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Abstract. Given the importance of snow on different land
and atmospheric processes, accurate representation of sea-
sonal snow evolution, including distribution and melt vol-
ume, is highly imperative to any water resources develop-
ment trajectories. The limitation of reliable snowmelt estima-
tion in mountainous regions is, however, further exacerbated
by data scarcity. This study attempts to develop relatively
simple extended degree-day snow models driven by freely
available snow-cover images. This approach offers relative
simplicity and a plausible alternative to data-intensive mod-
els, as well as in situ measurements, and has a wide range of
applicability, allowing for immediate verification with point
measurements. The methodology employs readily available
MODIS composite images to calibrate the snowmelt mod-
els on spatial snow distribution in contrast to the traditional
snow-water-equivalent-based calibration. The spatial distri-
bution of snow-cover is simulated using different extended
degree-day models with parameters calibrated against indi-
vidual MODIS snow-cover images for cloud-free days or
a set of images representing a period within the snow sea-
son. The study was carried out in Baden-Württemberg (Ger-
many) and in Switzerland. The simulated snow-cover data
show very good agreement with MODIS snow-cover distri-
bution, and the calibrated parameters exhibit relative stabil-
ity across the time domain. Furthermore, different thresholds
that demarcate snow and no-snow pixels for both observed
and simulated snow cover were analyzed to evaluate these
thresholds’ influence on the model performance and identi-
fied for the study regions. The melt data from these calibrated
snow models were used as standalone inputs to a modified
Hydrologiska Byråns Vattenbalansavdelning (HBV) without
the snow component in all the study catchments to assess
the performance of the melt outputs in comparison to a cali-

brated standard HBV model. The results show an overall in-
crease in Nash–Sutcliffe efficiency (NSE) performance and
a reduction in uncertainty in terms of model performance.
This can be attributed to the reduction in the number of pa-
rameters available for calibration in the modified HBV and
an added reliability of the snow accumulation and melt pro-
cesses inherent in the MODIS calibrated snow model output.
This paper highlights that the calibration using readily avail-
able images used in this method allows for a flexible regional
calibration of snow-cover distribution in mountainous areas
with reasonably accurate precipitation and temperature data
and globally available inputs. Likewise, the study concludes
that simpler specific alterations to processes contributing to
snowmelt can contribute to reliably identify the snow distri-
bution and bring about improvements in hydrological simu-
lations, owing to better representation of the snow processes
in snow-dominated regimes.

1 Introduction

Reliable representations of spatial distribution of seasonal
snow and subsequent snowmelt are critical challenges for hy-
drological estimations, given their crucial relevance in moun-
tainous regimes, especially because of the high sensitivity
to climate change. Considering the snow effect on land and
atmospheric processes, accurate representation of seasonal
snow evolution is thus highly imperative to strengthen water
resources development trajectories in these regions (Kirkham
et al., 2019; Schmucki et al., 2014; He et al., 2014). Vari-
ous modeling and measurement techniques are currently in
practice which attempt to estimate the distribution of snow,
but these methods have their own limitations. Prior stud-
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ies on the comparison of snow models (Feng et al., 2008;
Rutter et al., 2009) have highlighted the higher reliability of
physically based approaches such as the energy balance ap-
proach in simulating the snow conditions. These complex
models, although they offer a more realistic physical detail
of the sub-processes (Wagner et al., 2009), are often asso-
ciated with intensive data requirement, which is generally a
big limitation in mountainous catchments around the world
(Girons Lopez et al., 2020). Likewise, in situ measurements
of snow depth providing accurate measures, seldom cover a
wider spatial extent and are prone to be non-representative
due to local influences. Lack of snow-depth information and,
to some extent, persistent cloud cover in the mountains limit
the standalone usage of remote sensing images in snow es-
timation (Tran et al., 2019). However, these images can pro-
vide a plausible alternative to ground-based data, especially
in data-scarce mountainous regions, since their resolution
and availability do not depend on the terrain (Parajka and
Blöschl, 2008). The Moderate Resolution Imaging Spectro-
radiometer (MODIS) (Hall et al., 2006) aboard Terra and
Aqua satellites provides one of the most extensively used
snow-cover products worldwide, owing to its daily tempo-
ral resolution and a high spatial resolution of 500 m at the
Equator. The MODIS snow-cover data performance, though
seasonally and region dependent, has been found to be accu-
rate enough for hydrological contexts (Parajka and Blöschl,
2008). The cloud obstruction in MODIS, though significant,
can be reduced by combining the Aqua and Terra MODIS
images and other spatiotemporal filtering techniques (Tran
et al., 2019; Gafurov and Bárdossy, 2009; Wang and Xie,
2009).

