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Abstract. Despite the Variable Infiltration Capacity (VIC)
model being used for decades in the hydrology community,
there are still model parameters whose sensitivities remain
unknown. Additionally, understanding the factors that con-
trol spatial variations in parameter sensitivities is crucial
given the increasing interest in obtaining spatially coherent
parameter fields over large domains. In this study, we inves-
tigate the sensitivities of 43 soil, vegetation and snow pa-
rameters in the VIC model for 101 catchments spanning the
diverse hydroclimates of continental Chile. We implement a
hybrid local–global sensitivity analysis approach, using eight
model evaluation metrics to quantify sensitivities, with four
of them formulated from runoff time series, two characteriz-
ing snow processes, and the remaining two based on evap-
oration processes. Our results confirm an overparameteriza-
tion for the processes analyzed here, with only 12 (i.e., 28 %)
parameters found to be sensitive, distributed among soil (7),
vegetation (2) and snow (3) model components. Correlation
analyses show that climate variables – in particular, mean
annual precipitation and the aridity index – are the main
controls on parameter sensitivities. Additionally, our results
highlight the influence of the leaf area index on simulated
hydrologic processes – regardless of the dominant climate
types – and the relevance of hard-coded snow parameters.
Based on correlation results and the interpretation of spatial
sensitivity patterns, we provide guidance on the most rele-
vant parameters for model calibration according to the target
processes and the prevailing climate type. Overall, the re-
sults presented here contribute to an improved understanding
of model behavior across watersheds with diverse physical

characteristics that encompass a wide hydroclimatic gradient
from hyperarid to humid systems.

1 Introduction

Over the past 4 decades, the increasing demand for more
realistic spatial representations of water storages and fluxes
across large domains has motivated the development of more
complex physics-based models (e.g., Niu et al., 2011; Clark
et al., 2015; Lawrence et al., 2019). The progress in this
field has been partly facilitated by new observational datasets
(e.g., McCabe et al., 2017; Berg et al., 2018) and advances
in computing (see discussion on tradeoffs in Clark et al.,
2017), enabling hydrological characterizations of national
(e.g., Tian et al., 2017; Zink et al., 2017), continental (e.g.,
Xia et al., 2012; Abbaspour et al., 2015) and global (e.g.,
Schmied et al., 2014; Arheimer et al., 2020) domains.

Although spatially constant parameters can be used for
large-domain applications, improving model realism requires
the specification of parameter values that reflect spatial
heterogeneities in landscape properties. Because increasing
model complexity is often associated with a larger number
of parameters, many models rely on lookup tables to as-
sign soil thermal and hydraulic parameters as well as vegeta-
tion optical and physiological parameters for each modeling
unit (e.g., Mitchell et al., 2004; Yang et al., 2011). However,
parameter uncertainties may be considerable (Rosero et al.,
2010; Hou et al., 2012), and such a problem is exacerbated by
the existence of parameters that, despite being “adjustable”
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(e.g., runoff generation parameters), remain fixed and hard-
coded (Mendoza et al., 2015a; Cuntz et al., 2016).

To address overparameterization problems that are typical
in environmental models, sensitivity analysis has become a
key tool that provides information on which parameter values
are the most influential for the dynamics of specific model
responses (Razavi and Gupta, 2015). The outcomes of sensi-
tivity analysis not only help to improve the understanding of
model functioning but also to inform decisions regarding pa-
rameter estimation problems. The literature provides many
examples of sensitivity analysis studies with process-based
hydrological models, including the Biosphere–Atmosphere
Transfer Scheme, BATS (Bastidas et al., 1999); TOPKAPI
(Foglia et al., 2009); PRMS (Mendoza et al., 2015b); the
Noah land surface model (Bastidas et al., 2006; Rosero et al.,
2010); Noah-MP (Mendoza et al., 2015a; Cuntz et al., 2016);
the Simple Biosphere model, SiB3 (Prihodko et al., 2008;
Rosolem et al., 2012); the MESH modeling system (Razavi
and Gupta, 2016); the Community Land Model, CLM (Göh-
ler et al., 2013; Massoud et al., 2019); and the Variable In-
filtration Capacity (VIC) model (e.g., Demaria et al., 2007;
Melsen et al., 2016), which is one of most popular modeling
platforms in the hydrology community (Addor and Melsen,
2019).

The VIC model (Liang et al., 1994; Hamman et al., 2018)
has been used for myriad applications all over the world, in-
cluding snow modeling (Andreadis et al., 2009; Chen et al.,
2014), streamflow forecasting (Wood et al., 2005; DeChant
and Moradkhani, 2014), water balance studies (Mizukami et
al., 2016; Vásquez et al., 2021), extreme event characteriza-
tion (Melsen et al., 2019), land use change impacts (Chawla
and Mujumdar, 2015) and climate change impact assess-
ments (e.g., Vano and Lettenmaier, 2014; Chegwidden et al.,
2019). Despite the large number of parameters contained in
VIC – either “free” (e.g., the infiltration shape parameter
“INFILT”, the exponent in baseflow curve) or “observable”
(e.g., leaf area index) – many studies have relied on the cal-
ibration of only two or three soil-related parameters (Huang
and Liang, 2006; Chawla and Mujumdar, 2015). Conversely,
other authors have advocated for characterizing parameter
sensitivities by using different approaches and sensitivity
metrics as well as including different parameters. For exam-
ple, Liang and Guo (2003) assessed the sensitivity of an-
nual runoff, annual evapotranspiration (ET), annual mean
soil moisture and annual mean sensible heat flux to variations
in five soil and vegetation parameters at three experimental
locations (i.e., point scale), finding that sensitivities varied
with climatic and physiographic site characteristics. Demaria
et al. (2007) examined sensitivities in simulated catchment-
scale runoff responses using lumped VIC configurations, a
Monte Carlo method and five objective functions computed
for four basins with varying hydroclimates. They concluded
that (i) 3 (out of 10) soil parameters dominated the simulated
runoff response, (ii) the INFILT parameter and the drainage
parameter (Expti) depended strongly on local hydroclimatol-

ogy, and (iii) the baseflow model formulation is overparame-
terized.

Subsequent studies aiming at calibrating the VIC model
to simulate observed catchment-scale responses have revis-
ited its parametric sensitivity. Mendoza et al. (2015b) ap-
plied the Distributed Evaluation of Local Sensitivity Anal-
ysis method (DELSA; Rakovec et al., 2014) to find the
parameters that provided the largest sensitivities in root-
mean-square errors (RMSE) between simulated and ob-
served streamflow; they showed that 9 (out of 34) parame-
ters provided the largest sensitivities in three subcatchments
from the Upper Colorado River basin. Melsen et al. (2016)
also used the DELSA method to find influential parameters
in three catchments located in Switzerland, identifying 4 (out
of 28) very sensitive parameters for three calibration met-
rics. Wi et al. (2017) applied the method of Morris (1991)
to quantify parameter sensitivities on the Nash–Sutcliffe ef-
ficiency (NSE; Nash and Sutcliffe, 1970) with daily flows,
finding 6 soil parameters and 2 temperature threshold param-
eters as the most influential (out of 15). Gou et al. (2020)
characterized the sensitivities provided by 13 soil param-
eters across 14 catchments in China, finding that INFILT,
Depth1 and Depth2 dominated streamflow responses. Lil-
hare et al. (2020) applied the Variogram Analysis of Re-
sponse Surfaces (VARS) method (Razavi and Gupta, 2016)
to examine the sensitivities of three streamflow performance
metrics to variations in six soil parameters across 10 catch-
ments in Canada, finding that the INFILT and Depth2 pa-
rameters dominated streamflow responses. Yeste et al. (2020)
quantified relative sensitivities provided by five soil param-
eters to water balance components across 31 basins on the
Iberian Peninsula, concluding that INFILT and Depth2 con-
trol runoff components and evapotranspiration (ET). Finally,
Melsen and Guse (2021) characterized VIC parameter sensi-
tivities for a historical (1985–2008) and future (2070–2093)
period in 605 catchments of the conterminous United States,
finding that, in the historical period, Rmin, Depth2 and Expt2
controlled average streamflow, while Ds, DsMAX and many
more parameters influenced streamflow timing. Melsen and
Guse (2021) also projected increased (decreased) sensitivi-
ties to Depth2 (snow parameters) for the future period when
examining average streamflow and increased (decreased) fu-
ture sensitivities to deep soil (snow) parameters when look-
ing at discharge timing.

