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Abstract. Freshwater management is challenging, and ad-
vance warning that poor water quality was likely, a season
ahead, could allow for preventative measures to be put in
place. To this end, we developed a Bayesian network (BN)
for seasonal lake water quality prediction. BNs have become
popular in recent years, but the vast majority are discrete.
Here, we developed a Gaussian Bayesian network (GBN),
a simple class of continuous BN. The aim was to fore-
cast, in spring, mean total phosphorus (TP) and chloro-
phyll a (chl a) concentration, mean water colour, and max-
imum cyanobacteria biovolume for the upcoming growing
season (May–October) in Vansjø, a shallow nutrient-rich lake
in southeastern Norway. To develop the model, we first iden-
tified controls on interannual variability in seasonally aggre-
gated water quality. These variables were then included in
a GBN, and conditional probability densities were fit using
observations (≤ 39 years). GBN predictions had R2 values
of 0.37 (chl a) to 0.75 (colour) and classification errors of
32 % (TP) to 17 % (cyanobacteria). For all but lake colour,
including weather variables did not improve the predictive
performance (assessed through cross-validation). Overall, we
found the GBN approach to be well suited to seasonal water
quality forecasting. It was straightforward to produce prob-
abilistic predictions, including the probability of exceeding
management-relevant thresholds. The GBN could be sensi-
bly parameterised using only the observed data, despite the
small dataset. Developing a comparable discrete BN was
much more subjective and time-consuming. Although low
interannual variability and high temporal autocorrelation in
the study lake meant the GBN performed only slightly better
than a seasonal naïve forecast (where the forecasted value is
simply the value observed the previous growing season), we
believe that the forecasting approach presented here could be

particularly useful in areas with higher sensitivity to catch-
ment nutrient delivery and seasonal climate and for forecast-
ing at shorter (daily or monthly) timescales. Despite the para-
metric constraints of GBNs, their simplicity, together with
the relative accessibility of BN software with GBN handling,
means they are a good first choice for BN development with
continuous variables.

1 Introduction

Despite their importance, freshwaters are under intense pres-
sure from human activities. Severe declines in the quan-
tity and quality of habitats and species abundance are
widespread, and freshwaters are now one of the most threat-
ened ecosystem types in large parts of the world (Gozlan et
al., 2019; Reid et al., 2019; Dudgeon et al., 2006). To try
to safeguard freshwater condition, the EU Water Framework
Directive (WFD) requires all waterbodies to achieve at least
“good” ecological status by 2027, assessed using a set of in-
dicators of ecosystem integrity (ECOSTAT, 2005). However,
meeting WFD targets is challenging, and despite widespread
implementation of measures to improve water quality, 60 %
of European surface waters were still below good ecological
status in 2018 (Kristensen et al., 2018). Harmful cyanobac-
terial blooms are a particular concern worldwide, as they
can produce harmful toxins, damage ecosystems, and jeopar-
dise drinking water supplies, fisheries and recreational areas.
Harmful blooms are becoming more widespread, frequent,
and intense due to eutrophication and climate change (Ibel-
ings et al., 2016; Huisman et al., 2018; Taranu et al., 2015).
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Advance warning, a season in advance, that poor wa-
ter quality was likely could allow for measures to be put
in place to reduce the impacts. For example, water levels
could be raised or lowered in flow-regulated waterbodies or
more stringent farm management or effluent discharge ad-
vice could be issued. Although many cyanobacteria fore-
casting systems have been developed, the majority predict
conditions at most a month in advance or focus on multi-
decadal predictions (reviewed in Rousso et al., 2020). Sea-
sonal forecasts, issued with lead times of 1–6 months, could
allow for more comprehensive preventative or mitigative
measures. Seasonal forecasting is a growing area of research,
taking advantage of developments in seasonal climate fore-
casting, and there are many potential management applica-
tions (Bruno Soares and Dessai, 2016). However, seasonal
forecasting within the water sector has so far been largely
focused on streamflow forecasting, with very limited appli-
cations to lake water quality forecasting. The focus of the
WATExR project, a European Union project funded by the
European Research Area for Climate Services (ERA4CS),
was to help address this gap by developing pilot seasonal
forecasting tools for lake water quality and ecology. Tools
were co-developed with water managers at five catchment–
lake case study sites, with four in Europe and one in South
Australia (Jackson-Blake et al., 2022). Tools linked seasonal
climate forecasts with models for predicting river discharge,
lake water level and water temperature (Mercado-Bettín et
al., 2021), water quality, algal bloom risk, and fish migration.
Here, we describe the model developed to forecast lake water
quality at one of the case study sites, Vansjø in Norway.

A multitude of potential methods exists for water quality
modelling and forecasting. Here, we adopt a Bayesian net-
work (BN) approach. BNs are a type of probabilistic mul-
tivariate model which is well suited to environmental mod-
elling, risk assessment, and forecasting (Aguilera et al., 2011;
Kaikkonen et al., 2021; Uusitalo, 2007). In brief, BNs are
graphical models in which the joint probability distribution
among a set of variables X = [X1, . . . Xn] is represented in
terms of (1) a directed acyclic graph, where each vertex
(or node) represents a variable in the model and an edge
(or arc) linking two variables indicates statistical depen-
dence, and (2) conditional distributions for each variable Xi ,
p(Xi |pa(Xi)), given the probability distribution pa(Xi) of
any parent nodes, which quantify the strength and shape
of dependencies between variables (Pearl, 1986). In recent
years, BNs have become popular in a broad range of envi-
ronmental modelling disciplines, including modelling lake
water quality and algal bloom risk (e.g. Shan et al., 2019;
Rigosi et al., 2015; Williams and Cole, 2013; Couture et al.,
2018; Gudimov et al., 2012). Particular strengths in terms
of our seasonal forecasting aims are that, as nodes are mod-
elled using probability distributions, risk and uncertainty can
be estimated easily and accurately compared to many other
modelling approaches. They can thus be powerful tools to
assess the probability of events (e.g. WFD ecological status

class). They are also well suited for communicating and vi-
sualising the model to end-users, and it is easy to update the
model given new data. Other benefits include the ability to
model complex systems in a quick and efficient way, to com-
bine data and expert knowledge, easy handling of missing
values, and the potential to be used for inference, as well as
prediction.

BNs were originally designed to deal with discrete data.
Relationships between nodes in discrete BNs can be non-
linear and complex, thereby allowing for the full power of
BN analysis, and the vast majority of environmental BN
models are discrete (Aguilera et al., 2011). When using a dis-
crete BN, any continuous variables must first be discretised.
However, this involves an information loss as discretisation
can only capture the rough characteristics of the original dis-
tribution. In addition, discretisation choices (number of in-
tervals and division points) affect BN results (e.g. Nojavan et
al., 2017) and their interpretation (Qian and Miltner, 2015).
In practice, it is usually necessary to restrict the number of
intervals, often to just two or three classes, as the more in-
tervals there are, the more data are needed to parameterise
the model meaningfully (Hanea et al., 2015). Such restric-
tions mean that it then becomes difficult to capture complex
relationships, thereby diminishing the theoretical benefits of
using a discrete network (Uusitalo, 2007). Continuous BNs,
by contrast, represent continuous variables using continu-
ous statistical distributions and therefore avoid the need for
discretisation. Hybrid BNs, which include both discrete and
continuous nodes, have similar benefits.

In recent years, much focus on continuous networks has
been aimed at developing algorithms for nonparametric net-
works, i.e. continuous networks which are not limited by as-
sumptions about the nature of the statistical distribution of
continuous variables (Marcot and Penman, 2019). However,
Gaussian BNs (GBNs) are a long-established, simple, and
powerful class of continuous BN and are often the only type
of continuous node available in commonly used BN software
(e.g. Bayes server, bnlearn, and Hugin). In GBNs, each ran-
dom variable is defined by a Gaussian distribution, and vari-
ables are linearly related to their parents (Geiger and Heck-
erman, 1994; Shachter and Kenley, 1989). In some situa-
tions, these parametric constraints may be overly limiting,
but when this approximation is appropriate, GBNs may be
preferable over discretisation. Despite the potential benefits,
the use of continuous BNs in environmental modelling is
rare. In a review of papers published over the period 1990–
2010, Aguilera et al. (2011) found only 6 % included con-
tinuous or hybrid nodes, and we could only find nine more
recent examples in the literature (Web of Science search in
November 2021, with the terms [environmental AND mod-
elling* AND “Bayesian network” AND continuous], with a
manual sorting of the results).

