Gupta efficiency (KGE) between the CanSWE observations (obs) and ERA5-Land (sim) estimates at the N = 272 snow observation

locations available in the CanSWE dataset with at least 34 observations (i.e., on average at least two observations per year during the study

period from 2001 to 2017). Panel (B) summarizes these KGE values by a cumulative distribution function showing that around 83% of the

stations have medium performance, 57% are good, and 14% show an excellent performance.

ERA5-Land shows good performances (KGE larger than 0.65) at 57% of the stations (Fig. S1B). These stations are mostly

located in the Ottawa River watershed, in the Lake Superior watershed and in the northern part of the Lake Huron watershed

(Fig. S1A). These regions are characterized by the largest mean winter SWE in the Great Lakes regions (Fig. 2 in the main

manuscript). More contrasted results, including stations with performances less than medium (KGE lower than 0.48), are15
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found in the Canadian portions of the Lake Ontario and Lake Erie watersheds. There regions are characterized by milder

winter conditions than the northern of the Great Lakes region with frequent occurrences of winter precipitation near 0°C

(Mekis et al., 2020) associated challenging conditions for snowpack models due to complex precipitation phase and mid-

winter melt resulting from rain-on snow events. Nonetheless, ERA5-Land remains a robust gridded SWE product in this

region, especially when compared with other existing gridded SWE datasets such as the US SNODAS analyses characterized20

by a strong underestimation of SWE in Ontario (King et al., 2020).

The scripts to derive the estimates presented here are available in the data repository (see A9_Scripts/compare_ERA5-

swe_CanSWE) (Mai et al., 2022b).

S2 Visual depiction of the multi-objective multi-variable model analysis

The concept of non-dominance/ dominance in multi-objective analyses is used for the multi-objective multi-variate model25

analysis (Sec. 2.9 main manuscript). This refers to the classic definition of that concept which is independent of the shape of

the pareto front. Fig. S2 is provided as a visual explanation of what it means that a model dominates other models (panel A),

a model is dominated by another model (panel B), a model that is not dominated by other models (panel C), the entire set of

non-dominated models (panel D) forming the Pareto front (panel E). We visualized this in 2D picking two objective functions

(here KGE regarding streamflow and AET) for demonstration purposes. In the study itself only 3D or 4D pareto fronts were30

evaluated and reported on in Fig. 8 of the main manuscript. The 3D and 4D examples would, however, be harder to visualize

intuitively. All these concepts can (mathematically) be applied for n-dimensional problems though.

S3 Additional information about participating models

In this section additional information will be provided about the participating models. Besides additional descriptions about

model setup and calibration detail, a table of the parameters used for the model calibration is provided for each model. The35

section is organized as follows: globally calibrated Machine-Learning based LSTM-lumped model in Sect. S3.1, the locally

calibrated models LBRM-CC-lumped in Sect. S3.2, HYMOD2-lumped in Sect. S3.3, GR4J-lumped in Sect. S3.4, HMETS-

lumped in Sect. S3.5, Blended-lumped in Sect. S3.6, Blended-Raven in Sect. S3.7, and VIC-Raven in Sect. S3.8, as well as the

regionally calibrated SWAT-Raven in Sect. S3.9, WATFLOOD-Raven in Sect. S3.10, MESH-CLASS-Raven in Sect. S3.11,

MESH-SVS-Raven in Sect. S3.12, and GEM-Hydro-Watroute in Sect. S3.13.40

S3.1 LSTM-lumped

The final LSTM model is an ensemble of 10 models with different random seeds. All models share the same architecture of

256 hidden states and use an input sequence length of 365. That is, a single day of discharge is predicted from a sequence of the

previous 365 input time steps. We optimized the model parameters with an Adam optimizer (Kingma and Ba, 2015) on an loss

function that approximates the NSE (Kratzert et al., 2019) for 20 epochs at a learning rate of 5× 10−4 and another 10 epochs45
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Figure S2. The concept of non-dominance and dominance of multi-objective problems. The example of a two-dimensional calibration

problem is chosen. Both objectives (x-axis and y-axis) are assumed to be minimized and hence the “Utopia” point is located at the origin

for simplicity. For demonstration purposes the first objective is chosen to be 1−KGEQ where KGEQ is the model performance regarding

streamflow and the second objective is set to be 1−KGEAET where KGEAET is the model performance regarding actual evapotranspiration.

The circle markers in each panel indicates one of the twelve models evaluated. (A) A model (dark gray marker) is dominating other models

(light gray markers) if it is superior for all objectives. (B) A model is dominated by all models that are better in all objectives. (C) A model is

non-dominated if it is not dominated by any model, i.e. all other models are worse in at least one of the objectives. (D) There might be several

non-dominated models (red markers) which (E) form the so-called Pareto front (red line). To obtain results in Fig. 8 of the main manuscript

the analysis is performed for each of the 212 catchments of the study. The number of times a model is part of the pareto front (red dot in

panel E) is used as the measure in Fig. 8.

at a learning rate of 1× 10−4 To regularize the model, we further applied dropout to the LSTM output with probability of 0.4

(Hinton et al., 2012). We stabilized the training procedure by clipping gradients to a maximum norm of 1 and initializing the

LSTM forget gate with a bias of 3 (Gers et al., 1999).

The LSTM ingests the following input variables to predict daily discharge:

daily meteorological forcings:50

– total precipitation,

– minimum and maximum temperature,

– mean downward solar flux,

– specific humidity,

– surface pressure,55

– u/v components of wind, and
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– potential evapotranspiration calculated following the Priestley-Taylor equation from the FAO-56 guidelines (Allen et al.,

1998), using minimum and maximum temperature, solar radiation, latitude, elevation, and day of year as inputs and

assuming that ground heat flux is zero at daily time steps (see also Newman et al., 2015)

static basin characteristics:60

– in total 30 static input variables were used as inputs in the LSTM setup (Tab. S2)

– climatologic characteristics were calculated based on the calibration period (2000 to 2010)

– static features are fed into the LSTM at every time step alongside the meteorological forcings (see: Kratzert et al., 2019)

To ensure a model configuration that also works well in spatial validation, the LSTM hyperparameters (see Tab. S1) were

tuned in a 5-fold cross-validation setting (Hastie et al., 2009) as follows: First, we randomly split the calibration basins into65

five partitions and trained each hyperparameter configuration on all combinations of four partitions. We repeated this process

with three different random seeds and tested each setup on the corresponding remaining fifth partition. Second, we calculated

the average KGE across all seeds for each basin in the partition that was not trained on and then took the median across all

these basins. Finally, given the best hyperparameter configuration, we trained an ensemble of ten models with different random

seeds on the full calibration period of all calibration basins combined and averaged their predictions.70

The model was set up using the NeuralHydrology Python library in version 0.9.11-beta3 (Kratzert et al., 2022). The configu-

ration files and scripts to reproduce the LSTM setup and training are available in the data repository (see A9_Scripts/MachineLearning)

(Mai et al., 2022b).

Table S1: The hyperparameters calibrated for the LSTM-lumped model. The first three parameters are tested with the

listed discrete values while the fourth parameter (epochs) was tested for a range of integer values in order to determine the best

hyperparameter setting for this application. The best hyperparameter values found are highlighted in bold font. The parameter

names are also the names of the NeuralHydrology configuration value. A brief description is given for each parameter.

Parameter Parameter value/range Description

learning_rate {0: 0.001}, {0: 0.005, 10: 0.001, 20:

0.0005}, {0: 0.001, 20: 0.0005, 30:

0.0001}, {0: 0.0005, 20: 0.0001, 30: 5e-

05}, {0: 0.0001, 20: 5e-05, 30: 1e-05}

Learning rate schedule of the optimizer. E.g., 0: x, 10:y

means learning rate x for epochs 0 to 9, learning rate y

after epoch 9

hidden_size 64, 128, 256 Number of LSTM cell states

batch_size 64, 128, 256 Number of samples per mini-batch during gradient de-

scent

epochs [3, 45]; best: 30 Number of training passes through the entire dataset (we

evaluated every third epoch, so any value 3 · k with k ∈
[1,15] was evaluated)
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Table S2: Static basin characteristic used for the LSTM-lumped model. This lists the static basin characteristics exclusively

derived from the common datasets (Sect. 2.2 of main manuscript) and used as input variables to the LSTM model. † Due to

a data preprocessing mistake, only the average of the lower two soil layers from the soil dataset was considered for the soil

related attributes.

Attribute name Description

p_mean Mean daily precipitation

pet_mean Mean daily potential evapotranspiration

aridity Ratio of mean PET to mean precipitation

t_mean Mean daily temperature, i.e., (daily_min + daily_max) / 2

frac_snow Fraction of precipitation falling on days with mean daily temperatures

below 0°C

high_prec_freq Fraction of high-precipitation days (≥ 5 times mean daily precipitation)

high_prec_dur Average duration of high-precipitation events (number of consecutive

days with ≥ 5 times mean daily precipitation)

low_prec_freq Fraction of dry days (< 1 mm d−1 daily precipitation)

low_prec_dur Average duration of dry periods (number of consecutive days with daily

precipitation < 1 mm d−1)

mean_elev Catchment mean elevation

std_elev Standard deviation of catchment elevation

mean_slope Catchment mean slope

std_slope Standard deviation of catchment slope

area_km2 Catchment area

Temperate-or-sub-polar-needleleaf-forest Fraction of land covered by “Temperate-or-sub-polar-needleleaf-forest”

Temperate-or-sub-polar-grassland Fraction of land covered by “Temperate-or-sub-polar-grassland”

Temperate-or-sub-polar-shrubland Fraction of land covered by “Temperate-or-sub-polar-shrubland”

Temperate-or-sub-polar-grassland Fraction of land covered by “Temperate-or-sub-polar-grassland”

Mixed-Forest Fraction of land covered by “Mixed-Forest”

Wetland Fraction of land covered by “Wetland”

Cropland Fraction of land covered by “Cropland”

Barren-Lands Fraction of land covered by “Barren-Lands”

Urban-and-Built-up Fraction of land covered by “Urban-and-Built-up”

Water Fraction of land covered by “Water”

Continued on next page
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Table S2 – Continued from previous page

Attribute name Description

BD Soil bulk density (g cm−3)†

CLAY Soil clay content (% of weight)†

GRAV Soil gravel content (% of volume)†

OC Soil organic carbon (% of weight)†

SAND Soil sand content (% of weight)†

SILT Soil silt content (% of weight)†

75

S3.2 LBRM-CC-lumped

The Large Basin Runoff Model (LBRM) (Crowley II, 1983) was developed for applications to historical simulation and sea-

sonal forecasting of the Great Lakes water balance. As such, prior to this study, it has primarily been evaluated for simulating

whole-basin runoff into the lakes. It is a lumped conceptual model that simulates the propagation of rainfall to watershed out-

flow using a series of cascading tanks, with transfers between tanks represented through a mass balance coupled with linear80

reservoir concepts. Calibrated model parameters include linear and partial linear reservoir coefficients to represent transfer be-

tween the cascading tanks, as well as a base temperature parameter that controls the potential evapotranspiration and an upper

soil zone capacity parameter. Since the initial development of LBRM, updates have included the integration of an approach to

approximate the Clausius-Clapeyron to mitigate the oversensitivity of evapotranspiration to temperature identified by Lofgren

et al. (2011). This update, referred to as LBRM-CC-lumped in this manuscript, demonstrated by Lofgren and Rouhana (2016)85

and implemented by Gronewold et al. (2017), was used for this study. LBRM-CC-lumped is currently in use as one of the

models contributing guidance to the U.S. Army Corps of Engineers Detroit District’s contribution to the internationally coor-

dinated 6-month water level forecast (Fry et al., 2020). Tab. S3 provides a list of all the LBRM-CC-lumped model parameters

which were optimized for this study.

