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Abstract. Monitoring the water clarity of lakes is essential
for the sustainable development of human society. However,
existing water clarity assessments in China have mostly fo-
cused on lakes with areas > 1 km2, and the monitoring pe-
riods were mainly in the 21st century. In order to improve
the understanding of spatiotemporal variations in lake clar-
ity across China, based on the Google Earth Engine cloud
platform, a 30 m long-term LAke Water Secchi depth (SD)
dataset (LAWSD30) of China (1985–2020) was first devel-
oped using Landsat series imagery and a robust water-color
parameter-based SD model. The LAWSD30 dataset exhib-
ited a good performance compared to concurrent in situ SD
datasets, with an R2 of 0.86 and a root mean square error
of 0.225 m. Then, based on our LAWSD30 dataset, long-
term spatiotemporal variations in SD for lakes > 0.01 km2

(N = 40 973) across China were evaluated. The results show
that the SD of lakes with areas ≤ 1 km2 exhibited a signif-
icant downward trend in the period of 1985–2020, but the
decline rate began to slow down and stabilized after 2001. In
addition, the SD of lakes with an area > 1 km2 showed a sig-
nificant downward trend before 2001, and began to increase
significantly afterwards. Moreover, in terms of the spatial
patterns, the proportion of small lakes (area ≤ 1 km2) show-
ing a decreasing SD trend was the largest in the Mongolian–
Xinjiang Plateau Region (MXR) (about 30.0 %), and the

smallest in the Eastern Plain Region (EPR) (2.6 %). In con-
trast, for lakes > 1 km2, this proportion was the highest in
MXR (about 23.0 %), and the lowest in the Northeast Moun-
tain Plain Region (NER) (16.1 %). The LAWSD30 dataset
and the spatiotemporal patterns of lake water clarity in our re-
search can provide effective guidance for the protection and
management of lake environment in China.

1 Introduction

Lakes are invaluable resources for human societies, provid-
ing value in terms of water supply, energy production, com-
merce, food production, and human health (Bastviken et al.,
2011; Palmer et al., 2015). However, like many other ecosys-
tems, lakes are sensitive to multiple co-occurring environ-
mental pressures, notably climate change, nutrient enrich-
ment, organic and inorganic pollution, and human activities
(Brönmark and Hansson, 2002). Nowadays, with the rapid
development of the economy and the growth of the popula-
tion in China, the intensification of human activities and pol-
lution from industry and agricultural production have caused
severe damage to lakes (Ma et al., 2014; Wang and Yang,
2019; Zhou et al., 2019). According to recent research and
national survey reports (Barnes, 2014; Wang and Yang, 2019;
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Ministry of Ecology and Environment of the People’s Re-
public of China, 2020), approximately 70 % of inland water
in China is polluted, 28 % of the assessed lakes are eutrophic,
and about 140 million people depend on getting water from
unsafe open sources. The deterioration of the lake ecosystem
has threatened public health and the safety of both humans
and aquatic organisms (Guo, 2007). Therefore, the effective
monitoring and evaluation of the environment of lakes across
China are necessary.

Water clarity is one of the most intuitive, popular, and im-
portant parameters to describe the optical components of wa-
ter bodies (Carlson, 1977; Liu et al., 2020), and is generally
measured in terms of Secchi depth (SD) (Odermatt et al.,
2012; Carlson, 1977). Since water clarity is co-determined
by the suspended matter, planktonic algae, and colored dis-
solved organic matter in the water column, it is usually
adopted as a practical comprehensive metric for water qual-
ity assessment (Kloiber et al., 2002; Mccullough et al., 2012).
Although a variety of physical, biological, and chemical pa-
rameters have been proposed to analyze the condition of wa-
ter, water clarity has been utilized for a century as an effec-
tive and simple metric (Cuffney et al., 2000; Lee et al., 2018).
Recently, water clarity was also recognized as an important
parameter in support of the United Nations Sustainable De-
velopment Goal SDG 6.3.2 evaluation reports (Shen et al.,
2020). Therefore, water clarity is a significant indicator that
can be used to monitor and evaluate the comprehensive con-
ditions of water.

Today, with the development of remote sensing technol-
ogy, significant numbers of satellite images are continuously
being acquired. Taking into account the high-frequency re-
visits, large area of coverage, and the historical archive of
remote sensing data available, increasing attention has been
paid to the applications of remote sensing datasets in water
clarity assessments (Y. Li et al., 2020; Liu et al., 2019; Xue
et al., 2019). The evaluation of water clarity from a variety
of ocean color satellite sensors has been performed (Y. Li
et al., 2020; Feng et al., 2019; Wang et al., 2018; Shi et al.,
2018). For example, Shen et al. (2020) used Sentinel-3 data
to evaluate the water clarity of 86 lakes (> 30 km2) in east-
ern China and C. Liu et al. (2021) estimated the SD (wa-
ter clarity) trends of lakes with an area > 50 km2 in the Ti-
betan Plateau using MODIS data between 2000 and 2019.
However, due to the coarse spatial resolution and the rela-
tively short-term historical archives of these ocean color sen-
sors, their applications were limited to large lakes and reser-
voirs, and the study periods were concentrated in the past two
decades (Y. Li et al., 2020). The statistics of lakes with an
area≤ 1 km2 are scant, and understanding of the variations in
SD before the 21st century is limited (Downing et al., 2012;
Biggs et al., 2017; Z. Li et al., 2020). In order to improve
the water environment monitoring capability, 30 m Landsat
series data have recently been used for SD evaluation (Page
et al., 2019; Dona et al., 2014). Because of the fine spatial
resolution (30 m), long historical archives (> 35 years), and

suitability for water clarity assessment, Landsat series data
are considered to be “ideal” for the long-term and fine spatial
resolution monitoring of lake SD (Olmanson et al., 2008; Ol-
manson et al., 2016; Y. Li et al., 2020; Y. Zhang et al., 2021).
For example, Y. Li et al. (2020) utilized the Landsat series of
images to monitor the SD trends in the Xin’anjiang Reser-
voir between 1986 and 2016 and Yin et al. (2021) tracked
the SD changes in Taihu from 1984 to 2018 based on Land-
sat 5 and 8 images. Recently, in order to conduct the first
high spatial resolution investigation of lake SD across China,
significant amounts of Landsat 8 data from 2014–2017 were
used in the work of Song et al. (2020). However, these stud-
ies were limited to individual areas or periods. Due to the
requirement for huge amounts of computation and large stor-
age capabilities, and the need for a robust uniform SD model,
there are very few examples of national-scale long-term SD
estimations using Landsat imagery (Yin et al., 2021; Kloiber
et al., 2002; Page et al., 2019).

