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Abstract. The term “flash drought” describes a type of
drought with rapid onset and strong intensity, which is co-
affected by both water-limited and energy-limited condi-
tions. It has aroused widespread attention in related research
communities due to its devastating impacts on agricultural
production and natural systems. Based on a global reanaly-
sis dataset, we identify flash droughts across China during
1979–2016 by focusing on the depletion rate of weekly soil
moisture percentile. The relationship between the rate of in-
tensification (RI) and nine related climate variables is con-
structed using three machine learning (ML) technologies,
namely, multiple linear regression (MLR), long short-term
memory (LSTM), and random forest (RF) models. On this
basis, the capabilities of these algorithms in estimating RI
and detecting droughts (flash droughts and traditional slowly
evolving droughts) were analyzed. Results showed that the
RF model achieved the highest skill in terms of RI estimation
and flash drought identification among the three approaches.
Spatially, the RF-based RI performed best in southeastern
China, with an average CC of 0.90 and average RMSE of
the 2.6 percentile per week, while poor performances were
found in the Xinjiang region. For drought detection, all three
ML technologies presented a better performance in moni-
toring flash droughts than in conventional slowly evolving
droughts. Particularly, the probability of detection (POD),
false alarm ratio (FAR), and critical success index (CSI) of
flash drought derived from RF were 0.93, 0.15, and 0.80,
respectively, indicating that RF technology is preferable in
estimating the RI and monitoring flash droughts by consid-

ering multiple meteorological variable anomalies in adja-
cent weeks to drought onset. In terms of the meteorologi-
cal driving mechanism of flash drought, the negative precip-
itation (P ) anomalies and positive potential evapotranspira-
tion (PET) anomalies exhibited a stronger synergistic effect
on flash droughts compared to slowly developing droughts,
along with asymmetrical compound influences in different
regions of China. For the Xinjiang region, P deficit played
a dominant role in triggering the onset of flash droughts,
while in southwestern China, the lack of precipitation and
enhanced evaporative demand almost contributed equally to
the occurrence of flash drought. This study is valuable to en-
hance the understanding of flash droughts and highlight the
potential of ML technologies in flash drought monitoring.

1 Introduction

Drought is generally regarded as a slowly evolving climate
phenomenon, which may persist for several months or even
years (Allen et al., 2010; Mishra and Singh, 2010). Several
recent studies suggested that drought can also develop in a
more intense and quicker manner under extreme atmospheric
anomalies (Ford and Labosier, 2017; Hunt et al., 2014; Otkin
et al., 2013). For instance, large precipitation deficits or in-
creases in evaporative demand derive from unusual climate
conditions (e.g., enhanced air temperatures, strong wind, or
low humidity). This type of drought is usually termed “flash
drought”, which has been used to describe an additional type
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of drought with the characteristic of rapid onset and high in-
tensification (Senay et al., 2008; Svoboda et al., 2002). Com-
pared to conventional droughts, flash droughts may lead to
more severe impacts on agricultural production and natu-
ral systems due to their sudden-onset nature, which makes
it difficult to provide early warning and effective counter-
measures for governors and stakeholders (Anderson et al.,
2013). For example, the summer drought in 2012 that oc-
curred across the central United States was recognized as a
historic flash drought event, which led to considerable dam-
age to local crops with USD 12 billion in economic losses
(Hoerling et al., 2014). Therefore, it is an urgent need to
improve the understanding of flash droughts, take effective
measures to identify them, and conduct simulation analysis
of flash droughts.

Flash drought, as an active topic of drought research, has
aroused increasing attention from the scientific community
over recent years. However, there is no consistent standard
on how we recognize and define flash droughts. One repre-
sentation is proposed by Mo and Lettenmaier (2015, 2016),
which combines several thresholds for hydrometeorologi-
cal variables including soil moisture, precipitation, temper-
ature, and evapotranspiration. Based on their method, two
types of flash droughts can be distinguished: precipitation
deficit flash drought (PDFD) and heat wave flash drought
(HWFD). The former type was triggered by negative precip-
itation anomalies, while the latter type was driven by high
temperatures or/and heat wave. In a different manner, Ford
and Labosier (2017) suggested the rapid decline rate of soil
moisture is an important feature that can distinguish flash
droughts from traditional slowly evolving droughts. They de-
fined a flash drought event as soil moisture reducing from
above the 40th percentile to below the 20th percentile within
4 pentads. Liu et al. (2020a) identified flash droughts from
the perspective of rapid intensification of soil moisture and
compared the results with those from the PDFD and HWFD
identification approaches over the Yellow River basin. Otkin
et al. (2018) stated that the approach of flash drought iden-
tification should account for two aspects; one refers to the
rapid intensification that can reveal the “flash” characteristic,
and the other is the actual moisture limitation condition (i.e.,
drought severity), which can reflect the “drought” feature. In
addition, several researchers applied drought indices to rec-
ognize flash drought events, such as the Evaporative Stress
Index (ESI; Anderson et al. 2013), Standardized Evaporative
Stress Ratio (SESR; Christian et al., 2019), Standardized Pre-
cipitation Evaporation Index (SPEI; Noguera et al., 2020),
Evaporative Demand Drought Index (EDDI; Pendergrass et
al., 2020), and Soil Moisture Volatility Index (SMVI; Osman
et al., 2021). Among this literature, soil moisture was a com-
monly used variable for flash drought identification due to its
important role in controlling the exchange of water and heat
in the process of land–atmosphere feedbacks (AghaKouchak
et al., 2015; Ford et al., 2015; Hunt et al., 2009; Yuan et al.,
2017).

The fifth assessment report (AR5) of the Intergovernmen-
tal Panel on Climate Change (IPCC) provided a compre-
hensive assessment for recent and future changes in various
types of droughts and suggested that they should be consid-
ered separately (IPCC, 2013). Climate change has increased
the temperature of land surface, which has led droughts to
occur in a manner of higher frequency and greater intensity
(Trenberth et al., 2014). Moreover, in the context of global
warming, high temperatures and heat wave occur more fre-
quently due to land–atmosphere interaction, providing a fa-
vorable environment for the rapid intensification of drought
(Teuling et al., 2018; Wang et al., 2016). From the perspec-
tive of physical mechanisms, the evolution of flash drought
involves complicated processes. Though a lack of precipi-
tation for a certain period is a necessary requirement for
droughts to develop, precipitation deficit alone is not likely to
induce flash droughts (Otkin et al., 2018). Rather, the joint ef-
forts of multiple meteorological variables, e.g., a lack of pre-
cipitation, enhanced evaporative demand caused by unusual
high temperature, low humidity, strong wind, and sunshine
duration, are possible to induce a rapid intensification in soil
moisture (Hobbins et al., 2016). In other words, the occur-
rence of flash droughts is related to a variety of climate vari-
ables associated with water-limited and energy-limited con-
ditions (Pendergrass et al., 2020).

