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Abstract. Neural networks have been shown to be extremely
effective rainfall-runoff models, where the river discharge is
predicted from meteorological inputs. However, the question
remains: what have these models learned? Is it possible to ex-
tract information about the learned relationships that map in-
puts to outputs, and do these mappings represent known hy-
drological concepts? Small-scale experiments have demon-
strated that the internal states of long short-term memory
networks (LSTMs), a particular neural network architecture
predisposed to hydrological modelling, can be interpreted.
By extracting the tensors which represent the learned trans-
lation from inputs (precipitation, temperature, and poten-
tial evapotranspiration) to outputs (discharge), this research
seeks to understand what information the LSTM captures
about the hydrological system. We assess the hypothesis that
the LSTM replicates real-world processes and that we can
extract information about these processes from the internal
states of the LSTM. We examine the cell-state vector, which
represents the memory of the LSTM, and explore the ways
in which the LSTM learns to reproduce stores of water, such
as soil moisture and snow cover. We use a simple regression
approach to map the LSTM state vector to our target stores
(soil moisture and snow). Good correlations (R2 > 0.8) be-
tween the probe outputs and the target variables of interest
provide evidence that the LSTM contains information that

reflects known hydrological processes comparable with the
concept of variable-capacity soil moisture stores.

The implications of this study are threefold: (1) LSTMs re-
produce known hydrological processes. (2) While conceptual
models have theoretical assumptions embedded in the model
a priori, the LSTM derives these from the data. These learned
representations are interpretable by scientists. (3) LSTMs
can be used to gain an estimate of intermediate stores of
water such as soil moisture. While machine learning inter-
pretability is still a nascent field and our approach reflects a
simple technique for exploring what the model has learned,
the results are robust to different initial conditions and to
a variety of benchmarking experiments. We therefore argue
that deep learning approaches can be used to advance our
scientific goals as well as our predictive goals.

1 Introduction

Long short-term memory networks (LSTMs) have demon-
strated state-of-the-art performance for rainfall-runoff mod-
elling for a variety of locations and tasks (Kratzert et al.,
2018, 2019d; Ma et al., 2020; Lees et al., 2021; Frame et al.,
2021). However, whether we can use these models to better
interpret the hydrological system remains an open question.
Given that LSTM-based models offer state-of-the-art hydro-
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logical performance, more research is required to better un-
derstand which conceptual structures the LSTM has learned
and to diagnose potential gaps in our conceptual and process-
based models, ultimately to stimulate innovation in hydro-
logical theory.

The primary objective of this study is to test the hypoth-
esis that the information stored in the LSTM state vector
reflects known hydrological concepts that are important for
discharge generation, including soil water storage and snow
processes. What have these models learned about the hydro-
logical system that allows them to make highly accurate pre-
dictions? Can we interrogate the model to determine whether
the LSTM has learned a physically realistic mapping from
inputs to outputs? Being able to reason about the model and
its behaviour is a key component of dependable models. It
allows researchers and practitioners to interrogate the model,
making sure that it is giving the right results for the right
reasons (Kirchner, 2006).

Deriving insights about the hydrological system has
always been a goal of hydrological modelling (Beven,
2011). Peter Young’s work on data-based mechanistic mod-
elling (DBM) emphasized the need to apply flexible data-
driven models before then applying a mechanistic interpre-
tation to the learned representation of these models (Young
and Beven, 1994; Young, 2003, 1998). Philosophically, this
approach is similar to the one we take here, although the
number of parameters in the DBM approach is much smaller.
In an early application of neural networks to rainfall-runoff
modelling, Wilby et al. (2003) sought to challenge precon-
ceptions of neural network approaches as uninterpretable.
They found that nodes in their multi-layer perceptron cor-
responded to quick flow, baseflow, and soil saturation and
showed how the learned representation of deep learning
models could be interpreted. They sought to determine
whether neural networks were capable of reproducing both
the outputs and internal functioning of conceptual hydrolog-
ical models.

Recent studies call to more fully explore the potential for
techniques from the fields of artificial intelligence and ma-
chine learning (Beven, 2020; Reichstein et al., 2019; Shen,
2018; Karpatne et al., 2017) by demonstrating predictive
performance alongside interpretations of the model itself to
improve our understanding of the modelled system. Sev-
eral studies have suggested that LSTM rainfall-runoff mod-
els learn a generalizable representation of the underlying
physical processes. This allows them to perform well in
out-of-sample conditions, such as prediction in ungauged
basins (PUB) (Kratzert et al., 2019c; Feng et al., 2020; Ma
et al., 2020) and unseen extreme events (Frame et al., 2021).
These results suggest that LSTMs have captured information
that generalizes to these conditions, information that can help
us improve hydrological theory and predictions.

Outside of hydrology, calls for interpreting machine learn-
ing and deep learning systems are getting louder and
even generating legislative changes (European Union Digi-

tal Strategy, 2019; UK Statistics Authority, 2019). Spiegel-
halter (2020), for example, argues that as algorithmic deci-
sion support tools become widespread in everyday life, the
ability to describe how predictions are made is essential for
building trust in these systems. A large body of literature has
arisen to define interpretability (Ribeiro et al., 2016; Lipton,
2018; Doshi-Velez and Kim, 2017), to measure how inter-
pretable models aid human decision making (Nguyen, 2018;
Chu et al., 2020), and to develop methods for interpreting
models (Olah et al., 2018, 2020; Ghorbani and Zou, 2020;
Lundberg and Lee, 2017). Our contribution draws on work
from neuro-linguistic programming, where learned embed-
dings from models trained for speech-recognition tasks have
been interpreted to better understand how parts of speech are
recognized and used by LSTM models (Hewitt and Liang,
2019).

The exploration of the internal representations of LSTM-
based rainfall-runoff models is still at an early developmen-
tal stage. Kratzert et al. (2018) showed evidence that indi-
vidual LSTM cells correlate with snow water content, al-
though the model was only trained to predict discharge from
meteorological inputs. Kratzert et al. (2019d) explored the
learned embedding of catchment attributes, showing that an
LSTM variant had learned to group the rainfall-runoff be-
haviours of hydrologically similar catchments. Using dimen-
sionality reduction techniques, the static embedding (the out-
put of the input gate) was shown to reflect spatial and the-
matic groups of catchments that qualitatively correspond to
catchments with similar hydrological behaviours. For two ex-
emplary basins, Kratzert et al. (2019b) found correlations
between the cell states of the LSTM and three hydrologi-
cal states (upper-zone storage, lower-zone storage, and snow
depth) from the Sacramento+Snow-17 hydrological model
(Burnash, 1995). All three of these studies introduced meth-
ods that can be used for exploring the internal representa-
tion of hydrological models, but there exists no comprehen-
sive evaluation of the information stored in the cell-state di-
mensions across a large sample of basins. Furthermore, these
studies only compared individual memory cells with hydro-
logical processes. The LSTM, however, is not forced to store
information about one process in a single memory cell but
can distribute the information about hydrological processes
across several cells. Therefore, we explore methods for ex-
tracting the information that is stored in the LSTM cell state,
across all cells.