Fortunately, with the emergence of the Google Earth En-
gine (GEE) cloud computing platform (Gorelick et al., 2017),
its high-performance, intrinsically parallel computing ser-
vices can easily meet the requirements for very large com-
putational resources (Zhang et al., 2020; L. Liu et al., 2021).
Additionally, because the GEE platform integrates multi-
petabyte analysis-ready Landsat surface reflectance data and
these data are intercalibrated between different Landsat sen-
sors, it presents an opportunity to conduct long-term land
surface analyses at the pixel level (Racetin et al., 2020;
Y. Zhang et al., 2021). Accordingly, a robust SD model is
the only requirement for fine-resolution, long-term SD eval-
uation across China. Lately, some studies have found that
the SD is well correlated with water color parameters (e.g.,
hue angle and the Forel–Ule Index, FUI) (Wang et al., 2021;
Chen et al., 2021; Van Der Woerd and Wernand, 2018). Since
water color parameters can be retrieved at the global scale
and over long time spans (Wang et al., 2021; Wang et al.,
2018), it is possible to retrieve long-term water clarity over
large areas based on these parameters (Wang et al., 2021;
Wang et al., 2020). For example, Wang et al. (2020) recently
developed a robust SD model based on water color parame-
ters, and the model was successfully applied to MODIS data
to develop a nationwide 500 m long-term SD dataset between
2000 and 2017. Accordingly, a feasible solution for high
spatial resolution and long-term SD estimation across China
could be provided by incorporating the GEE cloud platform
and the water-color parameter-based SD model.

Therefore, in order to provide a comprehensive under-
standing of nationwide spatiotemporal variations in lake wa-
ter clarity, we first developed a long-term 30 m LAke Wa-
ter SD dataset of China from 1985 to 2020 (LAWSD30) us-
ing Landsat series data and a water-color parameter-based
SD algorithm with the assistance of the GEE cloud platform.
Then, the LAWSD30 dataset was employed to evaluate and
recognize the spatiotemporal variations in SD for lakes with
areas > 0.01 km2 (N = 40 973) across China in the period
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1985–2020. Our results can provide effective data support for
the management and protection of lake water environments.

2 Introduction

2.1 Landsat series satellite datasets

Taking into account the frequent contamination of cloud and
cloud shadow, it is hard to develop a spatially continuous
application-ready data product throughout China with only
1 year of Landsat images (Zhang et al., 2019). Therefore, we
used images from± 1 year of the target year to generate each
product, and a total of 12 SD products with a 3-year time step
were developed for 1985–2020. All available Landsat series
Level-1 precision terrain (L1TP) surface reflectance datasets
(about 46 TB of data), including Landsat 5 Thematic Mapper
(TM), Landsat 7 Enhanced Thematic Mapper-plus (ETM+),
and Landsat 8 Operational Land Imager (OLI) imagery, ac-
quired in the summer (1 June–30 September) from 1985 to
2020, were used via the GEE cloud computing platform. The
summer months were chosen because the lake water is abun-
dant and deep, and the water clarity is more stable with fewer
short-term variables in summer than in other seasons when
there are no climatic events (i.e., heavy rainfall, storm events)
(Olmanson et al., 2008; Chen et al., 2021; Song et al., 2020;
Singh and Singh, 2015). Additionally, summer is also the pe-
riod with the most abundance public in situ water quality
data (Mccullough et al., 2012). Therefore, it is suitable for
mapping with remote sensing imagery (Kloiber et al., 2002;
Singh and Singh, 2015; Song et al., 2020). In addition, since
the Landsat L1TP data were intercalibrated across different
Landsat series sensors, the collected L1TP data were consis-
tent and suitable for pixel-level time series analysis (Racetin
et al., 2020). However, since the Landsat 7 scan line corrector
(SLC) failed in 2003, the Landsat 7 images acquired there-
after exhibited wedge-shaped scan gaps (referred to as SLC-
off images) (USGS, 2003). Therefore, except for 2012–2014,
only Landsat 7 data before 2003 were used for the develop-
ment of our SD products (Fig. 1b). Since Landsat 5 retired in
2011 and Landsat 8 data were only available after 2013, the
valid Landsat observations from 2012 to 2014 were insuffi-
cient (Fig. 1a). Therefore, a few Landsat 7 SLC-off images
from 2012 to 2014 were used as substitutes to fill the gaps
between 2012 and 2014. Figure 1b shows the final number
of Landsat series images used to generate the SD product for
each nominal year.

2.2 Auxiliary inland water products

The annual 30 m Joint Research Centre Global Surface Water
(JRC-GSW) database was used to extract water body regions
for each SD product (Pekel et al., 2016). The JRC-GSW was
developed based on multiple classification criteria and time
series Landsat 5, 7, and 8 data from 1984 to 2019, archived
to the GEE platform. The water pixels in the JRC-GSW were

labeled as permanent and seasonal water pixels based on the
frequency of being detected as water bodies (Pekel et al.,
2016). The overall commission and omission accuracies for
permanent water were 99.6 % and 98.6 %, respectively, ver-
sus 98.6 % and 75.4 % for seasonal water (Pekel et al., 2016).
Following Chen et al. (2021), in this study, only the pix-
els marked as permanent waters in the JRC-GSW were uti-
lized to extract water regions to reduce the disturbance from
aquatic vegetation in seasonal waters.

Additionally, the existing Chinese lake inventories (Ma
et al., 2011; Song et al., 2020; Chen et al., 2021) and the
Reservoirs and Dams vector database (Song et al., 2018)
were also collected and used to extract lakes for each SD
product.