In the context of global climate change, China has also
experienced flash droughts frequently in recent years (Feng
et al., 2014; Sun and Yang, 2012; Wang et al., 2011). For
example, the 2013 summer drought influenced 13 provinces
in southern China and caused a great loss for Guizhou and
Hunan provinces, with damage of over 2× 106 ha of crops.
To improve the understanding of short-term droughts across
China, Wang et al. (2016) applied temperature, evapotran-
spiration, and soil moisture anomalies to examine the vari-
abilities of flash droughts and reveal their increasing trends,
mainly related to long-term warming. Liu et al. (2020b)
investigated the temporal and spatial distribution of flash
droughts over China from 1979 to 2018 and analyzed the
coexisting relationship between flash droughts and seasonal
droughts. It is necessary to further increase knowledge of
flash droughts and their mechanisms for the sake of bet-
ter guiding the development of early warning systems on
droughts. There have been limited studies to date in regard
to monitoring and simulating flash droughts from a climatic
perspective, especially for China with its strong climate gra-
dients and complicated spatial heterogeneity.

Machine learning (ML) technologies, as the well-known
data-driven methods, provide an opportunity to describe and
predict complicated physical processes based on a combi-
nation of abundant data and advanced model architectures
(Pradhan et al., 2020; Schoppa et al., 2020; Zhao et al.,
2017). In recent years, ML models have achieved consid-
erable progress in hydrological modeling (Bennett and Ni-
jssen, 2021; Yang et al., 2020), climate change analysis (Li
et al., 2020; Mokhtar et al., 2021), data reconstruction (Cui et
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al., 2016; Zhang et al., 2021), and other related fields, owing
to their efficient computation and self-learning intelligence.
Among various options, three ML technologies are mostly
used, i.e., multiple linear regression (MLR), long short-term
memory (LSTM), and random forest (RF) models. MLR is
one of the simplest artificial intelligence algorithms due to
its simple construction and short computation cost. LSTM
is a special type of recurrent neural network (RNN) with
added memory structures by introducing several gates, for
instance, the input gate, forget gate, and output gate (Hochre-
iter et al., 1997). As for the RF model, it is a nonparametric
and ensemble machine learning technology with a combina-
tion of the concepts of decision trees and bagging, which
was widely applied in classification, regression, and other
tasks (Breiman et al., 2001; Chen et al., 2019; Hutengs and
Vohland, 2016). These ML technologies have superiorities
in providing a fast and direct mapping pathway between the
independent and dependent variables without further a pri-
ori knowledge about, or assumptions on, underlying physical
processes (Feng et al., 2021; Sahoo et al., 2017; Yang et al.,
2020). They can capture key information hidden in histori-
cal data and then apply these patterns to predict target data
in future scenarios. Also, they can provide an accurate esti-
mation of soil moisture, though the input samples are limited
(Long et al., 2019; Almendra-Martín, et al., 2021). However,
limited studies focused on flash drought simulation based on
ML technologies.

The objectives of this study are fourfold: to identify flash
drought across China from the perspective of rapid intensi-
fication of soil moisture, to evaluate the performance of the
MLR, LSTM, and RF models in estimating RI, to explore
their capabilities for flash drought detection, and to explore
the relationship between RI and climate drivers. The remain-
der of this work is organized as follows. Sections 2 and 3
provide a brief introduction of the study area, dataset col-
lection and processing, and the method for identifying flash
droughts. In Sect. 4, we present the evaluation of RI simula-
tion results and the performance comparison of ML technolo-
gies in terms of flash droughts and slowly evolving droughts,
as well as a specific investigation of typical flash drought
events. Section 5 discusses the potential reasons for the var-
ied performances of ML models in RI estimation and their
feasibilities in flash drought detection. Finally, the main con-
clusions are given in Sect. 6.

2 Study area and data

2.1 Study area

China is located in the east of Asia and borders the west-
ern shore of the Pacific Ocean (3◦51′–53◦33′ N and 73◦33′–
135◦05′ E). It has a vast spatial extent, covering an area of
about 9.6×106 km2. From west to east, the elevation is grad-
ually decreased and ranges from 0 to 8377 m. There are five

primary terrain types in this study area, including plateau,
plain, mountain, hill, and basin. According to the spatial
distribution of the annual average precipitation, mountain
ranges, and elevations (Chen et al., 2013), we divided China
into eight subregions, i.e., Northeast China (NE), Northern
China (NC), the middle and lower reaches of the Yangtze
River region (MLYR), Southeastern China (SE), Northwest-
ern China (NW), Southwestern China (SW), Qinghai–Tibet
Plateau (QTP), and Xinjiang (XJ), to analyze the spatial het-
erogeneity of RI.

2.2 Data acquisition and processing

2.2.1 ERA-Interim soil moisture

The ERA-Interim soil moisture (SM) reanalysis prod-
uct was released from the European Center for Medium-
Range Weather Forecast (ECMWF; https://apps.ecmwf.
int/datasets/data/interim-full-daily/levtype=sfc/, last access:
30 May 2022). It is produced by driving the Tiled ECMWF
Scheme for Surface Exchanges over Land (TESSEL) model
with the meteorological forcing derived from ERA-Interim
atmospheric reanalysis. The datasets provide daily SM data
coving the period from 1979 to the present at 75 km spa-
tial resolution. The volumetric SM was obtained at four soil
depths (i.e., 0–7, 7–28, 28–100, and 100–289 cm). Mean-
while, ECMWF could provide SM at different spatial resolu-
tions based on its platform for optional interpolation calcula-
tion. In this study, the daily SM data of the top layer (0–7 cm)
at a spatial resolution of 0.25◦ during 1979–2016 were col-
lected, and they were generated into weekly values for inter-
comparison. For the reliability of the ERA-Interim soil mois-
ture dataset in China, it can present the decreasing trend from
the southeast to the northwest and reproduce the variability
tendency of the time series of soil moisture well compared
to the in situ soil moisture observations (Ling et al., 2021).
Meanwhile, ERA-Interim SM data were converted into SM
percentile to identify flash droughts over China, which alle-
viates the influence of soil moisture value on identification
results. Therefore, ERA-Interim SM can be used to identify
drought events in this study.

2.2.2 Meteorological forcing

Daily point-scale meteorological observations, including
precipitation (P ), average air temperature (Tmean), maximum
air temperature (Tmax), minimum air temperature (Tmin), air
pressure (PRS), relative humidity (RHU), wind speed (WIN),
and sunshine duration (SSD), from 756 national stations
were employed. All these data have complete records from
1979 and 2016 and can be acquired from the China Meteo-
rological Administration website (CMA; http://data.cma.cn/,
last access: 20 October 2021). The potential evapotranspira-
tion (PET) was calculated using the physically based Penman
equation (Penman, 1948) with a variety of meteorological
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variables such as air temperature, RHU, and WIN involved.
These point-based data were interpolated into gridded data at
a spatial resolution of 0.25◦ by the method of inverse distance
weighting (IDW).