Remote sensing integration in hydrological modeling has
made important strides in recent years (Wagner et al., 2009).
More so, several studies have been carried out by coupling
satellite-based snow-cover information with hydrological
models such as the ASCAT soil water index; MODIS snow-
cover- and discharge-based calibration of a hydrological
model (Tong et al., 2021); MODIS snow-cover-constrained
multi-variable discharge calibration for hydrological models
(Parajka and Blöschl, 2008; Udnæs et al., 2007); MODIS
snow-covered-area-based calibration of a distributed hydro-
logical model (Franz and Karsten, 2013); and model initial-
ization (Liu et al., 2012). These studies highlight the value
of MODIS snow-cover information in multi-variable cali-
bration in addition to discharge, leading to a better repre-
sentation of the hydrological processes, reduced uncertainty,
and to some extent improved hydrological predictions. Apart
from the multi-calibration approaches, Széles et al. (2020)
implemented a step-based calibration technique to calibrate
the individual modules of a hydrological model including
snow, soil moisture, and runoff generation processes, which
was concluded to be a well-informed runoff simulation. They
used MODIS snow-cover data as a gap-filling information
for the missing observed time-lapse photos of snow cover.
Tekeli et al. (2005) used MODIS products in identifying the

snow duration curve to be used in a snowmelt model and
concluded that the coupling provides crucial information on
snowmelt timing and magnitude. Likewise, there have been
several studies to compare and improve the snow routine in
various hydrological models in recent years. Girons Lopez
et al. (2020) evaluated various formulations of the temper-
ature index approach to analyze their response via the Hy-
drologiska Byråns Vattenbalansavdelning (HBV) model in
54 mountainous European catchments. Caicedo et al. (2012)
also identified the best-performing variants of degree-day
calculations for different regions in Colombia. They con-
cluded that these specific targeted alterations improve the
performance in terms of snow processes.

This paper draws its motivation from these studies to im-
prove the simulation of snow accumulation and melt pro-
cesses in data-scarce mountainous regions, using freely avail-
able data like MODIS snow-cover products. The widely used
point-based snow depth and snow water equivalent measure-
ments are often not representative due to the high variabil-
ity of snow accumulation rendering calibration of snowmelt
models based on point measurements highly uncertain. A
standalone calibration of snowmelt modules based solely on
pixel-wise MODIS snow-cover information was not found to
be widely implemented. Franz and Karsten (2013) tested a
MODIS fractional snow-cover area (SCA)-based calibration
of a distributed hydrological model, SNOW17, with an areal
snow depletion concept in which they concluded that cali-
brating only on MODIS SCA did not bring any improvement
in the hydrological predictions. However, we identified the
need to further explore the gap in exploiting the spatial distri-
bution information of snow, which MODIS snow-cover data
can provide on a daily basis and with a reasonable spatial de-
tail. The purpose of this paper is, thus, to present a simple
calibration method for snow accumulation and melt based on
the satellite-based spatial binary (“snow”, “no-snow”) snow-
cover information. This offers a wide range of applicability,
allows for immediate verification with point measurements,
and holds a high relevance in data-scarce regions, particu-
larly in identifying time-continuous snow extents (with depth
information) free from highly localized influences. The nov-
elty of this study is to propose a standalone approach us-
ing MODIS snow-cover images for calibration of indepen-
dent conceptual snowmelt models, thereby estimating model
parameters from individual or sets of MODIS images. The
data and the methodological approach can calibrate relatively
complex snowmelt modules with reasonably accurate precip-
itation and temperature data without over-calibration, mainly
owing to the robust binary data selected for calibration and
the spatial extent of the satellite images. This also allows for
the formulation of a flexible snowmelt module useful for dis-
tributed hydrologic modeling.