2.3 In situ SD datasets

In order to quantitatively evaluate the performance of the
LAWSD30 dataset, a total of 1349 in situ SD measurements
of 208 lakes between 1992 and 2019 were collected from the
China Lake Scientific Database (http://www.lakesci.csdb.cn,
last access: 25 January 2021), the National Earth System Sci-
ence Data Center, National Science & Technology Infrastruc-
ture of China (http://lake.geodata.cn, last access: 1 Decem-
ber 2021), and work by Wang et al. (2020) and Liu et al.
(2020). The collected in situ SD data were all measured on
sunny days. Due to the scarcity of field-measured SD records
before the 1990s, only SD products after 1992 were vali-
dated. Since in situ SD measurements within seven days of
satellite overpasses were suitable for the validation of the
remote-sensing-derived SD product (Song et al., 2020), the
collected SD measurements were coincident with the Land-
sat data used in our study within a window of ± 7 d. The
distributions of the in situ SD records collected to validate
products for different nominal years are shown in Fig. 2a–
c. The probability density of the collected SD measurements
used for each SD product was calculated and is exhibited in
Fig. 2d. It can be seen that the collected SD measurements
cover a variety of water clarity conditions and are distributed
throughout China (Fig. 2). The values of our collected SD
data range from 0 to 7 m, covering lakes from clear to eu-
trophic. Therefore, the collected in situ data can provide a
reliable accuracy examination for our LAWSD30 dataset.

3 Methodology

In order to assess the long-term trends of SD in Chinese
lakes, four steps were taken in our study (Fig. 3). First, based
on the time series Landsat images and the JRC-GSW water
products archived in GEE, a summer cloud-free composite
image was generated between 1985 and 2020 with an interval
of three years using the best-available-pixel (BAP) composit-
ing method. Then, based on the generated cloud-free com-
posite images, the long-term LAWSD30 dataset from 1985
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Figure 1. Valid Landsat 5 and 8 observations in China from 2012 to 2014 (a) and statistics of Landsat images used to develop the product
for each nominal year (b). Note: L8 – Landsat 8; L7 – Landsat 7; L5 – Landsat 5.

to 2020 (including 12 products, representing 1986, 1989,
1992, 1995, 1998, 2001, 2004, 2007, 2010, 2013, 2016, and
2019) were developed using a robust SD model based on
water color parameters. Next, the accuracy of our developed
LAWSD30 dataset was evaluated using the collected concur-
rent in situ datasets. Finally, with the assistance of the exist-
ing Chinese lake and reservoir datasets and high-resolution
images in Google Earth, the assessment of the long-term SD
trends for lakes > 0.01 km2 across China was conducted us-
ing the developed SD products.

3.1 Generation of cloud-free composites using
best-available-pixel (BAP) composition method

Since summer is suitable for SD mapping with remote sens-
ing imagery (Mccullough et al., 2012; Singh and Singh,
2015; Song et al., 2020), cloud-free summer composites of
Landsat data for twelve 3-year time steps were compiled
from 1985 to 2010. Generally, the median and mean compos-
ite methods were used to generate cloud-free images in the
SD assessing studies (Y. Li et al., 2020; Wang et al., 2020;
Liu et al., 2020). However, since multisource sensors (TM,
ETM+, and OLI) were used in this study, the different band
settings between these sensors made the parameters of the al-
gorithm specific to each sensor (Y. Li et al., 2020; Garnesson

et al., 2019). Because the median and mean composite meth-
ods will change the original radiation value of the pixel (Xie
et al., 2019; Griffiths et al., 2014), the composite pixels de-
rived from these general methods are difficult to trace back
to the sensor from which they originated. Therefore, these
methods are not well suitable for our research. Recently,
White et al. (2014) proposed a BAP method to generate
cloudless composites for a large area. Since BAP compiles
cloud-free images by selecting the best available observation
based on user-defined criteria (Gomez et al., 2016; Griffiths
et al., 2013), the BAP composites can retain the source im-
age information from which they came. In addition, since
BAP can ensure phenological consistency between multitem-
poral BAP composites by setting the acquisition day-of-year
(DOY) criteria (Griffiths et al., 2014; Chen et al., 2021), it is
suitable for multiyear change detection and assessment (Grif-
fiths et al., 2014; Gomez et al., 2016; Hermosilla et al., 2015;
X. Zhang et al., 2021). Accordingly, the BAP method was
used to generate cloud-free composites. Our team recently
used BAP to develop summer composites for water color
mapping (Chen et al., 2021). Following Chen et al. (2021),
the DOY criteria (Eq. A1), the cloud and cloud shadow cri-
teria (Eq. A2), and the atmospheric opacity criteria (Eq. A3)
were selected to generate the BAP composites (the details
of the criteria are presented in the Appendix A). The score
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Figure 2. Details of the in situ measured SD datasets. (a–c) The geographical distributions of SD samples used to validate the accuracies of
the corresponding SD products and (d) the probability density of the collected SD measurements used for each target SD product, used to
show the SD range where the collected in situ SDs are mainly concentrated.

for each criterion was summed, and the observation with the
highest score was selected as the BAP composite. The pa-
rameter values for the criteria used were obtained from Chen
et al. (2021). However, since floods and rainfall in summer
will bring suspended particles into water bodies, making the
SD of water bodies much lower than usual (Murshed et al.,
2014; C. Liu et al., 2021), it is also necessary to reduce the
impact of these climatic events on the BAP composites to
ensure the reliability of the long-term SD trend assessment.
Here, the normalized difference turbidity index (NDTI) (La-
caux et al., 2007) was used to indicate the turbidity of the wa-
ter (Eq. 1). As the SD of water decreases, the NDTI of water
increases (Islam, 2006; Lacaux et al., 2007). Therefore, the
interference of floods and rainfall was restricted by only us-

ing the observations with NDTI less than the 80th quantile of
their NDTI stack for BAP compositing.

NDTI= (Red−Green)/(Red+Green). (1)

Finally, based on the intra-annual permanent water pixels
detected in the JRC-GSW, water regions were extracted from
the BAP composites.

3.2 Inversion model of water SD

Previous studies have demonstrated that FUI and hue an-
gle (α) are useful water color parameters to assess the SD of
inland waters (Wang et al., 2020; Chen et al., 2021; Garaba
et al., 2015). Recently, these two watercolor parameters were
further demonstrated to be robust parameters for retrieving
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Figure 3. A flowchart of the long-term LAWSD30 dataset development steps and the long-term SD trend assessment of lakes in China. Note:
LAWSD30 – 30 m LAke Water SD dataset of China.

SD over large areas and long-term spans (Wang et al., 2020;
Pitarch et al., 2019). Therefore, the SD of the extracted per-
manent water regions was retrieved using a robust SD model
based on FUI and α (Wang et al., 2020). The SD model
showed good performance and adaptability over a variety
of water clarity ranges, with a mean relative difference of
27.4 % and a mean absolute difference of 0.37 m (Wang et al.,
2020). There are three main steps in the SD model.