The aim of this research is to examine the internal func-
tioning of the LSTM model. We explore the evolution of
the LSTM state vector and test whether information that re-
flects intermediate stores of water (soil moisture and snow
depth) has been learned by the LSTM. This research is novel
for providing a means of interpreting which information the
LSTM rainfall-runoff model has encoded within its state vec-
tor. To our knowledge, we are the first to apply techniques
developed in machine learning interpretability and natural
language processing research (Hewitt and Liang, 2019) to
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hydrology. We carry out a comprehensive evaluation of the
LSTM cell states across a sample of 669 catchments in Great
Britain (Lees et al., 2021). This allows us to rigorously as-
sess whether the LSTM has learned concepts that generalize
over space. On this basis we devised several baseline exper-
iments to provide evidence of an internal representation of
hydrologically relevant processes. Furthermore, we consider
information stored across all values in the LSTM state vector,
as opposed to identifying and focusing only on single values
from within the cell state. This is important since there are
no constraints forcing the LSTM to store information in in-
dividual cells.

2 Methods

In this study, we trained LSTM models using the same hyper-
parameters as those trained in Lees et al. (2021). We offer a
brief introduction to the state-space formulation of the LSTM
(Kratzert et al., 2019b) because it offers a clear explanation
for why we explore the cell state (ct ), since it reflects the state
vector of the LSTM.

2.1 The LSTM

Hydrological models are often formulated with a state-space-
based approach. This means that the states (s) at a specific
time (t) depend on the input at time t (xt ), the model state
in the previous timestep (st−1), and the model parameters (θ )
(Kratzert et al., 2019b).

st = g
(
xt , st−1;θj

)
(1)

The model output (yt , discharge) is a function of the
states (st ) and inputs (it ) at that timestep and the model pa-
rameters.

yt = g
(
xt , st ;θj

)
(2)

Similarly, the LSTM can be formulated as

ct ,ht = fLSTM (xt ,ct−1,ht−1;θk) , (3)
yt = fDense (ht ;θl) , (4)

where the state vector (the “cell state” ct ) and output vec-
tor (the “hidden state” ht ) of the LSTM at timestep t are
a function of the current inputs (xt , e.g. meteorological
features and catchment attributes), the previous output and
state (ht−1 and ct−1), and some learnable parameters (θk).
Similarly to the state-update equations, the output of the
model (yt , e.g. the discharge) is a function of the output of
the LSTM (ht , which is a function of ct ) and some more
(learnable) model parameters (θi).

The key difference between the LSTM and classical state
models (e.g. conceptual and physical hydrology models) is
that the LSTM can infer any process that is deducible from

the data to solve the training task, while classical hydrolog-
ical models are limited by the processes that are hard-coded
in the model implementation. For a more detailed description
of the LSTM, we refer to Kratzert et al. (2019d), particularly
Fig. 1 and Eqs. (1)–(12), both found in Section 2, Methods.
A diagrammatic representation of the LSTM can be found in
Appendix F, Fig. F1.

In order for the LSTM models to produce accurate simula-
tions of discharge across a variety of catchments, we hypoth-
esize that the LSTM should have learned to represent hydro-
logical processes and stores. We test whether the LSTM is
able to recover intermediate stores of water by visualizing
the evolution of the LSTM cell state and compare this to soil
moisture and snow depth from ERA5-Land.

2.2 Experimental design

We used the following experimental design to investigate the
learned hydrological process understanding of LSTMs.

Following Lees et al. (2021), we trained a single LSTM to
predict runoff for 669 basins from the CAMELS-GB dataset
(Coxon et al., 2020b). The input sequences are digested into
the LSTM, each consisting of 1 year’s worth of daily data
(365 timesteps). The model is forced by a set of meteorolog-
ical variables (precipitation, temperature, and potential evap-
otranspiration) and a series of static catchment attributes de-
scribing topography, climatic conditions, soil types, and land
cover classes. These static attributes are used to learn differ-
ences and similarities between catchments. For more details
of the training procedure and for a comprehensive table list-
ing all model inputs, we refer the reader to Table 2 of Lees
et al. (2021). It is important to note that neither snow depth
nor soil moisture was included as inputs or outputs during
model training.

2.3 Probing

In the present context, a probe is a diagnostic device that
is used on top of the trained LSTM model to examine the
learned internal representation of the LSTM. In its simplest
form, a probe is a linear regression model that connects the
cell states to a given output. In a more complex form a probe
might be realized in the form of a set of stacked multi-layer
perceptrons or any other algorithm fit for regression tasks. As
such, probes offer the opportunity to explore what the LSTM
has learned during training, allowing us to use the LSTM to
generate predictions of latent, intermediate variables. They
also confirm whether our model has learned physically re-
alistic mappings from inputs to outputs. To our knowledge,
probes have not been used on hydrological LSTMs.

Probes have been used in natural language processing
tasks to determine whether learned embeddings in deep
learning models contain information that can be matched to
semantically meaningful concepts (Hewitt and Liang, 2019).
The embeddings are used as inputs, and a probe is trained
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Figure 1. An overview of the linear probe analysis. Panel (a) demonstrates the LSTM as an input–state–output model, where at each timestep,
inputs (blue spheres, such as precipitation) are processed, producing a prediction of discharge on the 365th day. This reflects how the LSTM
is trained. (b) When forcing the model with already trained weights, we extract the LSTM state vector (ct ) at each timestep. (c) We then
compile a dataset of inputs (the ct vectors for each target timestep) and targets (st – the soil moisture measurements for the catchment)
matched at each catchment and timestep. (d) Finally, we use this dataset to train a linear probe, a set of weights, and a bias term for all
catchments.

to map these embeddings onto properties, such as part-of-
speech tags.

Since these probes are trained in a supervised way, we
are currently limited to looking for known hydrological pro-
cesses. Trained in this way, probes cannot be used to extract
unknown information, since we require a target variable to
fit the probe. This means that in the present study we are not
looking for new hydrological understanding or seeking to un-
cover as-yet undiscovered hydrological patterns but are ex-
plicitly looking for known physical processes in the learned
LSTM representation. This paper demonstrates a conceptual
innovation moving the field towards extracting information
from the LSTM, diagnosing whether these neural networks
are learning physically realistic processes.

In this paper, we use the probe to explore whether the
LSTM state vector has information that is predictive of dif-
ferent latent hydrological variables, such as soil moisture at
various depths and snow water equivalent. We begin with the
simplest probe, a linear model. This encodes the strong as-
sumption that latent variables can be extracted as a linear
combination of the cell-state values. While this is not nec-
essarily the case, for the purposes of probe interpretation the
simplicity of the linear model is preferred. It allows for in-
tuitive explanations and simple visual analysis of results by
exploring the weights of the linear model and by interpreting
the probe predictions. For our experiments, we fit one probe
for all catchments, learning a set of weights and a bias term
for each target variable (Fig. 1c and d). That is, we hypothe-

size that there is a common set of weights that generalizes to
all basins in the training set.