The overall aims of the paper are, therefore, (1) to develop
a model for the seasonal forecasting of lake water quality and
(2) to demonstrate the use of a continuous GBN, compared
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to more traditional discrete BN approaches. Our case study
site is the western basin of Vansjø, a shallow mesotrophic/eu-
trophic lake in southeastern Norway. A number of BN mod-
els have previously been applied in the lake (Couture et al.,
2014, 2018; Moe et al., 2016, 2019; Barton et al., 2008),
but these were all discrete metamodels, i.e. the BN nodes
summarised process-based model simulations, statistical re-
lationships, expert opinion, and/or data distributions, and the
studies were focused on the longer-term impacts of climate,
land use, and land management change. Here, the aim was to
provide medium-term forecasts to support lake management
by developing a model able to predict, in the spring of a given
year, water quality for the coming growing season (May–
October), including the probability of lying within WFD eco-
logical status classes for total phosphorus (TP), chl a, and
cyanobacteria. We also forecast lake colour, as elevated lake
organic matter content (and associated colour) can cause a
number of problems for drinking water treatment (e.g. Mati-
lainen et al., 2010).

To develop the model, we take a data-driven approach,
where we first use exploratory statistical analyses to iden-
tify the main controls on interannual variability in lake wa-
ter quality and then combine the results of this with domain
knowledge to develop a GBN. We also develop a compara-
ble discrete BN, using discretised data. We then explore the
sources of predictability and the importance of weather vari-
ables by comparing predictive performance of GBNs with
different model structures within a cross-validation scheme.
We also compare the performance of the Gaussian and dis-
crete BNs and the performance of a simple benchmark
model, a seasonal naïve forecast (where the forecasted value
is simply the value observed the previous growing season).
Finally, we discuss (1) the results in terms of the potential and
limitations for seasonal forecasting of lake water quality and
(2) the pros and cons of GBNs compared to discrete BNs and
compared to multiple linear regression (which shares some
features with GBNs).

2 Methods and data

2.1 Case study site

Vansjø is a large lake in southeastern Norway (59◦24′ N
10◦42′ E, 25 m a.s.l.), with a highly agricultural catchment
by Norwegian standards (15 % of the 690 km2 catchment is
agriculture) with clay- and P-rich soils. The lake has two
main basins, Storefjorden in the east (24 km2) and Vanem-
fjorden in the west (12 km2; Fig. 1). The largest input is the
Hobøl River (catchment area 301 km2) which enters Store-
fjorden, and then water flows from Storefjorden to Vanem-
fjorden through a narrow channel, and from Vanemfjorden
through the Moss River towards the Oslofjord (Fig. 1). Over
the period 1989–2018, catchment mean annual air tempera-
ture was 7.2 ◦C and annual precipitation was 992 mm yr−1.

Figure 1. Vansjø in southeastern Norway, showing the two main
basins, the larger eastern basin (Storefjorden) and Vanemfjorden
(the study basin). The two basins are connected by a narrow chan-
nel. The largest tributary to Vansjø is the Hobøl River. Main Nor-
wegian Institute for Water Research (NIVA) monitoring sites are
shown, and arrows show the dominant flow directions. Here, we use
data from VAN2. Hillshade © Kartverket (https://www.kartverket.
no/, last access: 9 May 2022); hydrologic data © NVE (https:
//www.nve.no/english/, last access: 9 May 2022).

Here, we focus on Vanemfjorden, which is shallower
(mean depth 3.8 m; max depth 19 m) and more susceptible
to eutrophication and cyanobacterial blooms than Storefjor-
den due to stronger interactions between the water column
and the P-rich lake sediments and a more agricultural lo-
cal catchment. Vanemfjorden has a relatively short residence
time (0.21 years), and the water column remains oxygenated
throughout the year. Vanemfjorden has a long history of eu-
trophication and is usually in WFD “moderate” ecological
status for mean growing season TP (> 20 µg L−1), chl a (>
10.5 mg L−1), and maximum cyanobacteria (> 1.0 mg L−1;
Skarbøvik et al., 2021). Vanemfjorden suffers from toxin-
producing cyanobacterial blooms, and bathing bans were in
place during much of the early 2000s (Haande et al., 2011).

The outlet of Vanemfjorden is dammed, and the lake wa-
ter level is regulated for hydropower, recreation, and flood
protection. There is a management opportunity for the dam
operators to adjust the water level in advance of an antic-
ipated wet, dry, or hot season if problematic water quality
is expected. In addition, the local catchment management
group (Morsa), responsible for WFD implementation, is in-

https://doi.org/10.5194/hess-26-3103-2022 Hydrol. Earth Syst. Sci., 26, 3103–3124, 2022

https://www.kartverket.no/
https://www.kartverket.no/
https://www.nve.no/english/
https://www.nve.no/english/


3106 L. A. Jackson-Blake et al.: Seasonal forecasting of lake water quality and algal bloom risk

terested in seasonal water quality forecasts to inform their
management and monitoring plan and, in particular, pre-
paredness for cyanobacterial blooms.

2.2 Overview of the workflow

The aim was to develop a seasonal forecasting model capa-
ble of producing probabilistic forecasts, issued in spring of a
given year, of expected growing season (May–October) mean
concentrations of TP and chl a and maximum cyanobacteria
biovolume, as used in WFD status classification for Norwe-
gian lakes (Direktoratsgruppen Vanndirektivet, 2018). Mean
lake colour was also forecast, both because it is of interest for
drinking water treatment, and because it may influence algal
biomass by affecting nutrient and light conditions (Carpenter
et al., 1998; Bergström and Karlsson, 2019).

The model development and assessment workflow con-
sisted of the following steps:

1. Feature generation. Data preprocessing and temporal
aggregation were carried out to derive an array of poten-
tial explanatory variables (known as features in machine
learning parlance).

2. Feature selection. Exploratory statistical analyses were
conducted to identify key features, using a combination
of machine learning (using random forests to compute
feature importance), correlation coefficients, and scat-
terplots. Process knowledge was used as the final selec-
tion criteria.

3. BN development. The selected explanatory variables
were incorporated into a GBN, using process knowl-
edge to define the structure. Data from the study site
were then used to fit the GBN parameters.

4. Discrete BN development. A discrete BN was also de-
veloped for comparison, using discretised data and the
same structure as the GBN.

5. BN cross-validation and evaluation. We selected the
most appropriate GBN structure for each target variable,
with a particular focus on any added value from includ-
ing weather variables. We also compared the predictive
performance of the GBN and the discrete BN.

6. Benchmarking. We compared GBN predictive skill to a
simple benchmark model, a seasonal naïve forecast.

All pre- and postprocessing were carried out in the
Python programming language. BN development and cross-
validation were carried out using the bnlearn R package (Scu-
tari, 2010). Scripts and data are available (see section on code
and data availability).

2.3 Data and temporal aggregation

Meteorological, river flow, river chemistry, and lake water
quality data were used to derive potential explanatory vari-
ables. Precipitation and air temperature were derived from
the SeNorge 1 km2 gridded data (Lussana et al., 2019), aver-
aged over the whole catchment. Wind speed data were from
the Norwegian Meteorological Institute (Met.no) monitoring
location at Moss Airport, Rygge, at the southern edge of the
lake. Hobøl River discharge is measured hourly by the Nor-
wegian Water Resources and Energy Directorate (NVE) at
Høgfoss and was aggregated to a daily sum. TP concentra-
tion data from the Hobøl River at Kure were downloaded
from Vannmiljø (https://vannmiljo.miljodirektoratet.no/, last
access: 1 November 2021).

Lake water quality data were from the surface 0–3 m
from the NIVA monitoring point Van2 (see Fig. 1). TP,
chl a, and colour data were downloaded from Vannmiljø,
while cyanobacteria biovolume was provided directly by
NIVA. NIVA colour data were patchy over the period 1998–
2007. However, colour is also monitored by MOVAR, the
local drinking water company, and data were obtained for
the period 2000–2012. Despite different sampling locations
and depths (MOVAR monitoring is in Storefjorden at 20 m
depth), the two datasets were highly correlated and from the
same distribution. We therefore patched the series together,
making maximum use of the higher-frequency MOVAR data
as follows. NIVA data were used pre-1999, MOVAR data
from 1999–2012, and NIVA data from 2013. Cyanobacte-
ria monitoring began in 1996, while all other variables were
monitored from 1980. Prior to 2004, sampling took place 6–
8 times a year during the period from May or June to Septem-
ber or October. From 2005, sampling was from mid-April
to mid-October and with a higher frequency (fortnightly
for cyanobacteria, weekly for other variables between 2005
and 2014, and fortnightly thereafter). The number of samples
per growing season therefore varies considerably throughout
the period 1980–2018, from 5 to 10 per year until 2004, in-
creasing to around 25 (TP, chl a, and colour) until 2013, and
then decreasing to around 12. Monthly and seasonally aggre-
gated values pre-2005 are therefore based on substantially
fewer data points.