3 Methodology

3.1 Flash drought identification

There is no consistent definition of flash drought. Follow-
ing the suggestion of Otkin et al. (2018) and the methodol-
ogy of Liu et al. (2020a), we adopt a quantitative method
to identify flash droughts by focusing on the rate of inten-
sification (RI) during their onset–development phase. The
approach based on the soil moisture decline rate was simi-
lar to methods of the previous literature (Ford et al., 2015;
Yuan et al., 2017). Specifically, the drought events are ex-
tracted from the entire period by following two requirements
below: (1) soil moisture falls below the 40th percentile, and
(2) soil moisture should decay to below the 20th percentile.
Figure 1 depicts the unusually rapid development process of
a flash drought characterized by the significant depletion of
soil moisture percentile and the anomalies of precipitation,
temperature, and potential evapotranspiration in the adjacent
weeks to drought onset. The upper limit (see the yellow line
in Fig. 1a) represents the threshold of the 40th percentile
that the soil is suffering abnormally dry conditions, while the
lower limit (see the red line in Fig. 1a) denotes the 20th per-
centile when moisture deficits have the potential to cause se-
vere impacts on the environment. As shown in Fig. 1, precip-
itation presents negative anomalies, and positive anomalies
are found for Tmax and PET in the onset–development phase;
this leads to a sharp reduction for the soil moisture percentile
from above 40th to 5th percentile within 3 weeks. Supposing
T0 is the onset time when drought occurs, and T0+d denotes
the termination time for the onset–development stage when
the rapid decline of soil moisture ceases but turns to smooth
fluctuations or even an increased tendency instead. T0+d can
be determined through a polynomial function and located
when the first derivative of the constructed polynomial equals
zero in calculus. The detailed determination process of T0+d
is presented in our previous study (Liu et al., 2020a). After
determining the onset time and termination time, the intensi-
fication rate of a drought event can be calculated as

RI=
1

d + 1

∑d

i=0

[
SM(Ti+1)−SM(Ti)

Ti+1− Ti

]
,

T0 ≤ Ti ≤ T0+d , (1)
st= {min[SM(Ti)]≤ 20th, (2)

where T0 is the onset time, T0+d denotes the termination
time for the onset–development phase, d is the duration of
onset–development phase, and SM(Ti) is the soil moisture
percentile at time Ti in the rapid intensification process of
drought.

Figure 1. A concept map for identifying flash droughts. (a) The
evolution process of flash drought is identified by the rapid deple-
tion of soil moisture percentile; t0 denotes the drought onset time;
t0+2 represents the termination time where the rapid decline of soil
moisture ends; and the T0−7–T0−1 denotes 1–7 weeks prior to T0,
while T0+1–T0+5 represents the lagged 1–5 weeks of T0. The pe-
riod T0–T0+3 is the onset–development stage of flash drought. Data
are from the grid cell (39.875◦ N, 116.375◦ E) where the city of Bei-
jing is located. (b) The bar of the anomaly values of three hydrom-
eteorological variables (i.e., precipitation, maximum temperature,
and potential evapotranspiration) in the adjacent weeks to drought
onset (T0−7–T0+5). The light color represents a positive anomaly,
while the dark color denotes a negative anomaly.

In this method, we extracted flash droughts from the en-
tire period of records, and the main reasons are listed as
follows: firstly, our method relies on continuous time se-
ries of soil moisture percentile. The intermittent data make
it hard to capture the onset or termination of drought events
accurately, and the continuity and integrity of the datasets
are important for identifying the development process of
drought. Secondly, enough important information related to
flash droughts might be included in the ML models because
flash droughts may coexist with the seasonal drought and
cross-seasonal drought due to the diverse climatic condi-
tions and underlying surface (i.e., the soil texture and vege-
tation cover) of China (Liu et al., 2020a). Thirdly, the occur-
rence of flash drought in winter is limited, which may have
a few tiny influences on the simulation results. Moreover, a
flash drought event is recognized when RI exceeded a pre-
determined threshold. We followed the suggestion of Liu et
al. (2020a) by using a criterion of the −6.5 percentile per
week to identify flash drought events. This value is compa-
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rable to the criterion suggested by Ford and Labosier (2017),
who defined a flash drought event as a soil moisture per-
centile decrease from above the 40th percentile to below the
20th percentile within 20 d. In this study, we used the abso-
lute value of RI to indicate the depletion rate of soil moisture
percentile for expression convenience; i.e., a flash drought
event was recognized when RI exceeded the 6.5 percentile
per week. In addition, the nonlinear relationship between
RI and nine meteorological variables in the adjacent weeks
(T0−7–T0+7) was constructed based on the RF models.

3.2 Multiple linear regression

The multiple linear regression (MLR) model is usually uti-
lized to describe the linear relationship between the indepen-
dent variables and dependent variables. Meteorological vari-
ables including P and RHU (reflecting the moisture status)
and seven energy-related factors including PET, Tmean, Tmax,
Tmin, PRS, WIN, and SSD in the adjacent weeks (T0−7–T0+7)
to drought onset were employed as independent variables,
while the observed RI was set as a dependent variable. The
MLR was employed to construct the linear relationship be-
tween the observed RI and meteorological anomalies through
the following equation:

RIi = α0 +α1X1i + . . .+αjXji + . . .+αnXni (i = 1, 2, . . .,m; j = 1, 2, . . .,n)

RI =


RI1
RI2
.
.
.

RIm

 , X=


1 X11 . . . Xn1
1 X12 . . . Xn2

.

.

.
1

.

.

.
X1m

.

.

.
. . .

.

.

.
Xnm

 ,

α =


α0
α1
.
.
.
αn

 , (3)

where Xji represents the anomaly value for meteorological
variable j in the drought event i; α0 and αj are intercept
and corresponding regression coefficients, respectively; m is
the number of drought events at a given grid cell; n is the
number of input variables in the adjacent weeks to drought
onset time; and RIi represents the estimated RI for a drought
event i at a given grid cell based on the MLR method. The
corresponding regression coefficients in each equation can
reflect the importance of independent variable to dependent
variable, which has the same function as regression weights.
The importance of meteorological variables (i.e., P and PET)
to RI will be presented in the Discussion section.

