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Abstract. Quantification of root-zone soil moisture (RZSM)
is crucial for agricultural applications and the soil sciences.
RZSM impacts processes such as vegetation transpiration
and water percolation. Surface soil moisture (SSM) can
be assessed through active and passive microwave remote-
sensing methods, but no current sensor enables direct RZSM
retrieval. Spatial maps of RZSM can be retrieved via proxy
observations (vegetation stress, water storage change and
surface soil moisture) or via land surface model predictions.
In this study, we investigated the combination of surface soil
moisture information with process-related inferred features
involving artificial neural networks (ANNs). We considered
the infiltration process through the soil water index (SWI)
computed with a recursive exponential filter and the evapo-
ration process through the evaporation efficiency computed
based on a Moderate Resolution Imaging Spectroradiometer
(MODIS) remote-sensing dataset and a simplified analytical
model, while vegetation growth was not modeled and was
only inferred through normalized difference vegetation in-
dex (NDVI) time series. Several ANN models with different
sets of features were developed. Training was conducted con-
sidering in situ stations distributed in several areas worldwide
characterized by different soil and climate patterns of the In-
ternational Soil Moisture Network (ISMN), and testing was
applied to stations of the same data-hosting facility. The re-
sults indicate that the integration of process-related features
into ANN models increased the overall performance over the
reference model level in which only SSM features were con-

sidered. In arid and semiarid areas, for instance, performance
enhancement was observed when the evaporation efficiency
was integrated into the ANN models. To assess the robust-
ness of the approach, the trained models were applied to ob-
servation sites in Tunisia, Italy and southern India that are
not part of the ISMN. The results reveal that joint use of
surface soil moisture, evaporation efficiency, NDVI and re-
cursive exponential filter represented the best alternative for
more accurate predictions in the case of Tunisia, where the
mean correlation of the predicted RZSM based on SSM only
sharply increased from 0.443 to 0.801 when process-related
features were integrated into the ANN models in addition
to SSM. However, process-related features have no to little
added value in temperate to tropical conditions.

1 Introduction

Soil moisture is a major land parameter integrated into sev-
eral agricultural, hydrological and meteorological applica-
tions (Koster et al., 2004; Paris Anguela et al., 2008). This
essential climate variable (ECV) consists of two components,
namely, surface soil moisture (SSM) (0–5 cm) and root-zone
soil moisture (RZSM). RZSM corresponds to the soil mois-
ture in the region in which the main vegetation rooting net-
work is developing. Its definition varies depending on veg-
etation type and pedoclimatic conditions. The importance
of RZSM is mainly highlighted in agricultural applications
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through vegetation stress and water needs and in carbon and
nitrogen cycles, as RZSM influences biogeochemical activ-
ities in soil (Martínez-Espinosa et al., 2021). RZSM is non-
linearly related to SSM through different hydrological pro-
cesses, such as diffusion processes. RZSM may be extracted
by evaporation at the surface through root extraction or by
capillary rises (Calvet et Noilhan, 2000). SSM quantifica-
tion is achieved through three main sources: in situ mea-
surements, model estimates and remote-sensing-based prod-
ucts. Microwave remote-sensing technologies involving sen-
sors such as Soil Moisture and Ocean Salinity (SMOS) (Kerr
et al., 2010), Soil Moisture Active Passive (SMAP) (En-
tekhabi et al., 2010), Advanced Microwave Scanning Ra-
diometer (AMSR) (Owe et al., 2008) and Advanced Scat-
terometer (ASCAT) (Wagner et al., 2013) have been em-
ployed to retrieve SSM at coarse resolutions. Current satellite
sensors can only provide surface soil moisture information
because of the shallow penetration depth of spaceborne data
(on the order of a few centimeters) (Wagner et al., 2007).
Fine-spatial-resolution synthetic aperture radar (SAR) data
can also be applied in synergy with optical data to retrieve
soil moisture (Zribi et al., 2011; Hajj et al., 2014; Dorigo et
al., 2011), but again for surface soil moisture. The Interna-
tional Soil Moisture Network (ISMN) is an exhaustive data-
hosting facility focused on soil moisture data and associated
ancillary information. The ISMN provides in situ soil mois-
ture measurements collected from operational soil moisture
networks worldwide (Dorigo et al., 2011). Various models
can be adopted to estimate RZSM, such as land surface mod-
els (Surfex) (Masson et al., 2013), Interaction Sol-Biosphère-
Atmosphère (ISBA) (Noilhan and Mahfouf, 1996), the Com-
munity Land Model (CLM; Oleson et al., 2010) or the Joint
UK Land Environment Simulator (JULES) (Best et al., 2011)
or dedicated crop models such as Aquacrop (Raes et al.,
2009) or Simple Algorithm For Yield Estimate (SAFYE)
(Battude et al., 2017). While these models provide the ad-
vantage of physical process-based estimates, these estimates
depend on the availability and accuracy of ancillary informa-
tion. Model predictions are often enhanced by the implemen-
tation of data assimilation techniques, such as the land data
assimilation system (LDAS) (Sabater et al., 2007; Entekhabi
et al., 2020).

Data-driven methods such as artificial neural net-
works (ANNs) have also been commonly applied in hydrol-
ogy as detailed, for instance, by the ASCE Task Commit-
tee on Application of Artificial Neural Networks in Hydrol-
ogy (2020) and in Tanty et al. (2015). One of their advantages
is that these models do not require an explicit model structure
to accurately represent the involved hydrological processes
but instead construct a relationship between the given inputs
and the process of interest. Therefore, ANNs are regarded
as dynamic input–output mapping models heavily relying on
the provided training data relevant to target values (Pan et al.,
2017). Moreover, ANNs only require a one-time calibration
to provide soil moisture estimations once instrument data are