Table 1 summarizes the main characteristics of parame-
ter sensitivity studies with VIC. Note that we have excluded
a recent study conducted by Sheikholeslami et al. (2021),
who quantified parameter sensitivities in a modified version
of VIC – specifically, using a slow linear reservoir (Gharari
et al., 2019) model instead of the traditional ARNO formu-
lation. Most studies listed in Table 1 focused on stream-
flow responses, attributing the largest sensitivities to a few
soil parameters (Demaria et al., 2007; Gou et al., 2020; Lil-
hare et al., 2020). Only two studies – also characterizing
streamflow responses – have included a large number of
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Table 1. A summary of the sensitivity analysis (SA) studies conducted with VIC that incorporate at least five parametersa.

Study Region Number of Target variables Number of Methods Most sensitive
sites or or metrics parameters parameters
catchments included in SA

Liang Red– Three sites Annual runoff, Five predefined Fractional factorial Varied with site
and Arkansas annual ET, annual parameters analysis (FFA) characteristics
Guo River mean soil moisture
(2003) basin, USA and annual mean

sensible heat flux

Demaria Southeast Four catchments Five metrics 10 soil Regional sensitivity INFILT, Expti and Depth2
et al. of the (including RMSE, parameters analysis
(2007) USA bias and correlation)

formulated with daily
streamflow and daily
baseflow

Chaney Global 1◦ resolution Annual flow biases, Eight soil and one Distance between a INFILT, DsMAX , Expti
et al. grid cells runoff seasonality vegetation priori CDF and and Rmin for annual
(2015) over the and daily flow parameter behavioral biases;

globe percentiles parameter CDF INFILT and DsMAX when
excluding adding the monthly
Greenland and constraint;
Antarctica INFILT, DsMAX , Expti
(15 836 grid and Rmin dominate daily
cells in total) flow extremes.

Mendoza Colorado Three headwater RMSE(Q), with Q at 34 soil, DELSA INFILT, Ds, DsMAX , Ws,
et al. headwaters basins daily time steps vegetation and Depth2, Depth3, NEW
(2015b) region, snow ALB, ALB AA and ALB THA

USA parameters

Melsen Thur Basin, Three catchments NSE(Q), KGE(Q) 28 soil, DELSA INFILT, Ds, Expt2
et al. Switzerland and KGE(log(Q)), vegetation and DsMAX
(2016) with Q at daily and and snow

hourly time steps parameters

Wi et al. American One NSE(Q), with Q at 15 soil, snow Morris INFILT, Ds, DsMAX , Ws,
(2017)b River catchment daily time steps and routing Depth1, Depth2, Depth3,

basin, USA (North Fork parameters and snow Tmax and Tmin
sub-basin)

Bennett Colorado Seven grid cells Projected changes 46 soil and Variance-based DsMAX , Ds and Depth3
et al. River across the (i.e., 2070–2099 vegetation sensitivity for projected changes in
(2018) basin, USA basin, with minus 1970–1999 parameters analysis, applied to runoff, ET and soil

∼ 7 km averages) in mean a Gaussian process moisture; wintertime
horizontal annual runoff, June emulator developed canopy fraction and
resolution soil moisture, March for VIC at each grid wintertime LAI for

SWE and annual ET cell projected changes in SWE

Gou 10 major 14 catchments NSE(Q), with Q at 13 soil Three qualitative INFILT, Depth1 and
et al. river basins monthly time steps parameters (SOT, MARS, DT) Depth2 are the overall
(2020) in China and one quantitative most influential

(Sobol’) method parameters on streamflow.

Lilhare Lower 10 sub-basins NSE(Q), KGE(Q) Six soil VARS INFILT and Depth2 arose
et al. Nelson and PBIAS(Q), with parameters as the most sensitive
(2020) River Q at daily time steps parameters; relative

basin, importance depends on
Canada the catchment.
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Table 1. Continued.

Study Region Number of Target variables Number of Methods Most sensitive
sites or or metrics parameters parameters
catchments included in SA

Yeste Duero 31 headwater Temporal averages Five soil SRC Surface runoff, baseflow,
et al. River basins of surface runoff, parameters total runoff, ET and SM1
(2020) basin, baseflow, total are mainly sensitive to

Iberian runoff, ET and total INFILT and Depth2; SM2 is
Peninsula soil moisture affected mostly by

Depth2; SM3 is affected
by Ds, DsMAX and Ws.

Melsen Contiguous 605 catchments Mean simulated 17 soil, DELSA Rmin, Depth2 and Expt2
and USA streamflow and the vegetation are the most sensitive
Guse day of the year when and snow parameter for mean
(2021) (CONUS) half of the parameters annual discharge; Ds,

streamflow volume DsMAX , Depth2, Rmin,
has passed (i.e., Expt2 and Depth3 control
streamflow timing) streamflow timing.

This Continental 5574 grid Eight metrics computed 43 soil, DELSA INFILT, Ds, DsMAX , Ws,
study Chile cells at daily time steps vegetation Expt2, Depth2, Depth3,

(0.05◦× 0.05◦) and snow Rmin, LAI, NEW ALB,
across 101 parameters ALB THA and ALB AA
basins

a The studies are listed in order of publication date. The present study has been added for completeness. b We exclude two routing parameters that were found to be
sensitive but were not used in the other studies. The abbreviations/acronyms used in the table are as follows: CDF – cumulative distribution function; KGE – Kling–Gupta
efficiency (Gupta et al., 2009); PBIAS – percent bias in flow volumes; LAI – leaf area index; SWE – snow water equivalent; FFA – fractional factorial analysis
(Montgomery, 1991); DELSA – Distributed Evaluation of Local Sensitivity Analysis (Rakovec et al., 2014); DT – Delta test (Pi and Peterson, 1994); SOT – sum-of-trees
model (Chipman et al., 2010); MARS – multivariate adaptive regression splines (Friedman, 1991); VARS – Variogram Analysis of Response Surfaces (Razavi and Gupta,
2016); SRC – standardized regression coefficients (Saltelli et al., 2008); VISCOUS – Variance-based sensitivity analysis using copulas (Sheikholeslami et al., 2021).

soil-, vegetation- and snow-related parameters (Melsen et al.,
2016; Mendoza et al., 2015b). Additionally, only two studies
(Chaney et al., 2015; Bennett et al., 2018) aimed to character-
ize sensitivities across model grid cells. Chaney et al. (2015)
quantified the effects of nine parameters on annual flow bi-
ases, runoff seasonality and daily flow extremes at 1◦ reso-
lution grid cells across the globe. Bennett et al. (2018) ex-
amined the sensitivities of projected changes in water bal-
ance components to variations in 46 VIC parameters, across
a suite of∼ 7 km grid cells in the Colorado River basin. Sen-
sitivity analyses at higher resolutions are particularly rele-
vant for the hydrology community, considering recent devel-
opments in meteorological datasets (Tang et al., 2021) and
global, gridded runoff datasets (e.g., Do et al., 2018; Ghiggi
et al., 2019) as well as the increasing interest in improving
the calibration density – i.e., using high-resolution data in
the calibration process – in distributed hydrology and land
surface models (Yang et al., 2019).

In this paper, we quantify VIC parameter sensitivities
across 5574 grid cells (0.05◦× 0.05◦) covering 101 catch-
ments located in continental Chile, including a suite of
43 standard and hard-coded parameters as well as a set of
metrics that span different runoff, ET and snow processes.
The results presented here contribute to an improved under-
standing of model behavior across watersheds with diverse
physical characteristics, spanning from hyperarid to humid

hydroclimates. With this, we seek to answer the following
research questions:

1. Are there other vegetation and snow parameters, either
standard or hard-coded, affecting simulated runoff re-
sponses in VIC?