3.3 Long short term memory

Long-short term memory (LSTM) proposed by Hochreiter
et al. (1997) is a special type of recurrent neural network
(RNN). Compared with traditional RNNs, it has memory
structures that can combine previous information into the
current time step for dealing with long-term dependencies
between input and output features. The input of LSTM cells
is composed of three parts: input vector at the current time
x(t), the output of LSTM cell at the previous time h(t−1), and

cell state at the last time c(t−1). LSTM cell has two output
values: the output of LSTM cell at the current time h(t) and
the current cell state c(t). Each LSTM cell has three gates: the
input gate i(t), forget gate f (t), and output gate o(t). The in-
put gate decides what new information would be added to the
current cell state x(t), the forget gate determines how much
of the previous cell state needs to be forgotten by a sigmoid
function between the input for the current time x(t) and the
previous output h(t−1), and the output gate controls the re-
tention degree of the cell state to h(t) in the current time. c̃t
is the candidate of new cell state values, which is calculated
by a sigmoid function with a linear relationship on x(t) and
h(t−1). The cell state for the current time is updated after c̃t
is attained. These formulas were described as follows:

i(t) = σ(wix(t)+uih(t−1)
+ bi) (4)

f (t) = σ(wf x(t)+ufh(t−1)
+ bf ) (5)

c̃(t) = tanh(wcx(t)+uch(t−1)
+ bc) (6)

c(t) = f (t)⊗ c(t−1)
+ i(t)⊗ c̃(t) (7)

o(t) = σ(wox(t)+uoh(t−1)
+ bo) (8)

h(t) = o(t)⊗ tanh(c(t)), (9)

where σ is the sigmoid function σ = 1
1+e−x , ⊗ is element-

wise multiplication, ws (i.e., wi , wf , wc, wo) denotes the ma-
trices of the weights from the input gate i(t), forget gate f (t),
cell state c(t), and output gate o(t) to the input, respectively,
us (i.e., ui , uf , uc, and uo) denotes the weight matrices from
the input gate i(t), forget gate f (t), cell state c(t), and out-
put gate o(t) to the hidden layer, respectively, bs (i.e., bi , bf ,
bc, and bo) denotes bias parameters associated with the input
gate i(t), forget gate f (t), cell state c(t), and output gate o(t).
ws , us , and bs are adjusted using back propagation through
time in the training period.

3.4 Random forest

Random forest (RF) proposed by Breiman (2001) is a non-
parametric and ensemble machine learning technology that
combines the concepts of decision trees and bagging. It can
be applied in classification, regression, and other tasks due
to its important capabilities in capturing the complex nonlin-
ear interactions between the target variable and the response
variables (Hutengs and Vohland, 2016). For a regression task,
the construction of the RF method consists of three steps:
(1) this algorithm classified the input data into many deci-
sion trees. Each of them is made up of a root node, internal
nodes, and leaf nodes and built from a bootstrap sample that
contains a random subset of input data and a random subset
of target variables. The left samples in each bootstrap sam-
ple process, the so-called out-of-bag or OOB samples, are
an important feature of RF and will not be included in the
model construction. The OOB can be applied to examine the
performance of the constructed model, and the mean squared
error (MSE) based on OOB samples can be used for testing
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error estimation. (2) All the decision trees make up a forest,
and each tree in the forest has a predicted value. (3) The final
outputs of the RF method are produced by the aggregation
of the prediction value of all the individual tree. In terms of
key parameters of the RF regression model, the minimum
sample leaf, the number of decision trees, and feature need
to be set. In this study, we set the minimum sample leaf to
between 50–150, and the number of decision trees and the
feature were set to 3 and 1000, respectively, according to sta-
bilizing results of the OOB error. Details of RF methods and
corresponding parameters are given in Breiman (2001) and
Hastie et al. (2008).

3.5 Evaluation metrics

The objectives of this study were to evaluate the perfor-
mances of MLR, LSTM, and RF in estimating the RI of
drought events and assess their capabilities in capturing flash
droughts. Four evaluation metrics were employed: the cor-
relation coefficient (CC) was used to assess the consistency
between the simulated and observed RI, with a perfect value
of 1; the root mean squared error (RMSE) and mean error
(ME) can estimate their errors with an optimal value of 0;
and the relative bias (BIAS) was employed to calculate the
deviations of the simulated RI from observed RI, with an ex-
cellent value of 0. These evaluation metrics were specified
by Eqs. (10)–(13) as below:

CC=
∑n
i=1(RIobs (i)−RIobs)(RIsmi(i))−RIsmi√∑n

i=1(RIobs (i)−RIobs)2
, (10)

RMSE=

√
1
n

∑n

i=1
(RIsmi (i)−RIobs (i) )

2, (11)

ME=
1
n

∑n

i=1
(RIsmi (i)−RIobs(i)), (12)

BIAS=
∑n
i=1(RIsmi (i)−RIobs(i))∑n

i=1RIobs(i)
, (13)

where RIobs (i) is the observed RI at grid i, RIsmi (i) is the
simulated RI at grid i, RIobs is the mean observed RI value,
RIsmi is the mean simulated RI value, and n is the number of
samples.

In addition, three skill scores, including the probability of
detection (POD), false alarm ratio (FAR), and critical success
index (CSI), were employed to measure the performances of
three ML technologies in flash drought detection. All three
of these metric indices range between 0 and 1. POD and CSI
show the ratio of detected flash droughts by the ML technolo-
gies to observed flash droughts, and the higher the values, the
better the performances of ML technologies in flash drought
detection. FAR reflects the ratio of detected flash droughts
that do not occur in observations, with an optimal value of 0.

These evaluation metrics can be expressed as follows:

POD=
H

H +M
, (14)

FAR=
F

H +F
, (15)

CSI=
H

H +F +M
, (16)

where H (hits) represents flash droughts both detected by
the ML methods and observations, and F (false alarms) rep-
resents the case when flash droughts are captured by ML ap-
proaches but not recorded in observations. M (misses) rep-
resents flash droughts recorded in observations but not cap-
tured by ML approaches.

3.6 General framework

The general flowchart for evaluating the performances of
ML technologies (i.e., MLR, LSTM, and RF model) in flash
drought detection is presented in Fig. 2. We used a global re-
analysis soil moisture dataset (i.e., ERA-Interim SM) to iden-
tify drought events and calculate their RI. Also, nine climate
variables (i.e., P , PET, Tmean, Tmin, Tmax, RHU, PRS, SSD,
and WIN) collected from the in situ observations were gen-
erated into spatially consistent climate element series by the
IDW method. The process for flash drought identification in-
cludes the following steps. Firstly, the original time series of
these data were aggregated into weekly series, and the SM
data were further transferred into the SM percentile based on
the optimal selection of theoretical probability distribution
function (PDF). Then, flash droughts were identified with a
quantitative method by focusing on the intensification rate
of soil moisture. The derived RI and corresponding climate
anomalies in the adjacent weeks to drought onset were served
as inputs to train MLR, LSTM, and RF models, respectively.
Specifically, approximately 80 % of drought events in each
grid cell over China were applied to train the models, while
the remaining drought events were used to test the perfor-
mance of trained model. Finally, we evaluated the perfor-
mances of the MLR, LSTM, and RF models by comparing
the accuracies of RI simulation and the capabilities of flash
drought detection and conducting a specific investigation on
the typical drought events.