loaded and thus generate relatively low computational costs
(Kolassa et al., 2018). These advantages explain the approach
to estimate RZSM based on surface information with ANNs
in various methodologies (Pan et al., 2017; Grillakis et al.,
2021; Souissi et al., 2020). In this paper, we do not address
ANN applications as a model twin where the ANN model
is trained on the target for mimicking purposes and subse-
quently generates predictions while requiring a short com-
putation time or fewer input simplifications. Here, we are
instead interested in the adoption of ANNs as independent
models trained on in situ observations. Within this context,
Pan et al. (2017) successfully applied an ANN as a model
for shallow 20 cm root-zone soil moisture prediction with a
global correlation coefficient of 0.7. Grillakis et al. (2021)
proposed employing an ANN as a means of calibrating and
regionalizing the time constant of a recursive exponential fil-
ter, which was thereafter applied at the regional scale. A com-
bined implementation of a Bayesian probabilistic approach
and an ANN to infer RZSM at different depths from optical
unmanned aerial vehicle (UAV) acquisitions via local train-
ing was also applied (Hassan-Esfahani et al., 2017). Multi-
temporal averaged features to predict RZSM based on only
SSM and to investigate the transferability of a trained ANN
across different climatic conditions globally were proposed
in Souissi et al. (2020). Temporal information can be con-
sidered in ANNs through recurrent neural networks (RNNs),
long short-term memory (LSTM) architectures (Liu et al.,
2021), 1D convolutional neural networks (CNNs), or multi-
temporal averaging. In Souissi et al. (2020), median, max-
imum and minimum correlation values of 0.77, 0.96 and
0.65 were, respectively, reported across training, validation
and test datasets. The use of climatic variables such as pre-
cipitation and surface temperature and intrinsic surface prop-
erties such as soil texture and land cover has also been con-
sidered in ANNs (Liu et al., 2021). The choice of variables
depends not only on the data availability, but also on the ob-
jectives. Finally, ANN-based approaches pertain to the more
general term of machine learning approaches, and within this
framework, the random forest approach has been applied to
root-zone soil moisture prediction (Carranza et al., 2021).
The aforementioned studies have investigated the applica-
tion of multiple information sources to predict root-zone soil
moisture. The input features are commonly curated for qual-
ity, and correlation analysis is conducted to determine the
useful inputs, while physical processes are not considered.
In this paper, we introduce process-related features based
on simplified analytical models representing the major pro-
cesses contributing to root-zone soil moisture dynamics. In
this work, RZSM refers to a point observation of water con-
tent at a depth ranging between 30 and 55 cm. We investigate
the impact of the application of different process-related vari-
ables on the precision of RZSM predictions as well as the
robustness of our approach. (1) We start from a previously
developed ANN model (Souissi et al., 2020), and we extend
the feature list to include NDVI time series, surface soil tem-
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Figure 1. Overview of the processing configuration showing the components of the model: the tested models are variations of this ANN with
a different combination of inputs (see Table 1). The scaling and descaling are applied to each dataset separately.

perature and process-related variables, namely, the soil wa-
ter index given by a recursive exponential filter and remote-
sensing-based evaporation efficiency. (2) The robustness of
the approach is assessed through additional tests involving
stations not included in the ISMN database in Tunisia, Italy
and southern India. (3) Climatic analysis is conducted to infer
the most indicative process-related features for each climate
pattern.

2 Materials and methods

The proposed methodology entails the construction of sev-
eral ANN models with both direct (SSM, surface temperature
and NDVI) and intermediate sets of features (soil water index
and evaporation efficiency) computed based on simplified an-
alytical models. An overview of the processing configuration
is shown in Fig. 1. Standard scaling is applied to each dataset
separately so that the different inputs fall into the same range
of values. Then the ANN outputs are descaled to make the
comparison with actual values of RZSM possible.

This approach results in a combination of ANN models
(Table 1). Each model has one or more process-related fea-
tures in addition to three SSM features which correspond to
backward rolling averages of in situ SSM computed over 10,

30 and 90 d. All the ANN model hyperparameters remain the
same except the number of input features.

The model with the simplest starting point is ANN_SSM
based on Souissi et al. (2020). The most complex model in-
cludes the full set of inputs. Intercomparison of the model
performance provides information on the added value of each
input. All input features are scaled, and training is performed
on each of these features based on scaled in situ RZSM data
retrieved from the ISMN. The RZSM model predictions are
validated against an independent set of observations.

2.1 Datasets

2.1.1 ISMN soil moisture data

The first training and test operations were conducted on
eight ISMN networks previously considered in Souissi et
al. (2020). Figure 2 shows the distribution of the consid-
ered soil moisture networks with different soil textures and
climatic parameters (see Appendix B). For each station, the
RZSM observation point is located between 30 and 55 cm
(Table 2). For each soil moisture hourly acquisition, the
ISMN provides quality flags. Quality flags can be marked as
“C” (exceeding the plausible geophysical range), “D” (ques-
tionable/dubious), “M” (missing), or “G” (good) (Dorigo et
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Table 1. ANN model configurations with the respective input variables; a: rolling averages of SSM over 10 d; b: rolling averages of SSM
over 30 d; c: rolling averages of SSM over 90 d; d: number of parameters of the ANN model.

Model SSM_10d_RAVa SSM_30d_RAVb SSM_90d_RAVc SST NDVI SWI EVAP Nbd

features

ANN_SSM X X X 101
ANN_SSM_TEMP X X X X 121
ANN_SSM_NDVI X X X X 121
ANN_SSM_EXP-FILT-T5 X X X X 121
ANN_SSM_EVAP-EFF-B60 X X X X 121
ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 X X X X X X 161

Figure 2. International Soil Moisture Network (ISMN) network distribution (adapted from the ISMN web data portal: https://www.geo.
tuwien.ac.at/insitu/data_viewer/, last access: 7 April 2022; scale: 1 cm= 1000 km).

al., 2011). Category “D” has subset flags, namely, “D01” for
which in situ soil temperature< 0 ◦C, “D02” that flags points
at which in situ air temperature< 0 ◦C, as well as “D03” that
also flags areas where the Global Land Data Assimilation
System (GLDAS) soil temperature< 0 ◦C. In our study, only
soil moisture data whose quality flag is marked “G” were re-
tained.

2.1.2 External soil moisture data

The external networks are considered to assess the transfer-
ability and robustness of the approach. The trained models

are run for predictions only over these sites. They have been
selected to cover semiarid, moderate and tropical semiarid
climates.

– Tunisian site: the Merguellil site is located in central
Tunisia (9◦54′ E, 35◦35′ N). This site is characterized
by a semiarid climate with highly variable rainfall pat-
terns (average equal to 300 mm yr−1), very dry summer
seasons, and wet winters. The Merguellil site represents
an agricultural region where croplands, namely, olive
groves and cereal fields, prevail (Zribi et al., 2021). At
this study site, a network of continuous ThetaProbe sta-

Hydrol. Earth Syst. Sci., 26, 3263–3297, 2022 https://doi.org/10.5194/hess-26-3263-2022

https://www.geo.tuwien.ac.at/insitu/data_viewer/
https://www.geo.tuwien.ac.at/insitu/data_viewer/


R. Souissi et al.: Integrating process-related information into an ANN for root-zone soil moisture prediction 3267

Table 2. Overview of the considered ISMN and external networks.

Network Country Number of selected Selected SM
stations RZSM sensors

depth
(cm)

AMMA-CATCH Benin, Niger 5 (3 in Benin and 2 in Niger) 40 CS616
BIEBRZA-S-1 Poland 3 50 GS-3
CTP-SMTMN China 54 40 EC-TM/5TM
HOBE Denmark 29 55 Decagon-5TE
FR-Aqui France 5 30, 34, 50 ThetaProbe ML2X
OZNET Australia 19 30 Hydra Probe-CS616
SCAN USA 209 50 Hydraprobe-Sdi-12/Ana
SMOSMANIA France 22 30 ThetaProbe ML2X

tions installed at bare soil locations provided moisture
measurements at depths of 5 and 40 cm. All measure-
ments were calibrated against gravimetric estimations.
Data were obtained from the Système d’Information
Environmental (SIE) web application catalog (SIE,
2021).

