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Abstract. Soil moisture estimates at high spatial and tem-
poral resolution are of great value for optimizing water
and agricultural management. To fill the gap between lo-
cal ground observations and coarse spatial resolution re-
mote sensing products, we use Soil Moisture Active Passive
(SMAP) and Sentinel-1 data together with a unique data set
of ground-based soil moisture estimates by cosmic ray neu-
tron sensors (CRNS) and capacitance probes to test the possi-
bility of downscaling soil moisture to the sub-kilometre res-
olution. For a high-latitude study area within a highly het-
erogeneous landscape and diverse land use in Denmark, we
first show that SMAP soil moisture and Sentinel-1 backscat-
ter time series correlate well with in situ CRNS observa-
tions. Sentinel-1 backscatter in both VV and VH polariza-
tions shows a strong correlation with CRNS soil moisture
at higher spatial resolutions (20–400 m) and exhibits dis-
tinct and meaningful signals at different land cover types.
Satisfactory statistical correlations with CRNS soil moisture
time series and capacitance probes are obtained using the
SMAP Sentinel-1 downscaling algorithm. Accounting for
different land use in the downscaling algorithm additionally
improved the spatial distribution. However, the downscal-
ing algorithm investigated here does not fully account for
the vegetation dependency at sub-kilometre resolution. The
study suggests that future research focussing on further mod-
ifying the downscaling algorithm could improve representa-
tive soil moisture patterns at a fine scale since backscatter
signals are clearly informative.

Highlights.

– Backscatter produces informative signals even at high
resolutions.

– At the 100 m scale, the Sentinel-1 VV and VH polariza-
tions are soil moisture dependent.

– The downscaling algorithm is improved by introducing
land-cover-dependent clusters.

– The downscaled satellite and CRNS soil moisture agree
best at the agricultural site.

1 Introduction

Soil moisture, the amount of water in the vadose zone, is an
important state variable in the hydrological cycle controlling
water exchange between the land surface and the atmosphere.
It influences rainfall-runoff processes and water availability
for plants (Ochsner et al., 2013). Hence, it has relevance for
water management, agricultural optimization (Vereecken et
al., 2008) and natural hazards such as drought, floods (Gril-
lakis et al., 2016) or forest fires (Bartsch et al., 2009; Cha-
parro et al., 2016).

Different applications require information about soil mois-
ture at different spatio-temporal scales, from the centimetre-
scale, e.g. to monitor the growth of a single plant, to hun-
dreds of kilometres for climate forecasting (Sabaghy et al.,
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2018). For application in water management strategies and
for agricultural optimization in mesoscale catchments (sizes
between 100 and 10 000 km2), it is desirable to have soil
moisture information at a spatio-temporal resolution of a few
hundred metres and close to daily time intervals (Sabaghy
et al., 2018). Complementary to other conventional observa-
tion data (i.e. groundwater head and discharge, Meyer et al.,
2018a) and non-conventional observation data (e.g. ground-
water ages; Meyer et al., 2018b, 2019), soil moisture can
serve for calibration and validation of hydrological models
(Shahrban et al., 2018) and hence contribute to enhancing
their prediction accuracy.

Existing techniques to measure spatio-temporal dynam-
ics of soil moisture at field scale (reviewed by Vereecken
et al., 2014) include sensor networks with a footprint of a
few cubic-centimetres, hydro-geophysical techniques, cos-
mic ray neutron sensors (CRNS) with a footprint of a few
hundred metres (Andreasen et al., 2016) and (satellite) re-
mote sensing with a footprint of tens of kilometres (Mohanty
et al., 2017). Variations in soil texture, topography, climate,
and land use/cover (LUC) result in a high spatial variabil-
ity of soil moisture even at field scale (Peng et al., 2017;
Vereecken et al., 2014). These variations are most prominent
in absolute soil moisture values whereas the temporal dy-
namics are less influenced (Peng et al., 2017). While ground
observations provide a high temporal resolution of soil mois-
ture dynamics, they are less efficient in capturing spatial vari-
ation at catchment/field scale due to their small footprint.

Soil moisture observations from space, on the other hand,
provide large spatial coverage but are limited to a coarse spa-
tial resolution. In the last 15 years, NASA and ESA launched
satellite missions dedicated to soil moisture observations,
i.e. Soil Moisture Active Passive (SMAP; in 2015) and Soil
Moisture and Ocean Salinity (SMOS; in 2009), respectively.
These missions provide freely available observations of near-
surface soil moisture several times a week around the globe
with a high sensing accuracy of soil moisture but a rela-
tively coarse resolution of 36–40 km (Mohanty et al., 2017).
The satellites carry passive L-band radiometers with a fre-
quency of 1.4 GHz that receive natural radiation in the form
of brightness temperature emitted from the earth’s surface
(Das et al., 2014). Microwaves at this frequency are sensitive
to the dielectric properties of the upper few centimetres of
the soil. The dielectric constant varies with the water content
with values between 3 [–] (dry conditions) and 80 [–] (fluid
water), which make the radiometer suitable for soil moisture
monitoring.

To overcome the limitations in spatial resolution of the
radiometer-derived soil moisture data, various downscaling
approaches have been investigated. Many different tech-
niques exist that use either a statistical correlation (e.g. Mas-
caro et al., 2010, 2011) or physically based models to com-
bine satellite and land surface characteristics (e.g. Fang et
al., 2018), satellite and ground observations (e.g. Ridler et
al., 2014), satellite-derived indices (e.g. Fang et al., 2013;

Peng et al., 2016; Tagesson et al., 2018) or different satellite-
derived products (e.g. thermal, optical or active–passive mi-
crowave data) (e.g. Entekhabi et al., 2014; Wagner et al.,
2007) with the aim of downscaling the relatively coarse
scale soil moisture observations from passive radiometers,
e.g. SMAP and SMOS (Tagesson et al., 2018). Two recent
review papers by Peng et al. (2017) and Sabaghy et al. (2018)
give comprehensive summaries of different downscaling ap-
proaches including a categorization and their respective ad-
vantages and disadvantages.

Initially, the SMAP mission was composed of a passive L-
band radiometer and an active L-band SAR (synthetic aper-
ture radar) to provide optimal data, e.g. coincidence in revisit
time, incident angles and frequencies for using an active–
passive downscaling approach. However, the active radar
failed after a few months of operation and therefore the use of
other SAR satellites has been explored. The ESA mission of
Sentinel-1 SAR satellites seems particularly suitable for this
approach because of the high resolution of up to 10 m× 10 m
and a revisit time of 3–5 d. However, uncertainties arise from
the mismatch of revisit times between SMAP and Sentinel-1
and the changing incidence angles of Sentinel-1 that need to
be corrected for. These effects might only have a limited in-
fluence on accuracy (He et al., 2018). Moreover, Sentinel-1
carries a C-band SAR (at a frequency of 5.405 GHz) which
is more influenced by vegetation and surface roughness than
the L-band SMAP radiometer (Calvet et al., 2011). Never-
theless, He et al. (2018) compared different SMAP Sentinel-
1 downscaling algorithms at spatial resolutions of 9, 3 and
1 km and evaluated the soil-moisture-based downscaling al-
gorithm as highly accurate (particularly at the coarser res-
olutions). Global soil moisture products exist, e.g. provided
by NASA at resolutions of 3 and 1 km, that are derived by
the combined SMAP Sentinel-1 downscaling approach ap-
plied to downscale brightness temperature and afterwards
transform it to soil moisture or directly to downscale soil
moisture (Das et al., 2019). The high-resolution NASA soil
moisture product covers the globe from latitudes +60◦ N
to −60◦ S (e.g. SMAP/Sentinel-1 L2 Radiometer/Radar 30-
Second Scene 3 km EASE-Grid Soil Moisture). However the
temporal and spatial coverage of our investigation area at a
latitude of +56◦ N is incomplete for the 1 km product. Fol-
lowing the satisfactory results of the downscaling approach
at medium resolution (1, 3 and 9 km) by He et al. (2018) and
Das et al. (2019), we investigate the applicability of the same
approach at high resolution (sub-kilometre scale).