As a control experiment, we ensure that we are not learn-
ing spurious relationships between the LSTM state and inter-
mediate hydrological stores (soil moisture and snow depth)
by designing two experiments to test that our findings are
specific in time and space. We test both shuffling the target
variables in space (i.e. breaking the spatial link between cell
states and the target variable) and shifting the target variable
in time (breaking the temporal link between inputs and out-
puts), and we find that these results show that the information
contained in the cell-state vector is specific to the given loca-
tion and time. These results can be found in Sect. A.

We train a linear probe parameterized by β to make predic-
tions of our target storage variable (ŝ) for each catchment (i)
and at each timestep ({1 : T }).

ŝi,{1:T } = fβ
(
ci,{1:T }

)
(5)

Our linear model, fβ , is a penalized linear regression model.
We use the elastic-net regularization that combines the
`1 penalty of lasso regression with the `2 penalty of ridge
regression. The reason for choosing the elastic-net regular-
ization is that when we have correlated features in ct , the
lasso (`1 penalty) shrinks non-informative weights to zero,
whereas the ridge (`2 penalty) shrinks weights for correlated
variables towards each other, thereby averaging these cor-
related variables (Friedman et al., 2010). The elastic net is
a compromise between these two penalties, where a higher
α parameter encourages a sparser regression equation, and
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a lower α parameter encourages averaging of correlated fea-
tures (Friedman et al., 2010). The objective function becomes

minβ
1

2nsamples

∣∣ci,tβ − y∣∣22+αρ|β|1+ α(1− ρ)2
|β|22. (6)

We set the α parameter to 1.0 (describing the degree of
shrinkage) and the ρ parameter to 0.15 (describing the de-
gree of `1 loss relative to `2 loss). These parameters were
set in order to give the best training-sample performance and
ensure that non-informative weights are shrunk to zero.

2.4 ERA5-Land data

In order to determine whether the information stored in the
LSTM state vector reflects known hydrological concepts, we
used variables from the ERA5-Land dataset as the probe tar-
gets (Fig. 1c and d). As designed, this protocol will determine
whether the LSTM has learned consistent representations by
comparing the probe output to commonly used soil mois-
ture products, including reanalysis data, rather than concepts
directly from in situ observations. Reanalysis observations
were preferred because of the longer time series of available
data, the gridded form meaning that catchment-averaged soil
moisture can be calculated, and because these products are
globally available, meaning that this approach would gener-
alize to LSTMs trained elsewhere. However, there are un-
certainties associated with the soil moisture estimates from
these gridded reanalysis products.

We used soil moisture and snow depth data from ERA5-
Land (Muñoz-Sabater et al., 2021), a reprocessing of the
land surface components of ERA5 forced by the ERA5 at-
mospheric model (Hersbach et al., 2020). ERA5-Land is a
reanalysis product with 9 km grid spacing and an hourly
temporal frequency. It is a global land surface reanalysis
dataset for describing the water and energy cycles. Muñoz-
Sabater et al. (2021) demonstrate that the ERA5-Land prod-
uct has improved soil moisture and snow observations com-
pared with ERA-Interim products when evaluated against
in situ soil moisture measurements. The results when com-
pared against ERA5 are more variable, although ERA5-Land
does show improvements in North America and small im-
provements in Europe. ERA5-Land does not assimilate soil
moisture observations directly; rather, the assimilation of ob-
served meteorological data occurs only in the calculation of
the atmospheric forcing variables from ERA5. Therefore, we
can be confident that ERA5-Land provides a calculation of
soil moisture independent of the observational, catchment-
averaged datasets included in CAMELS-GB (Coxon et al.,
2020b) which are used to train the LSTM. It is worth men-
tioning that the main focus of this study is to test whether the
LSTM models intermediate stores of water (i.e. matches the
relative changes in that unseen variable over time) and not
necessarily to compare the values with the best possible soil
moisture (or snow) estimate/measurement.

The soil moisture data in ERA5-Land contain four layers,
each of which is used as a target variable. The top layer, soil
water volume level 1 (swvl1), is from 0 to 7 cm, the second
layer (swvl2) from 7 to 28 cm, the third layer (swvl3) from 28
to 100 cm, and the final layer (swvl4) from 100 to 289 cm. We
therefore fit four separate probes, using each soil moisture
layer as an independent target variable.

One drawback of using reanalysis soil moisture (ERA5-
Land) is that we identify modelled soil moisture rather than
a directly observed soil moisture signal – that is, we dis-
cover whether our LSTM model has learned a process rep-
resentation. To counter this, we also assess probe perfor-
mances on alternative products such as ESA CCI Soil Mois-
ture, a blended product combining multiple satellite-derived
soil moisture estimates (see Sect. B). The ESA CCI dataset
comes with its own caveats, namely that the measured soil
moisture is restricted to the top layer (5–10 cm), and so we
cannot observe whether deeper layers are represented by the
internal state of the LSTM. Furthermore, the depth of the
satellite-derived estimate is itself a function of the water con-
tent and surface roughness. ESA CCI is not a direct obser-
vation either but a blended estimate using radiative transfer
functions and microwave-based estimations of soil moisture.
We use ERA5-Land soil moisture and snow depth as our
target variables for the results section of this paper. Further
comparisons against ESA CCI Soil Moisture can be found in
Appendix B.

ERA5-Land data have demonstrated improved represen-
tation of snow depth, in part due to the increased spatial
resolution which adds value in complex mountainous terrain
due to improved representation of the orography and there-
fore a better representation of the surface air temperature
(Muñoz-Sabater et al., 2021). To our knowledge there are
no direct verifications of the ERA5-Land snow product over
the area in northern Scotland, where our snow depth experi-
ments are conducted. However, there is evidence to suggest
that, in mid-altitude ranges, the improved spatial resolution
of ERA5-Land is a dominant factor in improving snow depth
estimates, at least over the ERA5 product (Muñoz-Sabater
et al., 2021).

We clipped the probe target variables (ERA5-Land soil
water layers 1 to 4 and snow depth) to the catchment shape-
files provided as part of the CAMELS-GB dataset (Coxon
et al., 2020a) and calculated a catchment mean to produce a
lumped catchment soil moisture time series. This follows the
methodology used to generate the CAMELS-GB meteoro-
logical forcing data. In order to train the linear probe, we nor-
malize the target data (ERA5-Land), centering the data using
the mean target value across every catchment and rescaling
the data using the standard deviation of the target data. Both
statistics are calculated in the training period.
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Figure 2. Histogram of catchment correlation scores for each soil water volume level: soil water volume level 1 (swvl1) contains soil moisture
from depths of 0–7 cm, soil water volume level 2 (swvl2) contains soil moisture from depths of 7–28 cm, soil water volume level 3 (swvl3)
contains soil moisture from depths of 28–100 cm, and soil water volume level 4 (swvl4) contains soil moisture from depths of 100–289 cm.