– Italian site: the Landriano site is located in northern
Italy (Pavia Province, Lombardy Region). This station
is located in a maize field, which was monitored in 2006
and from 2010 to 2011 (Masseroni et al., 2014). The av-
erage rainfall in Pavia Province is 650–700 mm, the cli-
mate is classified as Cfa (see Appendix A) and the field
is irrigated by the border method with an average irri-
gation amount of approximately 100 to 200 mm per ap-
plication with one to two applications per season due to
the presence of a shallow groundwater table. Soil mois-
ture measurements were performed with time domain
reflectometer (TDR) soil moisture sensors. Five TDR
soil moisture sensors were installed along a profile at
depths of 5, 20, 35, 50 and 70 cm.

– Indian site: the Berambadi watershed is located in Gun-
dalpet Taluk, Chamarajanagara district, in the south-
ern part of Karnataka state in India and covers an area
of approximately 84 km2. The average rainfall is equal
to 800 mm yr−1, and the climate is classified as Aw
(see Appendix A). Hydrological variables have been in-
tensively monitored since 2009 in the Berambadi water-
shed by the Environmental Research Observatory ORE
BVET and AMBHAS Observatory. The soil moisture
levels at the surface (5 cm) and root zone (50 cm) are
monitored with a HydraProbe sensor at different agri-
cultural sites across the watershed, and in the current
study, four stations were chosen.

2.1.3 Surface soil temperature

In addition to in situ soil moisture, the ISMN optionally in-
cludes meteorological and soil variables that are available

over specific time periods. Values of the in situ surface soil
temperature among these variables can be employed as a use-
ful indicator of the soil moisture data quality. The soil tem-
perature was provided in degrees Celsius, and the plausible
values range from −60 to 60 ◦C. Regarding soil moisture
data, surface soil temperature data were also provided with
quality flags (Dorigo et al., 2011). However, the drawback is
that this variable is not available in all networks, which is the
case with the AMMA-CATCH network.

2.1.4 Normalized difference vegetation index

We considered the remote-sensing-based normalized differ-
ence vegetation index (NDVI) to infer vegetation dynamics.
We extracted this index from the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) Vegetation Indices product
(MOD13Q1 version 6). MODIS Vegetation Indices data are
generated at 16 d intervals and a 250 m spatial resolution as
a level-3 product. This product provides two primary vege-
tation layers. The first vegetation layer is the NDVI, which
is referred to as the continuity index of the existing Na-
tional Oceanic and Atmospheric Administration-Advanced
Very High Resolution Radiometer (NOAA-AVHRR)-derived
NDVI. The algorithm chooses the best available pixel value
from all the acquisitions over the 16 d period. The criteria
considered are low cloud coverage, low viewing angle, and
the highest NDVI value (Huete et al., 1999). To obtain daily
NDVI values, we conducted linear interpolation of the 16 d
product.

2.1.5 Potential evapotranspiration

Similarly, we assessed the impact of considering a remote-
sensing-based evaporation efficiency, which is initially de-
fined as the ratio of actual to potential soil evaporation, on
RZSM prediction. The computation details of this variable
will be given later (see Sect. 2.2.2). We employed the remote-
sensing-based potential evapotranspiration (PET) to compute
the evaporation efficiency. We extracted the PET from the
MOD16A2 Evapotranspiration/Latent Heat Flux version 6
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product, which is an 8 d composite dataset produced at a
500 m pixel resolution. The algorithm used for this prod-
uct collection is based on the logic of the Penman–Monteith
equation, which employs inputs of daily meteorological re-
analysis data along with MODIS remote-sensing data prod-
ucts such as vegetation property dynamics, albedo and land
cover. The MOD16A2 product provides layers for the com-
posite evapotranspiration (ET), latent heat flux (LE), poten-
tial ET (PET) and potential LE (PLE). The pixel values for
the PET layer include the sum of all 8 d within the composite
period (Running et al., 2017). To obtain daily PET values,
we performed a linear interpolation over the 8 d product, and
then we divided the interpolated value by 8.

2.2 Methods

2.2.1 Recursive exponential filter

Two ANN models presented in Table 1 contained extra
knowledge on infiltration process information based on the
outputs of the recursive exponential filter (Stroud, 1999) as
a feature. The recursive exponential filter was first intro-
duced by Wagner et al. (1999) to estimate the soil water in-
dex (SWI) from surface soil moisture. SWI is computed as
follows:

SWItn = SWItn−1 +Kn
(
ms (tn)−SWItn−1

)
, (1)

where SWItn is the soil water index at time tn, ms(tn) is the
scaled surface soil moisture at time tn (scaled between maxi-
mum and minimum values), Kn is the gain at time tn, which
occurs in [0, 1] and is given by

Kn =
Kn−1

Kn−1+ e
−
(tn−tn−1)

T

, (2)

and T is a time constant and is the only required tuning pa-
rameter to compute the recursive exponential filter.

For the initialization of the filter, gain K1 = 1 and
SWI(t1) =ms(t1).

Regarding T values, we considered an empirical list ([1,
3, 5, 7, 10, 13, 15, 20, 40, 60]), which was partly inspired
by Paulik et al. (2014) (T ∈ [1, 5, 10, 15, 20, 40, 60, 100]).
Given the list of T values, recursive exponential filter out-
puts were computed for all of the stations (346 stations) given
each T value. Based on the correlation values between the in
situ RZSM values and the recursive exponential filter-based
RZSM pre-estimates, we established the optimal time vari-
able T , hereafter referred to as Tbest, for each station.

2.2.2 Evaporation efficiency

An ANN model with evaporation efficiency input was also
developed. This variable, which is defined as the ratio of the
actual to potential soil evaporation, was first introduced in
Noilhan and Planton (1989), Jacquemin and Noilhan (1990)

and Lee and Pielke (1992) and thereafter readapted in Merlin
et al. (2010) to include the soil thickness. In our work, we
use a modified evaporation efficiency formulation based on
the third model developed in Merlin et al. (2010), which can
be expressed as follows (see Appendix C):

β =

[
1
2
−

1
2

cos(πθ/θmax)

]P ∗
, (3)

where β is evaporation efficiency and θ is the water content
in the soil layer of thickness L. θmax is the maximum soil
moisture at each station. P ∗ is a parameter computed as fol-
lows:

P ∗ =
PET
2B

. (4)

P ∗, a proxy of parameter P (see Appendix C), represents an
equilibrium state controlled by retention forces in the soil,
which increase with the thickness L of considered soil and
by evaporative demands at the soil surface. PET is the poten-
tial evapotranspiration extracted from the MODIS 500 m 8 d
product (MOD16A2).

The soil evaporation efficiency computed by model 3, de-
veloped in Merlin et al. (2010), decreases when PET in-
creases. Retention force and evaporative demand make the
term P increase (replaced by P ∗), as if an increase in po-
tential evaporation LEp (here replaced by PET) at the soil
surface would make the retention force in the soil greater.