1. Calculation of the hue angle (α). The α is the angle
of the line drawn counterclockwise from the positive
x axis at y= 1/3 in the Commission on Illumination’s
(CIE) chromaticity diagram (Wang et al., 2018). In or-
der to derive the angle α, the CIE primary color tris-
timulus (X,Y ,Z) was calculated from the reflectance in
the visible bands of Landsat images first (Wang et al.,
2020; Chen et al., 2021). Since ETM+/TM has only
three bands in the visible range, the tristimulus of Land-
sat ETM+/TM was calculated using the RGB conver-
sion method (Wang, 2018; Cie, 1932) (Eqs. 2–4):

X = 1.1302R(485)+ 1.7517R(565)

+ 2.7689R(660) (2)

Y = 0.0601R(485)+ 4.5907R(565)

+ 1.0000R(660) (3)
Z = 5.5943R(485)+ 0.0560R(565), (4)

where R represents the band reflectance. Since OLI has
four visible bands, the X, Y , and Z of Landsat OLI data
were calculated using the linear weighted summation
method as per Chen et al. (2021) (Eqs. 5–7):

X = 11.053R(443)+ 6.950R(482) (5)
+ 51.135R(561)+ 34.457R(655) (6)

Y = 1.320R(443)+ 21.053R(482)

+ 66.023R(561)+ 18.034R(655) (7)

Z = 58.038R(443)+ 34.931R(482)

+ 2.606R(561)+ 0.016R(655). (8)

Once the tristimulus was calculated, the chromaticity
coordinates (x, y) were then acquired from the X, Y ,
and Z (Wang et al., 2021) (Eq. 8). Afterwards, the hue
angle α was derived based on x and y (Van Der Wo-
erd and Wernand, 2018) (Eq. 9). However, because of
the band settings of sensors, there is an offset (1α) of
the sensor-derived hue angle (Van Der Woerd and Wer-
nand, 2015). Following the ideas in Van Der Woerd and
Wernand (2015), Wang (2018) recently developed poly-
nomial deviation delta corrections for multiple sensors
(Eq. 10). Accordingly, the angle α was finally corrected
using α+1α:

x =X/(X+Y +Z), y = Y/(X+Y +Z) (9)

α = ARCTAN2
((
y−

1
3

)
/

(
x−

1
3

))
· 180/π (10)

1α = a(α/100)5+ b(α/100)4+ c(α/100)3

+ d(α/100)2+ e
( α

100

)
+ f, (11)

where a–f are coefficients of the deviation delta correc-
tion, and the correction coefficients of OLI/ETM+/TM
are shown in Table 1.

2. Calculation of the FUI. The FUI for pixels in Landsat
was derived from the corrected angle α based on the
FUI lookup table (Novoa et al., 2013) (Table 2). Each
FUI corresponds to a range of angle α.
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Table 1. Polynomial coefficients for the Landsat-OLI/TM/ETM+ hue angle correction (Wang, 2018).

Sensor a b c d e f

Landsat-TM 25.851 −177.4 476.69 −653.3 463.33 −94.41
Landsat-ETM+ 30.473 −203.4 498.8 −570.9 324.73 −56.72
Landsat-OLI 21.355 −199.29 703.3 −1132.2 801.6 −201.34

Table 2. The 21-class FUI indices and the corresponding range of hue angle α (Wang et al., 2018; Chen et al., 2021).

FUI α range (◦) FUI α range (◦) FUI α range (◦)

1 (35.00, 42.83) 8 (160.97, 175.98) 15 (219.34, 224.87)
2 (42.83, 49.02) 9 (175.98, 186.67) 16 (224.87, 230.23)
3 (49.02, 60.01) 10 (186.67, 195.44) 17 (230.23, 235.09)
4 (60.01, 79.23) 11 (195.44, 202.05) 18 (235.09, 239.56)
5 (79.23 106.94) 12 (202.05, 207.82) 19 (239.56, 243.66)
6 (106.94, 137.03) 13 (207.82, 213.57) 20 (243.66, 247.25)
7 (137.03, 160.97) 14 (213.57, 219.34) 21 (247.25, 252.00)

3. Calculation of the SD. Based on the calculated FUI
and α, the SD was obtained following the algorithm
proposed in Wang et al. (2020) (Eqs. 11 and 12). This
model had been demonstrated to be suitable for large-
area and long-term SD monitoring (Wang et al., 2020).

FUI< 8,SD= 794630.86 ·α−1.66 (12)

FUI≥ 8,SD= 30380 ·FUI−2.621 (13)

3.3 Assessment of long-term SD trends in China’s lakes

In order to comprehensively evaluate the long-term trends
in SD of natural lakes across China, lakes with ar-
eas > 0.01 km2 (more than 10 pixels) were manually ex-
tracted by referring to the Chinese lake inventories (Chen
et al., 2021; Song et al., 2020), the Chinese reservoir and
dam database (Song et al., 2018), and high-resolution im-
ages from Google Earth. Since previous water investigations
were mainly based on MODIS and Sentinel-3 images, and
focused on lakes with an area > 1 km2, the knowledge of
lakes< 1 km2 was limited (Y. Zhang et al., 2021; Chen et al.,
2021). Therefore, in our study, the extracted lakes were di-
vided into two groups, lakes with an area > 1 km2 and lakes
with an area ≤ 1 km2, to explore the SD trends in the two
different areas. In order to reduce the impact of aquatic veg-
etation, algae bloom areas, and shallow nearshore on the
lake SD assessment, the mean SD of each lake was calcu-
lated following the method in Chen et al. (2021). Specif-
ically, the floating algae index (FAI) (Eq. 13) (Dai et al.,
2021; Hu, 2009) was first used to mask algae bloom and
aquatic vegetation areas with a threshold of −0.02 (Chen
et al., 2021). Then, shallow nearshore pixels were excluded
by setting the corresponding threshold value for each lake
(Chen et al., 2021). Pixels whose SD was less than the SD
value of 80 % of the pixels in a given lake were regarded as

shallow nearshore pixels and excluded. After the above steps,
the remaining pixels in each lake region were used to calcu-
late the mean SD of that lake as follows:

FAI = NIR− (Red+ (SWIR−Red)

× (λNIR− λRed)/(λSWIR− λRed)), (14)

where Red, NIR, and SWIR represent the reflectance of red,
near-infrared (NIR), and shortwave infrared (SWIR) bands,
and λNIR, λRed, and λSWIR are the center wavelengths of NIR,
red, and SWIR bands.