2. What are the effects of standard and hard-coded param-
eters on other simulated processes?

3. How do parameter sensitivities relate to local climatic
and physiographic characteristics?

2 Study domain and data

In this work, we select 101 catchments with near-natural hy-
drological regimes from the CAMELS-CL dataset (Alvarez-
Garreton et al., 2018). The selected basins span a total
area of 139 350 km2 (i.e., 19 % of the territory of continen-
tal Chile) and meet the following criteria: (i) a maximum
threshold value of 5 % for the relationship between the an-
nual volume of water assigned as permanent consumptive
rights and the average annual flow (Table 3 in Alvarez-
Garreton et al., 2018) and (ii) the absence of large reser-
voirs within each catchment. The location, hydroclimatic
and land cover characteristics across the domain are shown
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Figure 1. Spatial distribution of climatic and physiographic attributes across all grid cells: (a) mean annual precipitation (period 1979–2020),
(b) mean annual temperature (period 1979–2020), (c) mean elevation, (d) aridity index and (e) bare-soil fraction. In each panel, the black
thick lines represent the boundaries of six basins representative of the hydroclimatic diversity within the study domain; from north to south,
the basins are as follows: (a) Loa River upstream of Lequena reservoir, (b) Pulido River at Vertedero, (c) Colorado River before the junction
with the Maipo River, (d) Palos River at the junction with the Colorado River, (e) Biobío River at Rucalhue and (f) Cautín River at Cajón.

in Fig. 1, and the descriptors used to characterize the grid
cells are listed in Table 2. These catchments cover a wide
range of physiographic attributes, with drainage areas span-
ning from 100 to 7500 km2, mean elevations ranging from
119 to 4824 m a.s.l. (above sea level), mean slopes varying
from 52 to 306 m km−1 and markedly different land cover
types (ranging from completely covered by native forest
or grassland to fully covered by impermeable land). More-
over, the selected basins represent the diversity in hydrocli-
matic conditions across the country. Figure 2 illustrates this
by showing the aridity indices and seasonal cycles of rain-
fall, snowfall, runoff and temperature for a sample of six

basins with very different hydroclimatic regimes. The hy-
drology of catchment 2101001 (Loa River before Lequena
dam, Fig. 2a) is influenced by arid conditions between March
and November, and altiplanic winter events triggering runoff
increases between December and March; towards the south,
there is a transition from arid to semiarid conditions (see
progression in Fig. 2b and c), with precipitation events
occurring mostly during fall and winter (especially May–
August), favoring the accumulation of snow in the head-
waters of Andean catchments, and thus snowmelt-driven
regimes. Catchments 7115001 (Palos River at the junction
with the Colorado River; Fig. 2d) and 8317001 (Biobío River
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Figure 2. Seasonal cycles of catchment-averaged rainfall, snowfall,
runoff and temperature (period 1979–2020) for six basins represen-
tative of the hydroclimatic diversity within the study domain. From
north to south, the basins are as follows: (a) Loa River upstream
of Lequena reservoir, (b) Pulido River at Vertedero, (c) Colorado
River before the junction with the Maipo River, (d) Palos River at
the junction with the Colorado River, (e) Biobío River at Rucalhue
and (f) Cautín River at Cajón. The location of these catchments is
shown in Fig. 1.

at Rucalhue; Fig. 2e) reflect the transition towards mixed
regimes, with larger contributions of winter rainfall events
to runoff. Finally, catchment 9129002 (Cautín River at Ca-
jón; Fig. 2f) has a rainfall-dominated hydrological regime,
with the largest runoff volumes during the winter season (i.e.,
June–September).

In this study, meteorological forcing data are obtained
from various sources. Time series of daily precipitation and
maximum, average and minimum daily temperature are ob-
tained from the CR2MET meteorological dataset (Boisier et
al., 2018), introduced in DGA (2017), which provides data

for continental Chile at a horizontal resolution of 0.05◦×
0.05◦ (∼ 5 km) for the period from 1979 to 2016. The precip-
itation product builds upon a statistical post-processing tech-
nique that uses topographic descriptors and simulated me-
teorological variables from ERA-Interim (Dee et al., 2011)
and ERA5 (C3S and Copernicus Climate Change Service,
2017) as predictors and uses daily precipitation records as
the predictand. A similar approach is used to generate time
series of daily maximum and minimum temperatures, includ-
ing additional predictors from MODIS land surface prod-
ucts. Daily precipitation and temperature variables are disag-
gregated into 3-hourly time steps using the sub-daily distri-
bution provided by ERA-Interim. Finally, relative humidity
and wind speed were obtained from a blend between ERA-
Interim and ERA5, which was subsequently rescaled to the
CR2MET horizontal grid through spatial interpolation. It is
important to note that this product combination was created
because ERA5 was not available during the entire study pe-
riod (1985–2015) at the time of data acquisition (early 2018,
when only 2010–2016 data were available). However, the up-
dated reanalysis information, despite the short time coverage,
was included due to various developmental improvements.

3 Methods

3.1 Hydrological model

The Variable Infiltration Capacity (VIC; Liang et al., 1994)
model is a semi-distributed, physically based hydrological
model that simulates snow accumulation and melt, evapo-
transpiration (ET), canopy interception, surface runoff, base-
flow, and other hydrological processes at daily or sub-daily
time steps. While the model was originally designed as a land
surface scheme for coupled simulations within Earth sys-
tem models (Liang et al., 1994), most applications have in-
volved uncoupled simulations for hydrological characteriza-
tions; accordingly, the literature reports many attempts to im-
prove process representations (e.g., Liang et al., 1996, 1999;
Cherkauer et al., 2003; Andreadis et al., 2009). VIC is pre-
dominantly used in the USA (Addor and Melsen, 2019), with
many studies focused on water and energy balances (e.g.,
Andreadis and Lettenmaier, 2006; Cayan et al., 2010); how-
ever, its use has expanded to other geographical domains,
including China (e.g., Zhao et al., 2013; Gou et al., 2021),
Chile (e.g., Vásquez et al., 2021; Vicuña et al., 2021), Eu-
rope (e.g., Lohmann et al., 1998; Roudier et al., 2016) and
globally (e.g., Shukla et al., 2013; Yang et al., 2021). On-
going community efforts using the VIC model include the
NASA Land Information System (LIS; https://lis.gsfc.nasa.
gov/, last access: 25 January 2022), the NASA Land Data
Assimilation System (LDAS; https://ldas.gsfc.nasa.gov/, last
access: 25 January 2022) and the Regional Arctic Sys-
tem Model (RASM; https://www.oc.nps.edu/NAME/RASM.
htm, last access: 25 January 2022). This study uses VIC ver-
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Table 2. List of physiographic and hydroclimatic attributes used to characterize model grid cells.

Predictor Class Description Data source

Elevation Topographic Mean elevation (m a.s.l.) DGA (2018, 2019a, b)

Slope Topographic Mean topographic slope (◦) Digital Elevation SRTM 1 Arc-Second Global
(https://earthexplorer.usgs.gov/, last access: 13 June 2022)

Precipitation Climate Mean annual precipitation (mm yr−1) DGA (2018, 2019a, b)

Temperature Climate Mean temperature (◦C) DGA (2018, 2019a, b)

Humidity Climate Mean relative humidity (–) DGA (2018, 2019a, b)

Aridity Climate Aridity index (–), ratio of long-term –
potential evaporation to precipitation

Clay Soil Soil clay content (%), average over all layers SoilGrids250m (Hengl et al., 2017)
(https://soilgrids.org/, last access: 13 June 2022)

Bare soil Land cover Fraction of bare soil DGA (2018, 2019a, b)

Forest Land cover Fraction of forest DGA (2018, 2019a, b)

Grasslands Land cover Fraction of grasslands DGA (2018, 2019a, b)

Shrub Land cover Fraction of shrub DGA (2018, 2019a, b)

Snow Land cover Fraction of snow cover DGA (2018, 2019a, b)

sion 4.1.2.g, which can be downloaded from https://github.
com/UW-Hydro/VIC/releases (last access: 13 June 2022),
along with other versions.

In VIC, the domain of interest can be spatially discretized
into grid cells. Sub-grid land use type variability is accounted
for by providing vegetation tiles and the fractional areas, for
which water and energy balance equations are solved sep-
arately; model states and fluxes are then spatially averaged
to provide results at the pixel scale. In VIC, each grid cell
can have up to three soil layers: the two top layers represent
the interaction between moisture and vegetation, and the bot-
tom soil layer is used to simulate baseflow processes. VIC
does not incorporate an aquifer at the bottom of the soil col-
umn nor lateral exchange of fluxes between grid cells. Fi-
nally, snowpack dynamics are simulated by a two-layer mass
and energy balance model (Cherkauer et al., 2003; Andreadis
et al., 2009), where the surface layer solves the energy ex-
change between the snowpack and the atmosphere, and the
lower layer stores the excess snow mass from the upper sur-
face layer.