With the degree-day approach as a basis, we implemented
different modifications to the snowmelt models incorpo-
rating different aspects governing snow hydrology such as
precipitation-induced melt, radiation, and topography. For a
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better representation of the model performances, we evalu-
ated the models in different layers of added detail. Sensitiv-
ity analyses for different thresholds that demarcate snow and
no-snow pixels for both observed and simulated snow-cover
in the study domain were carried out to evaluate these thresh-
olds’ influence on the model performances. To better under-
stand and to validate the efficacy of the approach in terms
of discharge, the calibrated melt outputs from the snowmelt
model were also evaluated in a discharge-calibrated hydro-
logical model. This allowed for the identification of more ro-
bust parameter sets, as the model uncertainty related to snow
processes is significantly reduced. A simpler calibration of
the hydrological models was achieved, as there were less pa-
rameters to be estimated. This approach also tends to reduce
the hydrological model uncertainty as the set of equifinal pa-
rameters becomes smaller, which is a known challenge in hy-
drological modeling (Beven, 2001).

2 Study area and data

To develop and test simple snow models in mountainous or
snow-dominated regions, the study area was selected as two
distinct snow regimes: (a) characterized by intermittent snow
and (b) characterized by partly longer-duration snow. For the
former, Baden-Württemberg (BW) region in Germany was
selected. Whole of Switzerland was considered to represent
the longer-duration snow for the study. Figure 1 shows the
study domain.

The BW region includes the Swabian Alps with an ele-
vation rising to 1465 m a.s.l. from the lowest of 88 m a.s.l.
Likewise, Switzerland includes the Swiss Alps region which
covers the perennial snow/glacier area. The elevation ranges
from below 200 to 4634 m a.s.l. The study areas exhibit an
average snow season from October to April in Germany and
September to June in Switzerland. For hydrological model-
ing, five catchments were selected (viz., Neckar catchments
at Rottweil and Horb in BW and Reuss catchment at See-
dorf, Aare catchment at Brienzwiler, and Thur catchment
at Andelfingen in Switzerland). The Reuss and Aare catch-
ments have a longer snow cover around the year and include
glaciated areas. The properties of the catchments are shown
in Table 1.

The data used for the study are the following:

– Hydro-meteorology. Daily station meteorological data
(viz. precipitation and minimum, maximum, and mean
temperatures) from 2010–2018 were acquired for the
study. For Germany, these variables were obtained from
the Deutsche Wetterdienst (DWD), and for Switzer-
land they were obtained from the Federal Office of
Meteorology and Climatology (MeteoSwiss). Likewise,
daily discharge time series for selected catchments were
acquired from the Bundesanstalt für Gewässerkunde
(BFG) for Germany and the Federal Office for the En-
vironment (FOEN) for Switzerland.

– Topography. The Shuttle Radiation Topography Mis-
sion (SRTM) 90 m resolution digital elevation model
(DEM) (Jarvis et al., 2008) was used in this study. The
DEM was rescaled to match the MODIS resolution for
consistency. Likewise, aspect and slope rasters were
also obtained from this DEM.

– Snow cover. Daily MODIS Terra and Aqua snow-cover
data (version 6; Hall and Riggs, 2016) from 2010 to
2018 were used for calibrating the models and further
analysis of snow distribution in the study regions. The
resolution of the data is 500 m at the Equator.

This study presents a distributed modeling approach with
model computations done at pixel level of a gridded domain
of 464 m× 464 m grids. For this, the input data were prepro-
cessed and interpolated onto the aforementioned grid cells.
A gridded schema was extracted for both regions using the
MODIS snow-cover data as a reference. This schema was
considered the reference gridded domain for the data inter-
polation and model run.

2.1 MODIS preprocessing and cloud removal

The Aqua and Terra variants of MODIS snow-cover data
were downloaded and then preprocessed. The preprocessed
images were sequentially and spatiotemporally filtered using
a cloud-removal procedure as described in Gafurov and Bár-
dossy (2009). The procedure follows the steps below:

1. The first step checks the Aqua–Terra image combina-
tion. Pixels with clouds (255) in one of the images and
land (0) or snow (1–100) in the other were replaced with
the snow/land value and vice versa. The output is a com-
bined raster with reduced cloud pixels. The combined
raster was then reclassified as “0” and “1”. No-snow
pixel values of the combined raster (0) are set to “0”,
and snow pixel values (1–100) are set to “1”. Everything
else is set to “No data”.