The applicability of remotely sensed soil moisture esti-
mation is strongly related to its accuracy (Colliander et al.,
2017). Therefore, ground-based soil moisture measurements,
mostly from soil moisture probes, are used to validate re-
motely sensed soil moisture products. One major challenge
of the validation task is the mismatch of spatial scales be-
tween point measurements on the ground and large-scale
satellite products (Bircher et al., 2012a; Colliander et al.,
2017). Often ground measurements are upscaled to the satel-
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lite resolution, introducing uncertainties since the absolute
values of the small-scale sensors are not representative (Col-
liander et al., 2017). Innovative ground-based soil moisture
measurements with the cosmic ray method provide soil mois-
ture information over a footprint of a few hundred metres
(Andreasen et al., 2016) and have recently been used for val-
idating satellite-derived soil moisture at the original sensing
scale (e.g. Montzka et al., 2017; Ochsner et al., 2013). How-
ever, this has not yet been applied in the context of validation
of downscaled soil moisture products. The expected advan-
tage of using CRNS for validation of downscaled soil mois-
ture at the scale of a few hundred metres is the similarity in
scale and hence a better comparability of the two observation
methods.

In the present study we first focus on an in-depth anal-
ysis of soil moisture from ground observations and remote
sensing data from SMAP and Sentinel-1. We present a com-
parison of the ground-based soil moisture measurements at
three CRNS sites (Andreasen et al., 2016) and a dense net-
work of 30 capacitance probes (Bircher et al., 2012b) with
SMAP-derived soil moisture and Sentinel-1 co- and cross-
polarization backscatter. Afterwards, we investigate the fea-
sibility of applying the SMAP Sentinel-1 downscaling ap-
proach to estimate spatially distributed soil moisture at a
sub-kilometre resolution and validate the downscaled soil
moisture with the in situ soil moisture estimates derived by
CRNS and capacitance probes. Moreover, a modification of
the downscaling algorithm is proposed in which we account
for the vegetation dependency of the algorithm parameters
using a k-means cluster analysis. We choose the Ahlergaarde
catchment in western Denmark as study area since it has
been the subject of many hydrological studies within the
HOBE projects (Jensen and Refsgaard, 2018) and hence pro-
vides a rich data set of high-quality observation data. Further-
more, it is a catchment of the national water resources model
(DK model, Henriksen et al., 2003), and soil moisture at the
hundred-metre scale is of high interest for potential applica-
tion in hydrological modelling. Reasons for downscaling soil
moisture in this area include (1) the variability of soil texture,
LUC and the relatively small size of agricultural fields and
(2) the incompleteness of existing soil moisture data from
NASA at a spatial resolution of 1 km and below.

2 Methods

2.1 Study area

The Ahlergaarde catchment, a sub-catchment of the Skjern
catchment, is located in western Denmark, at about 56◦ lati-
tude, and covers an area of about 1058 km2 (Fig. 1). The mar-
itime climate with mild winters and cool summers is dom-
inated by a westerly wind regime with frequent rain. The
mean annual precipitation is about 990 mm, maximum in au-
tumn, minimum in spring. Mean annual evapotranspiration

and mean temperature are 575 mm and 8.2 ◦C, respectively
(Jensen and Illangasekare, 2011). The topography is rela-
tively flat (up to 125 m in the east and at sea level in the west)
(Jensen and Illangasekare, 2011). The surface geology in the
area is characterized by glacial outwash plains consisting of
Quaternary sand and gravel with some moraine till. The tex-
ture of the topsoil varies across the area and is dominated
by fine-to-coarse sand of glacio-fluvial and glacio-lacustrine
origin (Jensen and Refsgaard, 2018). The Skjern catchment is
characterized by agricultural use for crop (55 %) and pasture
(grass, 30 %), followed by forest (7 %), heathland (5 %) and
urban areas (2 %) (Jensen and Illangasekare, 2011). The aver-
age sizes of agricultural fields in the area are less than 100 ha
(Stelljes et al., 2017). The main growing seasons are spring
and summer with harvesting in late summer and autumn. Due
to the predominantly high permeable sandy soils with low
water-retention capacities, groundwater is abstracted for irri-
gation in approximately 50 % of the catchment area during
the summer months from May to August with an average
annual demand of 20 mm yr−1 and up to 55 mm yr−1 in dry
years (e.g. 2014; Jensen and Refsgaard, 2018), which cor-
responds to 2–5 times the demand of domestic and indus-
trial water (Jensen and Illangasekare, 2011; Jensen and Ref-
sgaard, 2018).

In 2007, a long-term hydrological observatory, HOBE,
was set up in the Skjern catchment with the aim of enhanc-
ing the understanding of hydrological processes at catchment
scale and the impacts of anthropogenic and natural changes
such as LUC and climate change (Jensen and Illangasekare,
2011). In the course of these multi-disciplinary investiga-
tions, soil moisture monitoring has been implemented with
a network of capacitance probes (Bircher et al., 2012a) as
well as with three CRNS systems for stationary measurement
of temporal dynamics of soil moisture at the dominant LUC
types, i.e. agriculture, heathland and forest (Andreasen et al.,
2020) (Fig. 1). Daily precipitation data are available at the
agricultural field site (Voulund) and forest field site (Glud-
sted) (DMI.dk, 2021, Fig. 2a). In the present study, soil mois-
ture measurements from these ground observations and from
remote sensing are used in the period from 1 January 2017
to 31 May 2019. This includes exceptionally dry periods in
summer 2018 and winter 2018/2019 (Fig. 2a).

2.2 The downscaling algorithm

In the present study, the active–passive downscaling ap-
proach based on Das et al. (2011, 2014) and He et al. (2018)
is applied. Hereby, the passive radiometer soil moisture data
of high accuracy but low spatial resolution are combined with
high-resolution active SAR. The SAR actively emits electro-
magnetic pulses and measures the transmitted energy from
the earth surface in the form of backscatter (e.g. Das et al.,
2014). The downscaling principle relies on the negative rela-
tion between brightness temperature and co-polarized SAR
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Figure 1. (a) Location of the study area in western Denmark with the SMAP pixel extent. Closer view of the area on a LUC map (aggregated
based on Levin et al., 2017) (b) showing the entire study area, (c) a zoomed-in view encompassing all three CRNS stations, for which the
results are presented and (d) a close-up of the Voulund site (agricultural field). Ground observations are indicated with green crosses (location
of capacitance probes) and red dots (CRNS stations at the field sites V=Voulund, H=Harrild and G=Gludsted).

backscatter over the dielectric constant which is positively
related to soil moisture.

The algorithm is adapted from He et al. (2018), who
modified the baseline SMAP Sentinel-1 algorithm of Das et
al. (2011, 2014, 2018) by directly downscaling the soil mois-
ture product to spatial resolutions of 9, 3 and 1 km instead of
downscaling brightness temperature and subsequently trans-
forming it to soil moisture (He et al., 2018). One major ad-
vantage of this technique is that no additional data, such as
ground temperature or vegetation water content, are needed,
which are often difficult to obtain at the relevant resolution
but are necessary for inverting soil moisture from brightness
temperature (He et al., 2018). The downscaled soil moisture
at fine scale θfine is estimated by

θfine = θcoarse+β
[(

VVfine−VVmean_coarse
)

+0
(
VHmean_coarse−VHfine

)]
. (1)

Here, θcoarse is the soil moisture retrieved from SMAP and
VV and VH are the co-polarization and cross-polarization
backscatter from Sentinel-1, respectively. “Fine” means at
target resolution and “coarse” means at SMAP resolution.
Moreover, the downscaling algorithm involves the estima-
tion of two parameters, β and 0. For clarification, we use
σVV and σVH to refer to the original SAR backscatter in co-
polarization and cross-polarization and VV and VH for the
converted backscatter to dB, respectively. They relate as fol-
lows:

VV [dB] = 10 · log10 (σVV) , (2)
VH [dB] = 10 · log10 (σVH) . (3)

Here, β relates to the sensitivity of soil moisture to co-
polarization radar backscatter (σVV) and can be estimated
as the slope of a linear regression of θSMAP

VVcoarse
time series.