Merlin et al. (2010) tested this approach at two sites in
southwestern France using in situ measurements of actual
evaporation, potential evaporation, and soil moisture at five
different depths collected in summer. Model 3 was able to
represent the soil evaporation process with a similar accu-
racy to the classical resistance-based approach for various
soil thicknesses up to 100 cm. Merlin et al. (2010) affirm
that the parameterization of P as a function of LEp (here
PET) indicates that β cannot be considered a function of soil
moisture alone since it also depends on potential evaporation.
Moreover, the effect of potential evaporation on β appears to
be equivalent to that of soil thickness on β. This equivalence
is physically interpreted as an increase in retention forces in
the soil in reaction to an increase in potential evaporation.

2.2.3 Artificial neural network implementation

The multilayer perceptron (MLP), which is a multilayer feed-
forward ANN, is one of the most widely applied ANNs,
mainly in the field of water resources (Abrahart and See,
2007). The multilayer perceptron contains one or more hid-
den layers between its input and output layers. Neurons are
organized in layers such that the neurons of the same layer
are not interconnected and that any connections are directed
from the lower to upper layers (Ramchoun et al., 2016).
Each neuron returns an output based on the weighted sum
of all inputs and according to a nonlinear function referred to
as the transfer or activation function (Oyebode and Stretch,
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Table 3. Proportion of the stations whose performance enhances using the ANN models enriched with process-related features compared to
model ANN_SSM (a: % of stations at which the correlation improves over the model ANN_SSM level; b: % of stations at which RMSE
improves over the model ANN_SSM level).

Model Training stations Validation stations Test stations

% of stations % of stations % of stations % of stations % of stations % of stations
(corr ↑)a (RMSE ↓)b (corr ↑)a (RMSE ↓)b (corr ↑)a (RMSE ↓)b

ANN_SSM_NDVI 65.82 44.3 45.71 40.0 55.22 40.3
ANN_SSM_TEMP 49.4 25.3 55.56 38.89 59.35 42.99
ANN_SSM_EXP-FILT-T5 64.56 36.71 60.61 42.42 63.68 50.25
ANN_SSM_EVAP-EFF-B60 54.55 28.57 52.94 41.18 52.33 48.19
ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 84.06 62.32 61.29 54.84 62.07 54.02

2019). The input layer, consisting of SSM values and/or other
process-related variables, is connected to the hidden layer(s),
which comprises hidden neurons. The final ANN-derived es-
timates of the ANN are given by an activation function asso-
ciated with the final layer denoted as the output layer, based
on the sum of the weighted outputs of the hidden neurons.

We started with the ANN model developed in Souissi et
al. (2020), whose architecture consists of one hidden layer of
20 hidden neurons, a tangent sigmoid function as the activa-
tion function of the hidden layer, a quadratic cost function as
the loss function and the stochastic gradient descent (SGD)
technique as the optimization algorithm. This model was de-
veloped to estimate RZSM based on only in situ SSM in-
formation. SSM was not applied as a feature of hourly val-
ues but was employed in the form of three features, namely,
SSM rolling averages over 10, 30 and 90 d. Additional ANN
models were developed to study, through each model, the im-
pact of the application of the NDVI, SWI, evaporation ef-
ficiency and surface soil temperature as features. A model
combining surface soil moisture, NDVI, evaporation effi-
ciency and the recursive exponential filter was further con-
sidered. These ANN models were trained and validated on
the 122 ISMN stations considered to be of good quality after
a data-filtering step as detailed in Souissi et al. (2020). Train-
ing of the above ANN models was conducted considering
70 % of these 122 stations. Thirty percent was reserved for
validation, and testing was conducted at the rest of the sta-
tions. So, in summary, 122 stations were considered for the
training/validation of the ANN models and 224 stations if all
input data available were used for testing. In a second step,
tests were conducted on data external to the ISMN database,
namely, on sites of Tunisia, Italy and India. The trained mod-
els over the ISMN are used only in prediction mode over
these sites. The data for SSM in addition to the other features
are used as inputs, and RZSM is predicted in outputs.

3 Results

3.1 Exponential filter characteristic time length

A large proportion of the stations attained an optimal time
constant (Tbest) value equal to 60 d, which suggests an ab-
normally long infiltration time. These stations belong to the
SCAN network and exhibit an RZSM acquisition depth of
50 cm, in contrast to other networks such as SMOSMA-
NIA, for instance, where RZSM is retrieved at 30 cm. The
high values correspond to correlation with seasonal dynam-
ics rather than infiltration processes. This depth could explain
the anomalously long infiltration time. This is consistent with
Paulik et al. (2014), in which the average T value with the
highest correlation (Tbest) increased with increasing depth of
the in situ observations.

For comparison purposes, Paulik et al. (2014) found that
23.98 % of the stations achieved Tbest = 5 d, while 21.58 %
of the stations achieved Tbest ≥ 60 d (60 or 100 d).

Albergel et al. (2008) considered an average Tbest value
of 6 d for the SMOSMANIA network. This value repre-
sented the average Tbest value for all stations belonging to the
SMOSMANIA network. In our case, the average Tbest value
for all stations of the SMOSMANIA network reached 9 d.
In this study, an average Tbest value could be established for
each station or each network. However, this is not relevant to
our work because we aim to evaluate maps of remote-sensing
data in the next steps, and thus we did not compute Tbest at
each location. We fixed the value of T to 5 d as a median
infiltration time.

3.2 Intercomparison of the ANN models

The distribution histograms for training, validation and test
stations (Fig. 3) show that the integration of the considered
process-related features improved the prediction accuracy in
certain cases compared to the reference. Time series of good
and less good quality of fit were provided in Appendix E
for training, validation and test stations using the reference
model ANN_SSM and the most complex ANN model.

In terms of the NDVI, 65.82 %, 45.71 % and 55.22 %
of the stations attained better correlation values with
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Figure 3. Correlation histograms of all tested ANN models compared to ANN_SSM (a) on training stations (b), on validation stations (c)
and on test stations (see Appendix D for RMSE histograms).
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ANN_SSM_NDVI than those obtained with ANN_SSM for
the training, validation and test stations, respectively. Root
mean square error (RMSE) decreased for 44.3 %, 40.0 % and
40.3 % of the stations with ANN_SSM_NDVI compared to
model ANN_SSM for the training, validation and test sta-
tions, respectively (Table 3).

In regard to the ANN_SSM_TEMP model that inte-
grates the soil surface temperature, 49.4 %, 55.56 % and
59.35 % of the training, validation and test stations ex-
hibited higher correlation values than those obtained with
the ANN_SSM model, respectively. RMSE decreased with
ANN_SSM_TEMP compared to model ANN_SSM for
25.3 %, 38.89 % and 42.99 % of the training, validation and
test stations, respectively.

64.56 %, 60.61 % and 63.68 % of the training, valida-
tion and test stations attained better correlations than those
obtained with model ANN_SSM, respectively. In addition,
RMSE decreased for 36.71 %, 42.42 % and 50.25 % of the
training, validation and test stations with ANN_SSM_EXP-
FILT-T5 compared to model ANN_SSM, respectively.