3.2 Parameters considered for sensitivity analysis

We considered a suite of 43 parameters (Table 3) to incor-
porate most of the soil, vegetation and snow processes simu-
lated by VIC. It should be noted that three of the snow param-
eters are not exposed to model users (NEW ALB, ALB AA
and ALB THA), although the associated relationships and
default values were proposed decades ago (USACE, 1956).
For parameters with monthly variations, we examined sensi-

tivities using regularization “superparameters” (Tonkin and
Doherty, 2005), also called multipliers (Pokhrel and Gupta,
2010), which are uniformly applied over all monthly values.
Hence, multipliers are used for the leaf area index (LAI), veg-
etation albedo (ALB), vegetation roughness length (ROU)
and vegetation displacement (DIS). Despite the fact that
some of these parameters are considered observable, a non-
negligible degree of uncertainty may be involved in their de-
termination; an example of this is the LAI parameter (Tian
et al., 2002; Fang et al., 2012, 2013), whose implementa-
tion in many hydrology and land surface models is simplified
through static monthly values. Assumptions like this moti-
vate us to explore the sensitivity of these types of parameters,
which may have the potential to be included in the calibration
process.

Despite the aim to include the largest possible number of
parameters, some of them were discarded for different rea-
sons. For example, a few soil parameters (e.g., soil bubbling
pressure) are not active unless the frozen soil algorithm is
turned on. We also excluded the “trunk ratio” parameter –
i.e., the ratio of total tree height that is trunk (no branches) –
because it is activated only in those grid cells with forest (i.e.,
vegetation class with overstory, spanning 22 % of our study
domain) as the land cover type. Finally, we found five mu-
tually related soil parameters that do not allow independent
variations: soil bulk density (bd), soil particle density (sd),
fractional soil moisture content at the critical point (θcr), frac-
tional soil moisture content at the wilting point (θwp) and
residual soil moisture (θr). These parameters are related as
follows:
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Table 3. Parameters of the VIC model considered in this study.

Parameter Description Units Min Max Comment

Soil parameters

INFILT Variable infiltration curve – 0.001 0.4 Based on Mendoza et al.
parameter (2015b)

DsMAX Maximum velocity of baseflow mm d−1 1 50 Based on Melsen et al.
(2016)

Ds Fraction of DsMAX where – 0.00005 1 Based on Mendoza et al.
non-linear baseflow occurs (2015b)

Ws Fraction of maximum soil – 0.0009 1 Based on Mendoza et al.
moisture where non-linear (2015b)
baseflow occurs

c Exponent used in baseflow curve – 1 4 Based on Melsen et al.
(2016)

Expti Exponent in Campbell’s equation – 5 30 Based on Melsen et al.
for hydraulic conductivity of soil (2016)
layer i

Ksati Saturated hydraulic conductivity mm d−1 1 10 000 Based on Demaria et al.
of soil layer i (2007)

Depth1 Thickness of layer 1 (uppermost) m 0.01 0.5 Based on Demaria et al.
(2007)

Depth2 Thickness of layer 2 m Depth1+ 0.1 Depth1+ 4 Based on Melsen et al.
(2016)

Depth3 Thickness of layer 3 (lowermost) m 0.1 4 Based on Melsen et al.
(2016)

dp Soil thermal damping depth m 1 3.75 Based on Gates and Evans
(1964) and Al Nakshabandi
and Kohnke (1965)

quartzi Quartz content of soil layer i – 0.1 0.82 Based on Hogue et al.
(2005) and Rosero et al.
(2010)

bulk densityi Bulk density of layer i kg m−3 1200 1609 Based on Cosby et al.
(1984), Rawls et al. (1992)
and Reynolds et al. (2000)

rough Surface roughness of bare soil m 0.0001 0.08 Based on Woodward
(1999)

Resid moist Residual soil moisture of layer i – 0.02 0.109 Based on Rawls et al.
(1992)

Vegetation parameters

rarc Architectural resistance of s m−1 2 50 Based on Ducoudré et al.
vegetation type (1993)

Rmin Minimum stomatal resistance of s m−1 30 300 Based on Melsen et al.
vegetation type (2016)
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Table 3. Continued.

Parameter Description Units Min Max Comment

Vegetation parameters cont.

LAI∗ Leaf area index of vegetation – 0.1 1.16 Multipliers obtained from a
type leaf area index range of

0.01–7 based on Dorman and
Sellers (1989) and Myneni
et al. (1997).

ALB∗ Shortwave albedo for vegetation – 1 1.65 Multiplier obtained from a
type shortwave albedo range of

0.1–0.33 based on Dorman
and Sellers (1989).

ROU∗ Vegetation roughness length – 0.82 2.11 Multiplier obtained from a
roughness length range of
0.06–2.6 m based on
Dorman and Sellers (1989).

DIS∗ Vegetation displacement height – 0.82 2.11 Multiplier obtained from a
roughness length range of
0.06–2.6 m based on
Dorman and Sellers (1989)
and VIC definitions.

Root depth i Root zone thickness (sum of m 0.1 3 Based on Melsen et al.
depths is total depth of root (2016)
penetration) of layer i

Root fraction i Fraction of root in the current – 0 1 Based on Bohn and Vivoni
root zone of layer i (2016)

Snow and general parameters

z0SNOW Surface roughness of snowpack m 0.0001 0.01 Based on a range suggested
by Marks and Dozier (1992)
and Reba et al. (2014)

Tmin Minimum temperature at which ◦C −1.5 0 Based on Melsen et al.
rain can fall (2016)

Tmax Maximum temperature at which ◦C Tmin+ 0.5 Tmin+ 1.5 Based on Melsen et al.
snow can fall (2016)

NEW ALB New snow albedo – 0.7 0.99 Based on Mendoza et al.
(2015b)

ALB AA Base number in the snow albedo function – 0.88 0.99 Based on Mendoza et al.
(accumulation) (2015b)

ALB THA Base number in the snow albedo function – 0.66 0.98 Based on Mendoza et al.
(melt) (2015b)

∗ This parameter is temporally distributed (monthly variations); therefore, its sensitivity is analyzed based on multipliers. Although the description and units refer to actual
parameters of VIC, parameter values in bold represent the multiplier values (instead of actual parameters).

θcr ≥ θwp ≥
θr(

1− bd
sd

) . (1)

From these five parameters, we only include θr and bd, as
(1) perturbing θr and bd values did not affect numerical so-
lutions, and (2) Bennett et al. (2018) showed that θcr, θwp,
bd and sd did not have substantial effects on model simula-
tions. Finally, those parameters that showed little or no sen-
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sitivity in the initial phases of the study were purposely dis-
carded.

3.3 Sensitivity analysis approach

We used the Distributed Evaluation of Local Sensitivity
Analysis (DELSA; Rakovec et al., 2014) method, which is
a derivative-based, hybrid local–global approach. DELSA
combines elements from the method of Morris (1991), the
Sobol’ method (Sobol’, 2001) and regional sensitivity analy-
sis (Hornberger and Spear, 1981), and it provides robust re-
sults with fewer model simulations compared with variance-
based global methods such as the Sobol’ technique. Although
DELSA only examines first-order sensitivities, it has unex-
plored potential to be expanded with the aim of quantifying
parameter interactions (Zegers et al., 2020), which could be
achieved by including additional terms in the local total vari-
ance (Sobol’ and Kucherenko, 2010).