4 Results

4.1 Evaluation of the intensification rete of soil
moisture

The capabilities of ML technologies in simulating the RI of
soil moisture were assessed through intercomparison with
the observed RI derived from ERA soil moisture. As shown
in Fig. 3, higher RIs (up to the 12.5 percentile per week for
certain areas) were mostly concentrated in the southern part
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Figure 2. The flow chart of evaluating the performances of ML models for flash drought detection.

of China, e.g., the east of QTP, the east of SW, and some
regions of of MLYR. In contrast, lower RIs (less than the
5.0 percentile per week for some regions) were mainly dis-
tributed in the southern XJ and western NW areas. Given
the spatial heterogeneity of soil moisture, Fig. 3b and c
show the box plots of RI in different sub-regions, as well
as the changes of empirical cumulative distribution function
(ECDF) of RI. It can be seen that the lowest RIs were mostly
located in the XJ region, with the median value of the 6.7
percentile per week. The highest RIs were distributed in the
SW region, with the median value of the 12.5 percentile per
week.

Based on the observed RI and simulations from three ML
technologies (i.e., MLR, LSTM, and RF), Fig. 4 shows the
spatial distribution of CC and RMSE for the estimated RI
against the observed RI in the testing phases during 1979–
2016. For most parts of NE, SE, and MLYR regions, there

was generally a good agreement between the MLR-simulated
RI and observed RI with average CC values above 0.6 and
average RMSE values below the 5.0 percentile per week
(Fig. 4a and b). The weaker correlations were mainly dis-
tributed in the southern part of XJ, as well as northern and
western QTP. A similar spatial pattern was also found for
LSTM simulated RI but with overall boosted consistency
(Fig. 4c and d). Among the three ML models, the RF per-
formed best, as shown in Fig. 5e and f. Average CC values
between RF-simulated RI and the observed RI in most ar-
eas of China were more than 0.8, and the average RMSEs
were less than the 4.0 percentile per week. Especially, the
excellent estimations were found in the SE region, with an
average CC of 0.90 and average RMSE of the 2.6 percentile
per week, while unsatisfying results were located in the XJ
region, with an average CC of 0.75 and average RMSE of the
3.3 percentile per week.
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Figure 3. (a) Spatial distribution of the average rate of intensification (RI) during 1979–2016. (b) Box plots of the average RI and (c) empirical
cumulative probability distribution function (ECDF) of the average RI over different sub-regions in the study area. The sub-regions are
Northeast China (NE), Northern China (NC), the middle and lower reaches of the Yangtze River region (MLYR), Southeastern China (SE),
Northwestern China (NW), Southwestern China (SW), Qinghai–Tibet Plateau (QTP), and Xinjiang (XJ).

Figure 5 presents the ECDF of four evaluation coefficients
(i.e., CC, RMSE, ME, and BIAS) of the estimated RI against
the observed RI for all grids in China. It can be seen that the
ECDF of CC and RMSE derived from the MLR and LSTM
models were close to each other in different percentile inter-
vals (Fig. 5a and b), and as for ME and BIAS, the LSTM
presented better estimations given the lower values of ME
and BIAS (Fig. 5c and d). As for the RF model, the CC val-
ues were much higher than those of MLR and LSTM mod-
els, combined with lower values in terms of RMSE, ME, and
BIAS. The above analysis suggests that for RI estimation, the
RF model was superior to MLR and LSTM models.

4.2 Comparison of the RI of flash droughts and slowly
evolving droughts

RI is an important metric for distinguishing flash droughts
from traditional slowly evolving droughts. To evaluate the
capabilities of three ML in detecting drought events, we an-
alyzed the correlation between model-simulated RI and ob-
served RI for flash droughts and conventional droughts, re-
spectively (Fig. 6). For flash droughts, the MLR and LSTM
models displayed a similar spatial pattern, where higher CC
values (up to 0.6 for some areas) were mainly located in
the MLYR and SE regions, and correlations in the XJ and
NW districts were generally weak (Fig. 6a and c). As for
the RF model, except for some parts of the XJ region, it
presented a rather high consistency with observed RI (CC
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Figure 4. Spatial distribution of correlation coefficient (CC) and root mean square error (RMSE) of the estimated RI by (a–b) MLR, (c–
d) LSTM, and (e–f) RF models against the observed RI. (g–l) Box plots of the CC and RMSE for eight sub-regions, respectively.

values reach up to 0.9) in most areas of China. As for the
case of traditional droughts, the MLR and LSTM methods
showed a weak correlation over the whole of China (Fig. 6b
and d). With respect to the RF model, the CC values overall
increased in comparison with MLR and LSTM, with signifi-
cant changes (the CC values increased by approximately 0.4)
in SE and SW regions.

Figure 7 further exhibits the absolute errors and relative
errors between the estimated RI and observed RI at four
percentile intervals: 0th–5th, 5th–10th, 10th–15th, and 15th–
20th percentile per week. According to the aforementioned
flash drought identification method, droughts with an RI be-
low the 5th percentile can be viewed as traditional droughts,
while above the 10th percentile they can be classified as flash

droughts. For flash droughts, the good (absolute error below
the 1.0 percentile per week) performance of MLR was ob-
served in NE, SE, SW, and MLYR regions, while unsatisfy-
ing results were found in XJ and NW areas (Fig. 7j–l). As
for the slowly evolving droughts, the higher estimated accu-
racy (absolute error below the 1.0 percentile per week) was
mainly concentrated in XJ and NW regions; however, the un-
satisfying results (absolute error over the 10th percentile per
week) were mostly located in the SW region (Fig. 7a–c). In
addition, a satisfactory estimation of RI, with value ranges
of the 5th–10th and 10th–15th percentile per week, was pre-
sented in most parts of China. Based on the above analysis,
it can be concluded the MLR, LSTM, and RF algorithms can
simulate RI derived by flash drought in the NE, SE, SW, and
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Figure 5. Empirical cumulative distribution function (ECDF) of (a) correlation coefficient (CC), (b) root mean squared error (RMSE),
(c) mean error (ME), and (d) relative bias (BIAS) of the RI estimated by the MLR, LSTM, and RF models against observed RI.

MLYR regions well, while these methods displayed a good
estimation accuracy of RI indicated by traditional drought in
XJ and NW regions.