Lake TP concentration in Vanemfjorden is fairly constant
throughout the growing season and is almost always in the
range 25–40 µg L−1. Meanwhile, Hobøl River TP concen-
trations are almost always above this level, at around 40–
140 µg L−1. Chl a and cyanobacteria tend to peak in July or
August. Lake colour is highest in spring and winter and de-
creases through summer and autumn.

The aim was to predict the WFD status class of a num-
ber of key water quality parameters, which in Norwegian
lakes are assessed using average or maximum values over the
whole growing season (May–October; Solheim et al., 2014).
Daily data for the growing season were therefore aggregated
over this period by calculating seasonal means, sums, counts,
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Figure 2. Time series of growing season (May–October) mean lake chl a, total phosphorus (TP) and colour, seasonal maxima of cyanobacte-
ria biovolume, seasonal mean wind speed, air temperature and Hobøl River TP concentration, and seasonal sums of rainfall and discharge (Q).

or maxima, depending on the variable. The 6-monthly aggre-
gated data were then used in all subsequent analyses. Time
series for the four lake water quality variables of interest and
a number of potential explanatory variables, aggregated over
the summer growing season, are shown in Fig. 2. Interan-
nual variability in TP is low, aside from a general decline
since around 2001. Chl a is more variable, although longer-
term trends still dominate, with an increase until 1995, high
values between 1995 and 2006, and decreasing thereafter.
Cyanobacteria was variable until 2008 and has been low
since. There is a step change increase in lake colour be-
tween 1997 and 1999. Lake colour has been increasing across

Scandinavia over recent decades (de Wit et al., 2016), so this
may be real, or it may be due to a change in labs or methods,
although this could not be confirmed due to a lack of meta-
data. Some broad-scale trends are also apparent in the poten-
tial explanatory variables. Growing season mean air temper-
ature is generally between 12 and 14 ◦C but was somewhat
higher after 2005. Mean wind speed was highest earlier in the
period in the 1980s, lowest between 2006 and 2008, and in-
creased thereafter. This increase over the last decade appears
to be mostly due to a lack of calm wind days and is observed
at other nearby meteorological stations (e.g. Sarpsborg). Pre-
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cipitation shows high variability but was generally lower in
the first half of the study period.

Temporal aggregation over the whole growing season, al-
though of WFD relevance, is coarse and may miss causative
relationships. We therefore also carried out finer-scale aggre-
gation to check and expand on the results obtained from the
6-monthly analyses (see Appendix A).

2.4 Feature generation

To issue a forecast for seasonally aggregated summer lake
water quality, we need to first understand the key factors con-
trolling interannual variability. Lake TP concentration and
colour may be controlled by delivery from the surrounding
catchment, interaction with lake sediments, and lake strati-
fication and mixing (Welch and Cooke, 2005; Søndergaard
et al., 2013). For algal biomass and harmful algal blooms,
the right combination of environmental conditions can lead
to bloom formation, including sufficiently high nutrient con-
centrations, in particular P (e.g. Heisler et al., 2008; Lür-
ling et al., 2018; Stumpf et al., 2012), temperature (e.g. Ro-
barts and Zohary, 1987; Paerl and Huisman, 2009; Kosten
et al., 2012), light intensity (e.g. Merel et al., 2013; Kosten
et al., 2012), and a stable water column (e.g. Huber et al.,
2012; Yang et al., 2016). The relative importance of differ-
ent drivers varies according to lake type, with nutrients often
providing a dominant control in polymictic lakes (shallow
lakes whose waters frequently or continuously mix vertically
throughout the ice-free period), while dimictic lakes (which
fully mix vertically twice a year) are generally more sensitive
to climatic variables through their effect on water column sta-
bility (Taranu et al., 2012).

To determine the key explanatory variables in our study
site, we generated a set of potential variables (or features)
for each of the lake water quality variables of interest. As the
aim was to produce a seasonal forecasting model, our choice
of variables was somewhat limited to data which would be
available or could be readily modelled at the time the fore-
cast was issued. Historic lake water quality observations and
weather were therefore included, as were interrelationships
between growing season water quality variables, as BNs al-
low for multiple variables to be predicted at the same time.
Growing season weather variables and features relating to the
delivery of water and TP from the catchment were also gen-
erated. For an operational seasonal forecasting model, these
would need to be obtained from external forecasting efforts
(for example, from seasonal climate forecasts or catchment
models driven by seasonal climate forecasts). For these vari-
ables, we had the choice of using either observed historic
data or model-derived hindcasts in our BN model develop-
ment. We decided to use real observed data to enable us to
assess whether the variables were genuinely important using
the best-available data (but see Sect. 4.1.2 for a discussion
on using simulated data instead). Some potentially relevant
features, such as water temperature and water column stabil-

ity indices, were not included as, for operational forecasting,
these would need to be produced by a chain of models (sea-
sonal climate→ catchment hydrology→ lake) or by adding
latent variables to the GBN, both of which were thought to be
too complex for the current workflow. In addition, these vari-
ables should be proxied by other variables that were included
in the feature set.

After choosing the variables to include, features were gen-
erated for the current May to October growing season, for the
previous winter (the November to April 6-month period prior
to the current season), and for the previous year’s growing
season. Overall, we generated up to 29 potential explanatory
variables, depending on the response variable (Table 1). Fea-
tures were derived for the period 1981–2018. Depending on
the number of years with missing data, this gave 39 years
of data for TP and chl a, 36 for lake colour, and 24 for
cyanobacteria.

2.5 Feature selection

Having generated a list of potential explanatory variables for
each dependent variable, we then carried out exploratory sta-
tistical analyses to select the features to include in the GBN,
using a combination of the following:

1. Ranked correlation coefficients. As a first screening, we
used ranked absolute Pearson’s correlation coefficients
to highlight potentially important features for each de-
pendent variable.

2. Feature importance. We used a machine learning ap-
proach to assess feature importance for each dependent
variable, using random forests implemented using the
scikit-learn Python package (Pedregosa et al., 2011).
Random forests use bootstrapping to partition the data
used by each tree, and data not included in each boot-
strap sample are used to perform internal validation. We
used the out-of-bag (OOB) score and importance scores
to rank the feature importance. Random forests have
a number of hyperparameters that can be tuned to im-
prove performance. The most important are the number
of trees in the forest (n_estimators) and the size of the
random subsets of features to consider when splitting a
node (max_features). We selected values for these for
each dependent variable by plotting the OOB error rate
(1−OOB score) as a function of n_estimators for vari-
ous choices of max_features.

3. Visual evaluation of relationships. Scatterplot matrices
were used for a visual check of whether relationships
appeared to be linear and for independence between ex-
planatory variables (required for unconnected nodes in
a BN).

4. Process understanding. Finally, we excluded explana-
tory variables where we did not think there were plausi-
ble physical mechanisms underpinning the relationship.
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Table 1. Potential explanatory variables (features) considered for each of the four dependent variables (chl a, TP, cyanobacteria, and colour).
The temporal aggregation period is given relative to the forecast issue date in spring of the current year, y.

Feature name Description Dependent Temporal
variable(s) aggregation

period

Chl a Mean lake chl a concentration (mg L−1) Cyano Current
Colour Mean lake colour (mg Pt L−1) Chl a, cyano growing
TP Mean lake TP concentration (µg L−1) Chl a, cyano season (May
TP river Mean TP concentration in the Hobøl River (µg L−1) TP, chl a, cyano to October), year y

Q Sum of River Hobøl discharge at Høgfoss (106 m3) All
Rain days Count of rain days (daily precipitation≥ 1 mm)
Rain intense Count of intense rain days (daily precipitation≥ 10 mm)
Rain sum Precipitation sum (mm)
Temp Mean daily mean temperature (◦C)
Wind speed Mean daily mean wind speed (m s−1)
Wind<P20 Count of days when daily mean wind speed< 20th percentile (2.0 m s−1)
Wind<P40 Count of days when daily mean wind speed< 40th percentile (2.9 m s−1)
Wind>P60 Count of days when daily mean wind speed> 60th percentile (3.8 m s−1)
Wind>P80 Count of days when daily mean wind speed> 80th percentile (4.8 m s−1)

Q (W) Sum of River Hobøl discharge at Høgfoss (106 m3) All Previous
Rain days (W) Count of rain days (daily precipitation≥ 1 mm) winter
Rain intense (W) Count of intense rain days (daily precipitation≥ 10 mm) (November
Rain sum (W) Precipitation sum (mm) year y− 1
Temp (W) Mean daily mean temperature (◦C) to April
Wind speed (W) Mean daily mean wind speed (m s−1) year y)
Wind<P20 (W) Count of days when daily mean wind speed< 20th percentile (2.0 m s−1)
Wind<P40 (W) Count of days when daily mean wind speed< 40th percentile (2.9 m s−1)
Wind>P60 (W) Count of days when daily mean wind speed> 60th percentile (3.8 m s−1)
Wind>P80 (W) Count of days when daily mean wind speed> 80th percentile (4.8 m s−1)

Chl a (PS) Mean lake chl a concentration (mg L−1) Chl a, cyano Previous
Colour (PS) Mean lake colour (mg Pt L−1) Colour, chl a, cyano year’s growing
Cyano (PS) Mean lake cyanobacterial biovolume (mg L−1) Cyano season (May
Temp (PS) Mean air temperature (◦C) All to October,
TP (PS) Mean lake TP concentration (µg L−1) TP, chl a, cyano year y− 1)

2.6 Bayesian network development and use in
prediction

We first defined the BN structure manually, using the results
of the feature selection and process knowledge, to ensure re-
alistic causative relationships between nodes. This structure
was then used in both the continuous Gaussian BN and a dis-
crete BN.