Regarding the evaporation efficiency, we considered dif-
ferent values of the fitting parameterB (Eq. 4) such thatB re-
mained within the [50, 60] interval. This parameter can be
fitted using different variables, such as the wind speed or rel-
ative humidity. Comparisons based on the correlation values
provided by the different models for each B value indicated
that the performance was insensitive to the B value. Thus,
we fixed the B value to 60 W m−2. Comparison of models
ANN_SSM and ANN_SSM_EVAP-EFF-B60 revealed that
54.55 %, 52.94 % and 52.33 % of the training, validation and
test stations attained higher correlation values with the lat-
ter model, respectively. RMSE was reduced for 28.57 %,
41.18 % and 48.19 % of the training, validation and test sta-
tions with ANN_SSM_EVAP-EFF-B60 compared to model
ANN_SSM, respectively.

Finally, we investigated the impact of the joint ap-
plication of the NDVI, recursive exponential filter (T =
5 d) and evaporation efficiency (B = 60 W m−2) in the
ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 model.
The surface soil temperature was not included, as its ef-
fect is included in the evaporation process. At 84.06 %,
61.29 % and 62.07 % of the training, validation and test sta-
tions, the correlation value obtained with this model was
higher than that obtained with the ANN_SSM model, re-
spectively. In addition, RMSE was minimized for 62.32 %,
54.84 % and 54.02 % of the training, validation and test sta-
tions with ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-
T5 compared to model ANN_SSM, respectively.

Considering model ANN_SSM_NDVI_EVAP-EFF-
B60_EXP-FILT-T5, only one training station had a decrease
in correlation by more than 0.1, namely, station “Lind#1”
(network “SCAN”) compared to the reference model
ANN_SSM. All inputs were not available at the same
dates, which implied a significant reduction in data points
(see Appendix F). The decrease in correlation and increase

in RMSE did not exceed 0.1 and 0.01 m3 m−3, respectively,
for the rest of the stations of lower performance metrics with
the most complex ANN (Table 4).

Similarly for validation stations, only one station had a de-
crease in correlation above 0.1, namely, station “PineNut”
(network SCAN), with model ANN_SSM_NDVI_EVAP-
EFF-B60_EXP-FILT-T5. This decrease can be also ex-
plained because of data shortage (see Appendix F). The de-
crease in correlation and increase in RMSE did not exceed
0.1 and 0.01 m3 m−3, respectively, for the rest of the stations
of lower performance metrics with the most complex ANN
(Table 4).

Regarding the test stations, correlation decreased by
more than 0.1 and RMSE increased by more than
0.01 m3 m−3 with model ANN_SSM_NDVI_EVAP-EFF-
B60_EXP-FILT-T5 compared to model ANN_SSM, detected
for only two stations. Both stations, namely, stations “S-
Coleambally” and “Widgiewa”, which belong to network
“OZNET”, significantly lose in data volume when process-
related variables are integrated into ANN and more precisely
because of NDVI data availability (see Appendix F). For the
rest of the test stations, correlation decreased and RMSE in-
creased simultaneously by less than 0.1 and 0.01 m3 m−3,
respectively, with model ANN_SSM_NDVI_EVAP-EFF-
B60_EXP-FILT-T5 (Table 4).

Always in terms of the general performance of
model ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5,
about 75 % of the stations have an RMSE of less
than 0.05 m3 m−3, and around half of the stations have
an RMSE of less than 0.04 m3 m−3. This accuracy is
consistent, for instance, with the target value in the
SMAP (Entekhabi et al., 2010) and SMOS (Kerr et al.,
2010) missions, which is equal to 0.04 m3 m−3, and also
with the average sensor accuracy adopted by Dorigo et
al. (2013), which is equal to 0.05 m3 m−3. Overall, the most
complex model ANN_SSM_NDVI_EVAP-EFF-B60_EXP-
FILT-T5 can successfully characterize the soil moisture dy-
namics in the root zone since half of the stations have a cor-
relation value of greater than 0.7. Pan et al. (2017) developed
different ANN models to estimate RZSM at depths of 20 and
50 cm over the continental USA using surface information.
They found that half of the stations have an RMSE of less
than 0.06 m3 m−3 and that more than 70 % of stations have a
correlation above 0.7 when predicting RZSM at 20 cm. How-
ever, the developed ANN was less effective in RZSM predic-
tion at 50 cm, which is also in accordance with Kornelsen
and Coulibaly (2014). In our study, the densest soil mois-
ture network is SCAN, located in the USA. Soil moisture
was predicted at a depth of 50 cm over this network. Around
half of the stations have a correlation value of above 0.6 and
an RMSE of less than 0.04 m3 m−3 after the integration of
process-related inputs. Pan et al. (2017) suggest that the use
of only time-dependent variables may not be sufficient for
the ANN models to accurately predict RZSM and suggest
adding soil texture data.

https://doi.org/10.5194/hess-26-3263-2022 Hydrol. Earth Syst. Sci., 26, 3263–3297, 2022



3272 R. Souissi et al.: Integrating process-related information into an ANN for root-zone soil moisture prediction

Table
4.Proportion

ofthe
stations

w
hose

correlation
decreases

using
the

A
N

N
m

odels
enriched

w
ith

process-related
features

com
pared

to
m

odelA
N

N
_SSM

(1
corr
=

corrA
N

N
_SSM

−

corrA
N

N
_SSM

_X
;X

denotes
one

ora
com

bination
ofprocess-related

variables)

M
odel

Training
stations

V
alidation

stations
Teststations

%
ofstations

%
ofstations

%
ofstations

%
ofstations

%
ofstations

%
ofstations

corr
↓

and
corr
↓

and
corr
↓

and
corr
↓

and
corr
↓

and
corr
↓

and
0
.05

<
1

corr
<

0
.1

1
corr

>
0
.1

0
.05

<
1

corr
<

0
.1

1
corr

>
0
.1

0
.05

<
1

corr
<

0
.1

1
corr

>
0
.1

A
N

N
_SSM

_N
D

V
I

3.8
0

2.86
0

9.95
5.97

A
N

N
_SSM

_T
E

M
P

0
1.2

0
2.78

4.67
3.27

A
N

N
_SSM

_E
X

P-FILT-T
5

6.33
1.27

3.03
9.09

6.97
3.48

A
N

N
_SSM

_E
VA

P-E
FF-B

60
10.39

1.3
0

2.94
6.74

5.7
A

N
N

_SSM
_N

D
V

I_E
VA

P-E
FF-B

60_E
X

P-FILT-T
5

4.35
1.45

6.45
3.23

9.2
6.9

3.3 Robustness of the approach

To further assess the robustness of our approach, which in-
volves RZSM prediction using the different ANN models
with different features, we predicted RZSM at sites not pre-
viously considered in previous parts of the study. The se-
lected stations are located in the Kairouan Plain, a semiarid
region in central Tunisia, the Landriano site located in the
north of Italy, and the Berambadi watershed located in Gun-
dalpet Taluk, southern India. In the case of Tunisia, model
ANN_SSM yielded moderate to low-precision predictions,
as highlighted by the performance metrics listed in Table 5.
The time series (see Appendix G) show that the RZSM pre-
dictions followed the SSM seasonality, which was reflected
by the false peaks generated in the RZSM predictions when-
ever a sharp increase or decrease occurred in the SSM val-
ues. This observation was also found in Souissi et al. (2020).
Actually, the Kairouan Plain is characterized by a semiarid
environment where rainfall events infrequently occur and the
level of evaporation is high. The reference model ANN_SSM
shows its limitations in accurately predicting RZSM in areas
with no alternate wet and dry cycles.