Consider a transformation f and a vector θ with k param-
eters, which provides a metric 9 describing model output:

9 = f (θ), f : Rk→ R. (2)

Given a sample point θ∗ in the parameter space, the gradient
for metric 9 and parameter θj around this point – i.e., ∂9

∂θj
|θ∗

– is considered a measure of local sensitivity. In this work,
we follow Rakovec et al. (2014) and compute such a gradient
using a forward, finite difference approach with a 1 % change
in the parameter value:

∂9

∂θj
|θ∗ =

9
(
θ∗j + 0.01θ∗j

)
−9

(
θ∗j

)
0.01θ∗j

. (3)

In Eq. (3),9(θ∗) is a signature measure of hydrologic behav-
ior, formulated by contrasting model output at the point θ∗

with that obtained from a reference parameter set θ ref in the
grid cell of interest (see Sect. 3.3.2 for details). The first-
order sensitivity measure for the j th parameter is calculated
at each sample point as

SL
j =

(
∂9
∂θj
|θ∗

)2
s2
j

VL (θ∗)
. (4)

Here, s2
j is the a priori parameter variance of the j th param-

eter, and VL(θ
∗) is the linearized local variance:

VL
(
θ∗
)
=

k∑
j=1

(
∂9

∂θj
|θ∗

)2

s2
j . (5)

Finally, s2
j is obtained from the variance of a uniform distri-

bution (Rakovec et al., 2014), which is 1
12

(
θj,max− θj,min

)2.
The first-order sensitivity indices vary between zero

and one, and the sum of first-order sensitivities from all pa-
rameters at each sampling point is equal to one. Local sensi-
tivities can be examined through their cumulative frequency

distribution across the parameter space or by computing a
specific statistical property. Here, we quantify the relative
contribution of a specific parameter using the area above the
curve of the full frequency distribution:

ISL
j = 1−

1∫
0

F
(
SL
j

)
dSL

j . (6)

3.4 Performance metrics

We use eight model evaluation metrics to quantify the sen-
sitivity of simulated hydrological processes to variations in
model parameters. The notation, brief description, mathe-
matical formulation and physical process associated with
each metric are detailed in Table 4. These metrics are com-
puted by contrasting model output from sampling points pro-
duced for DELSA with a reference national-scale dataset
with simulated states and fluxes obtained from the national
water balance database (DGA, 2018, 2019a, b) for the his-
torical period from 1985 to 2015. This dataset was developed
by running the VIC model at the same grid discretization as
employed here (i.e., 0.05◦× 0.05◦) and using a combination
of CR2MET version 2.0, ERA-Interim and ERA5 output as
meteorological forcings. The spatially distributed parameter
fields for our reference simulation were developed via pa-
rameter regionalization, based on the similarity between pos-
sible donor catchments – whose parameters were calibrated
individually (Vásquez et al., 2021) – and each grid cell across
the domain, following Beck et al. (2016). The reader is re-
ferred to Vásquez et al. (2021) and DGA (2018, 2019a, b;
in Spanish) for more details on individual model calibration
and parameter regionalization procedures used to generate
the reference simulation.

Four evaluation metrics are formulated from runoff time
series. The first objective function is the root-mean-square er-
ror (RMSE), which is a standard metric that emphasizes high
flows. The second metric selected is the transformed-root-
mean-square error (TRMSE), for which the simulated and
observed runoff time series are transformed using a Box–Cox
transformation to emphasize low flows (Misirli et al., 2003).
The third objective function is the flow duration curve (FDC)
mid-segment slope difference (FMS), which represents the
variability (or flashiness) of the flow magnitudes; thus, it
measures how well a model captures the distribution of the
mid-level flows. A steep slope of the FDC indicates flashi-
ness of the streamflow response, whereas a flatter curve indi-
cates a relatively damped response and a higher storage (Ya-
dav et al., 2007; Casper et al., 2012). The fourth evaluation
metric is the runoff ratio difference (RR), considered as a
measure of the general water balance and, therefore, as a sig-
nature of the evapotranspiration model component (Mendoza
et al., 2015b).

We use two metrics to characterize snow cover pro-
cesses: the difference in the long-term simulated peak
SWE (PeakSWE), which is an integrated measure of processes
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Table 4. Parameter sensitivity metrics used in this study.

Notations Short descriptions Formulas Indicator of processes

RMSE Root-mean-square error

√
1
N

N∑
t=1

(
Qsim
t −Q

ref
t

)2
High flows

TRMSE Transformed root-mean-

√
1
N

N∑
t=1

(
Zsim
t −Z

ref
t

)2
Low flows

square error Zt =
(1+Qt )λ−1

λ ; λ= 0.3

FMS Flow duration curve
∣∣∣∣Qsim

m1
−Qref

m2
m1−m2

−
Qobs
m1
−Qref

m2
m1−m2

∣∣∣∣ Variability (or flashiness)

mid-segment slope difference of the flow magnitudes

RR Runoff ratio difference
∣∣∣Rsim
Psim
−
Rref
Pref

∣∣∣ Overall water balance (ET
processes)

PeakSWE Peak SWE difference
∣∣max{SWEt }sim−max{SWEt }ref

∣∣ Maximum long-term SWE
accumulation

SnowLength Snow length difference
∣∣∑days ∈ SWEsim > x−

∑
days ∈ SWEref > x

∣∣ The number of days when
x = 1 mm snow is on the ground

SUBL Sublimation difference |Sublsim−Sublref| Mean error on sublimation
estimation

TRANSP Transpiration difference
∣∣Transpsim−Transpref

∣∣ Mean error on transpiration
estimation

The abbreviations used in the table are as follows: N – number of time steps; Qt – flow for time step t ; Zt – flow transformed for time step t ; Qm1 – m1 percentile flow
of simulated flow duration curve, where m1 = 70; Qm2 – m2 percentile flow of simulated flow duration curve, where m2 = 30; R – grid-averaged mean annual runoff; P
– grid-averaged mean annual precipitation; SWEt – snow water equivalent for time step t ; Subl – grid-averaged mean annual sublimation; Transp – grid-averaged mean
annual transpiration.

occurring during the snowfall season, and the difference in
snow cover duration, quantified by the number of days with
snow on the ground (SnowLength; Mizukami et al., 2014). Fi-
nally, we include two metrics based on evaporation fluxes:
the sublimation difference (SUBL), which emphasizes the
net sublimation from the snowpack surface, and the plant
transpiration difference (TRANSP).

3.5 Experimental setup

We apply the DELSA method in 5574 grid cells across conti-
nental Chile, which are contained within the 101 catchments
described in Sect. 2. In each grid cell, hydrologic model sim-
ulations are conducted at 3-hourly time steps for a 12-year
period (April 1999–March 2011), with the first 2 years used
to initialize model states (i.e., spin-up period). The model is
run in full energy balance mode, which means that both en-
ergy and water balances are solved, and 3-hourly outputs are
aggregated to daily time steps for subsequent analyses.

In this study, we use the Latin hypercube sampling (LHS)
method to obtain 200 sample points across the parameter
space, for which first-order sensitivity indices are computed.
LHS is an efficient simulation technique, especially suit-
able for statistical and sensitivity calculations (Vořechovský,
2015). To stratify the parameter space, we sample uniformly

in a 43-dimensional hypercube and then map onto the pa-
rameter space using the inverse cumulative distribution func-
tion of each parameter’s prior. As DELSA is used here, all
parameter distribution functions are assumed to be uniform.
The computational cost of applying DELSA at each cell
is Nl(k+ 1)= 8800 model runs, where Nl is the number of
sample points (200), and k is the number of parameters (43);
hence, the total number of models runs required for this study
is 49 051 200.

In this paper, a parameter is considered redundant or insen-
sitive when the median value of the integrated first-order sen-
sitivity index (i.e., median ISL

j ) across all grid cells is smaller
than 0.05 for at least seven of the eight evaluation metrics
listed in Table 4. Parameter sensitivity results are also exam-
ined per metric (Sect. 3.4) and grid cell climate type based on
the aridity index (Table 5; UNEP, 1997; Verbist et al., 2010).

Finally, we use the Spearman rank correlation coefficient
(rs) to measure the degree of association between the param-
eter sensitivities and physiographic/hydroclimatic character-
istics listed in Table 2. These attributes were chosen due to
their ability to improve the prediction of hydrological signa-
tures (Addor et al., 2018) and because they are relatively easy
to obtain.
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Table 5. Climate classification used to group model grid cells.

Classification Humid Humid Dry Semiarid Arid Hyperarid
subhumid subhumid

Aridity index < 1 1 to 1.53 1.53 to 2 2 to 5 5 to 20 > 20
Number of grid cells 2189 772 318 992 803 499

4 Results and discussion

4.1 Intra- and inter-basin variability in parameter
sensitivities

Figure 3 shows the cumulative distribution functions (CDFs)
of sensitivity indices SL

j for evaluation metric–parameter
combinations across six hydroclimatically different catch-
ments – also displayed in Figs. 1 and 2. Each panel located in
the first six rows includes the CDFs of all the grid cells con-
tained in a specific basin, and the last row in Fig. 3 comprises
the CDFs of all grid cells contained in the six basins. The re-
sults reveal high parametric sensitivities for RMSE–INFILT
in basins located in northern Chile (arid regime) and lower
sensitivities along central and southern catchments, whereas
the opposite behavior is observed for TRMSE–DsMAX , FMS–
Ds and RR–LAI (i.e., increasing sensitivities towards the
south). Such dependence between hydroclimatic basin char-
acteristics and parameter sensitivities was also reported by
Demaria et al. (2007). Moreover, Gou et al. (2020) found that
sensitivities were strongly related to environmental charac-
teristics, including climate, vegetation, soil and topographic
features. Figure 3 also enables the comparison between intra-
catchment (top six rows) and inter-catchment (bottom row)
variability in parameter sensitivities. For the sample of basins
included here, one can note that inter-basin variability in sen-
sitivities is larger than intra-basin variability in runoff-related
metrics. Nevertheless, for some metric–parameter combina-
tions, intra-catchment variability is comparable to inter-basin
variations in parametric sensitivities. For example, the spread
in the CDFs displayed for SUBL–z0SNOW at basin 8317001
(Biobío River at Rucalhue) – characterized by a wet hydro-
climate – is comparable to the spread arising from all basins
(see same column, last row).