Generally, β is assumed to be invariant in time and space.
0 represents the sensitivity of temporal changes in co-
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Figure 2. (a) Precipitation at two field sites: Voulund (agriculture) and Gludsted (forest). Differences in peaks relate to irrigation at the
agricultural site (source of precipitation data: DMI.dk, 2021, open data). (b) Time series of daily soil moisture estimates by SMAP for all
21 pixels and averaged over the whole area. (c) Time series of CRNS-derived daily soil moisture at the three field sites: Voulund (agriculture),
Harrild (heathland) and Gludsted (forest). (d) Time series of daily soil moisture (depth of 0–5 cm) derived by capacitance probes and
representing the mean of the three LUC. Panels (a–d) show the time series for the entire 2.5-year study period while panels (e–h) show the
growing period May–September in 2018.

polarization to cross-polarization and is calculated based on
differential pairs of co- and cross-polarization,0 = δVV

δVH , at
the fine scale (Das et al., 2018; He et al., 2018). The term
0·
(
VHmean_coarse−VHfine

)
describes the scale heterogeneity

of vegetation and surface roughness as the cross-polarization
backscatter deviation from fine to coarse scale. This needs to
be removed from the fine-scale correction of VV to obtain
local soil moisture changes.

2.3 Data used

2.3.1 SMAP (L-band)

The SMAP satellite mission by NASA was launched on
25 January 2015 and provides soil moisture measurements
with an accuracy of 4 % (at the original 36 km resolution
of the SMAP) in the top 5 cm of the soil at different lat-
eral scales, down to 3 km, obtained from a combination of
a passive L-band radiometer and an active L-band SAR (En-
tekhabi et al., 2014), both operating with a constant incidence
angle of 40◦. The passive radiometer is more sensitive to wa-
ter in the soil, providing measurements at ∼ 40 km resolu-
tion, while the radar is more influenced by surface roughness
and vegetation structure and can provide much higher reso-

lutions. Since the active SAR radar failed in July 2015, other
SAR satellites have been investigated to be used in combina-
tion with the SMAP radiometer.

In this study the SMAP Enhanced Level 3 radiometer soil
moisture products (L3_SM_AP), provided as a daily com-
posite on a 9 km EASE-grid, were obtained (O’Neill et al.,
2018) for January 2017 to 31 May 2019. The daily mean
of the ascending and descending product was used, unless
only one of them was available. The Ahlergaarde catchment
is covered by 21 SMAP 9 km EASE-grid pixels.

2.3.2 Sentinel-1 (C-band)

The Sentinel-1 satellite mission of ESA’s Copernicus pro-
gramme comprises two polar-orbiting active radar satellites
that were launched in 2014 and 2016, respectively. At high
latitudes Sentinel-1 has a revisit frequency of about 3–5 d.
The C-band SAR of Sentinel-1 provides high-resolution,
weather-independent microwave backscattering in dual po-
larization (σHH+σHV and σVV+σVH). It operates with an in-
cidence angle range of 20–46◦. In order to use the two satel-
lites in combination, the incidence angles of Sentinel-1 need
to be corrected to a reference angle. Here we use a reference
angle of 40◦, corresponding to the SMAP incidence angle.
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The radar backscatter, σ 0
θi

, obtained at an incidence angle, θi ,
was normalized to a reference angle, θref, after the method
of Mladenova et al. (2013), which was also applied by He et
al. (2018):

σ 0
ref =

σ 0
θi

cosn (θref)

cosn (θi)
, (4)

with n= 2 (Mladenova et al., 2013). In principle, the expo-
nent n is roughness dependent and varies between 0.2 and 3.4
(Mladenova et al., 2013). He et al. (2018) evaluated a value
of n= 2 as suitable for a similar application to the one used
in this study. Based on a comparison of VV and VH time se-
ries with and without the incidence angle correction, we con-
cluded that an exponent of 2 is feasible because it improves
the time series by reducing the noise while still showing a dy-
namic behaviour. The effect of the incidence angle correction
was higher on VV than on VH. In this study, Sentinel-1 A
and B Level-1 ground range detected (GRD) data in inter-
ferometric wide swath mode (IW) with a full resolution of
10 m× 10 m were acquired from Google Earth Engine and
pre-processed with thermal noise removal, radiometric cal-
ibration and terrain correction (Filipponi, 2019). A total of
428 Sentinel-1 images cover the Ahlergaarde catchment dur-
ing the study period from 1 January 2017 to 31 May 2019.
In order to investigate the trade-off level between noise and
signal, the temporal dynamics of VV and VH backscatter at
different aggregated scales are explored at three field sites.
Sentinel-1 VV polarization relates to a combination of soil
moisture, biomass and vegetation structure while Sentinel-1
VH polarization is assumed to be mostly sensitive to biomass
and vegetation structure. For a deeper investigation of the
spatial pattern information content of the Sentinel-1 data, an
unsupervised data-driven k-means cluster analysis (Lloyd,
1982) is performed based on four parameters, the tempo-
ral mean and the standard deviation of both the VV and the
VH backscatter at target resolution within the study area. The
clustering is performed for different spatial aggregation lev-
els (results are shown for 20, 100 and 1000 m) and a differ-
ent number of cluster groups (2–6). The standard deviation
within each cluster does not decrease when applying more
than three clusters, and hence the data contain information to
differentiate clearly between three clusters, but not necessar-
ily more.

Two cross-ratios of the polarized backscatter are calcu-
lated to further investigate the relation to biomass and soil
moisture:

1. VV/VH is similar to 0 and calculated based
on backscatter converted to dB as VV/VH=
10 · log10 (σVV)/10 · log10 (σVH) [dB/dB].

2. VH/VV= 10 · log10 (σVH/σVV) [dB] is first calculated
in original backscatter and afterwards converted to dB.
Harfenmeister et al. (2019), Veloso et al. (2017) and
Vreugdenhil et al. (2018) found that the ratio VH /VV

better relates Sentinel-1 backscatter to biomass and
compensates for effects of soil moisture and radiometric
instability of sensors.

2.3.3 Data processing

For the study period, 881 SMAP and 428 Sentinel-1 images
were available. The first 2 years of the Sentinel-1 mission
were excluded because the data were not as regular and did
not show seasonal variation as the images for the proceeding
years used in this study. There were 24 SMAP images with-
out data which were removed. Soil moisture estimates from
satellites are erroneous when the ground is frozen (dielectric
constant of frozen water is 2–3 [–]). Therefore, 77 SMAP
data points were removed when the air or soil temperature,
measured at the field site Voulund, was low in the winter
months and the soil moisture estimates thus were unrealis-
tically low. Further, to ensure optimal downscaling results,
the satellite data were reduced to only those days where both
SMAP and Sentinel-1 data are available. This synchroniza-
tion reduced the data set to 377 images with a resulting av-
erage frequency of 2–3 d. Sentinel-1 pixels that show values
relating to buildings (identified by high VV) and lakes (iden-
tified by low VV) were removed from the Sentinel-1 data
set. In detail this means all VV and VH backscatter that were
positive were replaced by NaN (not a number). Artefacts in
the VV and VH data were removed when backscatter values
were lower than −40. Lakes and open water were removed
when mean VV or mean VH backscatter was lower than−19.
Pixels that had more than 30 NaN out of the 377 images
were removed for the whole period. Finally, to smooth the
Sentinel-1 data for all analyses, a temporal moving average
of five images was applied to all remaining data at the reso-
lution investigated.

2.3.4 Ground observations – validation data

In situ ground observations of soil moisture are available
from installed capacitance probes and stationary CRNS. The
data and set-up are briefly presented here while details can
be found in the respective publications. In the course of the
HOBE project, a network of 30 observation stations (Fig. 1;
green crosses) each equipped with five capacitance probes
(Decagon 5TE sensors) to monitor soil moisture at different
depths (at 0–5, 20–25 and 50–55 cm, and in the litter layer
where applicable) were installed in the Ahlergaarde catch-
ment in 2009 (Bircher et al., 2012b). The locations were
chosen with respect to representing the variability in LUC
and soil texture (Bircher et al., 2012a). Hence, 22 probes are
located in agricultural land, four in heathland and four in for-
est. The sensors record soil moisture every 30 min and are
representative of a soil volume of about 300 cm3 (Decagon
Devices Inc., 2016). A recent study investigated the repre-
sentativeness of these capacitance probes and concluded that
dynamics in soil moisture exhibit low deviation whereas ab-
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solute values can be difficult to obtain precisely (Denager et
al., 2020).