3 Results

3.1 Soil moisture probe

We use the linear probe described above to see whether a
learned soil moisture signal for four soil depths (from ERA5-
Land) is present in the LSTM. The correlation between the
inferred soil water volume and the target data from ERA5-
Land is shown by the histograms in Fig. 2. We can see
that, on average, the inferred soil moisture for the upper
three soil layers has a high correlation with the soil moisture
from ERA5-Land (median scores of 0.85, 0.90, and 0.89 for
level 1, level 2, and level 3 respectively). The median catch-
ment correlation coefficient for the fourth soil layer is less
than the three upper layers (0.77). However, we would ar-
gue that, for all four soil layers, the LSTM state seems to
model the dynamics of the soil water content. For reference,
we have run two experiments that act as a baseline (Ap-
pendix A).

The time series plots in Fig. 3 show that the linear probe
is able to capture the dynamics of the soil moisture values.
However, modelling the catchment-specific offset in catch-
ments with more or less saturated soils than the GB mean is
difficult with the linear probe (e.g. Fig. 3b: a catchment with
less saturated soils than the GB mean has an observed soil
water volume less than the zero point, which describes the
GB mean). By offset, we are referring to the point around
which soil moisture fluctuates, the mean saturation level for
that catchment. Looking at Fig. 4 confirms this hypothesis,
since the catchments with the largest biases in probe outputs
(blue circles) have wetter and drier-than-average conditions
compared with the smallest biases (orange), which are con-
centrated in the middle of the distribution.

As we mentioned in Sect. 2.4, we centered and rescaled
the ERA5-Land soil moisture data using the global mean and
standard deviation. So, a value of zero corresponds to the
mean soil water volume across all catchments in the train-

ing period. This can be seen in Catchment 15021, where the
catchment-specific soil moisture level is below zero (the grey
dashed line is below zero), but the probe continues to predict
values centred on zero. The dynamics remain well modelled
(and therefore correlation scores are high), but the probe
identifies soil moisture anomalies rather than absolute values.
Ultimately, we should expect this behaviour since we are fit-
ting a single linear model with only one bias term. For alter-
native methods that model catchment-specific offsets, please
see the experiment including a catchment-specific bias term
(by including the gauge ID as input to the model, Sect. C)
and the experiments with a non-linear model (Sect. E). We
return to this point in the discussion that follows.

3.2 Snow depth probe

Another process that influences river discharge is snow water
storage. ERA5-Land offers a snow depth variable (m of wa-
ter equivalent) that serves as a proxy of snow water equiva-
lent. In order to determine whether the LSTM is representing
snow processes in the state vector, we use the probe analysis
with ERA5-Land snow depth as our target variable.

Since snow processes are only significant in very few
basins in Great Britain, we trained the probe on a subset
of the basins shown in Fig. 5c. These are defined as those
catchments with a proportion of precipitation falling as snow
greater than 5 %. Figure 5b shows the probe output over
1 year for one station (Station 15025, Ericht at Craighall)
and then Fig. 5a shows the probe output for that station
and two other snowy catchments over the entire test pe-
riod (1998–2008). They show clearly that the probe output
correctly predicts very little variability in the summer pe-
riod, when the snow will have melted. The winter peaks cor-
respond to snow accumulation and snowmelt. The median
(over 33 catchments) Pearson correlation coefficient between
the probe-simulated snow depth and the ERA5-Land snow
depth is 0.84, meaning that 84 % of the snow variance can be
described by the linear probe simulation.

Hydrol. Earth Syst. Sci., 26, 3079–3101, 2022 https://doi.org/10.5194/hess-26-3079-2022



T. Lees et al.: Hydrological concept formation inside long short-term memory (LSTM) networks 3085

Figure 3. Time series of probe predictions (coloured lines) compared with the target variables (grey dotted lines). We show two catchments
here, (a) 54018, Rea Brook at Hookagate, and (b) 15021, Burn at Burnham Overy (chosen to reflect both a catchment with a small bias and
a catchment with a strong bias; see Appendix D for more information on these two catchments), and four soil moisture levels, swvl1 (blue),
swvl2 (orange), swvl3 (green), and swvl4 (red). The probe captures the temporal dynamics of the soil moisture signals but shows systematic
bias, consistently predicting variability about zero, which defines the mean GB-wide soil moisture.

4 Discussion

4.1 The LSTM has learned physically realistic
mappings

We find evidence that learned representations of catchment
storages, as encoded by the LSTM state vector, are predic-
tive of a broad range of catchment hydrological storages. We
have evidence that the LSTM, trained on a large dataset of
669 catchments, learns to model soil moisture processes and
snow water processes internally. We have tested these find-
ings with different initial conditions by initializing the LSTM
with a different random seed, with different probe designs
and with different data products. We find that our results are
robust to these different setups. This is despite the LSTM
never having seen these data or being constrained to model
these processes. It is worth emphasizing that the LSTM is
trained to predict only discharge, using information from

three meteorological drivers, temperature, precipitation, and
potential evapotranspiration, as well as 21 static catchment
attributes describing topographical conditions, climatologi-
cal conditions, land cover types, and soil texture (Lees et al.,
2021, Table 2). Neither direct information about snow ac-
cumulation and ablation nor soil moisture is included in the
training data. The LSTM has to learn these processes itself
from the raw meteorological inputs and the catchment at-
tributes, determining that these concepts are useful in solv-
ing its training task, i.e. predicting discharge. The states of
the LSTM are learned through backpropagation, and there-
fore these learned states are deemed useful by the model in
the training process for minimizing the error in the discharge
signal. This finding offers evidence that the LSTM is learn-
ing a physically realistic mapping from inputs to outputs that
corresponds to our understanding of the hydrological system.
While there exists a large set of possible mappings from in-
puts to outputs, the LSTM converges on an answer that re-
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Figure 4. (a) The spatial location of the 60 catchments with the largest probe biases (blue) and smallest probe biases (orange). (b) The
distribution of catchment log mean precipitation for the catchments with the largest and smallest probe biases. The largest 60 biases (blue)
occur in catchments that are wetter or drier than average, as demonstrated by the gap in the middle of the distribution of mean catchment
precipitations. By contrast, the smallest 60 biases (orange) are mostly concentrated in the middle of the distribution, as we expect when using
a simple linear model as the probe. These distributions are significantly different when using a two-sample Kolmogorov–Smirnov test.

flects our physical understanding. Although we only show
results from one model initialization here, these findings are
robust to different initializations (different random seeds).

We should not be entirely surprised by the finding that the
LSTM has identified a physically realistic mapping from in-
puts to outputs. Neural networks are adept at learning the
simplest solution to a given task. Since we are training the
model to predict discharge in hundreds of basins across GB,
the easiest solution is to learn the underlying physical re-
lationships, since the alternative requires learning of spuri-
ous correlations for all catchments. Nonetheless, by demon-
strating that the LSTM learns physically realistic mappings,
we can imagine interesting opportunities for hydrologists
to (a) provide predictions of intermediate hydrological vari-
ables such as soil moisture and snow depth and to (b) explore
which information remains in the cell states that has not al-
ready been identified as important for soil moisture or snow
processes.