Based on the above analysis, we further evaluated the ca-
pabilities of the MLR, LSTM, and RF models in capturing
flash drought events and conventional drought events in eight
different sub-regions using three skill scores (i.e., POD, FAR,
and CSI) (Fig. 8). For flash droughts, the average POD (FAR)
of the MLR and LSTM models ranged from 0.58 to 0.88
(0.08 to 0.41) and 0.68 to 0.94 (0.10 to 0.44), respectively,
which were much lower (higher) than those of the RF algo-
rithm (Fig. 8a and b). Likewise, the CSI of the MLR and
LSTM models was much lower than that of the RF meth-
ods. Figure 8c and d present the cases of slowly evolving
droughts. It can be seen that the POD (FAR) of the MLR
(LSTM) model ranged from 0.41 to 0.70 (0.32 to 0.71) and
0.27 to 0.61 (0.30 to 0.66), respectively, while the values of
the RF approach varied from 0.34 to 0.72 (0.11 to 0.19). In
terms of the CSI, the MLR and LSTM presented unsatisfy-
ing performances compared to the RF model, with average
values of 0.34, 0.30, and 0.51, respectively. Spatially, with
the highest POD and CSI scores and the lowest FAR scores,
the SE region exhibited the best detection results, and poor

performances were in the XJ region. In general, all three
ML models provided more reliable information in detecting
flash droughts than traditional droughts. Meanwhile, the RF
is more recommended for use, given its high skill scores and
low false alarms in drought detection.

4.3 Spatiotemporal evolution of typical flash drought
events

The ability of capturing the migration trajectories of droughts
over time and space is also important when evaluating the ca-
pabilities of candidate ML models in drought detection. Fig-
ure 9a displays the time series of flash drought area and con-
ventional drought area derived from ERA-Interim SM data
during 1979–2016. As expected, the areas of slowly evolving
droughts overwhelmingly exceeded those of flash droughts,
and the areal gaps were further enlarged after 2003. Fig-
ure 9b and c exhibit the weekly variation of drought area in
2006 (the largest flash drought during the past 38 years with
11.73 % of the area affected) and 2013. The results show that
summer and autumn were two major seasons for which the
area of flash droughts and traditional drought developed to-
wards different directions (increase or decrease). Given this,
a specific investigation on the behaviors of MLR, LSTM, and
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Figure 6. Spatial distribution of correlation coefficient (CC) of the rate of intensification (RI) estimated by (a–b) MLR, (c–d) LSTM, and
(e–f) RF models against the observed RI under flash droughts and slowly evolving droughts.

RF in the summer and autumn of 2006 and 2013 was con-
ducted to explore the capacities of the three ML models in
monitoring the spatiotemporal migration trajectories of flash
droughts. Figure 10 shows the spatial distribution of the soil
moisture percentile (first column), observed RI (second col-
umn), and simulated RI by ML models (third to fifth col-
umn). From the perspective of the observed RI, the summer
flash droughts mainly hit the NW, NC, SW, and MLYR re-
gions of China on 17 June 2006 (Fig. 10b). Then the sig-
nal of flash droughts migrated towards the NE and SE re-
gions on 23 September (Fig. 10g and l). Similarly, the 2013

summer flash droughts were mostly concentrated in MLYR
areas, with an average RI of the 15.2 percentile per week
(Fig. 10q). After 12 weeks, the flash droughts occurred on 17
October and were mainly located in the SW area (Fig. 10v
and aa). In terms of the accuracy of RI simulation, the MLR-
estimated RI was generally higher than the observed RI in
the SE and SW regions (Fig. 10h, m, w, and ab). Compared
to the MLR algorithm, the simulated RI by the LSTM and
RF approaches basically followed a pattern nearly consistent
with the observed RI, suggesting that they were superior to
MLR in monitoring flash droughts.

https://doi.org/10.5194/hess-26-3241-2022 Hydrol. Earth Syst. Sci., 26, 3241–3261, 2022



3252 L. Zhang et al.: Analysis of flash droughts in China using machine learning

Figure 7. Spatial pattern of the absolute errors and box plots of the relative errors of the RI estimated by the MLR, LSTM, and RF methods
against observed RI at four percentile intervals.

5 Discussion

5.1 Performance of ML technologies for RI estimation

We evaluated three ML technologies in this study and found
RF provided the best estimations of RI, with higher CC and
lower RMSE compared to the observed RI (Figs. 4 and 5).
It is not surprising that MLR did not perform well given its
simple linear regression scheme, which is insufficient to de-
scribe the complicated nonlinear relationships of variables.
With complicated model structures, the LSTM performed
slightly better than MLR, but its efficiency is not optimistic
either given the time-consuming calculations of the model.
One possible reason lies in the fact that the model requires
the input and output data to have the same time step. In this
study, the output of RI reflected the average depletion rate
of soil moisture during the onset–development stage, leading
to inconsistent temporal steps between output and input (i.e.,
meteorological variables), as mentioned in runoff prediction
modeling (Xiang et al., 2020). Several previous studies also
found the good behaviors of RF in constructing the nonlinear
interactions between soil moisture and different land surface
variables and its strong capabilities for capturing the spa-
tiotemporal variability of soil moisture (Zhao et al., 2017).

For example, Fathololoumi et al. (2020) found due to the
strong capability of considering the complex linear and non-
linear relationships between soil moisture and land surface
properties, RF outperforms MLR, triangle regression, inverse
distance weighting, and ordinary kriging techniques in esti-
mating the variation of soil moisture in a semi-arid mountain-
ous region. Rahmati et al. (2020) found the RF had excellent
performances in mapping the agricultural drought hazards
compared to other machine learning technologies, includ-
ing the classification and regression trees, boosted regres-
sion trees, multivariate adaptive regression splines, flexible
discriminant analysis, and support vector machines. The out-
standing performance of RF could be attributed to the math-
ematical algorithm of the model, which enables high classi-
fication accuracy, unbiased determination of generation error
with the out-of-bag method, and high efficiency in extract-
ing important information from complicated nonlinear inter-
actions of variables in handling high-dimensional datasets
(Naghibi et al., 2016; Rodriguez-Galiano et al., 2012; Wang
et al., 2015).

Regarding the spatial heterogeneity of RI, we found the RF
performed best in southern China, while the estimation errors
were high in the XJ region. This might be related to the local
climate and soil conditions. Figure 11 compares the variation
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Figure 8. Skill scores of POD, FAR, and CSI for flash droughts and slowly evolving droughts based on the MLR, LSTM, and RF models in
eight sub-regions.