Within the framework of HOBE, three stationary CRNS
stations were established in 2013 and 2014 (Andreasen et
al., 2020) (Fig. 1) and data collection is ongoing. The field
sites are located within 10 km of each other and represent
the three main LUC types of the catchment: agricultural land
(Voulund), heathland (Harrild) and forest (Gludsted). Hourly
CRNS intensity is measured using the CR1000/B system of
Hydroinnova LLC, Albuquerque, New Mexico. Following
Poissonian statistics, the relative measurement uncertainty of
neutron intensity, N , decreases with increasing neutron in-
tensity and the standard deviation equalsN0.5. The measured
CRNS intensity is corrected for variations in barometric
pressure, atmospheric water vapour and incoming cosmic-
ray intensity using data from the neutron monitor database
(nmdb.eu). The measured CRNS intensity is sensitive to soil
moisture in the upper decimetres of the ground within an area
of hectometres (Andreasen et al., 2017). The standard N0-
calibration function (Desilets et al., 2010) was used to con-
vert CRNS intensity measurements to volumetric soil mois-
ture (Andreasen et al., 2020). Daily moving averages were
calculated to obtain acceptable statistics. The influence of the
vegetation water content on the CRNS-estimated soil mois-
ture is low at the study site because of the limited change
in vegetation cover in heathland and pine forest and the rel-
atively low amount of biomass in agriculture (8 t ha−1 con-
sisting of ∼ 15 % cellulose and 85 % water; Andreasen et
al., 2020). The impact of the vegetation cover on the CRNS
intensity using field measurements of neutrons at two en-
ergy ranges and neutron transport modelling (Monte Carlo
N -Particle code version 6, MCNP6) showed very little im-
pact of the vegetation cover at the agricultural site compared
with bare soil conditions (Andreasen et al., 2020, Fig. 4).

The footprint of the CRNS varies slightly in space and
time. However, the sensor sensitivity is highest in the close
vicinity of the probe and decreases exponentially with dis-
tance from the sensor. The location of the sensors has been
carefully chosen by placing them in the same soil type and
far enough from the next LUC type to prevent the influ-
ence/mixture of different LUC signals. Furthermore, Ahler-
gaarde catchment is situated on a glacial outwash plain, and
the study area is characterized by homogeneous soil (sandy
and stratified soil with similar chemical composition). There-
fore, changes in the vertical and horizontal footprint area are
not expected to affect the CRNS signal significantly. A net-
work of capacitance probes (please note that this network is
not the same as used in our paper, but specifically set up to
validate/compare the CRNS estimates) are placed strategi-
cally in the vicinity of the CRNS. The long time series of
CRNS-estimated soil moisture has been shown to be very ro-
bust in comparison with the average of these measurements
(Andreasen et al., 2020) . Finally, the same data set has been
successfully used by Denager et al. (2020) to improve the
closing of the water balance.

One challenge in the validation of satellite-derived soil
moisture with ground observations is the difference in scales
and representation of vertical sensing depth intervals. To test
whether it is reasonable to compare daily mean soil mois-
ture estimates of the remote sensing product with ground ob-
servations from different methods representing soil moisture
at different depths intervals, the relation of near-surface soil
moisture (0–5 cm) and soil moisture at 20–25 cm depth mea-
sured by capacitance probes is investigated by a linear re-
gression analysis (Fig. S1 in the Supplement). An acceptable
correlation at the majority of the stations supports that the
comparison is reasonable.

2.3.5 Spatio-temporal comparison of remote and in
situ soil moisture estimates

To enable a better comparison of the estimated spatial soil
moisture, we chose a subset of 16 capacitance probe loca-
tions (three in heathland and 13 in the agricultural site) meet-
ing the criterion that probes at 2.5 and 22.5 cm depth show a
good correlation in temporal dynamics and cover both the dry
summer in 2018 and the wet winter of 2017/2018 (Fig. S1).
The relatively low data quality, incomplete time series and
shift in absolute values at the agriculture stations relate to
the disturbances caused by the removal and followed re-
installation several times a year to allow for ploughing of the
fields.

For each of the 16 stations, the soil moisture range
was computed and compared with the same analysis using
the downscaled results. To make the analysis more robust,
the stations were first ordered according to their absolute
value and assigned a rank (R). The mean summed differ-
ence (mSDR) of the observed rank (Robs) and downscaled
rank (Rdow) was calculated,

mSDR=

N=16∑
i=1

(
Robs,i −Rdow,i

)
N

, (5)

and used to evaluate how well the downscaled soil moisture
values agrees with the in situ estimates by the capacitance
probes. The smaller the SDR, the better agreement between
the data. For the 16 stations the optimal mSDR is 0 [–],
i.e. observed and downscaled soil moisture values are ranked
identically. For completely random data, with no correlation
between observed and downscaled soil moisture ranks, the
average mSDR is 5.3 [–], while the maximum mSDR is 8 [–].
These values were estimated using 50 million random com-
binations of the 16 soil moisture samples.
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Figure 3. Upper panels: scatter plots of soil moisture estimates by SMAP versus in situ soil moisture estimates by CRNS at the different
field sites at Voulund (agriculture), Harrild (heathland) and Gludsted (forest) and as a weighted areal mean. Lower panels: scatter plots of soil
moisture estimates by SMAP versus in situ soil moisture estimates by capacitance probes for different land use types and the mean. Dotted
black line shows the linear regression and dotted grey line shows the 1 : 1 line. R2 and RMSE between soil moisture estimates derived by
SMAP and CRNS or capacitance probes are indicated in each subplot.

3 Results

3.1 Comparison of remote sensing data with in situ
measurements of daily soil moisture

3.1.1 SMAP

The temporal dynamics of the soil moisture retrieval from the
21 SMAP pixels are very similar and show strong seasonal
dynamics. The SMAP-derived mean soil moisture content is
high in autumn and winter and low in the summer (Fig. 2b).
The high variability of the 21 SMAP pixels coincides with
precipitation events and high soil moisture content (Fig. 2b
and f). Overall, the soil moisture estimates by SMAP mimic
the trends seen with CRNS (Fig. 2c) and with the capac-
itance probes (Fig. 2d), showing a significantly drier sum-
mer period in 2018 compared with a wetter summer in 2017.
Also the winter in 2018/2019 is significantly drier compared
with winter 2017/2018. The spring-to-autumn period in 2018
(Fig. 2e–h) shows that SMAP soil moisture (Fig. 2f) in-
creases abruptly in response to rain events (Fig. 2e) while
the ground soil moisture products of CRNS (Fig. 2g) and of
the capacitance probes (Fig. 2h) respond more gradually. The
difference in response is most likely a result of the vertical

sensing depth of the different methods, i.e. SMAP< 5 cm,
CRNS approximately 0–25 cm and capacitance probes 0–
5 cm.

The linear regression of soil moisture estimates derived
from SMAP and CRNS at the three different field sites shows
a good correlation between the different sensing methods
with an acceptable areal mean RMSE (0.056 [–]) and a high
correlation (R2

= 0.7) (Fig. 3) even before any downscal-
ing attempt and hence represents a big difference in sensing
scales. The same holds for the correlation of soil moisture
estimates derived from SMAP and capacitance probes at 0–
5 cm depth. The mean of the 30 capacitance probes fits very
well the mean of the SMAP-estimated soil moisture (Fig. 3),
as also observed previously with SMOS data (Bircher et al.,
2012a).

3.1.2 Sentinel-1

LUC definition based on k-means cluster analysis of
Sentinel-1

The results of the k-means cluster analysis show that the dif-
ferent clusters have their distinct behaviours in mean and
standard deviation of VV and VH in space (Fig. 4) and time
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Figure 4. (a) Orthophoto (GeoDanmark data, 2018) of the study area (as in Fig. 1c). (b) Land use map (aggregated based on Levin et
al., 2017) at a resolution of 10 m; agriculture (light grey), heathland (grey), forest (black), cities and roads (white). (c) Cross-ratio in [dB].
(d) Cross-ratio in original backscatter. (e–h) Mean and standard deviation of Sentinel-1 co- and cross-polarization images at a 20 m scale.
(i–k) Clustering results at different scales (20, 100 and 1000 m). Locations of CRNS stations indicated by red circles in all panels.