Table S3: The parameters calibrated for the LBRM-CC-lumped model. The table specifies the parameters calibrated for the

LBRM-CC-lumped models. The “Param” column corresponded to the parameter definition with the Fortran source code, and

“LBRM Params” corresponds to parameter names within the input file used for initiating model values for LBRM-CC-lumped.

The parameters are uniformly distributed in the range given. The unit is specified for each parameter.

Param. Range Unit LBRM Params

TBase [1.1,48.0] 1/°C TBase

AlbedS [0.2,1.0] cm/d/°C Snowmelt Factor

Continued on next page
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Table S3 – Continued from previous page

Param. Range Unit LBRM Params

AlpPer [3.0× 10−7 ,9.4] 1/d Linear Reservoir Coefficient (LRC) Percolation

AlpUEv [1.0× 10−12 ,9.9× 10−6 ] 1/m3 Partial LRC Upper Soil Zone Evaporation

AlpInt [1.0× 10−5 ,27.0] 1/d LRC Interflow

AlpDpr [1.0× 10−5 ,93.0] 1/d LRC Deep Percolation

AlpLEv [1.0× 10−13 ,0.05] 1/m3 Partial LRC Lower Soil Zone Evaporation

AlpGw [1.0× 10−7 ,1.0] 1/d LRC groundwater

AlpSf [0.02,3.0] 1/d LRC surface flow

USZC [1.8,25.0] cm Upper Soil Zone Capacity

90

S3.3 HYMOD2-lumped

HYMOD is a conceptual rainfall-runoff model introduced by Boyle et al. (2000). In this study, we use the modified lumped

version of the HYMOD model, called HYMOD2. The model is referred to as “HYMOD2-lumped” in this study to follow

the same naming convention for all models indicating whether models are lumped or distributed. The HYMOD2-lumped

model is working in reliance on the probability distributed storage capacity concept proposed by Moore (1985), representing95

the vertical soil moisture accounting process. HYMOD is originally designed as a lumped model utilizing Nash cascade for

horizontal routing and a leaky linear reservoir to represent baseflow.

The modified HYMOD2-lumped version used in this study contains an improved parameterization for the evaporation pro-

cess as proposed by Roy et al. (2017). Since snow is an important factor driving the water cycle in the basins considered in

this model intercomparison study, we also included the Degree Day Snow model (Martinec, 1975) and rain-snow-partitioning100

in the lumped version of HYMOD2. Potential evapotranspiration is derived from minimum and maximum temperature as well

as the basin latitude using the Hargreaves-Samani method (Hargreaves and Samani, 1985).

The eleven parameters calibrated for this model are given in Tab. S4.

Table S4: The parameters calibrated for the HYMOD2-lumped model. The table specifies the eleven parameters calibrated

for the HYMOD2-lumped models. The parameters are uniformly distributed in the range given. A brief description of the

parameter as well as its unit is specified.

Param. Range Unit Parameter description

H [100,5000] mm Height of soil moisture accounting tank

B [0.01,2.0] - Distribution function shape parameter

Continued on next page
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Table S4 – Continued from previous page

Param. Range Unit Parameter description

α [0.01,1.0] - Quick-slow split parameter

Nq [1,6] - Number of quickflow routing tanks

Ks [0.001,0.95] mm/d Slowflow routing tanks rate parameter

Kq [0.05,0.95] mm/d Quickflow routing tanks rate parameter

Kmax [0.0,1.0] mm/d Upper limits for resistance to ET flux K

γ [0,1] - Lower limits for resistance to ET flux K as Kmin = γ Kmax

BE [0.01,1.95] - Power coefficient

DDF [0.0,10.0] mm/d/°C Degree day factor (DDF) for snowmelt

Tbase [−2.0,2.0] °C Base temperature for melt calculation in DDF model

S3.4 GR4J-lumped105

The GR4J model (Perrin et al., 2003) is a lumped water balance model that relates runoff to rainfall and evapotranspiration

using daily data while the model contains two stores and originally has four parameters (X1 to X4). The GR4J parameter

X1 denotes the production store capacity, parameter X2 is the inter-catchment exchange coefficient, X3 is the routing store

capacity, and X4 is the unit hydrograph time constant. GR4J is used in concert with CemaNeige (Valéry et al., 2014) for the

handling of snow. GR4J and CemaNeige are fully emulated within the Raven modeling framework (Craig et al., 2020) and110

used as such in this study. The parameters, their ranges and where these parameters are located in a Raven setup is listed in

Table S5. Please note that parameter x5 for an estimate of annual average snow is usually not part of the CemaNeige model

but was added here as Raven requires an estimate and none was at hand. Two additional parameters for rain-snow partitioning

were added as only precipitation forcings instead of rain and snow forcings were available.

Table S5: The parameters calibrated for the GR4J-lumped model. The parameters are uniformly distributed in the range

given. The Raven table and parameter name can be used to locate the parameter in the Raven setup files.

Param. Range Unit Raven table Parameter name

GR4J parameters:

x1 [0.01,2.5] m SoilProfiles thickness top soil layer (GR4J X1)

x2 [−15.0,10.0] mm/d SoilParameterList GR4J_X2

x3 [10.0,700.0] mm SoilParameterList GR4J_X3

x4 [0.0,10.0] d LandUseParameterList GR4J_X4

Continued on next page
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Table S5 – Continued from previous page

Param. Range Unit Raven table Parameter name

CemaNeige parameters:

x5 [1.0,30.0] mm GlobalParameter AvgAnnualSnow

x6 [0.0,1.0] 1/d GlobalParameter AirSnowCoeff

x7 [2.0,8.0] mm/d/◦C LandUseParameterList MELT_FACTOR

Rain-snow partitioning:

x8 [−3.0,3.0] ◦C GlobalParameter RAINSNOW_TEMP

x9 [0.5,6.0] ◦C GlobalParameter RAINSNOW_DELTA

115

S3.5 HMETS-lumped

HMETS is a very simple, yet efficient, lumped conceptual hydrological model simulating all main hydrological processes

including snow accumulation and snowmelt (Martel et al., 2017). HMETS us setup through the Raven hydrologic modeling

framework which is able to fully emulate the original HMETS implementation. The parameters calibrated for HMETS are

listed in Table S6.120

Table S6: The parameters calibrated for the HMETS-lumped model. The parameters are uniformly distributed in the range

given. The Raven table and parameter name can be used to locate the parameter in the Raven setup files. A two-layer soil model

was used here. The TOPSOIL is the upper soil layer while PHREATIC is the lower soil layer. The two Raven parameters,

SNOW_SWI_MAX and MAX_MELT_FACTOR, are derived using a sampled parameter (x6, x10) and SNOW_SWI_MIN

and MIN_MELT_FACTOR, respectively, to make sure that one parameter is always larger than the other.

Param. Range Unit Raven table Parameter name

x1 [0.3,20.0] - LandUseParameterList GAMMA_SHAPE

x2 [0.01,5.0] - LandUseParameterList GAMMA_SCALE

x3 [0.5,13.0] - LandUseParameterList GAMMA_SHAPE2

x4 [0.15,1.5] - LandUseParameterList GAMMA_SCALE2

x5 [0.0,20.0] mm/d/◦C LandUseParameterList MIN_MELT_FACTOR

x6 [0.0,20.0] mm/d/◦C LandUseParameterList MAX_MELT_FACTOR =

MIN_MELT_FACTOR + x6

x7 [−2.0,3.0] ◦C LandUseParameterList DD_MELT_TEMP

x8 [0.01,0.2] 1/mm LandUseParameterList DD_AGGRADATION

x9 [0.0,0.1] frac GlobalParameter SNOW_SWI_MIN

Continued on next page
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Table S6 – Continued from previous page

Param. Range Unit Raven table Parameter name

x10 [0.01,0.3] frac GlobalParameter SNOW_SWI_MAX =

SNOW_SWI_MIN + x10

x11 [0.005,0.1] 1/mm GlobalParameter SWI_REDUCT_COEFF

x12 [−5.0,2.0] ◦C LandUseParameterList DD_REFREEZE_TEMP

x13 [0.0,5.0] mm/d/◦C LandUseParameterList REFREEZE_FACTOR

x14 [0.0,1.0] - LandUseParameterList REFREEZE_EXP

x15 [0.0,3.0] - SoilParameterList PET_CORRECTION TOPSOIL

x16 [0.0,1.0] - LandUseParameterList HMETS_RUNOFF_COEFF

x17 [0.00001,0.02] 1/d SoilParameterList PERC_COEFF TOPSOIL

x18 [0.0,0.1] 1/d SoilParameterList BASEFLOW_COEFF TOPSOIL

x19 [0.00001,0.01] 1/d SoilParameterList BASEFLOW_COEFF PHREATIC

x20 [0.0,0.5] m SoilProfiles thickness TOPSOIL

x21 [0.0,2.0] m SoilProfiles thickness PHREATIC

x22 [−3.0,3.0] ◦C GlobalParameter RAINSNOW_TEMP

x23 [0.5,6.0] ◦C GlobalParameter RAINSNOW_DELTA

S3.6 Blended-lumped

The lumped Blended Model is a hydrologic model defined within the Raven hydrologic modeling framework (Craig et al.,

2020). The Blended Model uses the weighted average of several chosen process implementations for key processes to simulate

streamflow instead of using one single parametrization per process.125

As an example, a (simplified) blended model could be defined as:

fshared(x,w) = (wd1D1 +wd2D2) · (we1E1 +we2E2 +we3E3)+ (wf1F1 +wf2F2) (S1)

with

wd1 +wd2 = 1 (S2)

we1 +we2 +we3 = 1 (S3)130

wf1 +wf2 = 1 (S4)

where D1 and D2 could be, for instance, be two options for one process. For example, deriving infiltration could be per-

formed once using the infiltration definition of HMETS (D1) and once derived as defined in the HBV model (D2). The

infiltration outputs D1 and D2 are then weighted using wd1 and wd2 to derive the infiltration estimate Raven will use for the

11



remainder of the simulation. A detailed description of all processes and process options as well as a model flowchart can be135

found in the Supplementary Material of Mai et al. (2020) and in the Raven documentation (Craig et al., 2020).

The Blended Model was introduced by Mai et al. (2020), analysed in calibration mode by Chlumsky et al. (2021), and

deployed across North America by Mai et al. (2022a). The exact same model setup was employed here. It uses three different

options Mi for the infiltration process, three options Ni for quickflow, two options Oi for evaporation, two options Pi for

baseflow, and three options Qi for snow balance. All other processes, i.e., convolution of surface runoff R1 and delayed runoff140

S1, potential melt T1 , percolation U1 , rain–snow partitioning V1 , and precipitation correction W1, are used with one fixed

process option. The remaining processes also have only one option, but none of them contains tunable parameters. They are

merged to a “remaining” process X1, which will never appear in the sensitivity analysis because it is constant. When the first

option of each of the processes M1, N1, O1, P1, Q1, R1, S1, T1, U1, V1, W1, and X1, is chosen and parameter x35 is set

to zero, the Raven setting emulates the HMETS model (Martel et al., 2017) perfectly. All other combinations are unnamed145

models.