Figure 9. Time series of flash drought area and slowly evolving drought area derived from ERA SM series during 1979–2016, as well as in
the typical years of 2006 and 2013.

of soil moisture and moisture-related (i.e., P and RHU) and
energy-related (i.e., PET, Tmean, Tmax, Tmin, PRS, SSD, and
WIN) meteorological factors in adjacent weeks (i.e., T0−7–
T0+7) to the onset of drought events during 1979–2016 in
XJ and SW regions of China. The XJ region is climatically
drier with relatively thick soil layers and sparse vegetation,
and this climate and underlying surface conditions may not
be beneficial to induce a rapid response of soil moisture to

meteorological anomalies. From Fig. 11a, c, and e, we can
see that for the XJ region, the variation of soil moisture was
not consistent with the changes of meteorological anoma-
lies for flash droughts. The sharp decline of soil moisture
(with the value changing from the 55.05 to 8.87 percentile
within 2 weeks) in Fig. 11a is a typically rapid rate of in-
tensification for flash droughts. However, the meteorological
variables did not change synchronously and even presented
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Figure 10. Spatial evolution of the weekly soil moisture percentile, the observed RI, and estimated RI from MLR, LSTM, and RF models
over the study area in summer and autumn of 2006 and 2013.

lagging variations (e.g., P , PET, and Tmean) after the onset
of flash drought. By contrast, the consistency between soil
moisture and meteorological variables was considerably im-
proved for slowly evolving droughts (Fig. 11b, d, and f).
As expected, the consistency degree was generally high in
the SW region, with better behaviors for flash droughts. As
shown in Fig. 11g, soil moisture decreased from the 55.25 to
10.54 percentile within 2 weeks. Regarding meteorological
variables, both P and RHU showed relatively stable negative
anomalies (e.g., the value of P anomaly and RHU anomaly at
T0 was −0.43, and −0.69, respectively), and energy-related
variables (e.g., PET, T , WIN) presented continuously pos-
itive anomalies (e.g., the value of Tmean anomaly and PET
anomaly at T0 was 0.28 and 0.59, respectively). All of this
contributes to the rapid decline of soil moisture. Different
from the XJ region, the SW region belongs to a humid
climate zone with abundant soil moisture from the top to

deep layers, accompanied with dense vegetation and well-
developed root systems. In the joint effects of P deficit and
high temperatures or heat wave (Fig. 11g, i, and k), the capac-
ity of evapotranspiration from vegetation could be enhanced
in a very short time period, leading to a rapid response of soil
moisture to the unusual climate conditions.

5.2 Comparison of ML technologies for flash droughts
and slowly evolving droughts

In this study, all three ML models produced better RI estima-
tions of flash droughts than those of conventional droughts
(Figs. 6 and 8), suggesting that they are more competent in
monitoring the rapid onset of droughts. From the perspec-
tive of physical mechanisms, the formation of conventional
droughts commonly take a rather long time (e.g., several
months or years), and they are driven by a variety of meteo-
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Figure 11. Time series of weekly soil moisture percentile and moisture-related (i.e., P and RHU) and energy-related (i.e., PET, Tmean, Tmax,
Tmin, PRS, SSD, and WIN) climate factors in the adjacent week (T0−7–T0+7) to drought onset during 1979–2016 for flash droughts and
slowly developing droughts in the XJ and SW regions. The blue shading (Fig. 11a, b, g, and h) denotes the 25th–75th percentile range of soil
moisture values. The orange shading in all 12 panels represent the onset–development phase of drought.
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rological factors (Mishra and Singh, 2010). For instance, pre-
cipitation deficits, enhanced evaporative demand (high tem-
perature or heat wave), and their joint or alternant effects all
possibly contribute to a cumulative effect on soil moisture
and lead to agricultural drought (Otkin et al., 2018; Yuan et
al., 2017). Given the different climate and underlying con-
ditions, the response time of the hydrological system can be
different, manifested as varied timescales of droughts (Zhu et
al., 2021). Particularly, the driving forces of slowly evolving
droughts could be more diverse when considering the abnor-
mal atmospheric circulation, which is the origin of meteo-
rological droughts and is also responsible for soil moisture
drought. The large-scale circulation can modify precipita-
tion’s frequency and intensity and increase wind speed, tem-
perature, and evaporative demand (Hoerling et al., 2014; Mo
and Lettenmaier, 2015). Several studies showed that the oc-
currence of droughts is related to large-scale circulation fac-
tors. Wang et al. (2016) found that under the background of
El Niño of 2015/2016, a positive summer Eurasian telecon-
nection pattern is beneficial to anomalous northerly currents
and weakening of the East Asia summer monsoon, which
leads to extreme droughts over northern China. The 2017
drought in north-eastern China was caused by a strong pos-
itive phase of the Arctic Oscillation (AO) in March (Zeng
et al., 2019). Also, 2000–2012 interdecadal drought in east-
ern Africa is closely linked to the anomalies of surface sea
temperature (SST) in the tropical Pacific basin (Lyon and De
Witt, 2012). These studies indicate that droughts essentially
are resulted from sea–atmosphere and land–atmosphere in-
teractions. In general, the complicated driving forces of
slowly evolving droughts at varying timescales make it diffi-
cult to simulate the variation of soil moisture from a climatic
perspective.

In a different manner, flash drought particularly refers to
the time period in which rapid depletion of soil moisture
occurs, which usually requires simultaneous anomalies in
precipitation, relative humidity, potential evapotranspiration,
temperature, sunshine duration, wind speed, and other me-
teorological variables to integrate into strong climatic forces
(Liu et al., 2020a; Hobbins et al., 2016; Hunt et al., 2014).
This rigorous atmospheric driving condition theoretically
would not sustain for a long time, and a pentad or weekly
timescale is recommended for monitoring flash droughts.
Meanwhile, they have a stronger meteorological forcing than
conventional droughts (Ford and Labosier, 2017), indicating
a close interaction between RI of flash drought and these
local meteorological conditions. This may be one possible
reason for the higher accuracies of RI prediction for flash
droughts. Comparison of the individual roles of precipita-
tion (representing the water supply condition) and PET (rep-
resenting the limits of evaporative demand) in formulating
flash droughts and traditional droughts also showed this dif-
ference. Taking the case of the MLR method as an example,
Fig. 12 exhibits the weights of P and PET anomalies in the
adjacent weeks (as T0−7–T0+7 in Fig. 11) to drought onset

for the XJ and SW regions. As shown, the weights of P and
PET anomalies for flash droughts were generally higher than
those of traditional droughts, suggesting a closer relationship
between meteorological variables (i.e., P and PET) and flash
droughts. Meanwhile, regional differences associated with
the individual roles of P and PET were also observed. For the
XJ region, the weights of negative P anomaly were generally
high at the beginning of two types of drought, while the max-
imum weight of the positive PET anomaly occurred almost
after drought onset. As for the SW region, both the negative
P anomalies and the positive PET anomalies presented high
weights during the onset time of droughts. The results sug-
gested that P deficit played an important role during drought
onset in the XJ region, and for the SW region, the lack of
precipitation and elevated evaporative demand both played
important roles for the occurrence of droughts, and this syn-
chronously combined effect on the depletion of soil moisture
is particularly significant for flash droughts. In general, the
ML models are more competent in capturing the variation of
RI for flash droughts than the slowly evolving drought due
to the close causative relationship between meteorological
forces and the former drought type.