2.6.1 Gaussian Bayesian network development

As mentioned in the introduction, Gaussian Bayesian net-
works (GBNs) are a powerful class of continuous BNs in
which all nodes are continuous, and conditional probabil-
ity distributions (CPDs) are linear Gaussians, which together
define a joint Gaussian. Parent nodes therefore have normal
distributions with mean µ and variance σ 2. Gaussian CPDs
of child nodes have a mean which is a linear combination

of the parent nodes (with intercept β0 and coefficients βi for
each parent node i). To meet the normality requirement of
GBNs, we transformed the cyanobacteria data, which were
right skewed, by applying a Box–Cox transformation (y∗ =
(yλ− 1)/λ, with λ= 0.1 to give a fairly symmetrical distri-
bution). Predictions for cyanobacteria were then transformed
back to the original data scale including bias-adjustment (see
Sect. 3.2; Hyndman and Athanasopoulos, 2021). Normality
tests were carried out for all variables using scipy.stats (based
on D’Agostino and Pearson, 1973). High p values (> 0.2)
were found for all but lake colour and transformed cyanobac-
teria (p = 0.04 for both). A step change in lake colour is
seen around 1998 (Fig. 2), suggesting the distribution of lake
colour may be bimodal. The normality assumption was there-
fore not invalidated at a 1 % significance level but would have
been at a 5 % level. Coefficients were then derived for the
CPDs at each node using maximum likelihood estimation.
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Table 2. Management-relevant thresholds used for predicting the probability of lake water quality variables lying within a certain water
quality class. The classification is summarised as low concentration (L) and high concentration (H ) classes, which translate to a WFD-
relevant classification, as described. WFD is the Water Framework Directive.

Variable Low/high Relationship between Rationale
concentration concentration class and
class WFD class
boundary

TP 29.5 µg L−1 Low= upper moderate Almost all observations were within
High= lower moderate the moderate WFD status class, so

we used the midpoint of this class as
the threshold.

Chl a 20.0 mg L−1 Low=moderate or better WFD moderate/poor boundary
High= poor or worse

Cyano 1.0 mg L−1 Low= good or better WFD good/moderate boundary
High=moderate or worse

Colour 47.3 mg Pt L−1 Not applicable Upper tercile (66th percentile)

BNs can be used for prediction, our primary aim, by cal-
culating a probability distribution over the variable(s) whose
value we would like to know, given the information (evi-
dence) we have about some other variables. Predictions ob-
tained using GBNs contain a mean and a variance, and here,
predictions were obtained by averaging likelihood weighting
simulations using a subset of nodes as evidence. The pre-
dicted value is then the expected value of the conditional dis-
tribution. We chose the evidence nodes based on those nodes
which could be updated whenever a forecast was produced,
using historic data or future forecasts (i.e. observed water
quality from the previous summer or forecasted meteorolog-
ical conditions). As well as predicting absolute values, we
also estimated the probability of exceeding a management-
relevant threshold for each water quality variable (Table 2).

2.6.2 Discrete Bayesian network development

Finally, we developed a discrete BN for comparison to
the GBN. To do this, we first discretised the data, opt-
ing for just two classes for most variables given the small
sample size. The exception was previous summer’s lake
colour, for which we used three classes, given a strong
relationship between lake colour in the previous and cur-
rent growing seasons (Sect. 3.1). We used management-
relevant thresholds to discretise the current growing season
lake TP, chl a, cyanobacteria, and colour (Table 2). For all
the other variables (and including lake observations from
the previous summer), as we were not constrained by hav-
ing to discretise into management-relevant classes, we used
regression trees to identify the optimal splitting points, to
improve the chances of identifying relationships between
nodes in the BN. For each dependent variable (TP, chl a,
cyanobacteria, and colour), we built a regression tree for each
explanatory–dependent variable pair in turn and then used

the first or second split point in the tree as the boundary
to discretise that explanatory variable (regression trees are
in the accompanying GitHub repository; see the code and
data availability section). For wind speed, this resulted in
highly unbalanced class sizes, so we instead used the me-
dian. The chosen boundaries were 31.8 mg L−1 for TP (PS),
16.8 mg L−1 for chl a (PS), 26.8 and 47.3 mg Pt L−1 for
colour (PS), 469 mm for rain sum, and 3.55 m s−1 for wind
speed. Note that the different discretisation methods used
for the current vs. previous year’s growing season lake wa-
ter quality means that the two variables are classified differ-
ently, despite having the same underlying data. The resulting
classes were relatively well balanced.

We then fitted the conditional probability tables (CPTs)
using Bayesian posterior estimation with uniform priors. In-
cluding priors helps to avoid overfitting, a common problem
with maximum likelihood estimation (mle, where CPTs are
fitted just using the relative frequencies), particularly with
small sample sizes when the data may not be representa-
tive of the underlying distribution. In our case, priors can be
thought of as pseudo-state counts added to the actual counts
before normalisation. The uniform priors were defined by an
imaginary sample size (iss) parameter, whereby the pseudo
counts are the equivalent of having observed iss uniform
samples of each variable and each parent configuration. The
higher the iss, the stronger the effect of the prior on the pos-
terior parameter estimates, while the method becomes mle
when iss= 0. The iss parameter thus specifies the weight of
the prior compared to the sample and therefore controls the
smoothness of the posterior distribution. A common rule of
thumb is to use a small non-zero iss to avoid zero entries.
However, we experimented with larger values of iss (from 1
to 50) to avoiding overfitting. We did this using a trial-and-
error process. During each iteration, we examined the CPTs
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for spurious relationships and checked the predictive error
of the network through cross-validation (see Sect. 2.7.1). We
found that an iss of 15 was the smallest value where the ma-
jority of unexpected CPT behaviour was smoothed out, while
maximising predictive performance.

2.7 BN validation and assessment

We then explored the most appropriate GBN model structure
and evaluated the GBN performance using three methods,
including (1) cross-validation, carried out on several parts of
the network separately and including comparison to the dis-
crete BN, (2) goodness of fit of the whole network compared
to observations, and (3) comparison to a simple benchmark
model.

2.7.1 Cross-validation of subnetworks

The ability to carry out cross-validation (CV) is a benefit
of using bnlearn compared to many graphical BN packages,
as it is possible to assess the expected performance of the
network for out-of-sample prediction and to compare dif-
ferent models to robustly assess whether certain nodes and
arcs are improving the predictive power. Here, we used CV
to compare the predictive performance of GBNs with and
without meteorological nodes and to compare the GBN and
the discrete BN. We used leave-one-out cross-validation,
which should produce unbiased skill score estimates even
with small sample sizes (e.g. Wong, 2015). In short, the
cross-validation was repeated for each predicted node (chl a,
cyano, TP, and colour) and involved the following steps:
1 year of data is left out at a time, the BN is fit using the
remaining years of data, and then it is used to predict the tar-
get node for the left-out year. The procedure is repeated for
all years, producing a single time series of predictions. These
are then compared to observations to generate skill scores.
As the main aim was prediction, we used posterior predic-
tive correlation (reported as R2), mean square error (MSE),
and classification error (the proportion of the time the classi-
fication was incorrect) as the GBN skill scores and the clas-
sification error for the discrete BN. The cross-validation is
stochastic and was run for a default 20 times, and the mean
skill score was calculated.

Cross-validation requires complete data for all variables
and years. For most variables there were few gaps, so we
filled up to 1-year gaps by interpolation or backward/for-
ward filling. However, cyanobacteria was only measured
from 1996, while other variables were measured from 1980.
Rather than dropping all data prior to 1996, which would re-
sult in a large loss of training data for TP, chl a, and colour,
we instead split the network into a number of smaller net-
works for the target variables and cross-validated each of
these in turn (see Sect. 3.3.1).