Details of process options and parameters can be found in Appendix C (Tables C1 and C2) in Mai et al. (2020). The list of

parameters is added to the Supplementary Material herein (Table S7) for the convenience of the readers.

Table S7: The parameters calibrated for the Blended-lumped model. The parameters are uniformly distributed in the

range given. The Raven table and parameter name can be used to locate the parameter in the Raven setup files. A

three-layer soil model was used here, with the third (groundwater) layer being of infinite depth. The TOPSOIL is the

upper soil layer while PHREATIC is the lower soil layer. The three Raven parameters, FIELD_CAPACITY TOPSOIL,

SNOW_SWI_MAX, and MAX_MELT_FACTOR, are derived using a sampled parameter (x10, x14, and x25) and SAT_WILT

TOPSOIL, SNOW_SWI_MIN, and MIN_MELT_FACTOR, respectively, to make sure that one parameter is always larger than

the other. The baseflow coefficients, BASEFLOW_COEFF TOPSOIL and PHREATIC, are derived from parameters x4 and

x11 to allow a logarithmic sampling. This table is taken from Mai et al. (2020) (Appendix C Table C2 therein) and augmented

by the weight generating parameters (r1 to r8) that are used to describe the model structure.

Param. Range Unit Raven table Parameter name

Infiltration:

x1 [0.0,1.0] - LandUseParameterList HMETS_RUNOFF_COEFF

x2 [0.1,3.0] - SoilParameterList B_EXP TOPSOIL

x3 [0.5,3.0] - SoilParameterList HBV_BETA TOPSOIL

Quickflow:

x4 [−5.0,−1.0] 1/d SoilParameterList BASEFLOW_COEFF TOPSOIL = 10.0x4

x5 [0.0,100.0] mm/d SoilParameterList MAX_BASEFLOW_RATE TOPSOIL

x6 [0.5,2.0] - SoilParameterList BASEFLOW_N TOPSOIL

x7 [5.0,10.0] m TerrainClasses TOPMODEL_LAMBDA

Continued on next page
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Table S7 – Continued from previous page

Param. Range Unit Raven table Parameter name

Evaporation:

x8 [0.0,3.0] - SoilParameterList PET_CORRECTION TOPSOIL

x9 [0.0,0.05] frac SoilParameterList SAT_WILT TOPSOIL

x10 [0.0,0.45] frac SoilParameterList FIELD_CAPACITY TOPSOIL =

SAT_WILT TOPSOIL + x10

Baseflow:

x11 [−5.0,−2.0] 1/d SoilParameterList BASEFLOW_COEFF PHREATIC = 10.0x11

x12 [0.5,2.0] - SoilParameterList BASEFLOW_N PHREATIC

Snow balance:

x13 [0.0,0.1] frac GlobalParameter SNOW_SWI_MIN

x14 [0.01,0.3] frac GlobalParameter SNOW_SWI_MAX =

SNOW_SWI_MIN + x14

x15 [0.005,0.1] 1/mm GlobalParameter SWI_REDUCT_COEFF

x16 [−5.0,2.0] ◦C LandUseParameterList DD_REFREEZE_TEMP

x17 [0.0,1.0] - LandUseParameterList REFREEZE_EXP

x18 [0.0,5.0] mm/d/◦C LandUseParameterList REFREEZE_FACTOR

x19 [0.0,0.4] frac GlobalParameter SNOW_SWI

Convolution (surface runoff):

x20 [0.3,20.0] - LandUseParameterList GAMMA_SHAPE

x21 [0.01,5.0] - LandUseParameterList GAMMA_SCALE

Convolution (delayed runoff):

x22 [0.5,13.0] - LandUseParameterList GAMMA_SHAPE2

x23 [0.15,1.5] - LandUseParameterList GAMMA_SCALE2

Potential melt:

x24 [1.5,3.0] mm/d/◦C LandUseParameterList MIN_MELT_FACTOR

x25 [0.0,5.0] mm/d/◦C LandUseParameterList MAX_MELT_FACTOR =

MIN_MELT_FACTOR + x25

x26 [−1.0,1.0] ◦C LandUseParameterList DD_MELT_TEMP

x27 [0.01,0.2] 1/mm LandUseParameterList DD_AGGRADATION

Percolation:

x28 [0.00001,0.02] 1/d SoilParameterList PERC_COEFF TOPSOIL

x35 [0.0,0.02] 1/d SoilParameterList PERC_COEFF PHREATIC

Continued on next page
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Table S7 – Continued from previous page

Param. Range Unit Raven table Parameter name

Rain-snow partitioning:

x31 [−3.0,3.0] ◦C GlobalParameter RAINSNOW_TEMP

x32 [0.5,4.0] ◦C GlobalParameter RAINSNOW_DELTA

Precipitation correction:

x33 [0.8,1.2] - Gauge RAINCORRECTION

x34 [0.8,1.2] - Gauge SNOWCORRECTION

Soil model:

x29 [0.0,0.5] m SoilProfiles thickness TOPSOIL

x30 [0.0,2.0] m SoilProfiles thickness PHREATIC

Model structure:

r1 [0.0,1.0] - HydrologicProcesses weight gen. parameter INFILTRATION

r2 [0.0,1.0] - HydrologicProcesses weight gen. parameter INFILTRATION

r3 [0.0,1.0] - HydrologicProcesses weight gen. parameter QUICKFLOW

r4 [0.0,1.0] - HydrologicProcesses weight gen. parameter QUICKFLOW

r5 [0.0,1.0] - HydrologicProcesses weight gen. parameter SOILEVAP

r6 [0.0,1.0] - HydrologicProcesses weight gen. parameter BASEFLOW

r7 [0.0,1.0] - HydrologicProcesses weight gen. parameter SNOWBALANCE

r8 [0.0,1.0] - HydrologicProcesses weight gen. parameter SNOWBALANCE

S3.7 Blended-Raven150

The Blended-Raven model is the same as the Blended-lumped model setup using the common subbasin discretization pro-

vided through the common routing product. The parameters calibrated are the ones calibrated for the Blended-lumped model

(Table S7 augmented by the routing specific parameters listed in Table S8.
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Table S8: The parameters calibrated for the Blended-Raven model. The parameters are uniformly distributed in the range

given. The Raven table and parameter name can be used to locate the parameter in the Raven setup files. Only the routing

parameters are explicitly listed while all the other parameters are the same as given in the table for the Blended-lumped model

to avoid duplication.

Param. Range Unit Raven table Parameter name

All parameters x1 to x35 and r1 to r8 used for Blended-lumped (Tab. S7)

Routing:

x36 [−1.0,1.0] - SBGroupPropertyMultiplier MANNINGS_N = 5.0x36

x37 [0.1,2.0] - SBGroupPropertyMultiplier RESERVOIR_CREST_WIDTH

S3.8 VIC-Raven155

In GRIP-GL, the VIC and Raven routing model are coupled to simulate rainfall-runoff processes in the Great Lakes region.

The VIC Image Driver of version 5.1.0 is used, and Raven is employed as a routing module for VIC. It should be noted that the

drainage from the bottom soil layer in VIC is named as “baseflow” (Gao et al., 2010); however, this is a misnomer that implies

water directly enters the streams without being delayed in storage (Li et al., 2015). Thus, we use the term “recharge” instead

of “baseflow” to represent this flux component in this context, which is consistent with the terminology used in Raven (Craig160

et al., 2020; Craig, 2022).

In GRIP-GL, VIC model is built at the RDRS-v2 forcing grid-cells with a resolution of 15 km by 15 km. VIC requires DEM,

soil, and land cover data for its parameterization. The input data for VIC are the sub-daily meteorological drivers from the

RDRS-v2 forcing data set, i.e., precipitation, air temperature, atmospheric pressure, incoming shortwave radiation, incoming

longwave radiation, vapor pressure and wind speed. The VIC-generated (quick) runoff and recharge fluxes at the grid-cell scale165

are firstly aggregated into the sub-watershed scale, and then routed to the catchment outlet in terms of in-catchment routing

and river channel routing processes.

Raven routing module consists of in-catchment routing and channel routing processes. VIC-generated runoff is firstly simu-

lated by an in-catchment routing process, which employs a Gamma unit hydrograph to represent the time delay between runoff

and reaching the stream. It then employs channel routing using the diffusive wave method to simulate flood wave propagation170

through the reach. Baseflow is simulated using a linear storage model to delay the recharge component. If catchments contain

lakes, the lake release is solved by a two-parameter lake-type reservoir model in Raven. The routing network for the Raven

routing module is produced by BasinMaker (Han, 2021; Han et al., 2021), and inputs for routing are subbasin-averaged runoff

and baseflow generated by VIC.

VIC has nine parameters for calibration and Raven routing module has five parameters for catchments with lakes and four175

parameters for catchments without lakes for calibration (Tab. S9). These parameters are calibrated simultaneously using DDS
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optimization algorithm (i.e., the VIC and Raven are coupled in calibration, and the outputs of VIC are used as inputs for

Raven routing). The KGE is employed as the calibration objective. The optimization is repeated for 20 trials, each with 1,000

calibration iterations, and the best results out of 20 are reported.

Table S9: The parameters calibrated for the VIC-Raven model. The parameters are uniformly distributed in the range given.

The unit and a brief description of each parameter is given. The parameters are grouped into the nine parameters of the VIC

land-surface scheme and the five parameters calibrated for the Raven routing.

Param. Range Unit Parameter description

VIC Land-Surface Scheme:

infilt (0,5] - Parameter used to describe Variable Infiltration Curve; higher values

will produce more runoff

Ds (0,1] - Fraction of Dsmax parameter at which non-linear recharge occurs

Dsmax (0,30] mm/d Maximum velocity of recharge for each grid cell

Ws (0,1] - Fraction of maximum soil moisture where non-linear recharge occurs

d1 [0.01,0.5] m Depth of top layer

d2 [0.01,2.0] m Depth of first layer

d3 [0.5,3.0] m Depth of second layer

expt [3,30] - Exponent parameter of Brooks-Corey relationship

Ksat [100,1200] mm/d Saturated hydraulic conductivity for each layer

Raven Routing:

Mcoeff [0.2,5.0] - Multiplier to calibrate Manning’s n

Bcoeff [0.1,0.999] 1/d Baseflow coefficient k

Shape [1.1,11.0] - Shape parameter of the gamma unit hydrograph

Tpeak [0.2,2.0] d Time to peak parameter; used to estimate scale parameter of gamma

unit hydrograph

Cwidth [0.5,1.5] - Multiplier to calibrate crest width in the lake-like reservoir model; pa-

rameter ignored if catchment has no lakes

180

S3.9 SWAT-Raven

SWAT simulated vertical flux (total runoff) were fed to the lake and river routing product (Han et al., 2020), integrated into the

Raven modelling framework (Craig et al., 2020), to route the both the vertical flux. The integrated SWAT-Raven model was
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then calibrated by calibrating SWAT-related and Raven-related parameters simultaneously within the given range as shown in

Tab. S10.185

Table S10: The parameters calibrated for the SWAT-Raven model. The parameters are uniformly distributed in the range

given. The unit and a brief description of each parameter is given. The parameters are grouped into the 17 parameters of the

SWAT model and the two parameters calibrated for the Raven routing.