To further illustrate intra-basin differences in parameter
sensitivities, Figs. 4 and 5 show the spatial distribution of the
ISL
j indices for the leaf area index (LAI) and the snow albedo

parameter ALB THA, respectively, over a cluster of subhu-
mid and humid basins located in southern Chile. For the LAI
parameter (Fig. 4), a west–east gradient in ISL

j is observed for
RMSE (high flows), TRMSE (low flows) and FMS (flashi-
ness of runoff), with increasing sensitivity to LAI variations
towards the coast, whereas an inverse pattern is observed for
the same metrics and ALB THA (i.e., larger sensitivities to-
wards the Andes, Fig. 5). For PeakSWE, SUBL and – to a
smaller degree – SnowLength, LAI yields larger sensitivities

in vegetated areas, where snow accumulates during winter
(Fig. 4), matching those locations where forest is the domi-
nant land cover type, which is also the only vegetation class
with an overstory (e.g., trees). Notably, very large variations
in PeakSWE sensitivities to LAI are observed over relatively
short distances due to differences among grid cells with re-
spect to the fraction of land cover defined as forest. Such
dependence among SWE sensitivities, LAI and canopy frac-
tions was also reported by Bennett et al. (2018). Figure 4
also shows that LAI does not yield a clear sensitivity pattern
in RR and TRANSP throughout this subdomain, although
ISL
j values are higher for RR. For this metric, there are spa-

tial singularities where the sensitivity is minimal or null, as
the fraction of ground cover defined as bare soil in these ar-
eas increases considerably, reaching up to 100 % bare soil
(LAI∼ 0) in some grid cells.

The results presented in Fig. 5 reinforce the idea that hard-
coded parameters should be exposed to users (Mendoza et
al., 2015a; Cuntz et al., 2016). In particular, Fig. 5 shows the
large effects of ALB THA variations on SnowLength (with
a very pronounced east–west gradient) and, to a smaller
degree, on PeakSWE and SUBL. ALB THA also affects
runoff-based metrics along the Andes, especially simulated
high (RMSE) and low (TRMSE) flows.

4.2 Identification of the most sensitive parameters

Figure 6 displays box plots comprising ISL
j results from all

grid cells in the study domain, for each parameter and evalu-
ation metric (displayed in different panels). The results show
that 72 % of the parameters analyzed (i.e., 31) yielded small
sensitivity indices for the metrics examined here. Conversely,
a suite of 12 sensitive parameters are associated with soil
(INFILT, Ds, DsMAX , Ws, Expt2, Depth2 and Depth3), snow
(NEW ALB, ALB THA and ALB AA) and vegetation (Rmin
and LAI) processes. Figure 7 shows the spatial variability
in ISL

j for the 12 parameters identified as the most sensitive
across the 101 basins of continental Chile.

For the case of high flows (RMSE), low flows (TRMSE)
and flashiness of runoff (FMS), the parameters identified as
sensitive are INFILT, Ds, DsMAX , Ws, Expt2, Depth2 and
Depth3 (see top three panels in Fig. 6). The INFILT param-
eter controls the shape of the variable infiltration capacity
curve (Zhao et al., 1980; Wood et al., 1992) and, thus, the
partitioning of rainfall or snowmelt into infiltration and sur-
face runoff. A higher INFILT value yields less infiltration
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Figure 3. Comparison of cumulative frequency distributions of first-order DELSA indices (SL
j

) across six hydroclimatically different basins
(displayed in different rows, sorted by latitude). The location and seasonal cycles for these basins are displayed in Figs. 1 and 2, respectively.
Results are displayed for the most sensitive parameter associated with each evaluation metric (displayed in different columns); thus, each
panel (except those in the last row) comprises the CDFs of all grid cells contained in a specific basin, for a particular metric–parameter
combination. The most sensitive parameter was determined based on the median sensitivity index ISL

j
from all the grid cells contained in the

study domain (see text for details). The number next to each basin code at the top of this figure is the catchment-scale aridity index.

and higher surface runoff. The RMSE and TRMSE metrics
are particularly sensitive to INFILT, indicating a key role in
the generation and timing of high and low flows. This pa-
rameter has been identified as sensitive in all of the studies
listed in Table 1. DsMAX is the maximum velocity of base-
flow, whileDs andWs are the fraction ofDsMAX and the frac-
tion of the maximum soil moisture content in the third layer,
respectively, where non-linear baseflow occurs. These three
parameters are involved in the ARNO formulation of sub-
surface runoff (Franchini and Pacciani, 1991; Todini, 1996),
controlling the speed of baseflow release from the third soil
layer (Liang et al., 1994) and, specifically, the non-linear part
of the baseflow generation function. The sensitivity indices

found for these parameters are consistent with the high sen-
sitivity measures reported by Mendoza et al. (2015b), Melsen
et al. (2016) and Wi et al. (2017).

The Expt2 parameter is an exponent of the Brooks–Corey
relationship (Brooks and Corey, 1964) and controls the hy-
draulic conductivity between the second and third soil lay-
ers. A small value for the Expt2 parameter increases inter-
layer drainage for the same soil moisture content and, there-
fore, increases baseflow generation. The Depth2 parameter is
the thickness of the second soil layer. In general, thicker soil
layers slow seasonal peak flows and increase water loss due
to evapotranspiration (Xie et al., 2007). It should be noted
that the parameter Depth2 has been identified as highly sen-
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Figure 4. Spatial distribution of integrated first-order DELSA sensitivity indices (ISL
j

) for the leaf area index (LAI) across a humid subdomain
located in southern Chile. Results are displayed for eight sensitivity metrics: (a) RMSE, (b) TRMSE, (c) FMS, (d) RR, (e) PeakSWE,
(f) SnowLength, (g) SUBL and (h) TRANSP.

sitive by many authors (Demaria et al., 2007; Mendoza et al.,
2015b; Wi et al., 2017; Gou et al., 2020; Lilhare et al., 2020;
Yeste et al., 2020; Melsen and Guse, 2021). Finally, Depth3 is
the thickness of the third layer of soil, and the large sensitivi-
ties obtained here agree with the results reported by Mendoza
et al. (2015b) and Wi et al. (2017).

The results in Fig. 6 show that Expt2 and Depth2 also
provide large sensitivities for metrics focused on evapora-
tive fluxes (i.e., RR and TRANSP). Other parameters that
are relevant for these processes are LAI and the minimum
stomatal resistance (Rmin). Indeed, Chaney et al. (2015) re-
ported high sensitivity of annual flow biases to variations
in Rmin. LAI is a dimensionless quantity that characterizes
intra-annual variations in plant canopies, and it is defined as
the one-sided green leaf area per unit ground surface area.
On the other hand, Rmin is one of the parameters that con-
trol canopy resistance when computing transpiration from
each vegetation class, following the formulations proposed
by Blondin (1991) and Ducoudré et al. (1993). Both LAI and

Rmin provide null sensitivities if the land cover type is bare
ground; however, Rmin can also produce null sensitivities in
vegetated grid cells.

Figure 6 reveals the large influence of hard-coded parame-
ters on PeakSWE, SnowLength and SUBL – in particular, NEW
ALB, ALB THA and ALB AA. The NEW ALB parameter
is the new snow surface albedo, which controls the reflec-
tion of solar radiation and, therefore, the energy exchange
between the atmosphere, forest canopy and the surface layer
of the snowpack (Andreadis et al., 2009). Additionally. The
ALB AA and ALB THA parameters represent the albedo
decay in the accumulation and melting season in the snow
albedo curve, respectively (USACE, 1956). These seasons
are defined based on the absence or presence of liquid wa-
ter in the surface snow cover. These results correspond well
with the high sensitivities reported by Mendoza et al. (2015b)
for these three hard-coded parameters. Finally, the snow sur-
face roughness length (z0SNOW) also affects sublimation rates
across Andean subdomains.
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Figure 5. Same as in Fig. 4 but for the base number in the snow albedo function ALB THA (melt).