2.7.2 Goodness of fit of the whole network

Splitting the BN up into smaller subnetworks is likely to re-
sult in a loss of predictive power, so cross-validation could
not be used to assess the expected predictive performance of
the whole network. Instead, we assessed the performance of
the whole network, trained on all data, by simply calculating
the goodness of fit of the predictions using the GBN with
and without weather nodes. For this, we used correlation,
MSE, and classification error, as during cross-validation, and
bias (mean of predicted−observed values). We also calcu-
lated the Matthews correlation coefficient (MCC) to provide
additional information on how well the WFD status class was
predicted. MCC is in the range 0 (no skill) to 1 (perfect skill)
and has been shown to be a truthful score for evaluating bi-
nary classifiers (Chicco and Jurman, 2020). As the training
and evaluation data were the same, this may produce an op-
timistic assessment of model performance.

2.7.3 Comparison to a benchmark model

Some extremely simple forecasting methods can be highly
effective. As a final test, we compared predictive perfor-
mance of the GBN to a seasonal naïve forecast (Hyndman
and Athanasopoulos, 2021). In this case, the seasonal naïve
forecast for the current growing season is simply the ob-
served value from the previous year’s growing season.

3 Results

3.1 Feature selection

For lake TP concentration, key features identified were
TP concentration from the previous growing season and, to
a lesser extent, wind-related features (Tables 3 and 4). Tem-
poral autocorrelation in lake TP concentration is highly plau-
sible. It is, however, less clear whether the negative correla-
tion with wind speed is causative. We might expect windier
conditions to increase sediment resuspension and result in
higher TP concentrations (Hanlon, 1999), but higher TP was
instead associated with calmer weather (Fig. 3). A positive
relationship between the previous summer’s TP and winter
wind (Fig. 3), together with analyses using monthly aggre-
gated data (Appendix A), suggest that the relationship may
not be causative. Wind was therefore not selected for TP.

For chl a, the strongest correlations were with chl a from
the previous summer and lake TP concentration (Table 3).
Otherwise, the only correlation coefficients above 0.4 were
with wind-related features, including a negative relationship
with mean wind speed (Fig. 4). This was supported by the
feature importance analysis and a model with chl a (PS),
lake TP, and wind speed had the highest OOB score (Ta-
ble 4). There are plausible mechanisms underpinning rela-
tionships between these three variables and lake chl a, and
all were selected for BN development. In the case of wind,
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Table 3. Ranked Pearson’s correlation coefficients (R) for the four dependent variables (for clarity only |R|> 0.40 are shown). See Table 1
for a description of the variables.

TP Chl a Cyanobacteria Colour

Variable R Variable R Variable R Variable R

TP (PS) 0.64 Chl a (PS) 0.65 Chl a 0.77 Colour (PS) 0.86
Wind<P20 0.51 TP 0.58 TP 0.58 Rain sum 0.52
Wind<P20 (W) 0.45 Wind<P40 0.41 Chl a (PS) 0.56 Rain intense 0.45
Wind speed (W) −0.41 Wind>P80 −0.48 Cyano (PS) 0.55 Q 0.45

Wind speed −0.50 TP (PS) 0.49 Temp (PS) 0.42
Wind>P60 −0.51 Colour −0.45 Wind>P60 −0.43

Colour (PS) −0.50 Wind speed −0.45
Wind>P80 −0.47

Table 4. Summary of the feature importance analysis for each de-
pendent variable. The out-of-bag (OOB) score gives the overall per-
formance of the random forest regressor model, whilst importance
scores rank the importance of the features. Results are shown us-
ing all available features (All) and for the feature subset selected
for BN development (Selected). See Table 1 for a description of the
features.

Target Feature Feature Importance OOB
variable subset score

TP All TP (PS) 0.18 0.26
Wind<P20 (W) 0.15
All others < 0.08

Selected TP (PS) 1 0.04

Chl a All Chl a (PS) 0.30 0.48
TP 0.18
Wind speed 0.05
All others < 0.05

Selected Chl a (PS) 0.42 0.50
TP 0.34
Wind speed 0.24

Cyano All Chl a 0.14 0.32
Colour 0.08
All others < 0.07

Selected Chl a 0.63 0.51
Colour 0.37

Colour All Colour (PS) 0.74 0.65
Wind<P20 0.05
Rain sum 0.03
All others < 0.02

Selected Colour (PS) 0.84 0.58
Rain sum 0.16

Figure 3. Relationships between seasonal mean lake TP concen-
tration and potential explanatory variables of interest, including
lake TP from the previous summer (PS), number of days when the
daily mean wind speed< 20th percentile (wind<P20), and mean
winter (Nov–Apr) wind speed. Density plots estimated using kernel
density estimation (kde) are shown along the diagonal.

windier weather can cause less stable lake stratification and
lower chl a concentrations (Huber et al., 2012; Yang et al.,
2016).

Air temperature exerted an important control on within-
year changes in chl a (Appendix A), but there was no evi-
dence that years with higher summer air temperature were
associated with higher mean chl a concentration (Fig. 4).

For cyanobacteria, the strongest correlation was with lake
chl a, although a number of other correlations were present
(Table 3; Fig. 5). Feature importance analysis also high-
lighted chl a as being the most important variable (Ta-
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Figure 4. Relationships between seasonal mean chl a (mg L−1) and potential explanatory variables of interest, including chl a from the
previous summer (PS), seasonal mean TP (µg L−1), wind speed (m s−1), and air temperature (◦C). Density plots estimated using kde are
shown along the diagonal.

ble 4). Highest OOB values were obtained using just chl a
and lake colour, and these were therefore selected as the
key explanatory variables for cyanobacteria. The relationship
with lake colour is plausible, as an increase in organic mat-
ter can affect lake algal communities by reducing the light
availability and the availability of nutrients (Nagai et al.,
2006), and Senar et al. (2021) found that, above dissolved
organic carbon (DOC) concentrations of 8–12 mg L−1, sim-
ilar to those observed in lake Vanemfjorden (7–10 mg L−1

over the period 1996–2018), cyanobacteria became replaced
by mixotrophic species as lake colour increased.

Lake colour was very strongly correlated with the previ-
ous summer’s colour, and probably because of this, the OOB
score for lake colour was the highest of all the dependent
variables. Colour was also moderately correlated with fac-
tors relating to catchment delivery (Table 3; Fig. 6). The three
most important features were the previous summer’s colour,
calm wind days (wind<P20), and rain sum, although the lat-
ter two had low importance scores compared to the previous
summer’s colour (Table 4). As with TP, we suspect that the
wind–colour relationship is not causative, as lake colour is
relatively uniform throughout the water column in Vansjø, so
the impact of wind on lake stratification should be minimal.
Wind was therefore dropped, and only the previous summer’s

Figure 5. Relationships between Box–Cox-transformed seasonal
maximum cyanobacteria biovolume and potential explanatory vari-
ables of interest, including seasonal means in lake chl a, TP, and
colour. Density plots estimated using kde are shown along the diag-
onal.
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Figure 6. Relationships between seasonal mean lake colour and po-
tential explanatory variables of interest, including the colour during
the previous summer (PS), seasonal rain sum, and mean wind speed.
Density plots estimated using kde are shown along the diagonal.

colour and rain sum were selected for further BN develop-
ment.

The findings were relatively robust to the temporal aggre-
gation window, as statistical analyses using a shorter and
more causally plausible temporal aggregation resulted in
very similar relationships being highlighted (Appendix A).
The exception was that higher rainfall and discharge may re-
sult in lower cyanobacteria peaks, probably due to flushing,
a relationship which was not accounted for in the GBN us-
ing 6-monthly aggregation, and a potential area for improve-
ment.

In summary, the following features were selected for
BN development for the four target variables:

– TP – lake TP concentration from the previous summer.

– Chl a – chl a from the previous summer, lake TP con-
centration, and wind speed. We also included a relation-
ship between chl a (PS) and TP (PS), as we would not
expect these two nodes to be independent.

– Cyanobacteria – lake chl a and colour.

– Colour – lake colour from the previous summer and rain
sum.

3.2 Gaussian Bayesian network development

3.2.1 BN structure and GBN parameters

The key relationships highlighted (Sect. 3.1) were then used
to develop the BN structure, which is shown, together with

fitted coefficients for the GBN, in Fig. 7. For parentless
nodes, coefficients define normal distributions with mean β0
and variance σ 2. Child nodes are linear combinations of the
parent nodes with intercept β0, coefficients βn, and vari-
ance σ 2. See Appendix B for 95 % confidence intervals on
the fitted coefficients. Fitted coefficients for the GBN were
all plausible and matched the simple bivariate relationships
between variables seen in the exploratory data analysis.

3.2.2 Fitted discrete BN

The fitted CPTs for the discrete network (Fig. 8) did a slightly
more mixed job of representing the relationships between
variables. Despite using a relatively high iss value when fit-
ting the network (i.e. giving the priors relatively high weight;
see Sect. 2.6.2), several dubious relationships remain in the
CPTs. For example, from our exploratory analysis, we ex-
pected a negative (or no) wind effect on chl a. However, the
opposite effect is seen in the last two rows of the chl a CPT,
with an increase in the chance of having high chl a at higher
wind speeds. More issues like this were present when a lower
iss value was used and are very likely just an artefact due to
the small sample size.