Param. Range Unit Parameter description

SWAT related:

SFTMP [−5,5] °C Snow fall temperature

SMTMP [−5,5] °C Snowfall melt base temperature

SMFMX [2,10] mm/°C/d Maximum melt rate for snow during the year

SMFMN [2,10] mm/°C/d Minimum melt rate for snow during the year

TIMP [0,1] - Snow pack temperature lag factor

CN2 [−20,20] % Percent change of initial SCS runoff curve number for moisture condi-

tion II [-]

GW_DELAY [1,180] d Groundwater delay time

ALPHA_BF [0.01,1] - Base flow alpha factor

GWQMN [10,1000] mm Threshold depth of water in the shallow aquifer required for return flow

to occur

GW_REVAP [0.02,0.2] - Groundwater revap. coefficient

REVAPMN [10,1000] mm Threshold depth of water in the shallow aquifer for ‘revap’ to occur

SURLAG [0.1,24] d Surface runoff lag time

ESCO [0.5,1] - Soil evaporation compensation factor

EPCO [0,1] - Plant uptake compensation factor

OV_N [0.01,0.25] - Manning’s n value for overland flow

SOL_K [−20,20] % Percent change of initial soil hydraulic conductivity [mm/d]

SOL_AWC [−20,20] % Percent change of initial soil available water storage capacity [-]

Raven Routing:

w [0.25,4.0] - Multiplier to adjust crest width of reservoir/lake

n [0.25,4.0] - Multiplier to adjust Manning’s coefficient
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S3.10 WATFLOOD-Raven

WATFLOOD simulated gridded vertical fluxes (runoff and recharge to lower zone storage) were fed to the lake and river routing

product (Han et al., 2020), integrated into the Raven modelling framework (Craig et al., 2020), to route the both vertical fluxes.

The integrated WATFLOOD-Raven model was then calibrated by using WATFLOOD-related and Raven-related parameters190

simultaneously within the given range as shown in Tab. S11.

Table S11: The parameters calibrated for the WATFLOOD-Raven model. The parameters are uniformly distributed in the

range given. The unit and a brief description of each parameter is given. The parameters are grouped into the eleven parameters

of the WATFLOOD model and the six parameters calibrated for the Raven routing.

Param. Range Unit Parameter description

WATFLOOD related:

fm [0.05,0.5] mm/°C/h Melt factor

base [−5,5] °C Base temperature

rec [0.01,10] - Interflow coefficient

ak [0.01,10] - Infiltration coefficient in bare ground

akfs [0.001,1] - Infiltration coefficient in snow covered ground

retn [50,1000] mm Upper zone retention

ak2 [0.01,1] - Recharge coefficient in bare ground

ak2fs [0.001,0.1] - Recharge coefficient in snow covered ground

r3 [1,50] - Overland flow roughness coefficient in bare ground

r3fs [1,10] - Overland flow roughness coefficient in snow covered ground

fpet [1,20] - Interception evaporation factor

Raven Routing:

w [0.25,4.0] - Multiplier to adjust crest width of reservoir/lake

n [0.25,4.0] - Multiplier to adjust Manning’s coefficient

γ-shape [1,10] - Gamma unit hydrograph shape parameter

γ-scale [1,10] - Gamma unit hydrograph scale parameter

bf_k [10−5,1] 1/d Baseflow coefficient

bf_n [1,5] 1/d User specified soil parameter
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S3.11 MESH-CLASS-Raven

The integrated MESH-CLASS-Raven model was then calibrated by using MESH-CLASS-related and Raven-related parame-

ters simultaneously within the given range as shown in Tab. S12.195

Table S12: The parameters calibrated for the MESH-CLASS-Raven model. The parameters are uniformly distributed in

the range given. The unit and a brief description of each parameter is given. The parameters are grouped into the 14 parameters

of the MESH-CLASS model and the 6 parameters calibrated for the Raven routing.

Param. Range Unit Parameter description

MESH-CLASS related (all parameters per GRU):

DRN [0.001,5.0] - Soil drainage index

DDEN [1.0,150.0] - Drainage density

KSAT [1× 10−11 ,1× 10−2 ] m/s Saturated hydraulic conductivity

QA50 [1.0,100.0] W/m2 Reference value of incoming shortwave radiation

ROOT [0.001,5.0] m Annual maximum rooting depth of vegetation category

RSMN [10,450] s/m Minimum stomatal resistance of vegetation category

SDEP [0.001,4.0] m Soil permeable depth

WFR2 [0.01,2.0] - Channel roughness coefficient

SAND [0.0,100.0] % Percentage sand content

CLAY [0.0,100.0] % Percentage clay content

XSLP [0.0001,1.0] % Average overland slope

ZSLN [0.01,1.0] m Limiting snow depth below which coverage is less than 100%

ZPLS [0.01,1.0] - Maximum water ponding depth for snow-covered areas

ZPLG [0.01,1.0] - Maximum water ponding depth for snow-free areas

Raven Routing:

w [0.1,5.0] - Multiplier to adjust crest width of reservoir/lake

n [0.1,5.0] - Multiplier to adjust Manning’s coefficient

γ-shape [1.0,10.0] - Gamma unit hydrograph shape parameter

γ-scale [1.0,10.0] - Gamma unit hydrograph scale parameter

bf_k [1× 10−5 ,1.0] 1/d Baseflow coefficient

bf_n [1.0,5.0] 1/d User specified soil parameter
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S3.12 MESH-SVS-Raven

The MESH-SVS-Raven model was calibrated by using MESH-SVS-related and Raven-related parameters simultaneously

within the given range as shown in Tab. S13. Most of the calibrated parameters correspond to coefficients that are used to

multiply the actual corresponding Model parameter values. This is done in order to limit the number of free parameters during200

calibration, while being able to change the actual parameter values over the full domain and maintain a spatial variability and

coherence for the actual field of parameter values across the domain. This approach has already proven effective in the sense that

model performances could be significantly improved compared to the default version of the model, that the issue of parameter

value equifinality was limited, and that model robustness was satisfying. See for example the studies of Gaborit et al. (2015),

Gaborit et al. (2017), and Mai et al. (2021), where some models were calibrated based on multiplying coefficients instead of205

actual parameter values. One other advantage of such an approach is that none of the MESH-SVS-Raven free parameters used

in calibration are tied to a specific calibration or validation basin, but are applied to the whole region at once. Therefore, no

spatial parameter transfer is required for the validation basins, as long as they are included in the region of interest. Among the

MESH-SVS-Raven parameters, only the “RICK”, “FLZCOEFF”, “PWRC”, “GASH” and “GASC” parameters (see Tab. S13)

correspond to actual model parameter values, but here they correspond in the model to values that are fixed over the whole210

region where the model is applied.

In order to use different parameter values for the agricultural and more natural areas (like grassland, forests, etc.), two

different multipliers were used both for the horizontal and vertical model conductivities, as well as for the evapotranspiration

resistance multipliers (see Tab. S13). This was done because of the artificial tile drains that are often installed in agricultural

areas of the Great-Lakes basin (see Valayamkunnath et al., 2020). These tile drains allow to prevent the crops from being215

flooded by quickly removing water that infiltrated into the soil column, but lead to significantly higher peak flows at the outlet

of agricultural basins, in comparison to their natural regime. Because these tile drains are not explicitly represented in MESH-

SVS-Raven, their effect on simulated flows was represented by allowing hydraulic conductivity values to be significantly

increased in the model, as suggested by De Schepper et al. (2015). This is why higher ranges were allowed for the hydraulic

conductivity multiplier values associated with agricultural areas, compared to the natural areas (see Tab. S13). However, since220

MESH-SVS-Raven cannot simulate processes separately for these two types of areas inside a grid-cell (SVS soil parameters

are valid over the whole grid cell), the actual multiplier value used to adjust SVS horizontal or vertical hydraulic conductivity

consists of a weighted average of the agricultural and “natural” multiplier values, based on the fraction of the grid-cell covered

with agricultural cover, and the rest of the pixel that is assumed as being “natural”, in the sense that it is assumed not to contain

any tile drains. The same was done for the evapotranspiration resistance multipliers, in order to give SVS some flexibility by225

using different adjustments in agricultural and other (natural) areas, for these parameters.

Finally, because we rely here on multiplicative coefficients to adjust the actual parameter values, some restrictions had to

be imposed on the final (after adjustment) actual model parameter values, to ensure that they could not go beyond values with

physical meaning. For example, the Albedo final values have a maximum of 1, the 50% root depth values have to stay below

the 95% root depth values (minus 5cm to ensure numerical stability), and the three soil moisture thresholds, namely the wilting230
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point, the field capacity and the saturation were respectively constrained below fractions of 0.5, 0.75 and 0.95. Because they

were adjusted all together by the same multiplier, their relative order remained unchanged after adjustment and did not need to

be constrained.

Table S13: The parameters calibrated for the MESH-SVS-Raven model. The parameters are uniformly distributed in the

range given. The unit and a brief description of each parameter is given. The parameters are grouped into the 17 parameters

of the MESH-SVS model and the 6 parameters calibrated for the Raven routing. Most of these parameters correspond to

multiplying coefficients. See text for more details.

Param. Range Unit Parameter description

MESH-SVS related:

MLTM [0.5,4] - Snowmelt rate divider

BMOD [0.5,4] - Slope of retention curve multiplier

WMOD [0.1,3] - Soil moisture thresholds multiplier

PMOD [0.1,5] - Soil water suction near saturation multiplier

GRKMO_N [0.2,5] - Horizontal hydraulic conductivity multiplier (natural areas)

GRKMO_A [0.2,40] - Horizontal hydraulic conductivity multiplier (agricultural areas)

KASMO_N [0.2,5] - Vertical hydraulic conductivity multiplier (natural areas)

KASMO_A [0.1,40] - Vertical hydraulic conductivity multiplier (agricultural areas)

RICK [0,1] - Weight given to new evaporation formulation over bare ground

EVM_N [0.2,5] - Evapo-transpiration resistance multiplier (natural areas)

EVM_A [0.2,9] - Evapo-transpiration resistance multiplier (agricultural areas)

SUMOD [0.1,5] - Sublimation resistance multiplier

RTMOD [0.1,3] - 95% root depth multiplier

DMOD [0.1,4] - 50% root depth multiplier

LMOD [0.2,4] - Leaf-Area Index multiplier

AMOD [0.1,5] - Albedo multiplier

ZMOD [0.2,5] - Surface Roughness multiplier

Raven Routing:

FLZCOEFF [1.0× 10−8 ,1.0× 10−3 ] - Baseflow equation multiplicative parameter

PWRC [1.5,7] - Baseflow equation power parameter

R1NC [0.1,9] - Manning values multiplier

GASH [1,32] - Gamma Unit Hydrograph shape parameter

GASC [1,6] - Gamma Unit Hydrograph scale parameter

LACRWD [1.0× 10−3 ,1.0× 103 ] - Lakes’ outlet width multiplier
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S3.13 GEM-Hydro-Watroute235

The GEM-Hydro-Watroute model was not calibrated directly, because it is too expensive in terms of computation time. For

example, a 10-year open-loop simulation with GEM-Hydro-Watroute over the whole Great-Lakes watersheds is about a 100

times slower than a MESH-SVS-Raven similar run. This is due to several reasons. Despite the surface component of GEM-

Hydro-Watroute (named GEM-Surf) is heavily parallelized (with MPI, where a domain grid can be split into numerous subgrids

during computation) and can for example perform simulations over very large domains (even global simulations) in an efficient240

manner, it currently relies on 24-h integration cycles, leading to a lot of time being spent in Input/Output (I/O) processes, and

in model jobs being submitted for each day of simulation on ECCC supercomputers, with the job sometimes waiting in a

queue. In contrast, the surface component of MESH-SVS-Raven (namely MESH-SVS), which is also parallelized with an

MPI approach, is run with a single model integration over the full period, such that less time is therefore spent in I/O and

job submission processes. Therefore, a MESH simulation is actually much faster than a GEM-Surf one, when running over245

grids with a limited number of points, like this is the case for the six regions of the Great-Lakes domain used here, with a

10 km resolution. In this study, the MESH-SVS simulation was about 40 times faster than the GEM-Surf simulation, over one

of the six regions and the 10 km resolution considered here, despite both models were run here on the same CPUs, with 10

CPUs for MESH-SVS. Using 4 CPUs for GEM-Surf was close to the optimum in this case: if asking for more CPUs, the job

could wait more time in the queue during submission. For MESH-SVS, computation time may be further improved with using250

more CPUs, but probably not to a significant degree, since the six regions used here do not contain a high number of 10 km

grid points (the maximum is 4455 grid-points for the Lake Superior region, while the minimum is 2132 for the Ottawa River

region). Therefore, it is very challenging to calibrate GEM-Hydro-Watroute directly already because of its surface component.