However, the consideration of additional features, namely,
the NDVI, evaporation efficiency and SWI in the ANN
models, resulted in good agreement between the in situ
and predicted RZSM values (Fig. 4). The correlation
values were improved by 60.04 %, 169.5 %, 112.02 %,
80.23 % and 53.7 % at stations Barrouta-160, Hmi-
date_163, Barrage_162, Bouhajla_164 and P12, respectively,
with the ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5
model over ANN_SSM model values. Similarly, RMSE val-
ues were reduced (Table 5). As shown in Fig. 4, the most
complex ANN model is able to capture the variations of
RZSM. This finding highlights the added value of our hy-
brid approach based on an association of a machine learn-
ing method with process-related variables. Instead of inject-
ing uncertain information into physical models, such as soil
properties, we used a nonparametric method related to phys-
ical processes without using forcing data that may be subject
to errors and potentially lead to inaccurate tracking of the
long-term evolution of soil moisture.

A second comparison can be conducted between the qual-
ity of fit of these independent datasets and training datasets.
Actually, the climate class of the Tunisian stations is Bsh
(see Appendix A). At the training stage, no station falls into
climate class Bsh (see Appendix A). However, some train-
ing stations fall under a similar climate class, which is Bsk
(see Appendix B). Table 5 presents correlation and RMSE
values for these training stations and Tunisian sites with
both models ANN_SSM and ANN_SSM_NDVI_EVAP-
EFF-B60_EXP-FILT-T5. For all training stations, perfor-
mance metrics are slightly enhanced, with the most complex
ANN model compared to the reference model ANN_SSM,
except for stations GrouseCreek, Harmsway and Lind#1,
whose performance decreases. Overall, the range of correla-
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Table 5. Performance metrics of models ANN_SSM and ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 at training stations of climate
“Bsk” and Tunisian stations of climate “Bsh”.

Model ANN_SSM_NDVI_EVAP
Station ANN_SSM -EFF-B60_EXP-FILT-T5

Correlation RMSE Correlation RMSE

Training stations (climate class Bsh)

Banandra (OZNET) 0.701 0.05 0.764 0.046
DRY-LAKE (OZNET) 0.674 0.031 0.692 0.03
CPER (SCAN) 0.691 0.032 0.695 0.032
EPHRAIM (SCAN) 0.758 0.051 0.791 0.046
GrouseGreek (SCAN) 0.818 0.033 0.802 0.035
HarmsWay (SCAN) 0.705 0.034 0.622 0.038
Lind#1 (SCAN) 0.605 0.055 0.483 0.022

External test stations (Tunisia)

Barrouta_160 0.463 0.021 0.714 0.016
Hmidate_163 0.318 0.019 0.834 0.011
Barrage_162 0.416 0.035 0.864 0.019
Bouhajla_164 0.435 0.016 0.733 0.01
P12 0.581 0.047 0.861 0.029

Figure 4. In situ SSM, in situ RZSM, and predicted RZSM series at the stations in the Kairouan Plain (Tunisia) with model
ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 (see Appendix G for a larger figure format).
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tion values is similar for training and external validation sta-
tions with model ANN_SSM_NDVI_EVAP-EFF-B60_EXP-
FILT-T5, and RMSE is greatly reduced for the Tunisian sta-
tions compared to the training stations. Given the results on
unseen datasets, namely, on Tunisia, the performance of the
most complex ANN model is good as it is able to generalize
the patterns present in the training dataset.

At the southern Indian stations, the ANN_SSM model
yielded good agreement even without the integration of
process-related features (Table 6). These features added lit-
tle to nonsignificant improvement. The same observation was
made at the Italian site. The application of multiple features
performed the best under arid conditions, e.g., in Tunisia. In
the tropical and temperate climate regions, this was not the
case. The presence of clouds in the MODIS NDVI and poten-
tial evapotranspiration products could explain this observa-
tion at sites of southern India and northern Italy. In southern
India, for instance, the maximum variability in soil moisture
occurred during the monsoon season, which is characterized
by a large amount of clouds. Moreover, the coarse resolu-
tion of the MODIS NDVI product makes it sometimes not
adapted to the considered site. Chen et al. (2016) investi-
gated the impact of sample impurity and landscape hetero-
geneity on crop classification using coarse-spatial-resolution
MODIS imagery. They showed that the sample impurity such
as mixed crop types in a specific sample, compositional land-
scape heterogeneity, which is the richness and evenness of
land cover types in a landscape, and configurational hetero-
geneity, which is the complexity of the spatial structure of
land cover types in a specific landscape, are sources of un-
certainty affecting crop area mapping when using coarse-
spatial-resolution imagery. High-resolution NDVI from sen-
sors like Sentinel-2 could have been used in this exercise to
mitigate the spatial resolution issue; however, MODIS data
were privileged in order to provide NDVI and PET from the
same sensor.

4 Discussion

Climate analysis of the results yielded by the different mod-
els indicated that, among all the models, the climate class
with the highest mean correlation change rate (Fig. 5) was
class BWk (see Appendix A), which regroups desert ar-
eas where the link between SSM and RZSM is weak due
to high evaporative rates. Class Dfa (see Appendix A),
which includes areas experiencing harsh and cold win-
ters, also yielded a high mean correlation change rate
(> 100 %). Similarly, at stations of this climate type, the
link between the surface and root zone is poor. In re-
gard to class Cfa (see Appendix A), in which more than
80 % of the total stations belong to the SCAN network,
the high mean correlation change rate could be explained
by the surface–subsurface decoupling phenomena detected
within this network, as previously reported in Souissi et

al. (2020). The model with the largest number of sta-
tions with improved predictions over the ANN_SSM model
predictions was ANN_SSM_NDVI_EVAP-EFF-B60_EXP-
FILT-T5. Actually, the coupled use of process-related fea-
tures in the ANN models exerted a greater impact on the pre-
diction accuracy than that exerted by the one-at-a-time appli-
cation of these features. In model ANN_SSM_NDVI_EVAP-
EFF-B60_EXP-FILT-T5, the three process-based features
jointly employed seemed to counterbalance the weight of the
three SSM features. In this model, the process-related fea-
tures were equally represented versus the SSM information
depicted by three features. The redundancy of the consid-
ered SSM information could explain the limited impact of
the one-at-a-time addition of process-related features.