3.3 GBN validation and assessment

We then explored the most appropriate GBN model structure
and assessed its predictive performance using the following:
(1) cross-validation using subsets of the GBN, including a
comparison to the discrete BN, (2) goodness of fit of the
whole network compared to observations, and (3) a compar-
ison to a simple benchmark model.

3.3.1 Cross-validation using subsets of the network

As mentioned in Sect. 2.7, cross-validation (CV) requires
complete data for all variables and years. As cyanobacteria
has only been monitored since 1996, to avoid a large loss
of data for TP, chl a, and colour, we split the GBN up into
smaller subnetworks before performing cross-validation for
each target node separately, as follows.

1. TP and chl a – drop cyanobacteria, colour, the previous
summer’s colour, and rain nodes from the BN and use
the whole 1981–2018 period in cross-validation.

2. Colour – as colour was linked to the network through
cyanobacteria, to be able to include the full pe-
riod 1981–2018 we had to drop all nodes, aside from
colour and its parents (rain sum and the previous sum-
mer’s colour).

3. Cyanobacteria – the whole network was used but only
with data from 1997.

CV results comparing the classification error of the GBN and
the discrete BN are shown in Table 5. We might expect the
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Figure 7. Gaussian Bayesian network (GBN) structure and parameters defining the conditional probability densities at each node. Units for
standard deviations (σ ) and intercepts (β0) are the same as the original data, aside from cyanobacteria, where a Box–Cox transformation was
used (λ= 0.1). See Table 1 for a detailed description of the variables and Table B1 for 95 % confidence intervals on the fitted coefficients.

Figure 8. Fitted conditional probability tables for the discrete Bayesian network. Values were discretised into low (L) or high (H ) classes –
a medium (M) class was also included for colour (PS) – as described in Sect. 2.6.2.

https://doi.org/10.5194/hess-26-3103-2022 Hydrol. Earth Syst. Sci., 26, 3103–3124, 2022



3116 L. A. Jackson-Blake et al.: Seasonal forecasting of lake water quality and algal bloom risk

Table 5. Mean predictive performance of different Bayesian
network (BN) structures, including the Gaussian Bayesian net-
work (GBN) with and without weather nodes and a discrete BN,
assessed through cross-validation. The BNs used for each variable
were subsets of the BN shown in Fig. 7, for all but cyanobacteria, to
make the most of all available data (see Sect. 3.3.1). GBN cyanobac-
teria predictions were back-transformed to the original data scale
before calculating statistics (see Sect. 2.6.1). Note: RMSE is root
mean square error; n/a is not applicable.

Variable BN type Weather R2 RMSE Classification
nodes error (%)

included?

TP GBN X 0.32 3.98 33
GBN X 0.32 3.98 33
Discrete X n/a n/a 29

Chl a GBN X 0.30 4.76 34
GBN X 0.30 4.75 32
Discrete X n/a n/a 8

Colour GBN X 0.72 8.75 23
GBN X 0.68 9.32 24
Discrete X n/a n/a 34

Cyano GBN X 0.14 1.92 31
GBN X 0.23 1.76 33
Discrete X n/a n/a 34

discrete BN, which was fit to discrete data, to do a better job
of predicting the water quality class than the GBN. However,
this was only the case for chl a. The discrete network was
a worse classifier than the GBN for colour and performed
similarly for cyanobacteria and TP.

Predictive performance of the GBN with and without
weather nodes is also shown in Table 5. Lake colour was the
only variable for which model performance was a little bet-
ter when meteorological variables were included, although
the gains were marginal. For chl a and TP, performance was
near-identical with or without weather nodes, while it was
slightly worse for cyanobacteria when weather nodes were
included. Further investigation showed that this was due to
the wind–chl a arc. Overall, CV results suggest a marginal
benefit to using rain sum when predicting lake colour but that
wind should be dropped from the GBN.

3.3.2 Goodness-of-fit of the whole network

Model performance of the whole network, using the same
data for both fitting and assessment, is shown in Table 6. Per-
formance was best for lake colour (R2 > 0.7), which showed
particularly high temporal autocorrelation. The same general
lack of sensitivity to weather nodes was seen as in the CV re-
sults and when considering additional model performance
statistics (Table 6; Fig. 9).

3.3.3 GBN predictions compared to a benchmark
model

Model performance was then compared to the performance
of a seasonal naïve forecaster (Table 6; Fig. 9). For TP and
cyanobacteria, the GBN performed better than the naïve fore-
cast for all statistics. For lake colour, the GBN performed
better at all but classification. For chl a, the naïve forecast
performed slightly better. It was particularly better at classi-
fication and, from an inspection of Fig. 9, this is likely be-
cause the GBN predictions often happen to lie slightly under
the 20 mg L−1 threshold used in the classification.

3.4 Forecasting to support water management

An example of a prototype seasonal forecast is available at
https://watexr.data.niva.no/ (last access: 22 April 2022). The
forecast includes the probability of being in one of two WFD-
relevant status classes, the expected (mean) value, some his-
toric skill information, and a text summary to aid in the inter-
pretation of the forecast (e.g. chl a is expected to be moder-
ate or better. Confidence level: medium). The forecast’s lay-
out was developed together with the regional water manager
(Morsa) to ensure that it met their needs, and they have ex-
pressed optimism about the use of these kinds of forecasts to
support water management and have identified actions which
could be taken based on reliable-enough forecasts (Jackson-
Blake et al., 2022). As well as providing an easy way of de-
riving probabilistic forecasts, we found a real benefit of us-
ing BNs for forecasting was in stakeholder engagement and
model co-development. We found that the easy and trans-
parent visualisation of the model increased stakeholder en-
gagement in the model development process and stakehold-
ers’ ability to correctly interpret the probabilistic predictions
(Jackson-Blake et al., 2022).

4 Discussion

The main aims of this study were (1) to develop a model for
seasonal forecasting of lake water quality and (2) to demon-
strate the use of a continuous GBN for environmental mod-
elling over more traditional discrete BN approaches. We dis-
cuss each of these in turn below.

4.1 Seasonal forecasting of lake water quality

4.1.1 Drivers of interannual variability in lake water
quality

In Vansjø, key water quality predictors were values observed
during the previous summer. Indeed, for lake TP concentra-
tion, this was the only predictor variable selected (Sect. 3.1).
The strength of this annual autocorrelation, together with
relatively low interannual variability in lake water quality
(Fig. 9), are likely the reasons why the seasonal naïve fore-
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Table 6. Performance of the GBN, with and without weather nodes, fit using the whole historic period (no cross-validation) and the whole BN.
Performance of the seasonal naïve forecast is also shown. The MCC and classification error reflect classifier skill, while other statistics reflect
how well the mean predicted values match observations. Note: RMSE is root mean square error; MCC is Matthews correlation coefficient.

Variable Model Weather R2 RMSE Bias MCC Classification
variables error (%)
included?

TP Naïve X 0.41 4.29 0.70 0.16 42
GBN X 0.42 3.68 −0.06 0.34 32
GBN X 0.42 3.68 −0.07 0.34 32

Chl a Naïve X 0.43 4.61 0.18 0.70 11
GBN X 0.39 4.38 −0.09 0.23 27
GBN X 0.37 4.44 −0.06 0.18 27

Colour Naïve X 0.73 9.16 1.20 0.54 22
GBN X 0.75 8.41 −0.52 0.44 26
GBN X 0.71 9.05 −0.75 0.44 26

Cyanobacteria Naïve X 0.31 1.80 0.19 0.55 23
GBN X 0.35 1.54 0.02 0.70 17
GBN X 0.38 1.51 0.03 0.70 17

Figure 9. Lake water quality observations and predictions from a range of models, including the Gaussian Bayesian network (BN) with
and without weather variables, and a seasonal naïve forecast. Horizontal grey lines show the thresholds used to classify predictions into two
WFD-relevant classes (see Table 2).
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cast performed only slightly worse than the GBN and even
slightly better for chl a (Sect. 3.3.3). Aside from high tempo-
ral autocorrelation, we found positive relationships between
lake TP concentration and chl a and cyanobacteria, as widely
documented elsewhere (Rousso et al., 2020). We also found
evidence for a decrease in cyanobacteria as lake colour in-
creased, again a previously documented effect (Sect. 3.1). No
link was seen between lake colour and chl a, however, per-
haps due to quality issues with the colour data before 1998
(Sect. 2.3), while cyanobacteria data were only available
from 1996 and so missed the colour step change. Although
we found some evidence for relationships between weather
variables and water quality, subsequent analyses suggested
that it was not worth including weather nodes in the GBN, as
the improvements in predictive performance were marginal
(for lake colour) or absent (Sect. 3.3), and it is highly un-
likely that the marginal improvements would still be seen
after replacing real observed historical meteorological data
with seasonal climate model hindcasts.