Regarding the routing component of GEM-Hydro-Watroute (Watroute), it is also much slower than the Raven routing

scheme. First, Watroute is a grid-based model that has a 1 km resolution in GEM-Hydro-Watroute, and that is not parallelized.255

In the ECCC National Surface and River Prediction System (NSRPS; Durnford et al., 2021) that relies on the GEM-Hydro-

Watroute model, the routing Watroute component is however implemented separately for each of six main Canadian Watersheds

that it currently covers in the NSRPS system, leading to a parallelization of the model by separate model setups. In opposition,

Raven is a subbasin-based routing model. Therefore, it generally includes much less subbasin objects than there are 1 km grid

points inside a given watershed. Raven to Watroute comparisons performed as part of collaborative University of Waterloo-260

ECCC research projects showed that Raven is about 30 times faster than Watroute, over a 60,000 km2 watershed, with a 6-h

Raven time-step and the detailed Raven version, which had 2635 objects compared to Watroute’s 122,441 grid points included

in the basin. But this ratio is based on the model computing time only. However, running Watroute inside of GEM-Hydro-

Watroute also implies a pre-processing phase of GEM-Surf outputs, which can be even more time-consuming than the model

runtime itself. When including Watroute’s pre-processing time, Raven was about 130 times faster than Watroute, for the basin265

described above. However, when comparing Watroute to Raven runtimes on the Lake Huron region of this GRIP-GL project,

Raven was able to perform the 10-y calibration period in 130s, while it took about 55h to do the same for Watroute, which
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represents a ratio of about 1500. It is true that in this case, Watroute was running over the full Lake Huron watershed, while

Raven was only simulating the calibration and validation basins, which in total, represent about half of the Lake Huron region.

Moreover, during these 55h of the total Watroute runtime, about 76% was spent on the pre-processing, highlighting where270

the emphasis should be put in order to decrease Watroute computation time. It was noticed that Watroute pre-processing time

could be improved significantly, following some previous tests. But even if considering only Watroute true model computation

time over half of Lake Huron region, Raven would still be about 200 times faster than Watroute in this case. The difference

with the ratio of 30 mentioned above probably comes from the fact that the common Raven setup used for GRIP-GL does not

correspond to the most possible detailed version of the model, because lakes smaller than 5 km2 were removed from the setup,275

allowing to significantly reduce the total number of subbasins in the Raven setup used for GRIP-GL. Nevertheless, the Raven

setup used here proved to be able to simulate hydrographs at gauge locations in a very satisfactory manner during this project.

However, as mentioned in the main part of this study, GEM-Hydro-Watroute computation time is generally not an issue when

it comes to perform large-scale forecasts, where the lead-time is generally limited to about 16 days. GEM-Hydro-Watroute can

still perform 10 years open-loop runs over large watersheds in a reasonable time (about 7 to 10 days), given that this type of280

simulations is generally not needed frequently and that tests needed for model development can be done over shorter periods

and smaller domains. It has also to be mentioned that Watroute pre-processing time is not linearly correlated with the size

of the domain, and large domains can have a pre-processing time quite similar to the one of small domains. However, this

computation time is definitely an issue when it comes to model calibration. Despite different approaches have been tried in the

past to calibrate GEM-Hydro-Watroute (see main part of the manuscript), in this study the idea is to emulate GEM-Surf with285

MESH-SVS, and to replace Watroute by Raven during calibration. This is done because using a detailed routing model is still

wanted in order to be able to compute streamflow performances even for small watersheds. Moreover, it is assumed that most

of the bias and dynamics of streamflow simulations are controlled by the surface component, and not by the routing model,

despite the latter can of course control the timing of peak flows and the dynamics of flow recessions, through the Manning and

baseflow parameters, for example.290

Therefore, as part of this work, the SVS-related parameters that were calibrated with MESH-SVS-Raven were transferred

directly to SVS in GEM-Hydro-Watroute. For the routing parameters, only the calibrated baseflow parameters were directly

transferred to GEM-Hydro-Watroute afterwards. Indeed, Watroute does not rely on the Gamma Unit Hydrograph convolution

to route surface runoff to the streams, and does not rely on the same lake outflow equation than Raven (thus, not all lakes are

explicitly represented in Watroute), and the default Manning values in Watroute are not computed the same way as in Raven.295

However, because Watroute default Manning values may not be optimal, especially in conjunction with the calibrated baseflow

parameters, they were manually tuned afterwards over each of the six regions, by using multiplicative coefficients applied to the

default (spatially varying) values (see Tab. S14), similarly to what was done during the Raven calibration. For this, a few trials

(about 4 to 6 generally) were realized by running Watroute over 2 years of the calibration period, when forced by the calibrated

GEM-Surf version and when using the calibrated baseflow parameters. To do so, Watroute’s pre-processing therefore only300

had to be done once, and a two-year Watroute run without the pre-processing only took about 2.5h. The final multiplicative

coefficients retained to adjust Watroute’s original (default) Manning values, after these manual adjustments, range between
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0.5 and 2 across the six regions, with the value of 1 (original Watroute Manning values remain unchanged) being retained

for three out of the six regions. A limited sensitivity of the simulated flow performances to the adjusted Manning values

moreover confirmed the stronger importance of the LSS parameters compared to the routing scheme (especially Manning305

values) parameters used here, which only control the timing of simulated streamflow to some degree, and not its general bias.

The approach employed here to calibrate GEM-Hydro-Watroute by emulating the surface component of GEM-Surf with

MESH-SVS and employing the faster routing scheme Raven in place of Watroute during calibration seemed relevant, as long

as the two models could produce similar streamflow simulations. For this reason and during this project, all subgrid-scale

lakes were neglected when simulating the surface with MESH-SVS or GEM-Surf. Indeed, with GEM-Surf (see Bernier et al.,310

2011), a total of five different types of surfaces can be simulated, including land, water, and urban areas, which are the three

different types of surfaces present in the Great-Lakes region. However, with the current version of MESH, only the land type

can be simulated when using the SVS LSS. Work is under way to integrate additional GEM-Surf routines in MESH, in order

to represent the other types of surfaces that GEM-Surf can simulate. Note that in the current GEM-Hydro-Watroute model

used for hydrology simulations at ECCC, urban areas are not yet represented with the urban component of GEM-Surf, but315

are represented with SVS directly, assuming a fixed ratio of 33% imperviousness for urban cover, based on Gaborit et al.

(2013). But because of this, and in order to obtain GEM-Surf and MESH-SVS simulations that are as close as possible to

favor parameter transfer between the two, the subgrid-scale lakes were neglected in GEM-Surf, which means that any grid-cell

having a fraction of water lower than 100% was in fact assumed to contain 100% of land instead. This resulted in almost 100%

of the calibration/validation basins studied here to be covered at 100% by land in both MESH-SVS and GEM-Surf. In terms320

of streamflow impact, neglecting these subgrid-scale lakes in GEM-Surf only has a minor effect on GEM-Hydro-Watroute

simulations across the Great Lakes, probably because of the relatively small role that lake evaporation plays in the overall

water balance of the terrestrial watersheds of the Great Lakes (i.e., with the exception of the five Great Lakes themselves).

Moreover, since land evapotranspiration rates are generally similar to overlake evaporation in this region, replacing water

surfaces with land surfaces does not have a strong impact on the resulting streamflow simulations in this region (not shown325

here).

However, strong differences were noticed for some flow gauges, between the simulations obtained with the default versions

of MESH-SVS-Raven and GEM-Hydro-Watroute. For some gauges, these differences were partly due to the fact that the Raven

basin delineation was different than one used for Watroute. However, strong delineation differences between the two models

was quite rare and only affected a few of the total 212 calibration/validation basins used in this project. Of course, differences330

can arise from the different routing models themselves, because they might not represent the same river and lake network,

and because they might not represent the same processes: for example, Raven uses a Gamma Unit Hydrograph convolution

approach in order to route the surface runoff generated by the LSS, into the closest stream. In Watroute, surface runoff is

assumed to enter the stream of the current grid-cell instantaneously, and the fact that Watroute assumes that a stream is present

in every grid-cell can, to some degree, represent an approximation of the transport of surface/subsurface runoff between its335

source and an actual stream. However, these routing model differences should only affect streamflow timing, and not the

general streamflow bias, for basins having close delineation boundaries between the two routing schemes. This affirmation
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is especially true given that subgrid-scale lakes were neglected in the MESH-SVS and GEM-Surf surface simulations of this

project (see above). Therefore, evaporation losses from lakes and rivers were not taken into account in both the Raven and

Watroute simulations performed here, because such losses, when coupling Watroute or Raven to MESH-SVS or GEM-Surf,340

are included in the aggregated surface runoff of a surface grid cell. Surface runoff over land can however not be negative with

SVS, because the evapotranspiration losses are already removed from the SVS vegetation and soil storage compartments. And

the main difference that can arise between Raven and Watroute simulations, when forced by the same surface fluxes and in

terms of general flow bias, is due to the treatment of evaporation in the routing scheme. Therefore, in this case, because no

evaporation loss is provided to either routing scheme, and because they both close their water balance almost perfectly, the345

routing schemes can not be responsible for strong differences regarding their flow simulations’ biases (again, assuming that

they have similar delineations for a given watershed, which is generally the case here).

Regarding MESH-SVS and GEM-Surf simulations, differences existing between the two are well known and were already

noticed during the GRIP-E project (see Mai et al., 2021). However, these differences were generally small and both models

still produced very similar flow simulations in this case. After investigation, it was found that there was an issue regarding the350

reading of vegetation cover fractions from the geophysical file, in MESH-SVS-Raven. As a consequence, MESH-SVS did not

use the correct vegetation cover during GRIP-GL, and seems to have assigned the same vegetation fractions for all points inside

a region, based on one of the points of the region. This issue did not occur during GRIP-E, because it is related to the new

NetCDF format used in GRIP-GL for the MESH geophysical input file. This is a strong problem for the approach used here,

because SVS vegetation classes are associated to specific vegetation parameters. Therefore, the calibrated parameters related to355

vegetation properties (like LAI, stomatal resistance, root dephts, etc; see Tab. S13) that were obtained with MESH-SVS-Raven

were not optimal for GEM-Hydro-Watroute.