The former opportunity (a), that the probe analysis offers a
means to predict intermediate variables, is interesting for two
reasons. Firstly, previous studies have demonstrated that the
LSTM produces more accurate discharge simulations when
benchmarked against other hydrological models, and so we
might expect that the intermediate variables and processes

are also better represented by the LSTM. Secondly, since the
LSTM generalizes to unseen basins (Kratzert et al., 2019c;
Frame et al., 2021), we might expect that the probe analysis
also generalizes to unseen basins. Exploring probe predic-
tions in ungauged basins reflects an exciting area of future
research. This could be done by learning the probe weights
for certain basins and then predicting on basins that have not
been seen by the LSTM or probe before. The latter opportu-
nity (b), that the LSTM allows us to learn something poten-
tially “unknown”, is an exciting aspect of using LSTM-based
models for hydrological modelling. Exploring remaining val-
ues in the LSTM state vector that have not already been as-
signed to a concept offers one promising avenue for iden-
tifying important processes or variables unaccounted for in
the predictors (e.g. water management) and/or explaining the
performance difference between the LSTM and traditional
hydrological models. Once identified, we have the opportu-
nity to incorporate this information back into traditional hy-
drological models. Alternatively, we can employ feature im-
portance metrics, such as the integrated gradients method, to
identify the signals that are most informative and then reason
about what these signals might represent. Such approaches
may, for example, allow us to detect anthropogenic anoma-
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Figure 5. (a) The probe simulation (blue line) plotted against the snow depth variable from ERA5-Land (black dashed line) showing the
correlation between the cell-state dimension and the target variable for all years in the training dataset (1998–2008). The red-shaded regions
represent winter months (December, January, February). Each subplot shows results for a selection of the snowy catchments as selected
from panel (c). (b) Probe predictions for the snow depth target variable for a single snowy station, 15025 in the Cairngorms (the red point
in c), for a single year 2007. Panel (c) shows catchments with significant snow processes in Great Britain (defined as having a fraction of
precipitation falling as snow greater than 5 % using the CAMELS-GB frac_snow variable, which is the percentage of precipitation falling as
snow) are concentrated in the Grampians range in north-eastern Scotland and the Pennines in northern England.

lies, such as reservoir operation decisions, changes in equip-
ment, or biases in the observed data.

Since the LSTM is often the most accurate rainfall-runoff
model for discharge (Kratzert et al., 2018, 2019d; Gauch
et al., 2021; Frame et al., 2021; Gauch and Lin, 2020), it
makes sense to explore the soil moisture that the LSTM as-
sociates with a simulated level of discharge. Soil moisture is
an important variable for understanding the runoff responses
to precipitation events (Sklash and Farvolden, 1979), for as-
sessing drought stress (Manning et al., 2018), and for as-
sessing the land surface response to future climate change
(Samaniego et al., 2018). We find that the LSTM is better
able to model shallower layers of soil moisture than deeper
layers (see Table 1). This likely reflects the fact that soil
moisture in these shallower layers is more closely related to
the discharge signal.

The probe analysis presented here represents one method
for extracting intermediate hydrological concepts from the
state vector of the LSTM. Our purpose in using such a probe

Table 1. Median catchment correlation scores over all 669 catch-
ments for the training period for each soil water layer, 1 (0–7 cm),
2 (7–29 cm), 3 (29–100 cm), and 4 (100–289 cm).

Soil Soil Soil Soil
layer 1 layer 2 layer 3 layer 4

Median correlation 0.85 0.90 0.89 0.77

is to interpret how information is processed by the LSTM.
We recognize that we should not necessarily expect to use
the probe output for more than interpreting the internal map-
pings of the LSTM. However, it is interesting to consider
which catchment soil moisture anomalies the LSTM learns
to associate with given discharge outputs. Figure 6 shows the
soil moisture anomalies as predicted by the probe.

We tested the probe against satellite-derived soil moisture
observations, using the blended active and passive ESA CCI
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Figure 6. The lumped (catchment-averaged) soil moisture for 0–7 cm at 30 daily timesteps covering most of July 2007.

Soil Moisture product to see whether we get consistent re-
sults (Dorigo et al., 2017; see Appendix B). The results are
similar to the results obtained when using the ERA5-Land
data, with lower absolute correlation scores. Moreover, we
see consistent performance declines when performing our
two control experiments, i.e. shuffling the LSTM state vec-
tors in space or shifting them in time (Appendix A), suggest-
ing that soil information stored in the LSTM state vector is
specific to each given catchment and timestep. We designed
these control experiments to determine whether soil moisture
time series can be reproduced from unrelated inputs. The re-
sults give evidence that the extracted signals are specific and
therefore that the results are unlikely to be due to chance.

Using alternative products such as ESA CCI Soil Mois-
ture (see Appendix B), a blended product combining multiple
satellite-derived soil moisture estimates, comes with its own
model assumptions and uncertainties. One key issue with re-
motely sensed soil moisture is that the measured soil mois-
ture is restricted to the top layer (5–10 cm), and the depth of
the satellite-derived estimate is itself a function of the water
content and surface roughness (Dorigo et al., 2017). Further-
more, it is difficult to measure and define catchment-scale
soil moisture in the real world, but we are running our ex-
periments using data lumped at the catchment scale. Neither
reanalysis nor satellite-derived soil moisture reflects a true
in situ observation of catchment-scale soil moisture. Our ap-
proach was instead to let the LSTM learn the most effective
mapping from inputs to outputs, and we interpret the inter-
mediate state vector, probing for the concepts that we expect
to find given our expectations.

With respect to examining the learned representation of
snow processes, one important aspect needs to be discussed.
The snow probe was trained on catchments with a fraction
of precipitation falling as snow greater than 5 %. Training a
linear probe with a penalized squared error loss function (see
Eq. 6) to predict snow depth on all 669 catchments caused the
learned weights of the probe to be zero, and no signal was de-
tected. This is because only 33 of the catchments have signif-
icant snow processes. In contrast, when we trained the probe
on catchments where we knew snow processes were occur-
ring, we found that the snow processes were well captured
by the variability in the cell-state values. Note that the probe
is still trained on the same LSTM. If we look at the cell-state
values that had the largest weights in the linear probe, we can
see that there exist snow-like signals which the probe incor-
porated into its representation of snow depth (Fig. 7).

Our experiments outlined above explore whether known
hydrological concepts (i.e. water stores) are captured by the
LSTM. Our work here is the first step towards interpret-
ing the internal dynamics of LSTM-based models. Future
work could consider how we might use feature attribution
approaches (such as the integrated gradients method) to iden-
tify the most informative cell-state values or else examine the
information contained within the states that do not correlate
with snow or soil moisture processes.