(Fig. 5). These groups can be related to the dominant LUC
types, i.e. agriculture, heathland and forest. Cluster 1 (light
grey) shows a medium mean VV, high standard deviation
VV, low–medium mean VH and high standard deviation VH
(Fig. 4). This cluster displays the most dynamics in mean VV
and mean VH, i.e. it has the lowest value in summer and has
a much larger spatial variability than the other two clusters
shown by the high standard deviation (Fig. 5). This cluster is
characterized by a high seasonal variability in biomass and
soil moisture. The cluster corresponds to agricultural land
use (compared to the orthophoto and LUC map) where the
biomass changes according to the growing and harvest sea-
son and soil moisture varies with precipitation and irrigation.
Cluster 2 (grey) shows a low mean VV, low standard de-
viation VV, low mean VH and low standard deviation VH
(Fig. 4). Here the vegetation is low with little seasonal vari-
ation. This cluster corresponds to heathland, which is also
visible in comparison with the orthophoto and LUC map. In
heathland and agricultural site, the mean VH shows similar
temporal dynamics to mean VV with a clear decrease in sum-
mer. Cluster 3 (black) is characterized by a high mean VV,
low standard deviation VV, high mean VH and low standard
deviation VH (Fig. 4) with low seasonal variation (Fig. 5).
This corresponds to forest with a high amount of biomass
which masks changes in soil moisture and with little seasonal
variation due to the constant vegetation cover of pine trees.
It seems unlikely that Sentinel-1 data carry information on

Table 1. Fraction of LUC types in the LUC map and in the clusters
at spatial resolutions of 20, 100 and 1000 m.

Type LUC map 20 m 100 m 1000 m

Cities and lakes, etc. 0.140 – – –
Agriculture 0.557 0.399 0.349 0.430
Heathland 0.087 0.295 0.337 0.366
Forest 0.214 0.302 0.314 0.204

soil moisture dynamics in the forest, which is dominated by
the biomass signal. For these areas the downscaled soil mois-
ture estimates would mimic the estimate from SMAP, except
perhaps for the extraordinary dry summer of 2018 (Fig. 5).
The different aggregation levels of the cluster analysis show
that a resolution of 1000 m is quite coarse and consequently a
lot of information is lost. Table 1 shows the fraction of LUC
types for the three clusters at three different resolutions and
for the LUC map. Compared with the LUC map, the fraction
of heathland and forest is overestimated while for agriculture
it is underestimated. In the area the agricultural fields are sur-
rounded by windbreaks which are classified by the k-means
clustering as heathland or forest (see Fig. 4).

Comparisons between the cluster results at different reso-
lutions and the known actual LUC types at the 30 capacitance
probe locations show reasonable agreement for resolutions
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Figure 5. Temporal dynamics of mean and standard deviation of VV, VH and the two cross-ratios VV /VH and VH /VV for the different
clusters at spatial resolutions of 20, 100 and 1000 m.

between 20 and 400 m with misclassifications of < 25 %. At
these high resolutions, wrongly classified stations are typi-
cally located in the periphery of an agricultural field and are
therefore classified as heathland (read windbreaks) instead
of agriculture. There are also a few stations in the heath-
land wrongly classified as agriculture because large areas of
the heathland are covered with grass. At coarser resolutions
(1000 m) the misclassification is > 42 %. Both from the spa-
tial pattern and classification statistics, a spatial resolution
higher than 1000 m is desirable.

To better understand the influence of biomass on the
backscatter, the temporal dynamics of the cross-ratios are ex-
plored. VH / VV remains relatively constant without seasonal
changes for the forest cluster (Fig. 5). For the heathland and

particularly for the agriculture clusters, VH / VV is more dy-
namic in time with higher values in summer and lower values
in winter. In winter the biomass is low in heathland and agri-
culture but relatively constant in the evergreen pine forests.
VH / VV increases in spring when the growing period starts,
reaches the maximum in summer (here VH / VV of agricul-
ture and heathland reaches a similar level to the forest), and
decreases again after harvest in the autumn. The similar value
observed across LUC types in summer could indicate that the
signal might be more influenced by biomass than in the other
seasons.

The variability across the area in VV and VH increases as
the mean VV and VH values decrease, as can be seen from
plotting standard deviation against mean values (Fig. 6). At
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resolutions of 20 and 100 m the clusters are clearly identi-
fiable by this relation, while at 1000 m this is not the case,
suggesting that the 1000 m resolution is too coarse. At this
scale, due to the heterogeneity of the area, LUC types start to
overlap and therefore can no longer be as clearly separated
by the cluster analysis.

The zoom-in of the agricultural field at Voulund (Fig. 7)
shows that Sentinel-1 backscatter in VV, VH and their cross-
ratio VH /VV aligns well with the dominant land cover types
and that surrounding features, such as windbreaks and other
agricultural fields, can be distinguished clearly as they have
different vegetation, management and irrigation schemes.
These local heterogeneities are best kept at high resolutions
and diminish when lowering the resolution, as shown by the
clusters at different spatial resolutions.

3.2 Downscaling resolution

To identify the optimal downscaling resolution, VV and
VH have been aggregated to different scales at the three
CRNS sites: 20, 50, 100, 200, 400 and 1000 m (for brevity,
only results for 20, 100 and 1000 m are shown in Fig. 8). The
temporal dynamics at the different aggregation scales were
evaluated based on how noisy they appear, on how much
they still enable distinguishing between seasonal signals and
on how much they are influenced by mixed LUC types that
result in smoothing out the signal. Time series of VV and
VH and backscatter at different resolutions at the three dif-
ferent study sites (Fig. 8) shows that the signal loses a con-
siderable amount of temporal dynamics and hence a lot of
information at a level of 1000 m resolution. At a resolution
of 20 m, on the other hand, the signal is rather noisy and a
meaningful resolution that represents the seasonal variation
without much noise is to be expected in the scale of hundreds
of metres.

The soil moisture derived by CRNS shows a good linear
correlation with Sentinel-1 VV and VH backscatter at a res-
olution of 100 and 200 m at the agricultural and heathland
sites (Table 2, Fig. S2). At Harrild (heathland) the correlation
is highest due to the minimal changes in vegetation cover of
the heathland. There are other factors apart from soil mois-
ture that control VV, which becomes clear at the agricultural
site where the vegetation cover changes over the seasons. At
the forest site (Gludsted) where the VV backscatter is dom-
inantly influenced by biomass there is almost no signal of
soil moisture and hence the correlation between CRNS and
VV is poor. Somewhat surprising is the correlation of VH
and CRNS-derived soil moisture at Voulund and Harrild, in-
dicating that at resolutions< 1000 m, soil moisture impacts
VH backscatter.

3.3 Downscaling soil moisture using the SMAP
Sentinel-1 approach

As shown here, the Sentinel-1 backscatter has a good cor-
relation with ground-based soil moisture observations in
the heathland and agricultural sites at resolutions< 1000 m.
Therefore a downscaling approach using the SMAP Sentinel-
1 approach to derive soil moisture patterns at the 100 m scale
is pursued in areas used for agriculture or covered by heath-
land, corresponding to approximately 2/3 of the study area.
The SMAP Sentinel-1 downscaling approach involves the es-
timation of two parameters, β and 0.

The assumption that β is invariant in time and space is
not totally valid as C-SAR is influenced by vegetation cover
which changes both over time (growing/harvesting season)
and space due to LUC (e.g. grass and forest). However, a
time-invariant β is applied because the vegetation and sur-
face roughness barely change in the heathland and ever-
green pine forest. There is a change in vegetation and rough-
ness in the agricultural site due to land management. How-
ever, the crop yield is relatively constant and changes in
biomass are relatively small (Andreasen et al., 2020). More-
over, time series of VV and VH (e.g. Fig. 5) shows the oppo-
site trend to what would be expected if the backscatter signal
would be dominated by vegetation and surface roughness. A
higher amount of vegetation would enhance the volumetric
backscatter, both for co- and cross-polarization (e.g. Rosen-
qvist, 2018) but what can be observed is a reduction of the
backscatter signal in the growing and peak vegetation peri-
ods (spring and summer). On the other hand, in these pe-
riods soil moisture is low due to relatively high tempera-
ture and evapotranspiration. This trend is mostly observed
in the agricultural site, while it is less visible in the heath-
land and almost not significant in the forest. An evaluation of
whether a seasonally varying β estimation would be essen-
tial to consider (details can be found in Fig. S3) showed that
a time-invariant β seems to be a suitable simplification for
the present study site in a typical Danish environment.