The nonparametric Loess regression method (Steyerberg,
2016) was employed to delineate the long-term SD trend for
each lake, and the widely used Mann–Kendall (MK) test
(Yuan et al., 2018; Kendall, 1990; Mann, 1945) was ap-
plied to indicate the monotonicity of the long-term SD trend.
Specifically, the MK indicated the monotonic trend by using
a standardized MK statistic Z (Yuan et al., 2018). Z> 0 in-
dicated an upward trend, while Z< 0 indicated a downward
trend. The indicated trend was regarded as significant only
when P ≤ 0.05 (Y. Li et al., 2020). Since the reliability of the
long-term trend analysis relied on the observation number of
time series data (Y. Li et al., 2020; Wang et al., 2020), only
the lakes that existed in at least 10 SD products were retained
for our long-term SD assessment. Using the above criteria, a
total of 40,973 lakes were used for time series SD analysis.

4 Results

4.1 Accuracy evaluation of the 30 m long-term
LAWSD30 dataset

The accuracy of our LAWSD30 dataset was evaluated with
the collected concurrent in situ SD datasets, as illustrated
in Fig. 4. From Fig. 4a, our LAWSD30 dataset exhibited
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Figure 4. Scatterplots of the in situ measured SD data and our LAWSD30 dataset. (a) An overall scatterplot of our LAWSD30 dataset and
all the collected in situ SD data, and (b–d) scatterplots of our LAWSD30 dataset and the corresponding in situ SD data in the 1990s (1992,
1995, and 1998), 2000s (2001, 2004, and 2007), and 2010s (2010, 2013, 2016, and 2019), respectively.

a significant correlation with all collected in situ SD data,
with an R2 of 0.92, a root mean square error (NRMSE) of
28.1 %, and a mean absolute percentage error (MAPE) of
0.235. Most of the scatter points were distributed close to
the 1 : 1 line. Specifically, from the validation results in the
2010s, our LAWSD30 showed good performance, with an
R2 of 0.92, a NRMSE of 30.8 %, and a MAPE of 0.268.
In addition, a stable performance was also shown in the re-
sults for the 2000s, with R2 reaching 0.84, NRMSE reaching
30.1 %, and MAPE reaching 0.219. Furthermore, a good per-
formance was also seen before the 2000s, with an R2 of 0.69,
a NRMSE of 15.0 %, and a MAPE of 0.126 in the 1990s. The
validation results for these different decades demonstrated
the stable performance of our LAWSD30 in different peri-
ods. Although some of the measured SD records had some
deviations from LAWSD30 and resulted in vertical lines, it
was found that these deviations were mainly due to differ-
ences between the dates of the SD measurements and the
LAWSD30 dataset. Moreover, for most regions, the devia-
tion between the measured SD and LAWSD30 was small.
It is concluded, therefore, that our LAWSD30 can be a reli-
able dataset for the long-term SD trend assessment of lakes
in China.

4.2 The LAWSD30 dataset in China

Our developed long-term LAWSD30 dataset includes 12 SD
products of the corresponding nominal years, now avail-
able at https://doi.org/10.5281/zenodo.5734071. Here, the

SD product in 2019 is shown in Fig. 5. It can be found that the
water bodies in our LAWSD30 dataset showed a wide range
of SD values (0.1 m to more than 9 m), indicating a great di-
versity of Chinese inland waters. Taking the famous Hu Line
(Hu, 1990) as the boundary, the SD of water bodies showed
an obvious pattern of “high west and low east” across China.
The average SD of the water bodies to the west of the Hu
Line was approximately 1.7 m, while the average SD of the
eastern water bodies was about 0.4 m. Furthermore, regard-
ing the famous Qinling–Huaihe Line (Liu et al., 2015), the
dividing line between the north and south of China, a signif-
icant latitudinal pattern of “high in the south and low in the
north” was exhibited across China. The average SD of the
water bodies distributed to the north of the Qinling–Huaihe
Line was about 0.72, whereas the average SD reached about
1.16 for the water bodies south of this line. The above SD
patterns observed across China were in good agreement with
other studies (Wang et al., 2020; Y. Zhang et al., 2021).

Moreover, in order to illustrate the ability of our long-term
LAWSD30 dataset to monitor the spatiotemporal pattern of
SD in water bodies, the time series SD results for two impor-
tant lakes, Selinco Lake and Hongze Lake, are displayed and
used as case studies (Fig. 6). These two lakes were chosen
because they are distributed in western and eastern China,
respectively, which can be used to illustrate the ability of our
LAWSD30 dataset in assessing the SD trends of lakes in dif-
ferent environments. Additionally, since the water environ-
ment of the two lakes have been widely concerned and stud-
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Figure 5. The 30 m SD product in China in 2019. Note: the north–south dashed line is the Hu Line, inherited from Hu (1990) and the
east–west dashed line is the Qinling–Huaihe Line, inherited from Liu et al. (2015).

ied (C. Liu et al., 2021; Cao et al., 2017; Xue et al., 2019), it is
convenient to compare the conclusions of our study with the
previous studies. The long-term mean SD of the two lakes
is shown in Fig. 7. From the perspective of the spatial pat-
tern, it can be seen that the water area in the northern part
of Selinco Lake has been increasing, and the SD of the north
is generally lower than that of the central and southern ar-
eas of the lake. A significant pattern of “high center and low
north” was found from the SD results for Selinco Lake. Ad-
ditionally, an obvious clarity gradient with high values on
the northern side and lower values on the central area and
southern side could be found in Hongze Lake. These results
are in good agreement with previous studies (Wang et al.,
2020; Xue et al., 2019; C. Liu et al., 2021). Furthermore,
we can see that the clarity of water in the northern part of
Selinco Lake has improved in recent years, and the SD in
the central and southern regions of Hongze Lake has also in-
creased compared with 35 years ago (Fig. 6). Moreover, in
terms of the SD trends, the mean SD of Selinco Lake exhib-
ited a decreasing but insignificant trend (Z< 0, P> 0.05) in
the period 1985–2020, while Hongze Lake has shown a sig-
nificant increasing SD trend (Z> 0, P< 0.05) over the past
35 years (Fig. 7). Specifically, the SD curve of Selinco Lake
first showed an upward trend before the 2000s and then ex-
hibited a decreasing trend after 2001. As for Hongze Lake, it
was found to have an increasing SD trend before 2010, but
the SD began to decrease after that. Similarly, other studies
found the same SD change patterns in the two lakes (C. Liu
et al., 2021; Li et al., 2016; Wang et al., 2020; Cao et al.,

2017; Li et al., 2019). Therefore, our long-term SD dataset
can provide an opportunity to quickly evaluate the temporal
dynamics of SD in water bodies at low costs, which is of
great significance for large-scale water quality monitoring.