4.2 The catchment biases in the linear probe

The probe predictions effectively model the dynamics of
the soil moisture signals; however, they fail to predict ab-
solute soil moisture levels, since they struggle to reproduce
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Figure 7. (a) We visualize the most informative weights where lighter colours mean larger weights assigned to that cell-state dimension by
the linear probe. (b) The largest two dimensions, in terms of their assigned weight, from the above plot are then overplotted on the snow
depth target time series (grey-dashed line), showing that they really do contain information about the winter snow signal, particularly Cell
State 48, which varies very little in the summer months.

the catchment-specific offsets that describe the mean catch-
ment soil water volume. Two aspects of the training method
for the probe need to be noted here. Firstly, we are training
one linear probe for all catchments. This means that we have
a single set of weights that linearly map from cell state to
each soil moisture level in all of the basins. We tested train-
ing of one probe on each catchment, which caused the off-
set to be well modelled by the unique bias for each probe
(not shown). Thus the offset problem is not an issue when
we train one probe on each catchment. The reason that we
chose to use a single probe for all catchments was that we
expect the learned concept of the soil and snow processes
to be invariant over space, i.e. that the relationships between
discharge, precipitation, and intermediate hydrological stores
(snow and soil moisture) are encoded in the state vector in a
way that can be easily extracted by our probe.

In order to train the linear probe, we calculate a global
normalization, such that each catchment soil moisture is a
value relative to the GB-wide mean. Since we are training
a linear model, we should expect the observed behaviour of
our probe, which captures the correlation and dynamics of
the signal well but learns a single “intercept” or bias term
for all catchments. This is because the optimization of a lin-
ear model is a convex optimization problem, where there is
one global minimum. The model has a single intercept (bias)
parameter for all catchments (James et al., 2013). The cho-
sen bias term is the one that minimizes the residual sum
of squares, and this is the mean of the training target data
(the probe target, such as soil moisture volume level 1). In
Sect. C we explore how incorporating a catchment-specific
intercept allows the linear model to accurately model the

mean catchment-specific offsets. We do this by augmenting
the state vector with a one-hot encoding of gauge IDs. Fur-
thermore, a non-linear probe is also able to more effectively
model mean catchment soil saturation conditions (Sect. E).
Therefore, the information can be extracted from the LSTM;
however, a linear probe is not sufficiently powerful to do so.
That being said, the changes in relative soil saturation levels
are clearly well modelled, as demonstrated by Fig. 3 and the
high correlation scores in Table 1 and Fig. 2.

4.3 Probes offer a means of interpreting the learned
representation of the LSTM

The probe analysis that we have undertaken here provides a
means of interpreting the internal states of the LSTM. We are
interested in extracting the information content of the LSTM
state vector, allowing for the fact that this information may
be stored across multiple cell-state values.

There is no reason why the LSTM should store that in-
formation in a single cell rather than distribute information
across multiple cells. In fact, the LSTM could also model a
process as the difference of two (or more cells) or any other
combination of multiple different cells. Indeed, it is likely
that information is distributed due to the process of dropout.
Using dropout randomly sets certain weights to zero during
training in order to prevent the neural network overfitting,
preventing the co-adaptation of weights such that one weight
“corrects” the influence (Srivastava et al., 2014). However,
this also means that the network can potentially learn the
same process in two different places in the network, since
the network must be robust to those weights being “switched
off” when dropped out.
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The benefits of using the linear probe are twofold. The
first is that our probe is relatively inflexible, and therefore we
can be confident that the probe is not overfitting to the tar-
gets (Hewitt and Liang, 2019). Indeed, we perform a number
of further experiments to check for spurious correlations, as
described in Sect. A. Our experiments demonstrate that the
findings show the information from the LSTM state vector is
both catchment- and time-specific, i.e. that the correlations
are significantly better than a sensible benchmark, ensuring
results are robust and unlikely to be due to spurious correla-
tions. This is an important result because it ensures that we
find meaningful correlations between the information in the
LSTM state vector and the soil moisture target variable. The
second benefit of using the linear probe is that we can easily
interpret the probe weights. However, there are limitations of
this approach too. The linear probe limits the obtainable in-
formation to certain forms of information storage. In theory,
it is possible for the LSTM to use information linearly for
certain flow regimes and then use it differently for other flow
regimes, even within a single basin. Thus, it is possible that
the linear probe is unable to extract relevant information from
the cell states that are being used by the LSTM. To test this
we could use a fully connected neural network or any other
non-linear regression model (see Sect. E). However, using
a more complex model as a probe also comes with its own
downsides. We lose the interpretability that comes from in-
specting the probe weights and also increase the chance of
getting false-positive results (Hewitt and Liang, 2019).

An open question remains: what other information is cap-
tured by the state-vector values that are not already assigned
to a particular hydrological concept? Exploring these remain-
ing cell states offers the potential to identify the underlying
reason for the increased performance of the LSTM. Given
that soil moisture and snow processes are already included
in most hydrological models, the improvement of the LSTM
over the conceptual and process-based models is unlikely to
be a result of these processes we explore here. It remains
possible that the LSTM is better able to learn the complex
interaction of these processes with catchment-specific infor-
mation; however, it is also possible that these remaining cell
states contain information that describes other processes such
as anthropogenic impacts on the hydrograph, including with-
drawals, transfers, and reservoir management rules.

5 Conclusions

LSTM-based rainfall-runoff models offer good hydrological
performance; however, interpretation and exploration of the
concepts and structures that these models have learned is still
in its infancy. In this paper we have explored the information
captured by the LSTM state vector using tools from machine
learning interpretability research.

We use a linear probe to map the state vector onto a tar-
get variable and find that there is sufficient information in

the state vector to represent the temporal dynamics in both
soil moisture (at different levels) and snow depth from com-
monly applied data products. The state vector of the under-
lying LSTM is trained only on meteorological forcings and
static catchment attributes and is asked to predict discharge.

One obvious limitation of this approach is that we rely on
pre-existing estimates of our concepts of interest. Therefore,
as proposed, this method cannot be used to identify unknown
processes, due to the fact that we need a target variable to fit
the probe.

Ultimately, these results suggest two key conclusions.
First, the LSTM is learning a physically realistic mapping
from meteorological inputs to discharge outputs. The con-
cept of a soil store and snowpack is encoded in most concep-
tual hydrological models (Beven, 2011). We therefore have
evidence that in the UK the LSTM is learning to get the right
results for physically plausible reasons. This finding offers a
potential explanation for recent research that showed LSTMs
have the potential to generalize to out-of-sample conditions
(Frame et al., 2021), since they have learned physically real-
istic mappings from inputs to outputs.

Finally, the conceptual approach that this paper has taken,
using a linear probe, offers an effective method for extracting
information from LSTM state vectors. Wherever LSTMs are
applied, there is the possibility of exploring ct in a similar
way. This method has been applied in natural language pro-
cessing, but as far as we are aware there are no applications
of this method to LSTMs in Earth systems sciences.