2. The second step compares the preceding and succeeding
days for a pixel under consideration. If both days for
the pixels are cloud free with 0 or 1, the pixel under
consideration will, respectively, get either 0 or 1 for the
day.

3. Likewise, the third step compares the 2 d backward and
1 d forward and the 1 d backward and 2 d forward com-
bination to check for cloud-free days and infill accord-
ingly, assuming consecutive snow or no-snow days.

4. The fourth step compares the lowest elevation with
snow and the highest elevation without snow for each
day. Any pixel with elevation higher than the lowest ele-
vation snow pixel would get “1”, and the elevation lower
than the highest elevation without snow would get “0”.
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Figure 1. Map of the study area with elevation.

Table 1. Catchment properties.

River Outlet Catchment Catchment elevation, Glaciation,
area, km2 m a.s.l. %

Max Min Mean

Neckar Rottweil 412 1006 555 705 0
Neckar Horb 1110 1006 386 656 0
Reuss Seedorf 837 3416 437 2010 6.4
Thur Andelfingen 1702 2217 372 770 0
Aare Brienzwiler 555 3798 580 2135 15.5

5. The fifth step searches for “0” or “1” in an 8-pixel neigh-
borhood surrounding the cell. If the neighborhood has a
mode of at least four valid values, the pixel will then be
either “0” or “1”.

2.2 Spatial interpolation of precipitation and
temperature

Both BW and Switzerland have a well-distributed and dense
network of meteorological stations. The daily precipitation
and temperature values from these stations were used for
geostatistical interpolation onto the aforementioned schema
for the regions.

For the interpolation of temperature data, external drift
kriging (EKD) was opted for in the regions under study, with
station elevation as a drift (Hudson and Wackernagel, 1994).
The station elevation exhibits strong correlation with the
monthly and seasonal temperatures. Daily minimum, max-
imum, and mean temperatures from 85 stations in Baden-
Württemberg and 365 stations for Switzerland were used for
the interpolation. Cross-validation using leave-one-out ap-
proach was carried out to check for the applicability and the
quality of the EKD interpolation.

For precipitation, the daily precipitation sums were inter-
polated onto the schema using a detrended residual kriging
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Figure 2. Methodological approach for the study.

(RK) (Phillips et al., 1992; Martínez-Cob, 1996). To improve
the precipitation interpolation in the higher elevation, a mul-
tiple linear regression (MLR) approach using directionally
smoothed elevation was carried out for the study. Directional
smoothing of elevation was done using half-space smoothing
(Bárdossy and Pegram, 2013). The approach uses a direction-
ally transformed and smoothed topography to identify the
effect of directional advection for each day. Eight different
directions, with 45◦ incremental angles, and three different
smoothing distances (2, 3, and 5 km) were considered in this
study. For each time step, a simple optimization was done
to assess the correlation of the precipitation with the shifted
DEMs, and the best direction and the smoothing radius for
the time step were identified. This shifted and smoothed ele-
vation was then used along with X and Y coordinates of the
stations in the MLR to obtain precipitation estimates for sta-
tions. The residuals were then calculated for each day and
ordinary kriging was carried out to obtain the kriged residu-
als. MLR-estimated precipitation surfaces for each time step
using X and Y coordinates and shifted elevation for the grid
points were then added to the Kriged residual surfaces to
obtain the final precipitation estimates. In this study, 224
stations in BW and 449 stations in Switzerland were used.
Leave-one-out cross-validation for each station was done for
both variables.

3 Methodology

The methodological framework applied for the study is
shown in Fig. 2 and is further discussed in subsequent sec-
tions.

3.1 Model variants

This study employs an empirical, temperature-index melt
modeling approach using the degree-day factors. The degree-
day models are widely used, owing to the relatively easier in-
terpolation of air temperature and reasonable computational
simplicity (Hock, 2003). This degree-day approach assumes
melt rate as a linear function of the air temperature. Due to in-
herent large-scale spatial variability in mountainous regions,
distributed meteorological inputs were employed to drive the
different variants of the extended degree-day snowmelt mod-
els on a daily timescale. The major parameters used in the
models are defined below:

P(t,x)= precipitation amount at location x at time t
(mm),

S(t,x)= snow water equivalent amount at location x at
time t (mm),

Tav(t,x)= mean temperature at location x at time t
(◦C),

Ps(t,x)= water equivalent of precipitation falling as
snow at location x at time t (mm),

Ms(t,x)= melt water amount at location x at time t
(mm),

TT = threshold critical temperature defining snow or no
snow (◦C),

Ds = dry degree-day factor (mm ◦C−1),

Tmx(t,x)= maximum temperature at location x at time
t (◦C),

Tmn(t,x)= minimum temperature at location x at time
t (◦C),

scf= snow correction factor to account for the gauge
undercatch of snow.