The lack of a temperature effect on algal biomass or
cyanobacteria is interesting, as we might expect warmer sum-
mers to be accompanied by more intense blooms. However,
the results fit with a number of studies which found that
warming effects were minor compared to nutrient effects
(Lürling et al., 2018; Robarts and Zohary, 1987) and that wa-
ter column stability was a key driver of cyanobacteria dynam-
ics in dimictic lakes (Taranu et al., 2012), with wind playing
a more dominant role than seasonal air temperature (Huber et
al., 2012; Yang et al., 2016). We did, however, find a strong
air temperature effect on the within-year variation in chl a
and, to a lesser extent, cyanobacteria (Appendix A), likely
because the within-year variability is large compared to intra-
annual variability and follows a systematic seasonal pattern.
When looking in more detail at some of the BN studies in
which relationships were identified between air temperature
and algal variables (Shan et al., 2019; Rigosi et al., 2015;
Williams and Cole, 2013; Moe et al., 2019; Couture et al.,
2018), the observations used to fit the BN were not annually
aggregated, so both with- and between-year variability were
included. This may be appropriate if the aim is to look at
algal dynamics within a year. However, it may not be appro-
priate for predicting interannual variation or for longer-term
prognoses. Although temperature is likely to be important
in many areas, it seems likely that a number of studies will
have overestimated its importance by assuming that within-
year relationships between temperature and algal dynamics
can be used to infer future algal responses to increases in
summer temperature under climate change.

4.1.2 Operational forecasting using seasonal climate
forecasting

One of the original aims of the study was to explore whether
the latest seasonal climate forecasting products could be used
to support water management by enabling improved seasonal

water quality forecasting. However, as we did not find a
strong sensitivity to seasonal climate, this aim became re-
dundant. In systems which are more sensitive to seasonal cli-
mate, a next step would be to assess GBN predictive perfor-
mance using seasonal climate model hindcasts when making
predictions (as in Mercado-Bettín et al., 2021). A compari-
son of model forecasting skill using seasonal climate model
hindcasts versus observed weather would then allow for an
assessment of the value of seasonal climate model hindcasts.
Seasonal climate forecasts are probabilistic and should only
be used to give a broad indication of the likely direction of
change, often in terms of tercile probabilities (e.g. there is a
60 % chance that next summer will be windier than normal).
A hybrid BN would therefore be a good option, with discrete
nodes for the seasonal climate variables.

4.1.3 Data limitations and potential for improvement

As with all data-driven models, the quality of our model
strongly relies on the availability and quality of the data. In
this regard, we see potential for a number of improvements,
as follows:

– Although the lake has a long history of monitoring, the
training dataset is very small for a data-driven model
(≤ 39 data points). The lake showed low interannual
variability, with gradual changes over time and few ex-
treme events. Statistical power in a multivariate analysis
is therefore limited.

– Peaks in cyanobacteria were defined by a single point,
as in WFD classification, using relatively low-frequency
monitoring. An improvement would be for this value to
be calculated more robustly, from the mean of a number
of consecutive highest points, for example.

– We only used data from a single point in the lake, while
lake water quality can have high spatial variability. In
Vanemfjorden, for example, there were bathing bans in
place from 2000–2007, and yet the cyanobacteria obser-
vations from the monitoring point are not particularly
high during this period. Remote sensing products could
help address this issue and are increasingly being used
in cyanobacteria bloom prediction (Bertani et al., 2017;
Stumpf et al., 2012).

Overall, our GBN predictions are almost entirely reliant on
conditions observed during the previous summer. Despite the
short residence time of the lake, if TP concentrations are
buffered by lake sediment P release, seasonal algal peaks are
not temperature-limited, and water column stability is rela-
tively insensitive to seasonal wind and temperature (because
the water column is regularly mixed, for example), then this
rather simple model may be appropriate. All these things are
plausible in this shallow lake with a long history of eutroph-
ication. However, it is also likely that our model was lim-
ited by the underlying data, as mentioned above, and, for
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cyanobacteria, by the 6-month temporal aggregation win-
dow used (see Appendix A). As an example of a limitation
of the model, conditions during the previous winter are not
taken into account when making forecasts. However, there
is a general consensus that flooding in winter 2000–2001
caused a large input of TP to the lake and was responsible
for the cyanobacterial blooms that occurred in subsequent
years (Haande et al., 2011). Our bottom-up approach to se-
lecting variables to include in the model meant that, as we
did not find a relationship between winter discharge and lake
TP concentration, it was not included. While this bottom-up
approach ensures that the model is not affected by precon-
ceived (but potentially incorrect) beliefs, it also means that
rarely observed, but perhaps important, relationships are not
included. In this case, incorporating expert knowledge (to de-
cide on additional nodes to include in the BN and on CPD
coefficients) could increase the robustness of the BN at pre-
dicting out-of-sample conditions, particularly the impact of
extreme events. An alternative, albeit more time-consuming
approach, could be to include process-based model simula-
tions to increase the size of the training data, assuming a ro-
bust model could be set up. The BN could then be used as
a metamodel, as has been done previously at the site in the
context of longer-term climate and land use change studies
(Moe et al., 2019; Couture et al., 2018). However, process-
based lake models typically only predict chl a, so cyanobac-
teria forecasts would still rely on data-derived empirical re-
lationships or expert knowledge.

4.2 Continuous GBNs for environmental prediction

With GBNs, it is straightforward to produce probabilistic
predictions for water quality variables of interest. Predict-
ing the probability of reaching a management target, such
as a specific WFD status class, is also straightforward and of
direct management relevance (Sect. 3.4), and, although not
demonstrated here, it is easy to update the training dataset us-
ing new data. These features make the approach well suited
to forecasting. In terms of performance, our GBN was mod-
est in its prediction abilities. As discussed above, the perfor-
mance was likely limited by the nature of the lake and the
data available for training, but we believe the approach itself
was highly promising and would likely result in a more pow-
erful forecasting tool in lakes or rivers which showed higher
interannual variability and sensitivity to seasonal discharge
and climate or if used for forecasting at shorter timescales
(daily or monthly, for example).

We found that perhaps one of the main benefits of using a
GBN over a discrete BN was the speed with which a sensible
network could be developed. Our GBN parameters could be
easily fit in a physically plausible way using only observed
data, despite the small dataset. Developing a comparable dis-
crete BN was a much more subjective and time-consuming
process, both in terms of the discretisation of the data and

also deciding on the weighting of the uniform prior to try to
ensure sensible CPTs (Sect. 2.6.2).

However, the GBN approach has limitations which may
be problematic in some settings. The normality assumption
may not be appropriate, nor may it be appropriate to assume
linear relationships between variables. Although there was
no clear evidence for nonlinear relationships (Sect. 3.1), they
are common in ecological pressure response relationships,
including cyanobacteria blooms (Solheim et al., 2008). Over-
all, better performance might have been achieved with less
stringent parametric requirements. Nonparametric or semi-
parametric BN development has received considerable atten-
tion in recent years (Marcot and Penman, 2019), with a num-
ber of promising developments (e.g. Masmoudi and Mas-
moudi, 2019; Boukabour and Masmoudi, 2020; Hanea et al.,
2015), and we expect that nonparametric continuous BN al-
gorithms will increasingly become available in commonly
used BN software. However, the simplicity of the normal ap-
proximation used in GBNs means they are likely to remain a
good first choice. For people who use BN software that can-
not handle continuous nodes, a good alternative could be to
make use of commonly available functionality which allows
the user to specify a continuous probability distribution for a
node, which is then discretised within the software.