Appendix A: Control experiments

We want to be sure that the signals found by the probe are
specific to a given catchment and time and control for false
positives (finding a strong correlation between the LSTM
state variable and the intermediate target variable of interest).
Testing for the probe confounder problem, which describes
“when the probe is able to detect and combine disparate sig-
nals, some of which are unrelated to the property we care
about” (Hewitt and Liang, 2019), requires that we ensure that
our detected signals are specific to the catchments (spatial
specificity) and times (temporal specificity). Our hypothesis
is that the LSTM is learning information that is specific to
soil moisture and snow processes for a given catchment at
a given time. In order to test this hypothesis, we designed
two control experiments. The first involves spatial shuffling,
where we take the LSTM state vector from Catchment A
and test whether the information content is sufficient to accu-
rately model soil moisture in Catchment B. Spatial shuffling
tests for spatial specificity and can be seen in Fig. A1.

The second experiment shifted the data in time, testing for
temporal specificity. We tested the performance of the probe
with inputs shifted by 180 d, breaking the temporal link be-
tween inputs and outputs (Fig. A2).
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Figure A1. (a) Conceptual diagram explaining spatial shuffling. In the original experiment, ct from Gauge ID 39056 is linked to the time
series for that Catchment 39056. The shuffled target instead asks the probe to detect the target variable time series (belonging to Gauge
ID 36003) using the ct vector from Gauge ID 39056. (b) Example time series from shuffled basins, where Station 39056 is the original
experiment and Station 36003 is the shuffled experiment. It is worth noting that the soil moisture measurements are highly correlated in
space (shown by the blue and green lines following each other), and in some instances multiple basins may fall within the same ERA5-Land
pixel, in which case the information content will be the same.

Figure A2. Shifting the input data by 180 d in time breaks the temporal link between the inputs (shown here) and the target variables (not
shown). We fit the probe on the shifted data to determine how much less information it contains when compared with the original data.

The results show that the probe performances declined for
both experiments, shifting the inputs in time and shuffling
the inputs in space (Figs. A3 and A4). This suggests that the
information captured by the LSTM state vector is specific to
the catchment and time. The original experiments had cor-
relation scores of 0.88 for swvl1, 0.90 for swvl2, 0.90 for
swvl3, and 0.84 for swvl4 respectively. When shifting in
space, these declined to 0.72, 0.76, 0.76, and 0.68 for each
target variable. When shifting in time, these declined to 0.39,
0.26, 0.63, and 0.50. It is likely that the larger performance
drop for shifting in time is because of the high degree of spa-
tial correlation in the catchment-averaged soil moisture time
series. Ultimately, these experiments give us a high degree of
confidence that the observed correlations are unlikely to be
due to chance and that the information that the probe is ex-

tracting from the LSTM state vector reflects the hydrological
variables we compare against.
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Figure A3. Shuffling in space. (a) Histograms of the original experiments with unshuffled data, repeated from Fig. 2. (b) Histograms of
catchment correlation scores after having trained the probes on data shuffled in space. The performances decline quite significantly when
compared with the original experiments.

Figure A4. Shifting in time. (a) Histograms of the original experiments with unshuffled data, repeated from Fig. 2. (b) Histograms of
catchment correlation scores after having trained the probes on data shifted in time.
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Appendix B: Probing ESA CCI Soil Moisture

Figure B1. Histogram of catchment correlation scores for the probe-simulated soil moisture and the 7 d smoothed ESA CCI Soil Moisture.
The median score is 0.64.

Figure B2. Time series of probe predictions (coloured lines) compared with the target variables (grey dotted lines). We show two catchments
here, 54018 and 15021 for the ESA CCI Soil Moisture product, which is the same as Fig. 3.

We also tested using ESA CCI Soil Moisture as our tar-
get variable (Dorigo et al., 2017; Gruber et al., 2019). For
this analysis we use the blended product combining active
and passive satellite-based sensors (the combined product).
The data are a globally available long-term daily satellite soil
moisture product that covers the period from 1978 to 2015 at
a 0.25◦ resolution (Dorigo et al., 2017). The daily estimate is
noisy and, therefore, we smoothed the daily data using a 7 d
moving average window. The product is of lower spatial and
temporal resolution than ERA5-Land; however, it provides
an independent estimate of soil moisture based on satellite-

derived soil moisture estimates. Neither product is an in situ
observation, and so both rely on modelled assumptions.

The probe captures the temporal dynamics of the soil
moisture signals but struggles to reproduce the catchment-
specific variability, failing to match the peaks and troughs
associated with the target variable (ESA CCI Soil Moisture).
The overall results indicate that the LSTM probes are less
able to reproduce ESA CCI Soil Moisture than the signals
found in ERA5-Land. Ultimately, we chose to use the ERA5-
Land results because of the higher spatial resolution and,
therefore, increased specificity of catchment-averaged soil
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Figure B3. Histogram showing the distribution of correlations between the ESA CCI Soil Moisture and ERA5-Land Soil Moisture products
(Soil Water Volume 1 – 0–7 cm) for each catchment.

Figure B4. The spatial resolution of the two soil moisture prod-
ucts – ESA CCI Combined (a) and ERA5-Land Soil Water Volume
Level 1 (b). The ERA5-Land data (87×93) contain roughly 6 times
as many pixels as ESA CCI Soil Moisture (35× 37).

moisture values. We can see the intercomparison of these fac-
tors in Figs. B4 and B4.

B1 How similar are ESA CCI Soil Moisture and
ERA5-Land Soil Moisture?

We show the correlation between catchment-averaged soil
moisture from the two products in Fig. B3. There is a median
Pearson correlation of 0.50 between the products. The under-
lying spatial resolution of the two products and the median
spatial patterns can be seen in Fig. B4. This demonstrates
that ESA CCI Soil Moisture and ERA5-Land Soil Water Vol-
ume level 1 have similar spatial patterns, with low soil satura-
tion in the Scottish Highlands, saturated soils on the Scottish
western coast, and relatively unsaturated soils in central and
eastern England. However, the spatial resolution for ERA5-

Figure C1. A diagrammatic explanation of the one-hot encoding
vectors, where each station is given a unique encoding by using an
identity matrix of size N (number of stations). Each gauging station
is encoded by a vector of ones and zeros (a vector of length N ).
We then append this vector of OHE data (XOHE

i
) to each state vec-

tor (ci ) to create an augmented input to the linear probe, X∗
i

.

Land is much higher, with 6 times as many pixels as the ESA
CCI data.

Appendix C: Investigating the catchment-specific probe
offsets

As discussed in Sect. 4.2, a simple linear model is not able to
predict catchment-specific offsets because it is constrained
to model a single bias term for each catchment. In order
to minimize the residual sum of squares, the optimum so-
lution is the mean of the target data in the training period.
Given that we normalize the target data, this global mean is
equal to zero. Therefore, the learned bias in the linear probe
will be zero, and we cannot expect the probe to reproduce
catchment-specific offsets. One simple solution to this prob-
lem is to include one-hot encoded information for each catch-
ment as input features in the regression. We augment our in-
put state dimensions (64) with a binary encoding represent-
ing which catchment that data point is drawn from (Fig. C1).
Then the linear model can learn a catchment-specific bias,
which will be the mean value for that catchment.