4.3 Long-term SD trend of lakes across China in the
period 1985–2020

The long-term variations in SD for lakes with an
area > 0.01 km2 (N = 40,973) across China from 1985
to 2020 were first evaluated and recognized using our
LAWSD30 products (Fig. 8). First, for lakes with an area
≤ 1 km2 (Fig. 8a), the mean SD of the lakes showed a signif-
icant downward trend since 1985 (Z< 0, P < 0.05), with a
rate of −0.055 myr−1. However, it can be seen that the de-
cline rate of SD began to slow down and stabilized after 2001
(with a rate of −0.026 myr−1 after 2001). In addition, re-
garding lakes with areas > 1 km2 (Fig. 8b), the mean SD of
the lakes around 2020 was basically the same as that in 1985,
and the long-term SD of the lakes has not shown a significant
downward trend since 1985 (Z< 0, P > 0.05). However, by
carefully observing the time series SD curve of these lakes
(Fig. 8b), an obvious turning point could be found around
2001. The SD of the lakes showed a significant downward
trend (Z< 0, P < 0.05) before 2001 and began to increase
significantly (Z> 0, P< 0.05) afterward. The above results
demonstrate that the water clarity of lakes in China has con-
tinued to improve since the 21st century, but the SD of lakes
with an area ≤ 1 km2 is still low.
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Figure 6. The long-term SD results of Selinco Lake and Hongze Lake between 1985 and 2020. Note: the color bar is the same as that
in Fig. 5. The time series background imagery of Selinco Lake and Hongze Lake come from the United States Geological Survey (https:
//earthexplorer.usgs.gov/, last access: 10 September 2021).
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Figure 7. The long-term SD curves of Selinco Lake and Hongze Lake.

Figure 8. The long-term trend in SD for lakes with an area > 0.01 km2 (N = 40 973) across China from 1985 to 2020. (a) The mean SD of
lakes ≤ 1 km2 across China and (b) the mean SD of lakes > 1 km2 across China. Note: IP – inflection point.

In order to further evaluate the long-term SD trends of
lakes in different geographic regions, China was divided
into five limnetic regions (Ma et al., 2011; Chen et al.,
2021), i.e., the Northeast Mountain Plain Region (NER),
Eastern Plain Region (EPR), Yunnan–Guizhou Plateau Re-
gion (YGR), Qinghai–Tibet Plateau Region (QTR), and the
Mongolian–Xinjiang Plateau Region (MXR) (Fig. 9). The
statistics of lakes with an area > 1 km2 and an area ≤ 1 km2

are shown in Fig. 9b and c, respectively. It can be seen that
the number of lakes with an area ≤ 1 km2 in each region was
far greater than that of lakes with an area > 1 km2, but their
accumulation area was much smaller than that of lakes with
an area > 1 km2. Furthermore, the number and area of lakes
in QTR were the highest, while those in YGR were the low-
est.

Figure 10 gives the long-term SD trend of lakes in each
limnetic region. For lakes ≤ 1 km2 (Fig. 10a–e), it can be
seen that, except for MXR and QTR, the SD of the lakes
in other regions did not show a significant decreasing trend
(P > 0.05) during the entire analysis period. Moreover, the
SD of small lakes (area ≤ 1 km2) in EPR and NER showed
obvious increases (Z> 0, P < 0.05) since 1985, with aver-
age change rates of 0.015 and 0.005 myr−1, respectively. Al-
though the SD of small lakes in MXR and QTR experienced
significant downward trends over the past 35 years, the de-
cline rates slowed down after the beginning of the 21st cen-
tury (with rates of 0.001 myr−1 in MXR and −0.045 myr−1

in QTR after 2001), and the decrease trend had not been
significant since 2001 (Z< 0, P > 0.05). Secondly, as for

lakes > 1 km2, there were no dramatic decreases in SD in
any of the five regions from 1985 to 2020. Moreover, the
lakes with an area > 1 km2 in NER experienced a signifi-
cant upward trend in water clarity (Z> 0, P < 0.05) over the
past 35 years. Additionally, we can also see that the water
clarity of lakes > 1 km2 in MXR and QTR significantly im-
proved since the beginning of the 21st century. The SD of
lakes > 1 km2 in YGR in 2020 was also higher than that in
1985. However, it should be noted that although the SD of
lakes > 1 km2 in 2020 was also greater than that in 1985 in
EPR, the SD of these lakes was characterized by a significant
decrease, with a rate of −0.021 myr−1 after 2001.

4.4 Spatiotemporal patterns of water clarity in lakes
over China

The spatiotemporal patterns of SD in lakes in the five lim-
netic regions from 1985 to 2020 are shown in Fig. 11. Over-
all, for lakes with an area ≤ 1 and > 1 km2, the average pro-
portions of lakes with an increasing SD trend were about
76.1 % and 81.3 %, respectively, in the five limnetic regions.
In addition, the region with the lowest percentage of lakes
tending to become clear (with an increasing trend) was still
about 70.0 %. The above results indicate that most lakes in
China exhibited a tendency to become clear in the period
1985–2020. Specifically, as for lakes with areas ≤ 1 km2

(hereinafter referred to as small lakes), the minimum pro-
portion of small lakes whose SD was characterized by an
increasing trend was in the MXR (about 70.0 %), while the
maximum proportion appeared in the EPR (about 97.4 %). In
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Figure 9. The location of the five limnetic regions and the lake statistics in each limnetic region. (a) The location of the five limnetic regions,
(b) statistics of lakes with areas ≤ 1 km2 in each region, and (c) statistics of lakes with areas > 1 km2 in each region. The location of the five
limnetic regions comes from Ma et al. (2011) and Chen et al. (2021).

addition, for lakes with areas> 1 km2 (hereinafter referred to
as large lakes), the smallest and largest proportions of large
lakes that had increasing trends were also in the MXR (about
77.0 %) and the EPR (about 84.3 %), respectively.