GBNs have much in common with multiple linear re-
gression (MLR), where linear relationships and Gaussian
error distributions are usually assumed and which are also
able to produce probabilistic predictions of continuous vari-
ables. Indeed, the local distributions in a GBN are ordinary
least squares regressions, i.e. univariate MLR involving only
root nodes that are ancestors of the output. Both GBN and
MLR approaches have advantages and disadvantages when
it comes to environmental modelling and forecasting. MLR
models have the advantage that input datasets do not need
to be normally distributed, and they are typically easy to im-
plement with standard software. MLR has been successfully
applied to algal bloom forecasting in Lake Erie, for exam-
ple (Ho and Michalak, 2017). The benefits of the BN ap-
proach include, for example, the ease of predicting multiple
explanatory variables, as was the focus here, where the in-
terest was in forecasting more than just algal bloom risk. In-
deed, perhaps the main strength of using a GBN over MLR is
that GBNs provide a powerful visual representation of poten-
tially complex interdependencies between variables. By pro-
viding a convenient way of defining and visualising a mul-
tivariate model, it becomes easier to explicitly incorporate
domain knowledge into the model building process (such as
which variables affect which other variables) and facilitate
collaborative model development and communication of re-
sults (Sect. 3.4). Based on our experience in this study, we
believe that the process of constructing a GBN forces mod-
ellers to think about key relationships and to consider more
carefully common MLR pitfalls such as multicollinearity and
omitted variable bias.
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5 Conclusions

We developed a continuous GBN to produce probabilis-
tic forecasts for average growing season (May–October)
lake water quality (TP, chl a, and colour) and maximum
cyanobacteria biovolume. The aim was to provide early
warning, in the spring of a given year, of the likely conditions
for the coming season. This is, to our knowledge, one of the
first continuous GBNs for water quality prediction and one of
few continuous BNs in environmental modelling more gen-
erally. Overall, we found the GBN approach to be well suited
to seasonal water quality forecasting. It is straightforward to
produce probabilistic predictions, including the probability
of lying within a WFD-relevant status class. The process of
developing the GBN was substantially less time-consuming
and subjective than developing a discrete BN, and the GBN
could be sensibly parameterised just using observed data, de-
spite the small dataset. Despite the parametric constraints of
GBNs, their simplicity, together with the relative accessibil-
ity of BN software which includes GBN handling, means
they are a good first choice for BN development, which we
think should be considered more widely when data are con-
tinuous.

Although the GBN approach itself proved to be promis-
ing, we had more mixed success with forecasting seasonal
(or interannual) lake water quality at our study site. Al-
though our exploratory data analysis suggested that wind and
precipitation exerted a control on interannual variability in
lake water quality, these relationships were weak, and over-
all our lake showed low sensitivity to seasonal climate. In-
stead, the dominant source of predictability was simply the
lake water quality observed the previous year. Because of
this strong inertia, the GBN did not perform much better than
a naïve seasonal forecast. Potential improvements, which
could make the model more powerful at predicting seasonal
water quality, include incorporating expert knowledge on the
likely impacts of rare events into the BN structure and con-
ditional probabilities, improving the quality of the training
data, and expanding the training set using synthetic process-
based model results. We found a much stronger weather con-
trol on within-year variability in lake water quality, and we
envisage a more management-relevant forecasting tool could
be developed by adapting the approach to forecast water
quality at subannual timescales or by applying it to fore-
cast seasonal water quality of water bodies (rivers or lakes)
that show higher interannual variability and sensitivity to sea-
sonal climate.

Appendix A: Exploratory statistical analyses using
finer-scale temporal aggregation

A1 Method

Temporal aggregation over the whole growing season is
coarse and may miss causative relationships. We therefore
also carried out finer-scale aggregation to check and expand
on the results obtained from the 6-monthly analyses. This
finer-scale aggregation included the following:

1. Algal peaks and prepeak conditions for explanatory
variables. For each year, we selected peak (maximum)
values for chl a and cyanobacteria. We then calculated,
for chl a and cyanobacteria in turn, the means or sums of
the potential explanatory variables over 14, 30, 60, and
90 d prepeak. By ensuring that the potential explanatory
variables only include data from before the observed
algal peak, this aggregation method should have more
power to identify causative relationships, while still fo-
cusing on interannual variation.

2. Monthly aggregation. A repeat of the exploratory statis-
tical analysis (Sect. 2.5) using monthly data to explore
the causes of both within- and between-year variability.

A2 Results

A2.1 Algal peaks and prepeak conditions for the
explanatory variables

For chl a, the strongest relationships were seen with lake
TP concentration and wind-related variables (Table A1), as
in the analysis using 6-monthly aggregation. For cyanobac-
teria, the strongest correlations were with lake TP and chl a
concentrations, and there was also a relationship with lake
colour, as in the 6-monthly analysis. In contrast to the whole-
season analysis, relationships between cyanobacteria and
variables relating to wetness and flow were seen for some
temporal aggregation windows, suggesting that the larger the
rainfall and river discharge (and the shorter the lake wa-
ter residence time) over the preceding 30–60 d, the lower
the cyanobacterial biomass. Overall, this analysis, using a
shorter and more causally plausible temporal aggregation, re-
sulted in very similar features being selected as in the whole-
season aggregation, with the exception that hydrology and
residence time may play more of a role in cyanobacteria
bloom development.

A2.2 Monthly aggregation

For all variables, the strongest relationships were with the
values observed in the previous month(s), and there were
strong correlations between values observed in the previous
summer. As well as this strong temporal auto-correlation, po-
tentially important relationships included the following:
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Table A1. Pearson’sR correlation coefficients for seasonal maxima of chl a and cyanobacteria and potential explanatory variables aggregated
(mean or sum) over n days before the algal peak occurred. For clarity, only |R|> 0.20 are shown for chl a and |R|> 0.30 for cyanobacteria.

Variable Temporal aggregation over n days prepeak

n= 14 n= 30 n= 60 n= 90

Chl a Wind speed −0.35 Wind speed −0.24 Wind>P80 −0.31 Wind>P80 -0.32
Wind>P80 −0.32 Wind>P80 −0.22 Wind speed −0.25 Wind speed −0.23

Wind>P60 −0.23
TP 0.21 TP 0.21 TP 0.34 TP 0.36
Wind<P40 0.23 Wind<P20 0.23
Wind<P20 0.27

Cyano Colour −0.33 Rain days −0.41 Rain days −0.45 Colour −0.41
Q −0.31 Rain sum −0.36 Rain sum −0.39

Q −0.33 Colour −0.38
Colour −0.33

Chl a 0.48 Chl a 0.54 Chl a 0.48 TP 0.51
TP 0.71 TP 0.63 TP 0.61 Chl a 0.55

– TP. The strongest correlations were with the previous
summer’s TP (R = 0.45), and there were weaker corre-
lations with wind. For example, the calmer the previous
winter or 2–6 months, the higher the TP (R ≤ 0.31, de-
pending on the lag), and the windier the previous winter
or 6 months, the lower the TP (R ≤−0.22, depending
on the lag). Stronger correlations were seen between TP
and wind over the previous ≥ 2 months rather than the
previous or current month. Wind should have an imme-
diate and relatively short-lived effect on TP via water
column mixing, so this suggests that the relationship is
not causative. Correlations with all other variables were
weak (R < |0.16|).

– Chl a. The strongest correlations were with the current
month’s air temperature (R = 0.50) and the air tempera-
ture in previous months. Correlations with all other vari-
ables were weaker (R < |0.35|).

– Cyanobacteria. The strongest correlations were with
chl a concentration (R = 0.71), lake colour (R =
−0.43), lake TP concentration (R = 0.41), the previous
summer’s cyanobacteria and TP concentrations (R =
0.39 and R = 0.37, respectively), and winter wind (R =
0.36 or lower, depending on the wind percentile).

– Colour. The strongest correlations were with the previ-
ous summer’s colour (R = 0.72) and with rain variables,
particularly with the precipitation sum and the number
of intense rain days over the previous 5 or 6 months
(R in the range 0.56–0.60) and with discharge sum the
previous 3 months (R = 0.54). There was also a neg-
ative correlation with air temperature in the current or
previous 1–3 months (R in the range −0.51 to −0.44).
All other correlations had R < |0.41|.

Overall, many of the same variables which were important in
explaining interannual differences were highlighted as being
important. However, a key difference is the appearance of a
strong correlation between air temperature and chl a concen-
tration, discussed further in Sect. 4.1.1.

Appendix B: Confidence intervals for fitted GBN
coefficients

Table B1. Fitted GBN coefficients with 95 % confidence intervals.

95 % confidence
GBN node Coefficient Value interval (±)

Original %
data

units

TP β0 10.9 7.5 69
βTP (PS) 0.606 0.252 42

TP (PS) β0 29.5 1.7 6

Chl a β0 14.8 24.7 167
βTP 0.471 0.297 63
βchl a(PS) 0.331 0.301 91
βwind speed −5.09 5.94 −117

Chl a (PS) β0 −2.61 9.19 −352
βTP (PS) 0.618 0.307 50

Wind speed β0 3.57 0.08 2

Cyano β0 −1.79 1.94 −108
βchl a 0.169 0.066 39
βcolour −0.024 0.024 −98

Colour (PS) β0 41.2 6.1 15
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Table B1. Continued.

95 % confidence
GBN node Coefficient Value interval (±)

Original %
data

units

Colour β0 −7.7 15.8 −206
βcolour(PS) 0.814 0.218 27
βrain sum 0.0282 0.0333 118

Rain sum β0 515 35 7

Code and data availability. Data and scripts are available at
https://github.com/LeahJB/gbn-vansjo (Jackson-Blake, 2022a), and
the first release (v0.1) of the repository is archived at
https://doi.org/10.5281/zenodo.6535592 (Jackson-Blake, 2022b).
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