In addition, Karthikeyan and Mishra (2021) demonstrated
that, at root depths beyond 20 cm, the importance of SSM
was notably lower than that at the 20 cm depth, signifying
decorrelation between surface and deeper SM values, which
is in accordance with the findings in Souissi et al. (2020),
and it was further revealed that vegetation exhibits a higher
importance than that of the meteorological predictors and
precipitation. Kornelsen and Coulibaly (2014) indicated that
evapotranspiration is the most important meteorological in-
put for the prediction of soil moisture in the root zone with
the MLP, which reflects the importance of the water vapor
flux in soil moisture state determination.
mean_corr_change_rate=mean(

corrANN_SSM_X− corrANN_SSM

corrANN_SSM
· 100

)
(5)

where X denotes a process-related variable (X∈ [“NDVI”,
“EXP-FILT-T5”, “EVAP-EFF-B60”, “TEMP”]).

The world map illustrated in Fig. 6 shows the best-
performing ANN models based on the mean correlation
change rate (Eq. 5). We assumed that the results in a given
area of a specific climate class could be extended to other ar-
eas of the same climate class even if we did not consider the
data for these areas. The climate classes without at least one
station were marked in black and labeled with “NO DATA”.

In arid areas such as the eastern and western sides of
the USA with high evaporation rates, ANN_SSM_EVAP-
EFF-B60 was the best-performing model. Similarly, in bare
areas of Africa, the Middle East and Australia where the
Bwh climate class prevailed (arid desert hot climate; see Ap-
pendix A), the evaporation efficiency was the best informa-
tive variable.

In the internal part of continental Europe and near the
Mediterranean basin, the NDVI was the most relevant indi-
cator for RZSM estimation, where agricultural fields dom-
inated. Similarly, the Great Plains region in the USA was
deeply affected by the NDVI, as this region is a cultivated
area. In Nordic areas characterized by the ET climate class
(Polar Tundra climate, see Appendix A) and mainly covered
by grassland and shrubland areas according to ESA CCI land
cover maps.
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Figure 5. Climate classification of the stations performing better with models (a) ANN_SSM_NDVI, (b) ANN_SSM_EXP-FILT-T5,
(c) ANN_SSM_EVAP-EFF-B60, (d) ANN_SSM_TEMP and (e) ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 compared to model
ANN_SSM (dark green corresponds to stations whose correlation improved with complexified models, light green corresponds to total
stations and rate in blue corresponds to the mean correlation change rate per climate class).

Table 6. Performance metrics of models ANN_SSM, ANN_SSM_NDVI and ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 at the sites
in southern India and northern Italy.

Model ANN_SSM_NDVI_EVAP-
station ANN_SSM ANN_SSM_NDVI EFF_B60_EXP-FILT-T5

Correlation RMSE Correlation RMSE Correlation RMSE

India

Madyanahundi 0.813 0.04 0.78 0.042 0.744 0.044
Bheemanbidu 0.76 0.046 0.784 0.044 0.763 0.046
Beechanalli2 0.825 0.038 0.787 0.04 0.743 0.044
Beechanalli1 0.713 0.024 0.713 0.024 0.633 0.025

Italy

Landriano 0.861 0.038 0.827 0.041 0.841 0.038

In Nordic areas characterized by the ET climate class, the
soil temperature was the most important root-zone soil mois-
ture indicator, mainly because of the freeze–thaw events en-
countered in these regions. In tropical savannah wet areas

(class Aw; see Appendix A), the ANN_SSM_TEMP model
was the best-performing model.

This classification definitely suffered from limitations
mainly provoked by the generalization of the climatic analy-
sis results to areas not considered in this study. For instance,
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Figure 6. World map of the best-performing ANN models per climate class based on the mean correlation change rate; colors correspond
to climate classes (see Appendix A), and hatches correspond to the most contributive input to the predictions, namely, EVAP (evaporation
efficiency), EXP (exponential filter SWI), NDVI, and TEMP (surface soil temperature).

in regions of climate class Dfc (cold dry without a dry sea-
son, cold summer climate; see Appendix A), we expect the
temperature to serve as the most relevant indicator instead of
the evaporation efficiency.

5 Conclusion

In this study, we developed several ANN models to estimate
RZSM based either solely on in situ SSM information or
on a group of process-related features in addition to SSM,
namely, the soil water index computed with a recursive ex-
ponential filter, evaporation efficiency, NDVI and surface soil
temperature. Different regions across the globe with distinct
land cover and climate patterns were considered. The main
conclusion of this study was that the consideration of more
features in addition to SSM information could enhance the
accuracy of RZSM predictions mainly in regions where the
link between SSM and RZSM is weak.

In arid areas with high evaporation rates, the most infor-
mative feature was the evaporation efficiency. In regions with
agricultural fields, the NDVI was, for example, the most rele-
vant indicator to predict RZSM. Overall, the best-performing
model included the surface soil moisture, NDVI, SWI and
evaporation efficiency as features. The robustness of the ap-
proach was further assessed through additional tests con-
sidering external sites in central Tunisia, India and Italy.
Similarly, the process-related features exerted a positive im-

pact on the prediction accuracy when combined with sur-
face soil moisture in the case of Tunisia. The mean cor-
relation across the five Tunisian stations sharply increased
from 0.44 when only SSM was considered to 0.8 when all
process-related features were combined with SSM. In India
and Italy, the correlations were already high with the ref-
erence model ANN_SSM. The change in correlation after
the addition of process-related features, namely, NDVI, is
about −0.04, which is nonsignificant and is potentially be-
cause of the cloudy conditions in India and the noisy MODIS
products. Also, the crop heterogeneity and sample impurity
make MODIS NDVI products not adapted to all sites.

As a research perspective, datasets can be separated into
clusters corresponding to major climate classes and/or soil
types. More analysis can be conducted in this direction to
eventually make connections between the different inputs
and climate/soil configurations.

Future work will examine the ability of the de-
veloped model to estimate RZSM across larger areas
based on remote-sensing global soil moisture products.
The use of remote-sensing-derived soil moisture products
may yield lower correlations with the reference model
ANN_SSM, which potentially implies further improvement
when process-related features are added.
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Appendix A: Climate classes (Köppen classification)

Af Tropical rainforest
Am Tropical monsoon
As Tropical savanna dry
Aw Tropical savanna wet
BWk Arid desert cold
BWh Arid desert hot
BWn Arid desert with frequent fog
BSk Arid steppe cold
BSh Arid steppe hot
BSn Arid steppe with frequent fog
Csa Temperate dry hot summer
Csb Temperate dry warm summer
Csc Temperate dry cold summer
Cwa Temperate dry winter, hot summer
Cwb Temperate dry winter, warm summer
Cwc Temperate dry winter, cold summer
Cfa Temperate without a dry season, hot summer
Cfb Temperate without a dry season, warm summer
Cfc Temperate without a dry season, cold summer
Dsa Cold dry summer, hot summer
Dsb Cold dry summer, warm summer
Dsc Cold dry summer, cold summer
Dsd Cold dry summer, very cold winter
Dwa Cold dry winter, hot summer
Dwb Cold dry winter, warm summer
Dwc Cold dry winter, cold summer
Dwd Cold dry winter, very cold winter
Dfa Cold dry without a dry season, hot summer
Dfb Cold dry without a dry season, warm summer
Dfc Cold dry without a dry season, cold summer
Dfd Cold dry without a dry season, very cold winter
ET Polar tundra
EF Polar eternal winter
W Water
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Appendix B: Climate and soil texture properties of the
soil moisture stations

Figure B1. Climate and soil texture for (a) training stations, (b) validation stations and (c) test stations.