Focusing on the detailed spatial–temporal SD patterns in
each limnetic region, there were basically no small lakes with
a decreasing trend in SD (2.6 %) in the EPR. The individual
small lakes that experienced downward trends in the EPR
were mainly located at the northernmost regions and at the
junction of the Hubei and Hunan Provinces. Moreover, as
for the large lakes in the EPR, these were mainly distributed
along the Yangtze River, and the lakes showing decreasing
SD trends were mainly located in the middle reaches of the
Yangtze River. Secondly, the MXR was the region with the
minimum percentage of lakes that had an increasing trend
among the five limnetic regions. Specifically, small lakes that
exhibited decreasing trends were mainly located in the north-
east and northwest of MXR, while large lakes that had de-
creasing trends were mainly distributed in the northeast ar-
eas of MXR. Additionally, in the NER, large and small lakes
with decreasing SD were mainly distributed in the west and
northeast of NER, accounting for 17.2 % of small lakes and
16.1 % of large lakes, respectively. Furthermore, in the QTR,
most lakes were located in the north, center, and southeast.
Among these lakes, most of the small lakes with a tendency
to become turbid were located in the center, northeast, and
southeast of QTR. In addition, the large lakes that were char-
acterized by decreasing trends were mainly distributed in the
central and northeast parts of the QTR. Lastly, as for the lakes

in YGR, the small lakes that had a decreasing trend were
mainly located in the northwest and southeast of YGR. In
contrast, the number of large lakes in the YGR were rela-
tively small (N = 53), and the lakes with a decreasing trend
were mainly distributed in the southeast and west of YGR.
Therefore, although most lakes had a tendency to become
clearer from 1985 to 2020, there were still a considerable
proportion of lakes whose SD experienced a downward trend
over the past few decades, which suggests that effective wa-
ter management is still required in many regions.

5 Discussion

5.1 Consistency between the Landsat estimation SD
results

Recently, many studies have demonstrated the feasibility
of using long-term Landsat series data from GEE to as-
sess the changes in lake clarity (Y. Zhang et al., 2021; Yin
et al., 2021). In order to evaluate the comparability of our
LAWSD30 dataset in monitoring long-term SD variations,
the Landsat 5, 7, and 8 data for two adjacent tracks with
overlapping areas were first selected to test the consistency
between the Landsat estimation SD results (Fig. 12). The im-
ages of paths 139 and 140 were chosen because the lakes in
this place are hardly affected by human activities and, thus,
the SD of lakes can remain stable within a few days under
stable weather conditions (Zhang et al., 2019). The Landsat 5
images were taken on 5 October 2011, the Landsat 8 images
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Figure 10. The long-term SD trend of lakes in each limnetic region from 1985 to 2020. (a–e) The long-term SD trend of lakes with an area
≤ 1 km2 in each region and (f–j) the long-term SD trend of lakes with an area > 1 km2 in each region. Note: EPR – Eastern Plain Region,
MXR – Mongolian–Xinjiang Plateau Region, NER – Northeast Mountain Plain Region, QTR – Qinghai–Tibet Plateau Region, YGR –
Yunnan–Guizhou Plateau Region, and IP – inflection point.

were taken on 21 October 017, and the Landsat 7 ETM+ im-
ages were taken on 6 October 2011 and 22 October 2017.
Since the compared images were quasi-synchronized with
each other in one day, the SD of water bodies was assumed
to be the same for both images. Figure 12c and d shows scat-
terplots of the SD results for the overlapping regions. It can
be seen that although the model coefficients of the three sen-
sors were different in our calculation (Sect. 3.2), there was
still strong consistency between the SD results of Landsat 5,
7, and 8, with an R2 of 0.90 for Landsat 5 vs. 7 and an R2 of
0.97 for Landsat 8 vs. 7 (Fig. 12). In addition, the NRMSE
and MAPE for Landsat 5 vs. 7 and Landsat 8 vs. 7 were both
lower than 26 % and 0.22, respectively. The above results
demonstrate that the estimated SD results from Landsat 5,
7, and 8 data are highly consistent.

Moreover, since SD changes over time and our LAWSD30
dataset was calculated based on the BAP composites, it was
also necessary to test the phenological consistency between

the time series summer BAP composites. The mean DOY of
each pixel in the BAP composites from 1985 to 2020 was cal-
culated and is shown in Fig. 13a. In addition, the maximum
DOY difference of each pixel location in the BAP composites
from 1985 to 2020 was calculated and displayed in Fig. 13b.
From Fig. 13a, most areas of China were composites based
on images around DOY 214, and the mean standard deviation
was only 7.5 d. Therefore, the developed BAP composites
can effectively ensure the consistency of phenology between
different regions across China. In addition, from Fig. 13b, the
mean value of the maximum DOY difference across China
was only 16.5 d, and the maximum DOY differences for most
pixels across China (about 94 %) were within 32 d. Although
the maximum DOY difference in parts of southern China ex-
ceeded 32 d due to the influence of clouds, most of these ar-
eas were mountainous with few lakes. In addition, since the
phenology of these regions were in summer and the SD is
relatively stable during this season (Mccullough et al., 2012;
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Figure 11. The spatiotemporal patterns of SD in lakes in the five limnetic regions from 1985 to 2020 (from left to right are the spatiotemporal
patterns of lakes with an area ≤ 1 km2 and the spatiotemporal patterns of lakes with an area > 1 km2). Note: Sig., significant and Insig.,
insignificant.
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Figure 12. Overlapping regions of Landsat 5 and 7 data, (a) Landsat 8 and 7 data (b), lake SD comparison for the Landsat 7 vs. 5 data, and (c)
the Landsat 7 vs. 8 data (d) for the lakes from the overlap. The Landsat imagery for (a) and (b) come from the United States Geological
Survey (https://earthexplorer.usgs.gov/, last access: 10 September 2021).