To take the spatial variability of β but also 0 into account,
we additionally explored varying these downscaling param-
eters in space according to the LUC clusters (see Table 3;
Fig. S4 and Table S4). The cluster-dependent β was esti-
mated as the linear regression of the time series θSMAP

VVcluster mean
.

Hereby VVCluster mean is the time series of the spatial mean
of the co-polarized backscatter signal (VV) of all Sentinel
pixels in each cluster within the corresponding SMAP pixel.
The distribution of the clusters and the mean and standard de-
viation of the backscatter signal are shown in Fig. 4. Finally,
the impact of including a time-varying 0 was explored. In
the current study a temporal window of 40 data points was
used.

Downscaled soil moisture maps were produced at spa-
tial resolutions of 20, 100 and 1000 m. For conciseness
we present the results of the 100 and 1000 m resolution
(Figs. 9, S6 and S7). Eight types of β and 0 combina-
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Figure 6. Results of the cluster analysis: relation between standard deviation (Std) and mean for both VV and VH at three different spatial
resolutions. The black dots show the relation of the entire area (cluster independent) and coloured dots show the respective relation for each
cluster.

Table 2. Results of linear regression between VV and VH backscatter at different spatial resolutions at the specific HOBE locations and
CRNS-derived soil moisture. See the corresponding scatterplots in the Supplement (Fig. S2).

Spatial Voulund Harrild Gludsted
resolution (agriculture) (heathland) (forest)

R2 R2 R2

CRNS versus VV VH VV VH VV VH

20 m 0.267 0.430 0.353 0.309 0.018 0.016
50 m 0.254 0.336 0.376 0.346 0.004 0.006
100 m 0.292 0.290 0.477 0.469 0.005 4.1× 10−6

200 m 0.281 0.313 0.568 0.619 5.1× 10−4 0.005
400 m 0.286 0.273 0.465 0.392 1.4× 10−4 2.5× 10−4

1000 m 0.613 0.369 0.571 0.451 9.5× 10−4 8.9× 10−4

tions (Table 4) were used and evaluated against the ground-
observed soil moisture. Hereby, β was either estimated in-
variant in space and time as θSMAP/VV or spatially vary-
ing according to the three LUC types as θSMAP/VVCluster
(compare Table 4 and Fig. S4). 0 was estimated either as
invariant in space and time as δVVmean/δVHmean, invari-
ant in time but varying according to the three LUC types
as δVVCluster_mean/δVHCluster_mean, time varying (space in-
variant) as δVVmean/δVHmean (applying a moving win-
dow of 40) or time and space varying estimated as

δVVCluster_mean/δVHCluster_mean (applying a moving window
of 40) (Table 4).The evaluation of the downscaling results
is based (1) on the statistical values of the non-linear least
square regression of time series of downscaled and CRNS-
derived soil moisture (slope, R2, and RMSE) at the three
field sites and (2) on the mean summed difference in ranks
(mSDR) of downscaled soil moisture and the capacitance
probe network located in the heathland (three stations) and
in the agricultural sites (13 stations). Moreover, a similar or
reduced RMSE as between the original SMAP and CRNS
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Figure 7. Zoom-in of the agricultural field site Voulund at a resolution of 20 m. (a) Orthophoto (GeoDanmark data, 2018), (b) land use map
(aggregated based on Levin et al., 2017) and (e)–(g) cluster maps at 20, 100 and 1000 m spatial resolution. (l–o) Spatial pattern of Sentinel-1
backscatter in VV, VH, at single dates during the year 2018 as well as the respective mean and standard deviation of the entire period (h–k)
and (c) VV / VH and (d) VH / VV. Red circle indicates the location of the CRNS station at Voulund.

Table 3. Results of β (θ vs VV) estimation at spatial resolutions of 20, 100 and 1000 m, shown for the β invariant in space (entire area) or
the β variant in space according to the three clusters.

β Estimation 20 m 100 m 1000 m

β R2 β R2 β R2

[m3 m−3 dB−1
] [m3 m−3 dB−1

] [m3 m−3 dB−1
]

Entire area 0.074 0.693 0.074 0.694 0.074 0.693
Agriculture 0.041 0.672 0.044 0.683 0.056 0.702
Heathland 0.083 0.721 0.082 0.722 0.081 0.690
Forest 0.128 0.346 0.128 0.364 0.125 0.443

(RMSE≈ 0.056 [–], Fig. 3) is evaluated positively. Since the
original coarse-resolution SMAP fits very well and contains
the average soil moisture information, a high reduction in
RMSE when comparing temporal dynamics is not expected.
Therefore, in the present study, the additional value of the
downscaling task lies more in the improved spatial resolu-
tion than in the better statistical fit of already well-matching
time series.

At the 1000 m spatial resolution, the classic approach
(type 3) produces acceptable results (Table 5). The down-
scaled soil moisture fits very well with the CRNS-derived
soil moisture at the agricultural site (Fig. 10a shows results
for type 8, but type 3 time series is similar). At the heathland
site the downscaled soil moisture time series mostly follows
the original SMAP signal. Here a time lag is observed when
it dries out in the summer of 2018. The RMSE of the least
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Figure 8. Time series of Sentinel-1 VV and VH backscatter at different aggregation levels (20, 100 and 1000 m) at the three CRNS sites at
Voulund (agriculture), Harrild (heathland) and Gludsted (forest).

Figure 9. Downscaling results at the 1000 and 100 m spatial resolution: spatial pattern of the mean and standard deviation of downscaled
soil moisture shown for types 1, 3, 4 and 8.
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Figure 10. (a–c) Temporal dynamics of SMAP soil moisture (black line, averaged over the 21 pixels), in situ soil moisture (blue line, CRNS)
and downscaled soil moisture (type 8) at 100 m (green line) and 1000 m (red line) spatial resolution at the three different CRNS sites at
Voulund (agriculture), Harrild (heathland) and Gludsted (forest). (d–g) Scatter plot of minimum, maximum, mean and range of downscaled
soil moisture at 100 m (green dots) and 1000 m (red dots) spatial resolution versus in situ soil moisture by capacitance probes.

Table 4. Combinations of the downscaling parameters β and 0 ap-
plying the classic algorithm with one parameter for the entire area
(indicated in bold) and different types applying cluster-dependent
parameters (indicated in italics).

Combinations of β [m3 m−3 dB−1
] 0 [dB dB−1

]

β and 0 (types) Slope of θSMAP/VV δVV/δVH

Type 1 1 constant β 1 constant 0
Type 2 1 constant β 3 constant 0
Type 3 – classic 1 constant β 1 time-varying 0
Type 4 1 constant β 3 time-varying 0
Type 5 3 constant β 1 constant 0
Type 6 3 constant β 3 constant 0
Type 7 3 constant β 1 time-varying 0
Type 8 3 constant β 3 time-varying 0

square regression between downscaled and CRNS-derived
soil moisture improves by around 50 % to 0.034 [–] at the
agricultural field compared with the original CRNS versus
the SMAP RMSE of 0.072 [–]. At the heathland site the
RMSE worsens from 0.065 [–] (CRNS vs SMAP) to 0.121 [–
] for the downscaled soil moisture while at the forest site
the RMSE stays in a similar range to the original one. At
the 1000 m scale these statistics do not significantly improve
by using a cluster-dependent β or a cluster-dependent, time-
varying0. The mSDR between downscaled soil moisture and
capacitance probes at the 1000 m scale ranges between 5.6
and 6.1. The spatial patterns of mean downscaled soil mois-
ture (Fig. 9) show low values in the heathland, medium val-
ues in the forest and medium-to-high values in the agri-
cultural site. The standard deviation of the downscaled soil
moisture is low in heathland and forest and higher in the
agricultural site. The type 4 downscaling enhances the differ-
ences in standard deviation of soil moisture between heath-
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land and forest (low) compared with agriculture (high), while
type 8 diminishes these differences (Fig. 9).