Appendix C: Evaporation efficiency

Evaporation efficiency (Sect. 2.2.2): the standard equations
to compute evaporation efficiency (β3) in Merlin et al. (2010)
are as follows:

β3 =

[
1
2
−

1
2

cos(πθL/θmax)

]P
for θL ≤ θmax,

β3 = 1 for θL > θmax, (C1)

where θL is the water content in the soil layer of thickness L.
P is a parameter computed as follows:

P =

(
1
2
+A3

L−L1

L1

)
LEp

B3
. (C2)

θmax is the soil moisture at saturation. LEp is the potential
evaporation. L1 is the thinnest represented soil layer, and
A3 (unitless) and B3 (W m−2) are the two best-fit parameters
a priori depending on the soil texture and structure, respec-
tively.
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Appendix D: Intercomparison of ANN models based on
RMSE

Figure D1. RMSE histograms of all tested ANN models compared to ANN_SSM (a) on training stations, (b) on validation stations and
(c) on test stations.
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Appendix E: Time series of good and less good quality
of fits

E1 Training stations

Figure E1. In situ SSM, in situ RZSM, and predicted RZSM series at station Beloufoungou Mid (AMMA-CATCH) with model ANN_SSM.

Figure E2. In situ SSM, in situ RZSM, and predicted RZSM series at station Beloufoungou Mid (AMMA-CATCH) with model
ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5.
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Figure E3. In situ SSM, in situ RZSM, and predicted RZSM series at station HarmsWay (SCAN) with model ANN_SSM.

Figure E4. In situ SSM, in situ RZSM, and predicted RZSM series at station HarmsWay (SCAN) with model ANN_SSM_NDVI_EVAP-
EFF-B60_EXP-FILT-T5.
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E2 Validation stations

Figure E5. In situ SSM, in situ RZSM, and predicted RZSM series at station Cabrieres D’Avignon (SMOSMANIA) with model ANN_SSM.

Figure E6. In situ SSM, in situ RZSM, and predicted RZSM series at station Cabrieres D’Avignon (SMOSMANIA) with model
ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5.
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Figure E7. In situ SSM, in situ RZSM, and predicted RZSM series at station Nephi (SCAN) with model ANN_SSM.

Figure E8. In situ SSM, in situ RZSM, and predicted RZSM series at station Nephi (SCAN) with model ANN_SSM_NDVI_EVAP-EFF-
B60_EXP-FILT-T5.
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E3 ISMN test stations

Figure E9. In situ SSM, in situ RZSM, and predicted RZSM series at station Wankama (AMMA-CATCH) with model ANN_SSM.

Figure E10. In situ SSM, in situ RZSM, and predicted RZSM series at station Wankama (AMMA-CATCH) with model
ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5.
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Figure E11. In situ SSM, in situ RZSM, and predicted RZSM series at station 2.04 (HOBE) with model ANN_SSM.

Figure E12. In situ SSM, in situ RZSM, and predicted RZSM series at station 2.04 (HOBE) with model ANN_SSM_ NDVI_EVAP-EFF-
B60_EXP-FILT-T5.
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Appendix F: Worst-performing examples of model
ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5

Figure F1. In situ SSM, in situ RZSM, and predicted RZSM series at station Lind#1 with model ANN_SSM.

Figure F2. In situ SSM, in situ RZSM, and predicted RZSM series at station Lind#1 with model ANN_SSM_NDVI_EVAP-EFF-B60_EXP-
FILT-T5.
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Figure F3. In situ SSM, in situ RZSM, and predicted RZSM series at station PineNut with model ANN_SSM.

Figure F4. In situ SSM, in situ RZSM, and predicted RZSM time series at the stations in the Kairouan Plain (Tunisia) with model
ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 (see Appendix G for a larger figure format).
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Figure F5. In situ SSM, in situ RZSM, and predicted RZSM series at station S-Coleambally with model ANN_SSM.

Figure F6. In situ SSM, in situ RZSM, and predicted RZSM series at station S-Coleambally with model ANN_SSM_NDVI_EVAP-EFF-
B60_EXP-FILT-T5.
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Figure F7. In situ SSM, in situ RZSM, and predicted RZSM series at station Widgiewa with model ANN_SSM.

Figure F8. In situ SSM, in situ RZSM, and predicted RZSM series at station Widgiewa with model ANN_SSM_NDVI_EVAP-EFF-
B60_EXP-FILT-T5.
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Appendix G: Soil moisture time series over Tunisia

Figure G1. In situ SSM, in situ RZSM, and predicted RZSM series at station Barrage-162 (Tunisia) with model ANN_SSM.

Figure G2. In situ SSM, in situ RZSM, and predicted RZSM series at station Barrage-162 (Tunisia) with model ANN_SSM_NDVI_EVAP-
EFF-B60_EXP-FILT-T5.
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Figure G3. In situ SSM, in situ RZSM, and predicted RZSM series at station Barrouta_160 (Tunisia) with model ANN_SSM.

Figure G4. In situ SSM, in situ RZSM, and predicted RZSM series at station Barrouta_160 (Tunisia) with model ANN_SSM_NDVI_EVAP-
EFF-B60_EXP-FILT-T5.
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Figure G5. In situ SSM, in situ RZSM, and predicted RZSM series at station Bouhajla_164 (Tunisia) with model ANN_SSM.

Figure G6. In situ SSM, in situ RZSM, and predicted RZSM series at station Bouhajla_164 (Tunisia) with model ANN_SSM_NDVI_EVAP-
EFF-B60_EXP-FILT-T5.
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Figure G7. In situ SSM, in situ RZSM, and predicted RZSM series at station Hmidate_163 (Tunisia) with model ANN_SSM.

Figure G8. In situ SSM, in situ RZSM, and predicted RZSM series at station Hmidate_163 (Tunisia) with model ANN_SSM_NDVI_EVAP-
EFF-B60_EXP-FILT-T5.
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Figure G9. In situ SSM, in situ RZSM, and predicted RZSM series at station P12 (Tunisia) with model ANN_SSM.

Figure G10. In situ SSM, in situ RZSM, and predicted RZSM series at station P12 (Tunisia) with model ANN_SSM_NDVI_EVAP-EFF-
B60_EXP-FILT-T.
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