Figure 13. The mean DOY of each pixel in the BAP composites from 1985 to 2020 and (a) the maximum DOY difference of each pixel
location in the BAP composites from 1985 to 2020 (b). Note: SD – standard deviation.
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Figure 14. (a, b) Scatterplots of our LAWSD30 data and the corresponding MODIS-derived SD data (Wang et al., 2020) in the 2000s
(2001, 2004, and 2007) and 2010s (in 2010, 2013, and 2016), respectively, and (c) scatterplot of our LAWSD30 data and the corresponding
Sentinel 3-derived SD data (Shen et al., 2020) in 2016 and 2019.

Kloiber et al., 2002), the consistency of water clarity in these
areas can thus be considered not to have much impact on
the final result. Therefore, the results displayed in Figs. 12
and 13 confirm the reliability of our LAWSD30 dataset to
evaluate the long-term SD across China.

5.2 Cross-comparison with existing water clarity
monitoring studies

To date, some past studies have also evaluated the water clar-
ity of specific lakes in China (Shen et al., 2020; Wang et al.,
2020). In order to further analyze the reliability of our esti-
mated SD results across China, the results of this study were
assessed against other existing water clarity monitoring stud-
ies. However, since most of the existing investigations fo-
cused on the annual average SD (Y. Zhang et al., 2021; Y. Li
et al., 2020; Yin et al., 2021) and our LAWSD30 dataset is
a summer SD dataset, it is a challenge to compare our re-
sults with other studies due to the different periods of in-
terest. Fortunately, Wang et al. (2020) recently generated a
time series summer SD dataset (for the period 2000–2017)
for lakes > 25 km2 in China using water color parameters
and MODIS data. Additionally, Shen et al. (2020) developed
a multiyear monthly SD dataset (2016–2020) for 86 lakes in
eastern China using Sentinel 3 images and a random forest
regression SD model. Since both of the studies included SD
results in summer, we had a unique opportunity to compare
our SD estimates with theirs. The summer mean SD for each
lake in the MODIS and the Sentinel 3-derived SD datasets
was calculated and compared with our LAWSD30 dataset.
As shown in Fig. 14, our LAWSD30 agreed well with both
the MODIS and Sentinel 3-derived SD results. An average
R2 of 0.96 was achieved when compared with the MODIS-
derived results, and the average NMRSE and MAPE were
only 18.4 % and 0.178, respectively (Fig. 14a and b). In ad-
dition, an R2 of 0.74, a NMRSE of 28.0 %, and a MAPE
of 0.225 were shown in the comparison between the Sen-
tinel 3-derived SD and our LAWSD30 dataset (Fig. 14c).
Thus, the above results confirm the reliability of our long-
term LAWSD30 dataset.

5.3 Limitations and suggestions for future work

First, due to the relative long revisit period of Landsat series
data and the interference from clouds, our study is not suit-
able for the evaluation of the intra-annual changes in water
clarity. The long-term intra-annual and seasonal SD changes
of lakes across China still need to be evaluated. In the future,
more efforts will be devoted to the use of more multi-source
data to increase the number of valid observations, so as to
conduct more analysis on SD at a seasonal scale.

Secondly, because this study is mainly focused on moni-
toring the long-term SD changes in lakes across China, the
comprehensive analysis of the relationship between the vari-
ation of lake water clarity and environmental factors was not
investigated. Since the discharge of agricultural fertilizers,
industrial sewage, and livestock excrement within the lake
drainage area, and the spatial–temporal variations of land use
and land cover can affect the clarity of the water bodies (Y. Li
et al., 2020), data on related factors should be collected and
analyzed. In addition, the topographic conditions of the lake
basin, such as the slope of the lake shoreline and the size
of the recharge river, and the extreme weather and climate
events (i.e., drought and heat events) (C. Liu et al., 2021; Yu
and Zhai, 2020) may also have important impacts on the lake
clarity. In future work, we will do more investigations to an-
alyze the above potential driver factors of SD changes.

6 Conclusions

Water clarity is one of the most intuitive and important indi-
cators of water quality. In order to improve our understanding
of the long-term spatiotemporal patterns of lake water clarity
in China, a long-term LAWSD30 dataset with a 3-year tem-
poral interval was first developed for the period 1985–2020
using Landsat series data and the GEE platform. The dataset
exhibited good performance when compared with concurrent
in situ SD measurements (with an R2 of 0.86 and a RMSE
of 0.225 m), thus confirming the reliability of our LAWSD30
dataset.
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Subsequently, based on the generated LAWSD30 dataset,
the national-scale long-term SD estimations of lakes in China
(N = 40,973) over the past 35 years were analyzed. It was
found that the SD of lakes with an area ≤ 1 km2 showed a
significant decreasing trend during the period 1985–2020,
but the decline rate began to slow down and stabilized af-
ter 2001. Regarding the SD of lakes with an area > 1 km2, a
significant downward trend was seen before 2001, and it be-
gan to increase significantly afterwards. In addition, in terms
of the spatial patterns, the small lakes showing a decreasing
SD trend during 1985–2020 accounted for the largest pro-
portion in MXR (about 30.0 %), followed by YGR (23.8 %),
QTR (20.4 %), NER (17.2 %), and EPR (2.6 %). Addition-
ally, for large lakes, this proportion was the largest in MXR
(about 23.0 %), followed by QTR (19.4 %), YGR (18.9 %),
EPR (17.7 %), and NER (16.1 %). The above results indicate
that although the clarity of lakes in China has shown an im-
proving trend since the 21st century, there has still been a
considerable proportion of lakes experiencing a downward
SD trend over the past few decades. This study can give ef-
fective guidance for the management and restoration of lake
water environments.

Appendix A

In order to generate the BAP composites, three criteria (i.e.,
the DOY criteria (Eq. A1), the cloud and cloud shadow cri-
teria (Eq. A2), and the atmospheric opacity criteria (Eq. A3)
were selected:
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where µ and σ represent the target DOY and the standard
deviation of the DOY, respectively, and xj is the DOY for
image j . The target DOY µ and the standard deviation of
the DOY was set to 1 August and 60, respectively. Di is the
distance from pixel i to cloud or cloud shadow, and Dreq is
the minimum required distance, which was set to 50 here.
Oi is the opacity of pixel i, while Omax and Omin are the
minimum opacity value, respectively. Omax was set to 0.3
and Omin was set to 0.2. All parameters for the three criteria
were set according to Chen et al. (2021). The BAP score was
then derived as follows:

ScoreBAP = ScoreDOY+ScoreCloudDisctance+ScoreOpacity. (A4)
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