5.3 Influence of definitions on RI simulation results

As we mentioned before, two main definitions of flash
drought were proposed by Mo et al. (2015, 2016) and
Otkin et al. (2018). The two definitions were compared in
several former studies in their effects on identifying flash
droughts. Wang and Yuan (2018) investigated PDFD and
HWFD over China during the growing seasons in 1979–
2010 and found that PDFD tends to occur in southern China,
where moisture supply is sufficient, while HWFD is more
likely to occur in semi-arid regions (e.g., northern China).
Liu et al. (2020a) showed the strengths and limitations of
the soil moisture rapid-intensification approach and the mul-
tiple variable threshold methods (i.e., identification methods
for PDFD and HWFD events). For flash drought based on
the rate of intensification approach (RIFD), the average fre-
quency of occurrence (FOC) varied between 3 % and 10 %,
while the average FOC of HWFD and PDFD was less than
3 % and ranged from 4 % to 6 %, respectively, suggesting dif-
ferent types of identification would affect results of FOC to
some extent. Even though the choice of definition may lead
to different results of flash drought frequency, the difference
would not be significant, no matter which kinds of defini-
tions are applied. Osman et al. (2021) compared several def-
initions (e.g., soil moisture percentile drop (SMPD), stan-
dardized evaporative stress ratio (SEER), heat-wave-driven
(HWD), and precipitation-deficit-driven (PDD)) to investi-
gate the sensitivity of identification results to the choice of
definition, and research showed that the spatial distribution
of some typical flash drought events is well captured by most
of the evaluated definitions. In short, diverse definitions of
flash drought would not affect the feasibility of analyzing the
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Figure 12. The weights of P (blue bar) and PET (yellow bar) for flash droughts and slowly evolving droughts based on the MLR method in
adjacent weeks to drought onset in the XJ and SW regions. T0−1 denotes 1 week prior to the onset time, while T0+1 represent 1 week after
the onset time.

flash drought simulation from the perspective of meteorolog-
ical forcing. In this study, we focused on evaluating the per-
formance of three ML algorithms on RI simulation and their
ability in identifying flash droughts. Indeed, the ML mod-
els have a weak advantage in discovering the physical mech-
anism of flash droughts. However, the interaction between
flash drought and the corresponding meteorological anomaly
was first analyzed, which provided a reference to develop a
physical-based model to simulate flash drought in the future.

5.4 Impact of flash droughts on agricultural
production

Flash drought is a rapid onset and high-intensity extreme
drought. Its onset and development are generally not only
due to the precipitation deficit, but also owing to other me-
teorological anomalies (e.g., high temperature, strong wind,
and abundant sunshine) that enhanced evaporative demand
(Otkin et al., 2013; Anderson et al. 2013). These moisture-
limited and energy-limited factors work together to quickly
decrease soil moisture, gradually increase vegetation stress,
and then induce the onset of flash drought (Hunt et al., 2009;

Ford et al., 2015). This situation is most likely to occur dur-
ing the growing season of vegetation and crops with the high-
est evaporative demand. When flash drought occurs during
the critical stage of crop development (e.g., pollination in
corn and the grain filling stage in soybeans), it may lead to
a large agricultural reduction (Otkin et al., 2013; Hunt et al.,
2014). For instance, the 2012 flash drought in the Midwest
United States was an expensive natural disaster with agricul-
tural losses of about USD 7.62 billion (Hoerling et al., 2014).
All in all, the occurrence of flash drought poses a poten-
tial threat to agricultural production. It is worth mentioning
the effects of flash drought on crop yield are different from
those of conventional drought. With the rapid onset of flash
drought, farmers and ranchers have limited time to prepare
for its detrimental effects; thus, it may result in a large reduc-
tion in crop yield (Otkin et al., 2016), whereas long-last tradi-
tional drought has persistent adverse impacts on agricultural
production. Generally, the impact of flash drought on agri-
cultural production is more severe than slowly developing
droughts during a short period. However, it is necessary to
conduct comprehensive evaluations of their effects combined
with the actual drought status and background field. In addi-

https://doi.org/10.5194/hess-26-3241-2022 Hydrol. Earth Syst. Sci., 26, 3241–3261, 2022



3258 L. Zhang et al.: Analysis of flash droughts in China using machine learning

tion, the accurate prediction of the RI of these droughts will
contribute to mitigating the negative impact of flash droughts
on agriculture.

6 Conclusions

Based on the depletion rate of soil moisture derived from
the ERA-Interim dataset, we identified flash droughts across
China during 1979–2016. Furthermore, the linear and non-
linear relationships between ERA-Interim soil moisture and
multiple climate variables were constructed using the MLR,
LSTM, and RF technologies. On this basis, we evaluated the
performance of these models in estimating the rate of inten-
sification (RI) of soil moisture and analyzed their capabil-
ities in flash drought detection. Overall, the RF model dis-
played the best performance for the whole of China, which
was much better than that of MLR and LSTM models. The
highest results estimated by RF were in the NE region, with
an average CC of 0.90 and average RMSE of the 2.6 per-
centile per week, while the lowest estimations were found in
the XJ area, with an average CC of 0.75 and average RMSE
of the 3.3 percentile per week. A specific investigation on
the summer and autumn droughts in 2006 and 2013 indi-
cated that RF and LSTM can well reveal the spatial patterns
of RI. They were able to provide a better simulation of flash
drought relative to MLR with the lowest estimations. Fur-
thermore, these ML methods displayed a relatively higher
detection capacity of flash droughts than that of traditional
slowly evolving droughts. The RF model was recommended
to simulate flash drought by considering the multiple meteo-
rological variable anomalies in the adjacent time to drought
onset. The POD, FAR, and CSI of flash drought captured
by the RF were 0.93, 0.15, and 0.80, respectively. In terms
of the meteorological driving mechanism of flash droughts,
the negative precipitation (P ) anomalies and positive poten-
tial evapotranspiration (PET) anomalies exhibited a stronger
synergistic effect on flash droughts compared to slowly de-
veloping droughts. Such compound effects on flash drought
also presented asymmetrical characteristics over two regions
in China. For the XJ region, P deficit played a dominant role
in driving the onset of droughts, while for the SW region, the
lack of precipitation and elevated evaporative demand con-
tributed almost equally to the occurrence of droughts. This
work could help enhance the understanding of flash droughts
and provide a reference for the application of ML models in
simulating flash droughts.
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