This probably explains the strong flow bias differences between the default versions of the two models, for some regions, as

well as most of the strong loss of performance when transferring the SVS and some routing parameters that were calibrated

with MESH-SVS-Raven, into GEM-Hydro-Watroute. But despite this issue, the approach employed here to calibrate GEM-360

Hydro-Watroute seems promising, in view of the results obtained in this study. The fact that the parameters calibrated with

MESH-SVS-Raven, when transferred into GEM-Hydro-Watroute, could still generally improve upon the default version of the

model, is probably due to the fact the calibrated SVS parameters related to soil processes, for example hydraulic conductivity,

were more appropriate than the default values used in GEM-Hydro, especially for agricultural areas with tile drains, that are

not represented explicitly in the model, yet. However, work is under way to fix the issue mentioned above, as well as revising365

the strategy for some calibration parameters, and restart all MESH-SVS-Raven calibrations, GEM-Hydro simulations, and the

auxiliary variables’ evaluation, in order to come up with a calibration strategy for GEM-Hydro-Watroute, that would allow

to improve or maintain the performances regarding surface fluxes and auxiliary variables, in view of being able to couple a

GEM-Hydro-Watroute model that was calibrated by targeting streamflow performances, with an atmospheric model, which is

the long-term goal of this work.370
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Table S14: The parameters manually tuned for the GEM-Hydro-Watroute model. Some of the parameters calibrated with

MESH-SVS-Raven were transferred into GEM-Hydro-Watroute, and the Watroute Manning values were then further manually

tuned afterwards. See text for more details.

Param. Range Unit Parameter description

Watroute Routing:

MULN [0.2,5] - Manning values multiplier

S4 Model performance for streamflow in KGE components

The following figures show the model performance for the three Kling-Gupta efficiency (KGE) components of variability

(KGEα; Fig. S3), bias (KGEβ ; Fig. S4) and correlation (KGEr; Fig. S5). The components are transformed in a way that all

have their optimal (maximal) value at 1 similar to the overall KGE for better comparability. The metrics are defined in the main375

manuscript (Eq. 1 to 3). All the component performance values can be visualized on the project website (www.hydrohub.org/

grip-gl/maps_streamflow.html).

S5 Streamflow gauging stations

Table S15 contains the list of the 212 gauging stations including their area, region they are located in, objectives they were

selected for, and whether they were used for calibration or validation.380
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Figure S3. Model performance (variability) regarding streamflow. The performance is shown for (A) the 141 calibration stations and

(B) the 71 validation locations for the calibration period. The results for the validation period of the calibration and validation sites are

shown in panels (C) and (D), respectively. In summary, panel (B) shows spatial validation, panel (C) shows temporal validation, and panel

(D) shows spatio-temporal validation across the locations (x-axis) and the 13 models (y-axis). The locations are grouped according to their

location within the six watersheds (vertical black lines) of Lake Erie (ERI), Lake Huron (HUR), Lake Michigan (MIC), Lake Ontario (ONT),

Ottawa River (OTT), and Lake Superior (SUP). The horizontal black lines separate the machine-learning based global LSTM model from

the models that are calibrated locally and the models that are calibrated per region. The performance is quantified using the component

α of the Kling-Gupta efficiency (KGEα) which determines the relative variability of the simulations and observations. The median KGEα

performance of each model for each of the four evaluation scenarios is added as labels to each panel. The thresholds for medium, good,

and excellent performance classifications are added as labels to the colorbar. The performance regarding KGE can be found in Fig. 3 in the

main manuscript. For the spatial distribution of these results as well as the simulated and observed hydrographs please refer to the website

(www.hydrohub.org/grip-gl/maps_streamflow.html).
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Figure S4. Model performance (bias) regarding streamflow. The performance is shown for (A) the 141 calibration stations and (B) the 71

validation locations for the calibration period. The results for the validation period of the calibration and validation sites are shown in panels

(C) and (D), respectively. In summary, panel (B) shows spatial validation, panel (C) shows temporal validation, and panel (D) shows spatio-

temporal validation across the locations (x-axis) and the 13 models (y-axis). The locations are grouped according to their location within

the six watersheds (vertical black lines) of Lake Erie (ERI), Lake Huron (HUR), Lake Michigan (MIC), Lake Ontario (ONT), Ottawa River

(OTT), and Lake Superior (SUP). The horizontal black lines separate the machine-learning based global LSTM model from the models that

are calibrated locally and the models that are calibrated per region. The performance is quantified using the component β of the Kling-Gupta

efficiency (KGEβ) which determines the bias between simulations and observations. The median KGEβ performance of each model for each

of the four evaluation scenarios is added as labels to each panel. The thresholds for medium, good, and excellent performance classifications

are added as labels to the colorbar. The performance regarding KGE can be found in Fig. 3 in the main manuscript. For the spatial distribution

of these results as well as the simulated and observed hydrographs please refer to the website (www.hydrohub.org/grip-gl/maps_streamflow.

html).
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Figure S5. Model performance (correlation) regarding streamflow. The performance is shown for (A) the 141 calibration stations and

(B) the 71 validation locations for the calibration period. The results for the validation period of the calibration and validation sites are

shown in panels (C) and (D), respectively. In summary, panel (B) shows spatial validation, panel (C) shows temporal validation, and panel

(D) shows spatio-temporal validation across the locations (x-axis) and the 13 models (y-axis). The locations are grouped according to their

location within the six watersheds (vertical black lines) of Lake Erie (ERI), Lake Huron (HUR), Lake Michigan (MIC), Lake Ontario (ONT),

Ottawa River (OTT), and Lake Superior (SUP). The horizontal black lines separate the machine-learning based global LSTM model from

the models that are calibrated locally and the models that are calibrated per region. The performance is quantified using the component r of

the Kling-Gupta efficiency (KGEr) which determines the Pearson correlation between the simulations and observations. The median KGEr

performance of each model for each of the four evaluation scenarios is added as labels to each panel. The thresholds for medium, good,

and excellent performance classifications are added as labels to the colorbar. The performance regarding KGE can be found in Fig. 3 in the

main manuscript. For the spatial distribution of these results as well as the simulated and observed hydrographs please refer to the website

(www.hydrohub.org/grip-gl/maps_streamflow.html).
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Table S15: Streamflow gauges used in this study. The 212 streamflow gauges are given including their gauge ID either specified by Water Survey

Canada or U.S. Geological Survey and their name. The drainage area upstream of each gauge is specified as derived by the routing product. The re-

gion specifies in which of the six watersheds comprising the great Lakes the watershed is located in (ERI=Lake Erie, HUR=Lake Huron, MIC=Lake

Michigan, SUP=Lake Superior, ONT=Lake Ontario, OTT=Ottawa River). The objective for each basin is assigned to be 1 if the watershed is of

low-human impact while it is assigned to 2 if the gauge station is most downstream to one of the five lakes or the Ottawa River. Calibration basins

(141) are specified with ‘Cal’ and validation basins (71) are specified with ‘Val’ in the column ‘Cal/Val’. Furthermore, the mean elevation and

average annual runoff of each basin is given.

Gauge Name Derived Region Obj. Cal/ Elev. Avg. Annual

ID Area [km2] Val [m] Runoff [mm]

02AB006 KAMINISTIQUIA RIVER AT KAMINISTIQUIA 6576 SUP 2 Val 299 282

02AB017 WHITEFISH RIVER AT NOLALU 229 SUP 1,2 Cal 321 295

02AB021 CURRENT RIVER AT STEPSTONE 404 SUP 1,2 Val 333 335

02AC001 WOLF RIVER AT HIGHWAY NO. 17 634 SUP 1,2 Cal 184 305

02AC002 BLACK STURGEON RIVER AT HIGHWAY NO. 17 2733 SUP 1,2 Cal 188 268

02AD010 BLACKWATER RIVER AT BEARDMORE 718 SUP 1 Cal 288 353

02AD012 NIPIGON RIVER AT ALEXANDER GS 25112 SUP 2 Val 165 515

02AE001 GRAVEL RIVER NEAR CAVERS 624 SUP 1,2 Val 240 392

02BA003 LITTLE PIC RIVER NEAR COLDWELL 1378 SUP 1,2 Cal 195 364

02BA006 STEEL RIVER BELOW SANTOY LAKE 1219 SUP 1,2 Val 196 384

02BB003 PIC RIVER NEAR MARATHON 4214 SUP 1,2 Cal 189 365

02BB004 CEDAR CREEK NEAR HEMLO 214 SUP 2 Cal 297 319

02BC004 WHITE RIVER BELOW WHITE LAKE 4129 SUP 2 Val 306 352

02BC006 Pukaskwa River BELOW FOX RIVER 454 SUP 2 Val 348 472

02BD002 MICHIPICOTEN RIVER AT HIGH FALLS 5104 SUP 2 Cal 193 381

02BD007 MAGPIE RIVER NEAR WAWA 1979 SUP 2 Val 262 401

02BE002 MONTREAL RIVER NEAR MONTREAL RIVER HARBOUR 3369 SUP 2 Val 256 392

02BF001 BATCHAWANA RIVER NEAR BATCHAWANA 1225 SUP 1,2 Cal 220 541

02BF002 GOULAIS RIVER NEAR SEARCHMONT 1181 SUP 1 Cal 298 477

02BF014 GOULAIS RIVER NEAR KIRBYS CORNER 1826 SUP 2 Val 189 539

02CA007 THESSALON RIVER NEAR POPLAR DALE 255 HUR 2 Val 211 483

Continued on next page
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Table S15 – Continued from previous page

Gauge Name Derived Region Obj. Cal/ Elev. Avg. Annual

ID Area [km2] Val [m] Runoff [mm]

02CB003 AUBINADONG RIVER ABOVE SESABIC CREEK 1481 HUR 1,2 Cal 347 362

02CC005 LITTLE WHITE RIVER NEAR BELLINGHAM 1954 HUR 2 Cal 218 406

02CD001 SERPENT RIVER AT HIGHWAY NO. 17 1252 HUR 2 Cal 178 464

02CE002 AUX SABLES RIVER AT MASSEY 1276 HUR 2 Val 170 420

02CF007 WHITSON RIVER AT CHELMSFORD 244 HUR 1,2 Cal 265 347

02CF010 ONAPING RIVER NEAR LEVACK 1651 HUR 2 Val 306 221

02CF011 VERMILION RIVER NEAR VAL CARON 701 HUR 1,2 Val 278 398

02DB005 WANAPITEI RIVER NEAR WANUP 3318 HUR 2 Cal 220 375

02DC012 STURGEON RIVER AT UPPER GOOSE FALLS 1281 HUR 1 Cal 256 406

02DD010 FRENCH RIVER AT DRY PINE BAY 18222 HUR 2 Cal 184 449

02EA005 NORTH MAGNETAWAN RIVER NEAR BURKS FALLS 325 HUR 1 Cal 309 593

02EA011 MAGNETAWAN RIVER NEAR BRITT 2633 HUR 2 Cal 178 509

02EA018 MAGNETAWAN RIVER NEAR EMSDALE 397 HUR 1 Val 332 586

02EB011 MOON RIVER AT HIGHWAY NO. 400 4527 HUR 2 Cal 209 182

02EB014 OXTONGUE RIVER NEAR DWIGHT 571 HUR 1 Cal 324 576

02EC002 BLACK RIVER NEAR WASHAGO 1451 HUR 1 Cal 208 514

02EC003 SEVERN RIVER AT SWIFT RAPIDS 5793 HUR 2 Cal 194 317

02EC011 BEAVER RIVER NEAR BEAVERTON 300 HUR 1 Val 227 347

02EC018 PEFFERLAW BROOK NEAR UDORA 348 HUR 1 Cal 229 290

02EC019 BLACK RIVER NEAR VANKOUGHNET 385 HUR 1 Val 275 588

02ED003 NOTTAWASAGA RIVER NEAR BAXTER 1295 HUR 1 Cal 189 270

02ED015 MAD RIVER AT AVENING 255 HUR 1 Cal 238 505

02ED024 North River at the Falls 249 HUR 1,2 Cal 171 459

02ED027 Nottawasaga River near Edenvale 2735 HUR 2 Val 163 324

02ED029 INNISFIL CREEK NEAR ALLISTON 457 HUR 1 Cal 202 226

02ED032 WILLOW CREEK NEAR MINESING 228 HUR 1 Val 192 351

02ED101 NOTTAWASAGA RIVER NEAR ALLISTON 337 HUR 1 Cal 222 315

02ED102 Boyne River at Earl Rowe Park 239 HUR 1 Cal 211 313

02FA001 SAUBLE RIVER AT SAUBLE FALLS 927 HUR 2 Cal 144 538

Continued on next page
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Table S15 – Continued from previous page