4.3 What drives parameter sensitivities across different
hydroclimates?

Figure 8 shows the Spearman rank correlation coefficient (rs)
between parameter sensitivities and a suite of climatic, topo-
graphic, land cover and soil-related grid cell attributes de-
scribed in Table 2. The magnitude and sign of the correlation
quantifies how each sensitivity index varies with a given geo-
physical attribute. The results show that the magnitude of the
correlation varies depending on the metric–parameter com-
bination, with the maximum correlations generally found for
soil parameters, such as DsMAX and Ws, with precipitation
(rs = 0.91) and the aridity index (rs =−0.91) for the FMS
function (flashiness of the flow). For this example, the sim-
ulation of flow flashiness is highly sensitive to DsMAX and
Ws in the wet region but insensitive in the arid area. Con-
versely, the minimum correlations are found for snow param-
eters. It should be noted that a weak correlation indicates that
there is less spatial pattern in sensitivity; however, the magni-
tude of the sensitivity index can be high or low. For example,

NEW ALB is a highly sensitive parameter across the domain
(Fig. 6).

The results in Fig. 8 also indicate that high correlations
(either positive or negative) are mainly associated with cli-
mate indices, which exert a stronger influence compared with
the remaining attribute classes. These strong dependencies
of the parametric sensitivity on climate variables are some-
what expected, as some combinations of hydrological signa-
tures and parameters inherit strong spatial climate patterns
(Addor et al., 2018); compare, for example, the aridity in-
dex, shown in Fig. 1d, with DsMAX–FMS and DsMAX–RMSE,
shown in Fig. 7. Among climate descriptors, the aridity in-
dex, mean annual precipitation and relative humidity yield
the highest correlations, and temperature exhibits a relatively
lower influence on parametric sensitivity; this result was con-
firmed with additional correlation analyses including only
grid cells with mean annual temperatures below 5 and 2 ◦C
(not shown). The lowest correlations are obtained for mean
slope (topographic attribute), shrub fraction (land cover at-
tribute) and mean clay content of soil (soil attribute). The key
influence of climatic conditions on hydrological behavior is
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Figure 6. Box plots comprising integrated first-order DELSA sensitivity indices (ISL
j

) from all modeling units (5574 grid cells). Results
are displayed for all parameters (x axis) and sensitivity metrics, which are presented in different panels: (a) RMSE, (b) TRMSE, (c) FMS,
(d) RR, (e) PeakSWE, (f) SnowLength, (g) SUBL and (h) TRANSP.

not new, as aridity is commonly regarded as the main driver
of water partitioning at the land surface (Budyko, 1974; Hra-
chowitz et al., 2013).

Figure 8 shows that the extent to which parametric sensi-
tivities are related to grid cell attributes depends on the tar-
get evaluation metric (i.e., runoff, evaporative processes and
snow processes), with the three distinct groups containing the
same influential parameters. In the following subsections, we
discuss the results based on these groups, with emphasis on
spatial patterns and process interpretation across our study

basins. Table 6 summarizes, for each evaluation metric (i.e.,
physical process to be represented) and climatic zone (using
the classification from Table 5), the three most important pa-
rameters. Hence, the lists contained therein can be used to
guide the selection of parameters for hydrologic model cali-
bration, based on the hydroclimatic regime and target process
that modelers would like to represent.
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Figure 7.
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Figure 7. Integrated first-order DELSA sensitivity indices for all grid cells within our study basins. The results are displayed only for the
12 most sensitive parameters as well as their associated most impacted metrics.
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Figure 8. The Spearman rank correlation coefficient between inte-
grated first-order DELSA sensitivity indices ISL

j
and grid cell char-

acteristics. Results are displayed only for the four most sensitive
parameters affecting each metric. The crosses indicate correlations
with p values larger than 0.05.

4.3.1 Runoff-oriented metrics

The results presented in Fig. 7 (see RMSE and TRMSE) and
Fig. 8 (RMSE) show a direct relationship between the sensi-
tivities provided by INFILT, as well as the degree of aridity,
especially in semiarid to hyperarid subdomains. The runoff-

oriented metrics are also sensitive to baseflow generation pa-
rameters Ds, Ws and DsMAX in most basins – with a similar
spatial distribution of ISL

j values – except for those located
in the north and in some areas of southern Patagonia, where
climatic conditions are arid or hyperarid. In basins located in
the extreme north, small sensitivities can be attributed to lo-
cal climate characteristics: most precipitation events in that
area occur in summer (i.e., December–March) due to oro-
graphic rains caused by air masses coming from the Ama-
zon region, and there is usually little recharge to the aquifers.
Additionally, the third soil layer in these basins generally
does not reach saturation; therefore, runoff simulations in
those areas are insensitive to variations inDs andWs because
the non-linear part of the baseflow function is only activated
when the moisture storage in the third layer exceeds a thresh-
old (Gou et al., 2020). Because of the dependency of DsMAX

on precipitation, this parameter could be playing a key role
in the baseflow generation processes over Andean regions
(Fig. 7). Finally, a similar spatial distribution of integrated
first-order sensitivities for Ds, Ws and DsMAX is expected,
as they all focus on baseflow generation (see DsMAX–FMS,
DsMAX–RMSE, Ws–TRMSE, Ws–FMS and Ds–TRMSE in
Fig. 7).

Expt2 is identified as sensitive for runoff-oriented metrics
in basins with semiarid to hyperarid climates, characterized
by small annual precipitation amounts and permanent wa-
ter stress. In these hydroclimatic regimes, there is usually not
enough water to reach the third soil layer, so water is stored in
the second layer and drainage is mainly controlled by Expt2,
affecting the vertical redistribution of soil moisture (FMS)
and low flows (TRMSE), as shown in Fig. 7. Depth2 pro-
vides large runoff sensitivities in dry-subhumid to hyperarid
hydroclimatic regimes, for the same reasons as Expt2. Vari-
ations in the depth of the second soil layer change the soil
moisture of the layer, and higher (lower) values of Depth2
for the same volumetric water content produce lower (higher)
soil moisture, affecting drainage between soil layers.

Finally, Depth3 provides large sensitivities for all runoff-
oriented metrics, with similar spatial patterns to Ws, Ds and
DsMAX , although to a smaller degree (Fig. 7). Depth3 is
particularly sensitive in humid-subhumid and humid catch-
ments, suggesting a direct relationship with mean annual pre-
cipitation or with the size and intermittency of storms (Ab-
dulla and Lettenmaier, 1997). In these climatic domains, pe-
riodic heavy-rainfall events enable a continuous recharge of
the second and third soil layers – which may reach saturation
– and, thus, a constant baseflow generation that affects runoff
response and the retention time of soil moisture, producing
higher baseflow during wet seasons (Shi et al., 2008). In-
terestingly, in humid subdomains, baseflow parameters yield
high sensitivities in both rainfall- and snowfall-dominated
grid cells, although ALB THA emerges as the most important
parameter for RMSE and TRMSE in snowfall-dominated
grid cells (not shown).
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Table 6. Summary of the most sensitive VIC parameters found for each metric (rows) and climatic type. The three most important parameters
are determined based on the median of the integrated first-order DELSA sensitivity indices and are sorted by ranking (i.e., first, second and
third most sensitive).