At the 100 m spatial resolution the statistical results of the
downscaled and CRNS-derived soil moisture (Table 5) are
almost equally good for the different types and for each of
the CRNS locations. The statistical results at Voulund (Ta-
ble 5) are shown for the whole period and for a shorter pe-
riod (12 May 2017 to 31 January 2018 and 1 April 2018 to
29 March 2019) as there are some obvious mismatches in the
winter/spring seasons that overrule the otherwise good match
between CRNS and downscaled soil moisture. The R2 val-
ues are around 0.3 at Harrild (heathland), and 0.2–0.4 at
Gludsted (forest), while the RMSE values are around 0.10 [–
] to 0.15 [–] at Harrild and vary more (between 0.06 [–]
and 0.19 [–]) at Gludsted. At the agricultural site R2 is be-
tween 0.13 and 0.37 for the whole period and between 0.29
and 0.53 for the shorter period, while the RMSE is 0.07 [–]
to 0.13 [–] and 0.04 [–] to 0.11 [–] for the respective peri-
ods. The mSDR between downscaled soil moisture and ca-
pacitance probes ranges between 6.3 and 3.9 for all types.
The downscaling soil moisture results at the 100 m scale im-
prove with a LUC-dependent β and 0. However, the spatial
distribution of downscaled soil moisture differs substantially
between the different types (Fig. 9).

4 Discussion

In the present study, a thorough analysis of SMAP and
Sentinel-1 data compared with local estimates of soil mois-
ture by CRNS and capacitance probes was conducted be-
fore applying the SMAP Sentinel-1 downscaling algorithm
to produce distributed soil moisture patterns at high spatial
resolutions of 20 and 100 m. The novelty of our approach
stems from (1) the downscaling resolution going far below
1 km, which has been the lower target resolution of many
recent studies; (2) vegetation-dependent parameters in the
downscaling algorithm; and (3) the combination/validation
of downscaled soil moisture with a variety of ground-based
soil moisture observations, i.e. capacitance probes as well as
stationary CRNS. The latter method allows us to estimate soil
moisture at a scale of a few hundred metres, which compares
with the target resolution of the downscaled soil moisture.

4.1 Data analysis

SMAP-derived soil moisture and Sentinel-1 backscatter at
different spatial resolutions were compared with in situ ob-
servations of soil moisture by CRNS and capacitance probes
distributed over different LUC types. The application of
CRNS soil moisture estimates complementing the more con-
ventional measurements with capacitance probes constitutes
a significant improvement for validation of remotely sensed
and downscaled soil moisture products. The major advan-
tage is the similar scale of horizontal sensitivity of the

downscaled product and the CRNS, which is in the order
of a few hundreds metres. However, the differentiation be-
tween soil moisture signal and noise still constitutes a ma-
jor challenge. To minimize the impact of noise, the Sentinel-
1 backscatter was smoothed spatially (a minimum aggrega-
tion to 20 m) and temporally, by applying a moving average
of five images. Moreover, meaningful trends in the time se-
ries are visible that follow the season and the expected soil
moisture. Through validation against different independent
ground measurements (CRNS and capacitance probes), the
reliability of the approach and the results obtained is en-
hanced. However, each of the independent measurements has
advantages and disadvantages. In our study area the capaci-
tance probe time series had many gaps and therefore we com-
plemented it by using CRNS, which in turn is subject to un-
certainties related to soil water content and sensing footprint
(as discussed in Sect. 2.3.4).

Soil moisture estimates derived by SMAP (0.08–0.4) show
a higher dynamic range than those derived by CRNS (0.08–
0.3), which might be caused by the more surficial penetra-
tion depth of the SMAP (Mohanty et al., 2017). Like Peng et
al. (2017), we therefore believe that the dynamics are more
reliable than absolute values. The temporal dynamics be-
tween the two correlate well for the entire area (R2

= 0.7,
RMSE= 0.056 [–]) and for the agricultural site (Voulund,
R2
= 0.71, RMSE= 0.072 [–]) but somewhat less for the

heathland (Harrild, R2
= 0.408, RMSE= 0.065 [–]) and for-

est sites (Gludsted, R2
= 0.619, RMSE= 0.061 [–]). Simi-

larly, the SMAP-estimated soil moisture and the mean of the
capacitance probes network are in agreement (R2

= 0.557,
RMSE= 0.048 [–]), which was expected since the capaci-
tance probes network is used for validation of the SMOS
mission (Bircher et al., 2012a). However, the single capac-
itance probe locations (some have a poor data coverage) di-
verge significantly from the mean and the SMAP due to local
heterogeneities in soil properties that are not disintegrated on
the coarse spatial resolution of SMAP. The correlation be-
tween SMAP and CRNS is better than between SMAP and
the capacitance probes (cf. Fig. 3), which supports the advan-
tage of observations at more comparable spatial resolutions.
The downscaling task contributes towards further improving
the comparability of the remotely sensed and in situ observed
soil moisture.

Spatial changes in Sentinel-1 backscatter are influenced
by the dominant LUC type and have been used for a k-
means clustering. Temporal changes for each cluster are
significantly different, regarding both absolute mean val-
ues, dynamic behaviour and standard deviation. Changes in
biomass appear to be best described using the cross-ratio
VH /VV [dB], which has also been suggested by Harfen-
meister et al. (2019). The analysis of an appropriate down-
scaling scale showed that lower resolutions lead to increased
misclassification of LUC and that the temporal changes in
Sentinel-1 at specific sites are reduced markedly. A down-
scaling resolution of 100 m is therefore desirable. A good
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Table 5. Downscaling results: downscaled soil moisture vs CRNS-derived soil moisture at the different field sites; mean difference in
rank (mSDR) of downscaled soil moisture compared with capacitance probes.

CRNS at Voulund CRNS at Voulund CRNS at Harrild CRNS at Gludsted Capacitance
(agriculture) (shorter period) (heathland) (forest) probes

Slope R2 RMSE Slope R2 RMSE Slope R2 RMSE Slope R2 RMSE mSDR
[–] [–] [–] [–]

100 m

Type 1: 1.170 0.189 0.124 0.902 0.305 0.073 0.598 0.345 0.138 0.548 0.289 0.061 5.9
Type 2: 1.501 0.307 0.123 1.190 0.469 0.107 0.614 0.352 0.153 0.331 0.185 0.111 6.0
Type 3: 1.014 0.139 0.130 0.781 0.292 0.067 0.508 0.346 0.136 0.662 0.301 0.068 6.3
Type 4: 1.472 0.283 0.126 1.181 0.479 0.106 0.542 0.355 0.151 0.322 0.177 0.112 5.6
Type 5: 0.835 0.236 0.098 0.709 0.350 0.065 0.596 0.314 0.104 1.148 0.398 0.173 4.4
Type 6: 1.030 0.365 0.071 0.879 0.518 0.045 0.613 0.335 0.118 0.772 0.394 0.069 3.9
Type 7: 0.743 0.185 0.103 0.638 0.339 0.063 0.497 0.307 0.101 1.346 0.369 0.194 5.8
Type 8: 1.013 0.342 0.074 0.874 0.532 0.043 0.534 0.334 0.115 0.757 0.383 0.070 4.5

1000 m

Type 1: 1.013 0.724 0.033 1.003 0.727 0.035 0.659 0.412 0.123 0.619 0.426 0.057 5.6
Type 2: 0.975 0.701 0.032 0.971 0.700 0.033 0.744 0.412 0.158 0.411 0.331 0.070 5.6
Type 3: 1.030 0.731 0.034 1.014 0.731 0.035 0.579 0.412 0.121 0.731 0.416 0.065 5.8
Type 4: 0.977 0.708 0.032 0.969 0.712 0.033 0.687 0.401 0.161 0.415 0.329 0.070 5.8
Type 5: 1.084 0.740 0.036 1.063 0.740 0.037 0.541 0.383 0.088 1.173 0.541 0.142 6.1
Type 6: 1.041 0.722 0.033 1.028 0.726 0.035 0.606 0.398 0.112 0.821 0.608 0.043 6.0
Type 7: 1.104 0.745 0.037 1.075 0.740 0.038 0.481 0.379 0.088 1.361 0.476 0.162 5.9
Type 8: 1.043 0.729 0.033 1.025 0.729 0.034 0.562 0.393 0.114 0.829 0.600 0.043 6.0