Gauge Name Derived Region Obj. Cal/ Elev. Avg. Annual

ID Area [km2] Val [m] Runoff [mm]

02FA004 Sauble River at Allenford 349 HUR 1 Val 217 532

02FB009 BEAVER RIVER NEAR CLARKSBURG 586 HUR 2 Cal 225 510

02FB010 BIGHEAD RIVER NEAR MEAFORD 310 HUR 2 Cal 228 590

02FC001 SAUGEEN RIVER NEAR PORT ELGIN 3758 HUR 2 Cal 191 540

02FC016 SAUGEEN RIVER ABOVE DURHAM 348 HUR 1 Val 360 492

02FE008 Middle Maitland River near Belgrave 673 HUR 1 Val 309 489

02FE009 SOUTH MAITLAND RIVER AT SUMMERHILL 388 HUR 1 Cal 262 559

02FE010 BOYLE DRAIN NEAR ATWOOD 209 HUR 1 Val 353 456

02FE013 MIDDLE MAITLAND RIVER ABOVE ETHEL 402 HUR 1 Val 354 473

02FE015 Maitland River at Benmiller 2558 HUR 2 Cal 213 500

02FF002 AUSABLE RIVER NEAR SPRINGBANK 804 HUR 2 Val 201 407

02GA010 NITH RIVER NEAR CANNING 973 ERI 1 Cal 248 391

02GA018 NITH RIVER AT NEW HAMBURG 543 ERI 1 Cal 331 385

02GA038 NITH RIVER ABOVE NITHBURG 322 ERI 1 Cal 357 441

02GA047 SPEED RIVER AT CAMBRIDGE 782 ERI 1 Val 267 365

02GB001 GRAND RIVER AT BRANTFORD 5149 ERI 2 Cal 189 388

02GB007 FAIRCHILD CREEK NEAR BRANTFORD 389 ERI 1,2 Val 196 309

02GC002 KETTLE CREEK AT ST. THOMAS 334 ERI 1,2 Cal 205 355

02GC007 BIG CREEK NEAR WALSINGHAM 573 ERI 2 Cal 183 398

02GC010 BIG OTTER CREEK AT TILLSONBURG 393 ERI 1 Val 207 388

02GC026 Big Otter Creek near Calton 681 ERI 2 Val 181 418

02GD004 MIDDLE THAMES RIVER AT THAMESFORD 297 ERI 1 Cal 268 412

02GE003 THAMES RIVER AT THAMESVILLE 4498 ERI 2 Cal 171 416

02GE007 MCGREGOR CREEK NEAR CHATHAM 213 ERI 1,2 Val 161 333

02GG002 Sydenham River near Alvinston 712 ERI 1 Cal 195 349

02GG003 Sydenham River at Florence 1155 ERI 1,2 Cal 176 336

02GG006 BEAR CREEK NEAR PETROLIA 238 ERI 1 Cal 194 365

02GG009 BEAR CREEK BELOW BRIGDEN 520 ERI 1,2 Cal 187 334

02GG013 BLACK CREEK NEAR BRADSHAW 219 ERI 1,2 Val 183 386

Continued on next page
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Gauge Name Derived Region Obj. Cal/ Elev. Avg. Annual

ID Area [km2] Val [m] Runoff [mm]

02HA006 TWENTY MILE CREEK AT BALLS FALLS 320 ONT 1,2 Cal 149 353

02HA007 WELLAND RIVER BELOW CAISTOR CORNERS 205 ERI 2 Cal 176 345

02HB011 BRONTE CREEK NEAR ZIMMERMAN 221 ONT 2 Val 161 338

02HB029 CREDIT RIVER AT STREETSVILLE 792 ONT 1,2 Val 149 369

02HC003 HUMBER RIVER AT WESTON 834 ONT 2 Cal 120 287

02HC024 DON RIVER AT TODMORDEN 344 ONT 2 Cal 76 428

02HC025 HUMBER RIVER AT ELDER MILLS 291 ONT 1 Val 158 275

02HC030 ETOBICOKE CREEK BELOW QUEEN ELIZABETH HIGHWAY 192 ONT 1,2 Cal 91 427

02HC049 Duffins Creek at Ajax 284 ONT 1,2 Cal 76 354

02HD012 Ganaraska River above Dale 243 ONT 1,2 Cal 105 435

02HF002 GULL RIVER AT NORLAND 1730 ONT 2 Val 269 517

02HF003 BURNT RIVER NEAR BURNT RIVER 1270 ONT 2 Cal 265 495

02HJ003 OUSE RIVER NEAR WESTWOOD 292 ONT 2 Val 189 339

02HK003 CROWE RIVER AT MARMORA 1892 ONT 2 Cal 158 402

02HL001 MOIRA RIVER NEAR FOXBORO 2673 ONT 2 Cal 84 386

02HL003 BLACK RIVER NEAR ACTINOLITE 413 ONT 1 Cal 155 415

02HL004 SKOOTAMATTA RIVER NEAR ACTINOLITE 672 ONT 1 Cal 150 397

02HL005 MOIRA RIVER NEAR DELORO 308 ONT 1 Cal 189 431

02HL008 CLARE RIVER NEAR BOGART 315 ONT 1 Val 142 414

02HM003 SALMON RIVER NEAR SHANNONVILLE 989 ONT 2 Cal 83 420

02HM007 Napanee River at Camden East 782 ONT 2 Cal 119 416

02HM010 SALMON RIVER AT TAMWORTH 588 ONT 1 Val 154 414

02JB013 KINOJEVIS (RIVIERE) A 0.3 KM EN AMONT DU PONT-ROUTE

A CLERICY

2531 OTT 1 Val 262 478

02JC008 BLANCHE RIVER ABOVE ENGLEHART 1801 OTT 1 Cal 204 425

02JE027 AMABLE DU FOND RIVER AT KIOSK 706 OTT 1 Val 291 504

02KC018 INDIAN RIVER AT PEMBROKE 497 OTT 1 Val 120 376

02KD002 YORK RIVER NEAR BANCROFT 846 OTT 1 Val 335 513

02KF005 OTTAWA RIVER AT BRITANNIA 89925 OTT 2 Val 53 446

Continued on next page
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Gauge Name Derived Region Obj. Cal/ Elev. Avg. Annual

ID Area [km2] Val [m] Runoff [mm]

02KF011 CARP RIVER NEAR KINBURN 266 OTT 1 Cal 87 389

02LA004 RIDEAU RIVER AT OTTAWA 4058 OTT 2 Cal 45 380

02LA006 KEMPTVILLE CREEK NEAR KEMPTVILLE 415 OTT 2 Cal 93 395

02LA007 JOCK RIVER NEAR RICHMOND 456 OTT 1,2 Cal 80 400

02LB005 SOUTH NATION RIVER NEAR PLANTAGENET SPRINGS 3819 OTT 2 Cal 33 430

02LB007 SOUTH NATION RIVER AT SPENCERVILLE 277 OTT 1 Val 89 435

02LB008 BEAR BROOK NEAR BOURGET 427 OTT 1 Cal 55 461

02LB032 RIGAUD RIVER NEAR ST. EUGENE 301 OTT 1,2 Val 42 621

02LC008 NORD (RIVIERE DU) A 4.8 KM EN AMONT DU PONT DU C.N. A

SAINT-JEROME

1161 OTT 2 Val 88 684

02LC029 ROUGE (RIVIERE) EN AMONT DE LA CHUTE MCNEIL 5530 OTT 2 Val 131 631

02LD005 PETITE NATION (RIVIERE DE LA) AU PONT A 1.6 KM EN

AMONT DE RIPON

1254 OTT 1,2 Val 158 559

02LE024 LIEVRE (RIVIERE DU) A 2.2 KM EN AMONT DU PONT-ROUTE

311 A LAC-SAINT-PAUL

4568 OTT 2 Val 240 594

02LE025 KIAMIKA (RIVIERE) A CHUTE-SAINT-PHILIPPE 882 OTT 2 Val 239 602

02LG005 GATINEAU (RIVIERE) AUX RAPIDES CEIZUR 6923 OTT 1,2 Val 221 572

04010500 PIGEON RIVER AT MIDDLE FALLS NR GRAND PORTAGE MN 1561 SUP 2 Cal 238 265

04015330 KNIFE RIVER NEAR TWO HARBORS MN 217 SUP 1,2 Val 183 350

04024000 ST. LOUIS RIVER AT SCANLON MN 8964 SUP 2 Cal 301 233

04024430 NEMADJI RIVER NEAR SOUTH SUPERIOR WI 1127 SUP 1,2 Cal 188 296

04027000 BAD RIVER NEAR ODANAH WI 1527 SUP 1,2 Cal 222 356

04027500 WHITE RIVER NEAR ASHLAND WI 735 SUP 2 Cal 226 302

04029990 Montreal River at Saxon Falls near Saxon WI 693 SUP 2 Cal 282 426

04031000 BLACK R NR BESSEMER MI 510 SUP 1,2 Cal 357 427

04040000 ONTONAGON R NR ROCKLAND MI 3491 SUP 2 Cal 200 315

04040500 STURGEON RIVER NEAR SIDNAW MI 477 SUP 1 Cal 378 392

04041500 STURGEON RIVER NEAR ALSTON MI 904 SUP 2 Val 233 380

04044724 Au Train River at Forest Lake MI 233 SUP 2 Cal 182 422

Continued on next page
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Gauge Name Derived Region Obj. Cal/ Elev. Avg. Annual

ID Area [km2] Val [m] Runoff [mm]