Classification Humid Humid Dry Semiarid Arid Hyper
subhumid subhumid arid

RMSE DsMAX DsMAX INFILT INFILT INFILT INFILT
Ws Ws Ws Expt2 Expt2 Expt2
Depth3 Depth3 DsMAX Depth2 Depth2 Depth2

TRMSE DsMAX LAI LAI INFILT INFILT INFILT
Ws DsMAX Depth2 Depth2 Expt2 Expt2
Ds Ds Ds Expt2 Depth2 Depth2

FMS DsMAX Ds Ds Ds Depth2 Depth2
Ds DsMAX DsMAX DsMAX Expt2 Expt2
Ws LAI LAI Depth2 Ds Ds

RR LAI LAI LAI LAI INFILT Depth2
Rmin Rmin Expt2 Expt2 Depth1 INFILT
Expt2 Expt2 Depth2 Depth2 Expt2 Depth1

PeakSWE NEW ALB NEW ALB NEW ALB NEW ALB NEW ALB NEW ALB
ALB THA ALB THA z0SNOW ALB AA ALB AA ALB AA
LAI ALB AA ALB THA Tmax z0SNOW z0SNOW

SnowLength NEW ALB NEW ALB NEW ALB NEW ALB NEW ALB NEW ALB
ALB THA ALB AA ALB AA ALB AA ALB AA ALB AA
ALB AA ALB THA ALB THA Tmax ALB THA z0SNOW

SUBL z0SNOW NEW ALB z0SNOW NEW ALB NEW ALB NEW ALB
NEW ALB z0SNOW NEW ALB z0SNOW z0SNOW ALB AA
ALB THA Tmax Tmax ALB AA ALB AA z0SNOW

TRANSP LAI LAI LAI LAI Expt2 Expt2
Rmin Rmin Depth2 Depth2 LAI Depth2
Expt2 Depth2 Expt2 Expt2 Depth2 LAI

4.3.2 Evaporative processes

The evaluation metrics associated with these processes are
RR (a measure of the overall water balance) and TRANSP
(plant transpiration), with LAI, Rmin, Expt2 and Depth2 be-
ing the most important parameters.

Figure 7 shows a pronounced spatial variability in LAI
sensitivities across a large domain that comprises very dif-
ferent land cover types. One can note that LAI yields high
sensitivities for nearly all hydroclimatic regimes, as this pa-
rameter controls the evaporation from the canopy layer and
canopy transpiration. In hyperarid climates, the LAI is usu-
ally less important, given the permanent water stress com-
mon for grid cells with bare soil. In summary, LAI is influ-
ential wherever vegetation exists, regardless of the prevailing
hydroclimatic regime.

The parameter Rmin yields parametric sensitivities across
humid-subhumid and humid areas (Fig. 7 and Table 6). In the
canopy resistance process, there is a stomatal resistance mul-
tiplier, gsm[n], defined as a soil moisture stress factor that de-
pends on the water in the root zone for the nth surface cover

class. Thus, when the soil moisture in layer n is less than the
fraction of the moisture content at the wilting point, the value
of gsm[n] is zero, whereas when the soil moisture is greater
than the fractional content of soil moisture at the critical point
(∼ 70 % of field capacity), the value of gsm[n] is one. For
the intermediate condition, gsm[n] values vary linearly with
soil moisture in that layer, which explains why Rmin provides
high sensitivities in very humid (i.e., large precipitation) cli-
mates.

Finally, our results show that Expt2 and Depth2 yield
large sensitivities to RR and TRANSP in all hydroclimatic
regimes, as they affect the soil moisture content in layer 2,
which indirectly affects the gsm[n] factor in the canopy re-
sistance formulation. These parameters show a lower rela-
tive sensitivity in humid/subhumid and humid climates, as
the Rmin parameter becomes more relevant when there is no
soil moisture stress (i.e., gsm[n] ∼ 1).
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4.3.3 Snow processes

Figure 7 shows that NEW ALB, ALB THA and ALB AA
yield high sensitivities throughout the study domain, espe-
cially in areas where snow processes dominate hydrological
responses. In particular, the NEW ALB parameter is impor-
tant throughout the domain and reaches the highest values
for snow-oriented evaluation metrics. Additionally, the re-
sults in Fig. 7 show that ALB AA and ALB THA dominate
snow responses in different domains: the ALB THA param-
eter yields large sensitivities in humid and subhumid moun-
tainous areas located south of 34◦ S, with large effects on the
snow season length and the maximum SWE accumulation,
whereas ALB AA shows greater sensitivity for the other cli-
matic regimes, affecting SnowLength and sublimation in semi-
arid, colder environments in northern Chile (26–29◦ S).

5 Conclusions

In this study, we have revisited parameter sensitivities in
the Variable Infiltration Capacity hydrological model. To
this end, we have implemented the DELSA method at ev-
ery 0.05◦× 0.05◦ (∼ 5 km) grid cell contained in 101 basins
across continental Chile (i.e., a total of 5574 grid cells), span-
ning a broad diversity of hydroclimatic (from hyperarid to
humid) and physiographic (e.g., topography and land cover)
conditions. Our experiments consider a suite of 43 parame-
ters included in soil, vegetation and snow process represen-
tations, with 3 of these corresponding to hard-coded param-
eters (i.e., not exposed to model users). We use eight model
evaluation metrics that account for runoff components, evap-
otranspiration and snow processes, and we conduct correla-
tion analyses to disentangle relationships between parametric
sensitivities and pixel-scale attributes. The main findings of
this study are as follows:

– A total of 31 of the 43 (i.e., 72 %) parameters yield little
or no sensitivity, most of which correspond to soil and
vegetation processes. Therefore, calibrating such pa-
rameters will lead to minimal improvements in system
representations with considerable computational costs.

– The three model evaluation metrics focused on snow
accumulation and ablation processes were found to be
highly sensitive to hard-coded parameters. Exposing
these parameters will certainly expand our abilities to
perform extensive analysis and increase our opportuni-
ties to improve model fidelity and characterize model
uncertainty.

– For some evaluation metrics, the climate attributes ex-
amined here are highly correlated with parameter sen-
sitivities, which therefore inherit spatial patterns ob-
served in climate variables across the territory. In par-
ticular, mean annual precipitation and the aridity index

are highly correlated with Ds, Ws and DsMAX sensitivi-
ties when examining RMSE, TRMSE and FMS. Unex-
pectedly, temperature yields a relatively lower influence
among climate descriptors, even for metrics and param-
eters associated with snow processes. The rest of the at-
tributes (topographic, soil and land cover) provided gen-
erally low correlations and, therefore, small predictive
power on parameter sensitivities.

– Parametric sensitivities are strongly related to the cli-
mate types in the case study basins. In humid environ-
ments, the most important parameters are related to the
third soil layer (Ws,Ds,DsMAX and Depth3) and vegeta-
tion (Rmin); in arid regimes, the most influential param-
eters are associated with the first soil layers (INFILT,
Expt2 and Depth2).

– In snow-dominated areas, the hard-coded parameters
NEW ALB, ALB THA and ALB AA provide large sen-
sitivities to maximum SWE, snow season length and
sublimation.

– The leaf area index (LAI) is a crucial parameter wher-
ever there is vegetation on the ground. Although such
conditions are more frequent in humid environments,
the relevance of this parameter depends on vegetation
characteristics rather than the underlying climatic con-
ditions.

This study reaffirms overparameterization issues in the VIC
model (e.g., Demaria et al., 2007; Gou et al., 2020) as well
as the fact that relative parameter importance varies depend-
ing on the specific metric or variable analyzed (Chaney et
al., 2015; Bennett et al., 2018; Yeste et al., 2020; Melsen and
Guse, 2021) and the physiographic or climatic site charac-
teristics (Liang and Guo, 2003; Demaria et al., 2007; Lil-
hare et al., 2020). However, the results and conclusions re-
ported here are not directly comparable to previous stud-
ies due to differences in the experimental designs and do-
mains of interest. In particular, our study considers (1) a
large number of soil, vegetation and snow parameters – only
comparable to Bennett et al. (2018), who included 46 pa-
rameters (excluding snow processes) over the semiarid Col-
orado River basin; (2) a larger number of process-oriented
metrics (compared with the previous efforts listed in Ta-
ble 1); and (3) a very large sample of grid cells at a relatively
high (∼ 5 km) horizontal resolution, spanning very different
physiographic characteristics and hydroclimatic conditions.
Hence, our study contributes to the existing literature by pro-
viding guidance on relevant VIC parameters for a suite of
target processes and climate types.

Future studies aiming at improving spatial calibration den-
sity or parameter regionalization techniques using VIC – or
any similar hydrology or land surface model – could incor-
porate this information to define spatially varying target pa-
rameters and to examine the extent to which the spatial pat-
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terns in parameter sensitivities relate to calibrated parame-
ter fields. Finally, the strong correlations found here between
parameter sensitivities and hydroclimatic properties reaffirm
the need to incorporate periods with contrasting climate char-
acteristics in sensitivity analysis and calibration strategies in
order to achieve more credible hydrologic model simulations
under changing climatic conditions.
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