Hydrol. Earth Syst. Sci., 26, 3079–3101, 2022 https://doi.org/10.5194/hess-26-3079-2022



T. Lees et al.: Hydrological concept formation inside long short-term memory (LSTM) networks 3095

We train a linear probe (fβ ) using augmented input
data (X∗i ), combining the state vector from the LSTM (ci)
with an encoding of the gauging station number (XOHE

i ).
This is then included as the input to the probe to produce
a predicted output (ŝi).

X∗i =
[
ci,X

OHE
i

]
(C1)

ŝi = fβ
(
X∗i
)

(C2)

In Fig. C2, we can see that including the augmented in-
put variables hugely reduces the biases in the probe outputs
and largely solves the catchment offsets, as expected. This
result is expected because the linear probe can now learn a
catchment-specific intercept term (a catchment-specific bias)
that adjusts the probe outputs to the appropriate mean satura-
tion conditions.

If we observe these patterns over all the catchments, we
can see that the performance improvement for different soil
moisture levels is marked for RMSE (Fig. C3a) but is small
for correlation (Fig. C3b). This is because the modelled dy-
namics are very similar (high correlations), but accurately
predicting the mean catchment saturation at different soil lev-
els greatly reduces the absolute squared error.

Figure C2. Time series of probe predictions with augmented inputs, including one-hot encodings of the gauge station ID (coloured lines)
compared with the target variables (grey dotted lines). We show two catchments here, 52010, Rea Brook at Hookagate, and 15021, Burn at
Burnham Overy. The results show that we learn a catchment-specific weight for adjusting the predictions and addressing the biases for each
catchment.
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Figure C3. Histograms showing the distribution of catchment error metrics. The original linear regression model is shown as a solid black
line. The coloured histograms correspond to the updated model with augmented inputs (using one-hot encoded data) for each soil water level.
Subplot (a) contains histograms showing the root mean squared error (RMSE) metric is much improved when modelling with the one-hot
encoded data. Subplot (b) contains histograms showing the correlation metric, showing that the dynamics are well modelled by the original
linear regression, since the different biases do not influence the correlation metric.

Appendix D: Spatial context of demonstration basins

In the main body of text we have shown soil moisture time
series for two catchments that were selected to demonstrate
a well-performing catchment and a catchment with a sig-
nificant bias to demonstrate the problem with modelling
catchment offsets. They were randomly chosen from the
lower tercile of the RMSE distribution and the upper tercile.
The size, wetness, and elevation of these two catchments,
Gauge 54018: Rea Brook at Hookagate and Gauge 15021:
Lunan Burn at Mill Bank, are described by Fig. D1.
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Figure D1. The spatial context of the two demonstration catchments shown in the figures in the sections above. For both Gauge ID: 54018,
Rea Brook at Hookagate (a), and Gauge ID: 15021, Lunan Burn at Mill Bank (b), we show the log area, the log mean precipitation, the gauge
elevation, and the mean potential evapotranspiration as well as the location of the station on the map on the right.

Appendix E: Non-linear probe results

We initially explored a linear probe for the simplicity of inter-
pretation. However, there is no reason why we could not also
use a non-linear model to extract non-linear patterns from the
cell states. We tested a simple two-layer neural network. We
trained a fully connected network with hidden sizes of 20 and
10 for the first and second layers respectively. These layer
sizes were chosen using a grid search algorithm, where we
determined that this was the optimum layer size for mini-
mizing the loss function (RMSE). We used the rectified lin-
ear unit (ReLU) as our activation function, which was chosen
because it is known to reduce the risk of vanishing gradients
(Nair and Hinton, 2010) and trained our probe using stochas-
tic gradient descent with the Adam optimizer (Kingma and
Ba, 2014).

The correlation scores are similar, as shown by the over-
all fit between the predicted time series and the observed
time series in Fig. E1. The non-linear probe, unlike the lin-
ear probe, is able to model catchment-specific offsets, most
obvious when looking at Catchment 15021 and Soil Water
Volume level 4 (lower figure, lower-right subplot in Fig. E1).
This pattern is repeated across other catchments, and the
offset problem is much reduced for the non-linear model.
This suggests that, while the information may not be lin-
early extracted, a non-linear combination of the cell states
does contain the information for the catchment-specific off-
sets. Further research will consider various probe architec-
tures and the other hypotheses outlined above to more fully
explore whether catchment offset information is captured by
the LSTM state vector.
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Figure E1. Time series of non-linear probe predictions (coloured lines) compared with the target variables (grey dotted lines). We show two
catchments here, 54018 and 15021 (the same as Fig. 3), and four soil moisture levels, swvl1 (blue), swvl2 (orange), swvl3 (green), and swvl4
(red). The non-linear probe shows reduced probe offset errors, showing that the information is contained but the linear probe is by definition
not able to model catchment-specific intercept terms to account for unique biases.

Appendix F: The LSTM

The LSTM is a recurrent neural network which transforms
input data at each timestep into two time-varying embed-
dings, ht and Ct (Eq. 3). These time-varying embeddings
capture information about the latent system that is useful
for the task on which the LSTM is trained (predicting dis-
charge). This is equivalent to many state-space models, ex-
cept for the LSTM described here: the particular transforma-
tion of the input data is determined by the task that the LSTM
is asked to perform. A diagrammatic representation of the
LSTM can be found in Fig. F1. For a more complete descrip-
tion of the LSTM, please refer to our previously published
work (Kratzert et al., 2018, 2019d, a; Lees et al., 2021).
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Figure F1. Wiring diagram for the LSTM recurrent cells, adapted
from Olah (2016) and reproduced with permission from Lees et al.
(2021). These cells are repeated for each input timestep in our se-
quence length. In the LSTM, the cell state Ct passes from timestep
to timestep, capturing the state of the system at time t . The informa-
tion flow from the input data to Ct is controlled by a series of gates,
the forget gate (f t ), the input gate (it ), and the output gate (ot ).
C̃t represents the candidate cell-state values, values transformed
through the tanh layer that are passed into Ct dependent on the
output of the input gate. Note that the neural network layers cor-
respond to the weights (W), biases (b), and activation functions (σ ,
tanh). These operations correspond to the yellow layers in the dia-
gram.

Code and data availability. CAMELS-GB data is
available at: https://catalogue.ceh.ac.uk/documents/
8344e4f3-d2ea-44f5-8afa-86d2987543a9 (Coxon et al., 2020a).
The FUSE benchmark model simulations are available at:
https://data.bris.ac.uk/data/dataset/3ma509dlakcf720aw8x82aq4tm
(Lane at al., 2020). The neuralhydrology package is available on
github here: https://github.com/neuralhydrology/neuralhydrology
(Kratzert, 2022). The exact code and notebooks used
to generate all of the plots can be found here: https:
//github.com/tommylees112/neuralhydrology/tree/pixel (Lees,
2022). The models, probe predictions and config files can be found
here: https://doi.org/10.5281/zenodo.5600851 (Lees, 2021).
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