04045500 TAHQUAMENON RIVER NR TAHQUAMENON PARADISE MI 2007 SUP 1,2 Cal 186 383

04056500 MANISTIQUE RIVER NR MANISTIQUE MI 2907 MIC 1,2 Cal 189 440

04057510 STURGEON RIVER NR NAHMA JUNCTION MI 516 MIC 1,2 Val 190 330

04059000 ESCANABA RIVER AT CORNELL MI 2265 MIC 2 Cal 221 272

04059500 FORD RIVER NR HYDE MI 1217 MIC 1,2 Cal 198 249

04066500 PIKE RIVER AT AMBERG WI 644 MIC 1 Cal 265 256

04067500 MENOMINEE RIVER NEAR MCALLISTER WI 10095 MIC 2 Cal 175 267

04067958 Peshtigo River near Wabeno WI 1217 MIC 1 Cal 306 277

04069500 PESHTIGO RIVER AT PESHTIGO WI 2810 MIC 2 Val 172 263

04071765 Oconto River near Oconto WI 2407 MIC 2 Cal 170 242

04072150 Duck Creek near Howard WI 271 MIC 2 Cal 169 199

04074950 WOLF RIVER AT LANGLADE WI 1206 MIC 1 Cal 383 290

04084500 FOX R AT RAPIDE CROCHE DAM NEAR WRIGHTSTOWN WI 15686 MIC 2 Val 152 258

04085200 KEWAUNEE RIVER NEAR KEWAUNEE WI 247 MIC 1,2 Cal 181 205

04085427 MANITOWOC RIVER AT MANITOWOC WI 1355 MIC 2 Cal 169 219

04086000 SHEBOYGAN RIVER AT SHEBOYGAN WI 1109 MIC 2 Cal 171 275

04087000 MILWAUKEE RIVER AT MILWAUKEE WI 1752 MIC 2 Cal 153 287

04087120 MENOMONEE RIVER AT WAUWATOSA WI 334 MIC 2 Val 186 350

04087240 ROOT RIVER AT RACINE WI 538 MIC 2 Cal 159 311

04093000 DEEP RIVER AT LAKE GEORGE OUTLET AT HOBART IN 346 MIC 2 Cal 155 421

04096015 Galien River near Sawyer MI 199 MIC 2 Val 165 380

04101500 ST. JOSEPH RIVER AT NILES MI 9962 MIC 2 Cal 188 355

04101800 DOWAGIAC RIVER AT SUMNERVILLE MI 635 MIC 2 Cal 177 413

04102500 PAW PAW RIVER AT RIVERSIDE MI 940 MIC 2 Cal 178 424

04102700 SOUTH BRANCH BLACK RIVER NEAR BANGOR MI 237 MIC 2 Cal 189 452

04102776 Middle Branch Black River near South Haven MI 214 MIC 1,2 Val 186 446

04108660 Kalamazoo River at New Richmond MI 5536 MIC 2 Val 147 403

04119000 GRAND RIVER AT GRAND RAPIDS MI 13324 MIC 2 Cal 162 311

04121970 Muskegon River near Croton MI 5992 MIC 2 Cal 206 314

Continued on next page
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Gauge Name Derived Region Obj. Cal/ Elev. Avg. Annual

ID Area [km2] Val [m] Runoff [mm]

04122200 WHITE RIVER NEAR WHITEHALL MI 1090 MIC 1,2 Cal 187 387

04122500 PERE MARQUETTE RIVER AT SCOTTVILLE MI 1805 MIC 1,2 Cal 153 393

04124000 Manistee River near Sherman MI 2297 MIC 1 Cal 251 434

04125460 Pine River at High School Bridge nr Hoxeyville MI 645 MIC 1 Cal 255 415

04125550 Manistee River near Wellston MI 3586 MIC 2 Val 200 421

04126740 Platte River at Honor MI 341 MIC 2 Cal 167 346

04126970 Boardman R above Brown Bridge Road nr Mayfield MI 385 MIC 1,2 Cal 249 295

04133501 Thunder Bay River at Herron Road near Bolton MI 1461 HUR 2 Val 196 280

04136000 Au Sable River near Red Oak MI 2937 HUR 1 Cal 293 245

04137500 Au Sable River near Au Sable MI 4622 HUR 2 Cal 175 265

04142000 RIFLE RIVER NEAR STERLING MI 795 HUR 2 Cal 205 361

04159492 Black River near Jeddo MI 1147 ERI 2 Cal 195 225

04159900 Mill Creek near Avoca MI 470 ERI 2 Val 212 214

04160600 BELLE RIVER AT MEMPHIS MI 383 ERI 2 Cal 218 247

04165500 CLINTON RIVER AT MORAVIAN DRIVE AT MT. CLEMENS MI 1852 ERI 2 Cal 168 320

04166500 RIVER ROUGE AT DETROIT MI 479 ERI 2 Cal 186 294

04168400 Lower River Rouge at Dearborn MI 272 ERI 2 Val 173 396

04174500 HURON RIVER AT ANN ARBOR MI 1826 ERI 2 Cal 236 255

04176500 RIVER RAISIN NEAR MONROE MI 2822 ERI 2 Cal 177 280

04177000 OTTAWA RIVER At UNIVERSITY OF TOLEDO TOLEDO OH 336 ERI 2 Cal 178 297

04185000 Tiffin River at Stryker OH 988 ERI 1 Cal 203 324

04193500 MAUMEE R AT WATERVILLE OH 16393 ERI 2 Cal 162 345

04195500 PORTAGE R AT WOODVILLE OH 1099 ERI 2 Val 181 365

04196800 Tymochtee Creek at Crawford OH 663 ERI 1 Cal 215 369

04197100 Honey Creek at Melmore OH 390 ERI 1 Cal 242 379

04198000 SANDUSKY R NR FREMONT OH 3122 ERI 2 Cal 184 351

04199000 HURON R AT MILAN OH 915 ERI 2 Cal 180 383

04199500 VERMILION R NR VERMILION OH 663 ERI 2 Cal 186 404

04200500 BLACK R AT ELYRIA OH 983 ERI 2 Cal 174 380

Continued on next page
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Table S15 – Continued from previous page

Gauge Name Derived Region Obj. Cal/ Elev. Avg. Annual

ID Area [km2] Val [m] Runoff [mm]

04201500 ROCKY R NR BEREA OH 696 ERI 2 Val 206 501

04208000 CUYAHOGA R AT INDEPENDENCE OH 1990 ERI 2 Cal 181 538

04209000 CHAGRIN R AT WILLOUGHBY OH 622 ERI 2 Val 195 639

04212100 GRAND R NR PAINESVILLE OH 1822 ERI 2 Cal 176 535

04213000 CONNEAUT C AT CONNEAUT OH 497 ERI 1,2 Cal 160 608

04213500 CATTARAUGUS CREEK AT GOWANDA NY 1169 ERI 2 Cal 233 640

04214500 BUFFALO CREEK AT GARDENVILLE NY 382 ERI 2 Val 191 548

04215000 CAYUGA CREEK NR LANCASTER NY 255 ERI 2 Cal 212 570

04215500 CAZENOVIA CREEK AT EBENEZER NY 347 ERI 2 Cal 189 702

04218000 TONAWANDA CREEK AT RAPIDS NY 895 ERI 2 Cal 156 476

04218518 ELLICOTT CREEK BELOW WILLIAMSVILLE NY 232 ERI 2 Cal 160 636

04220045 OAK ORCHARD CREEK NEAR SHELBY NY 385 ONT 2 Val 175 366

04221000 GENESEE RIVER AT WELLSVILLE NY 762 ONT 1 Cal 443 479

04224775 CANASERAGA CREEK ABOVE DANSVILLE NY 248 ONT 1 Cal 199 396

04231600 GENESEE RIVER AT FORD STREET BRIDGE ROCHESTER NY 6338 ONT 2 Cal 125 417

0423205010 Irondequoit Cr abv Blossom Rd nr Rochester NY 363 ONT 2 Cal 83 354

04249000 OSWEGO RIVER AT LOCK 7 AT OSWEGO NY 13221 ONT 2 Val 51 522

04250200 Salmon River at Pineville NY 644 ONT 2 Cal 139 1189

04250750 SANDY CREEK NEAR ADAMS NY 373 ONT 2 Val 159 740

04256000 INDEPENDENCE RIVER AT DONNATTSBURG NY 229 ONT 1,2 Cal 306 838

04258000 Beaver River at Croghan NY 754 ONT 2 Cal 248 814
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S6 Common set of donor basins

The seven locally calibrated models (LBRM-CC-lumped, HYMOD2-lumped, GR4J-lumped, HMETS-lumped, Blended-lumped,

Blended-Raven, and VIC-Raven) needed to specify a so-called donor basin for each of the 71 validation locations. The donor

basin is a basin that was calibrated. The calibrated parameter set of the donor basin is then used to run the model deriving385

streamflow at the validation location. All models used the mapping of donor basins given in Table S16. The mapping approach

is explained in the main manuscript (Sect. 2.4).

Table S16: Donor basin mapping. The Table specifies the donor basin for each validation location. These donor basins are

used by all locally calibrated models. The table also specifies the reason for the donor basin to be selected.

Validation Basin Donor Basin Reason Selected

02AB006 02AB017 closest basin centroids

02AB021 02AC001 closest basin centroids

02AD012 02AD010 nested basins

02AE001 02AD010 closest basin centroids

02BA006 02BA003 closest basin centroids

02BC004 02BB004 closest basin centroids

02BC006 02BB004 closest basin centroids

02BD007 02BD002 closest basin centroids

02BE002 02BF001 closest basin centroids

02BF014 02BF002 nested basins

02CA007 02BF002 closest basin centroids

02CE002 02CD001 closest basin centroids

02CF010 02DB005 closest basin centroids

02CF011 02CF007 closest basin centroids

02EA018 02EA011 nested basins

02EC011 02EC003 nested basins

02EC019 02EC002 nested basins

02ED027 02ED003 nested basins

02ED032 02ED024 closest basin centroids

02FA004 02FA001 nested basins

02FC016 02FC001 nested basins

02FE008 02FE015 nested basins

02FE010 02FE015 nested basins

02FE013 02FE015 nested basins

02FF002 02GG002 closest basin centroids

02GA047 02GB001 nested basins

Continued on next page
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Table S16 – Continued from previous page

Validation Basin Donor Basin Reason Selected

02GB007 02GC007 closest basin centroids

02GC010 02GC007 closest basin centroids

02GC026 02GC007 closest basin centroids

02GE007 02GG003 closest basin centroids

02GG013 02GG009 closest basin centroids

02HB011 02HC030 closest basin centroids

02HB029 02HC030 closest basin centroids

02HC025 02HC003 nested basins

02HF002 02EB014 closest basin centroids

02HJ003 02HK003 closest basin centroids

02HL008 02HL001 nested basins

02HM010 02HL004 closest basin centroids

02JB013 02JC008 closest basin centroids

02JE027 02EA005 closest basin centroids

02KC018 02HL004 closest basin centroids

02KD002 02HF003 closest basin centroids

02KF005 02JC008 nested basins

02LB007 02LB005 nested basins

02LB032 02LB005 closest basin centroids

02LC008 02LB008 closest basin centroids

02LC029 02LB008 closest basin centroids

02LD005 02LB008 closest basin centroids

02LE024 02LB008 closest basin centroids

02LE025 02LB008 closest basin centroids

02LG005 02LB008 closest basin centroids

04015330 04024000 closest basin centroids

04041500 04040500 nested basins

04057510 04044724 closest basin centroids

04069500 04067958 nested basins

04084500 04074950 nested basins

04087120 04087240 closest basin centroids

04096015 04101800 closest basin centroids

04102776 04102700 closest basin centroids

04108660 04102700 closest basin centroids

04125550 04124000 nested basins

Continued on next page
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Table S16 – Continued from previous page

Validation Basin Donor Basin Reason Selected

04133501 04137500 closest basin centroids

04159900 04160600 closest basin centroids

04168400 04176500 closest basin centroids

04195500 04198000 closest basin centroids

04201500 04200500 closest basin centroids

04209000 04208000 closest basin centroids

04214500 04215000 closest basin centroids

04220045 04218000 closest basin centroids

04249000 0423205010 closest basin centroids

04250750 04250200 closest basin centroids
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