CRNS vs 1.246 0.710 0.072 1.24 0.714 0.074 0.708 0.408 0.065 0.890 0.619 0.061
original
SMAP

correlation between CRNS and Sentinel-1 backscatter at
100–200 m resolution is observed at the low-biomass loca-
tions (Harrild and Voulund) – as expected due to the foot-
print of the CRNS and the highly heterogeneous agricul-
tural landscape with field sizes at the scale of hectometres (<
1000 m2). From the combined time series analysis it becomes
clear that the Sentinel-1 signal in the forest is greatly influ-
enced by vegetation structure and there is no or little correla-
tion with soil moisture. One explanation could be the wave-
length of the C-SAR backscatter of 5.6 cm, which is best in
detecting objects of similar sizes (Rosenqvist, 2018). There-
fore, the C-band is sensitive to soil moisture within sparse
and low-biomass areas as in the heathland and agricultural
sites, while the signal is dominated by volumetric scattering
of the pine trees in the forest. In the heathland, the vegetation
is low and relatively constant over the seasons, and therefore
dynamics in backscatter relate to changes in soil moisture. In
the agricultural site, the amount of biomass (8.42 t ha−1) and
its seasonal change are rather small (Andreasen et al., 2020)
and hence the CRNS signal is mostly representative of soil
moisture in this area. This is supported by the time series that
shows lower backscatter values in spring/summer during the
growing and peak season. If the backscatter would be highly
influenced by vegetation changes rather than soil moisture
the opposite would be expected, i.e. a positive correlation

between backscatter and vegetation (higher backscatter sig-
nals coinciding with higher vegetation). One exception might
be the very high (less negative) VV backscatter at Voulund
(e.g. Fig. 8) at the beginning of the study period, which might
be an artefact as a result of agricultural soil management,
e.g. tilling, rather than a signal influenced by soil moisture.

4.2 Soil moisture dependency on Sentinel-1 backscatter

The similar temporal evolution of VV and VH at the heath-
land and agricultural clusters supports the assumptions that
VH is impacted not only by biomass but also to a signifi-
cant extent by soil moisture. This has been reported previ-
ously (El Hajj et al., 2019; Harfenmeister et al., 2019). Com-
paring VV and VH backscatter with the CRNS-derived soil
moisture at the different field sites (Table 2; Fig. S2) shows
that at high spatial resolutions (20–400 m) VH has a higher
or at least the same correlation as VV with soil moisture at
Voulund (agriculture) and Harrild (heathland). At the Glud-
sted forest site, the correlation for both VV and VH with
CRNS soil moisture is very poor at all spatial resolutions
(Table 2) possibly due to the aforementioned influence of
volume scattering of the leafage. Hence, the principal as-
sumption that VH is primarily influenced by biomass while
VV is influenced by biomass and soil moisture only holds for
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coarse spatial resolutions of 1000 m and is possibly restricted
to areas without dense forest.

4.3 Downscaling

The modified SMAP Sentinel-1 downscaling algorithm that
has previously been successfully tested (He et al., 2018)
was applied. At first glance the results seemed reasonable
since the downscaling parameters β and 0 as well as the
SM values were estimated within logical ranges and in the
same order as in He et al. (2018) (β ranging from 0.03
to 0.093 [m3 m−3 dB−1] and 0 ranging from 0.5 to 0.9).
The performance statistics of R2 and RMSE were accept-
able and in ranges that were previously published (e.g. He
et al., 2018). At Voulund (agriculture), the downscaling al-
gorithm produces similar results at the 100 and 1000 m res-
olutions. The downscaled soil moisture time series appears
trustworthy since the downscaled soil moisture is different
from the original SMAP soil moisture and is in agreement
with the measured CRNS soil moisture (Fig. 10a). However,
for the 100 m resolution there are still some discrepancies
in soil moisture during late winter–early spring that could
be related to field management practices. At Harrild (heath-
land), the downscaled soil moisture is very similar for the
100 and the 1000 m scales (Fig. 10b), indicating that the
sub-kilometre downscaling is as trustworthy as the kilome-
tre scale. The downscaling algorithm has decreased the ab-
solute values and the dynamic changes are dampened com-
pared with the original SMAP soil moisture. However these
changes are not in agreement with the CRNS soil moisture
values, which generally show higher soil moisture through-
out the year. Furthermore, the timing of the drying out sum-
mer 2018 is not fully captured. Moreover, from a visual as-
sessment, at the 100 m spatial resolution the downscaled spa-
tial soil moisture pattern shows a strong dependency on LUC
types, particularly when applying the classic (type 3) algo-
rithm (Fig. 9). These patterns also look very similar to the
Sentinel-1 backscatter patterns (e.g. Fig. 4). It is question-
able whether the soil moisture depends to such a strong de-
gree on the LUC, given that the area is affected by the same
climatic effects and changes in soil properties are indepen-
dent of LUC. Therefore, it is also questionable whether the
downscaled soil moisture is correct. The cluster-dependent
downscaling scheme (e.g. type 8) dampens the strong LUC
pattern and also minimizes the mismatch of the order of ca-
pacitance probes. Nevertheless, similar statistics (Table 5)
can result in reversed soil moisture patterns, e.g. the forest
is very dry (e.g. type 5) or very wet (e.g. type 4) compared
with the heathland and agricultural sites (Fig. S7). Our study
shows that the statement of González-Zamora et al. (2015)
about the comparison of satellite-derived soil moisture and
in situ observations is also valid for the downscaled product.
They concluded that temporal dynamics in soil moisture can
be better reproduced than spatial patterns.

Our downscaling results underpin that the original SMAP
soil moisture has a very good match in temporal dynamics
with the ground observations; therefore, the statistical results
are difficult to improve significantly by downscaling using
Sentinel-1. We showed that the spatial patterns change sig-
nificantly with different small modifications to the classic
downscaling algorithm and it remains challenging to clearly
identify the best approach. Nevertheless, we demonstrate that
soil moisture estimates at the 1000 and 100 m spatial resolu-
tion are improved with cluster-dependent β. Additionally, at
the 100 m scale, a cluster-dependent 0 improves the down-
scaled soil moisture results, which is not the case at the
1000 m scale.

5 Conclusion

Our study results show a strong correlation between Sentinel-
1 VV, VH backscatter and CRNS soil moisture at the agricul-
tural and heathland sites in central Denmark (R2 in the mag-
nitude of 0.3–0.6 depending on the different scales) and also
a good match between SMAP and CRNS, particularly in tem-
poral dynamics (R2

= 0.7, RMSE= 0.056 [–]). However,
applying the well-established SMAP Sentinel-1 downscaling
algorithm remains a challenge for higher spatial resolutions
(20–400 m). One reason is the strong correlation between VH
and soil moisture at this scale, because the SMAP Sentinel-
1 algorithm assumes that VH is predominantly influenced
by biomass and vegetation structure. This seems valid for
the coarser spatial resolutions (> 1000 m) to which the al-
gorithm has been successfully applied many times before.
To dampen the otherwise close resemblance of downscaled
soil moisture to LUC patterns we introduced LUC-dependent
downscaling parameters (β, 0), which improved the results
only marginally. Nevertheless, the soil moisture pattern of the
downscaled product remained ambiguous. Since it is possi-
ble to create a well-matched relationship of VV, VH and local
CRNS, further modifications to the algorithm are needed to
solve the current challenge in downscaling to sub-kilometre
spatial resolutions. To be successful in this endeavour, such
analysis would benefit from a larger data set of in situ mea-
surements at the relevant scale for a better validation of the
spatial patterns produced. This could be achieved by ex-
panding the study area and including more CRNS stations;
e.g. there exists a network of about 50 CRNS stations across
Europe (Bogena et al., 2022). The use of such a network for
calibration of the downscaling parameters β and 0 might be
successful and hence improve the algorithm substantially.

Code and data availability. The remote sensing
data are freely available from NASA (SMAP;
https://doi.org/10.5067/RFKIZ5QY5ABN, O’Neill et al., 2018)
and ESA (Sentinel-1, we retrieved the Copernicus S1_GRD data
set via Google Earth Engine). The capacitance probes ground
observations (Bircher et al., 2012a; Jensen and Refsgaard, 2018)
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are part of the International Soil Moisture Network (Dorigo
et al., 2011, 2013) and can be retrieved after registration from
their website (https://ismn.earth/en/networks/?id=HOBE; ISMN,
2022). The CRNS data are part of the COSMOS-Europe net-
work, which has been recently presented in an ESSD data paper
(https://doi.org/10.5194/essd-14-1125-2022; Bogena et al., 2022)
and are also stored on a PANGEA repository Andreasen (2019)
(https://doi.org/10.1594/PANGAEA.909271).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-26-3337-2022-supplement.
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