The following model variants were used to estimate the snow
water equivalent (SWE, mm) and the resulting snow-cover in
each pixel. Different nomenclatures are given in the models
for the ease of understanding. Each successive model rep-
resents a gradual parameter-wise modification to the basic
degree-day model.

3.1.1 Basic degree-day model (Model 1)

Model 1 is the most basic of all model variants. This model
estimates the melt for each time step as a linear function of
the difference between daily mean temperatures and a thresh-
old temperature value, demarcating liquid precipitation and
snow precipitation. A degree-day factor controls the rate of
melt. Equation (1) calculates the amount of SWE available
in pixel x at time t . Similarly, the snow precipitation and the
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resulting melt are calculated with Eqs. (2a) and (2b) as the
model basis for each pixel; x in the study domain. A cor-
rection factor to account for the snowfall undercatch by the
gauges and the vegetation interception “scf” is also used in
this model and extended to all models in the study.

S(t,x)= S(t − 1,x)+Ps(t,x)−Ms(t,x), (1)

where

Ps(t,x)=

{
P(t,x) · scf if Tav(t,x) < TT,

0 if Tav(t,x)≥ TT;
(2a)

Ms(t,x)=

 0 if Tav(t,x) < TT,

min (S(t,x), Ds(Tav(t,x)− TT ))

if Tav(t,x)≥ TT.

(2b)

3.1.2 Wet degree-day model (Model 2)

To account for the melt induced by rain at temperatures
higher than the critical threshold temperature, this variant
adds a precipitation melt factor which controls the rate of
melt based on air temperature and the precipitation amount
falling on the pack. A similar approach was discussed in Bár-
dossy et al. (2020). This melt factor, henceforth referred to as
Dw, increases the melt from Eq. (2b) on days with precipita-
tion higher than a threshold value. For a given wet day, i.e.,
P(t,x) > PT , the melt is calculated as in Eq. (3). For a dry
day, melt is calculated as in Eq. (2b).

Ms(t,x)=

 0 if Tav(t,x) < TT,

min(S(t,x), D(t,x)(Tav(t,x)− TT ))

if Tav(t,x)≥ TT,

(3)

where

D(t,x)=Ds +Dw(P (t,x)−PT),

PT = threshold precipitation depth beyond which the
liquid precipitation contributes to melt (mm),

Dw = the wet melt factor ((mm ◦C−1) mm−1),

D(t,x)= combined melt factor on wet days
(mm ◦C−1).

3.1.3 Wet degree-day model with snowfall and
snowmelt temperatures (Model 3)

The instantaneous forms of precipitation as snow and liquid
gives a clear indication of two temperature thresholds which
demarcate the solid and liquid states of precipitation (Schae-
fli et al., 2005). This model includes different snowfall and
snowmelt temperatures in Model 2 for a more accurate repre-
sentation of the liquid-to-snow phase partition and melt ini-
tiation. This has been previously discussed in Debele et al.
(2009) and Girons Lopez et al. (2020). For temperatures in

between, snow is linearly interpolated for the day as a pro-
portion of the precipitation. The formulations of the model
are given by Eqs. (4) and (5).

Ps(t,x)=


P(t,x) if Tav(t,x) < TS,

P (t,x) · (
Tav(t,x)−TM
TS−Tav(t,x)

)

if TS ≤ Tav(t,x)≤ TM,

0 if Tav(t,x) > TM;

(4)

Ms(t,x)=

 0 if Tav(t,x) < TM,

min(S(t,x),D(t,x)(Tav(t,x)− TM))

if Tav(t,x)≥ TM;

(5)

where TS and TM are the snowfall and snowmelt tempera-
tures, respectively.

3.1.4 Aspect-distributed snowfall temperatures
(Model 4)

This model was envisioned with an assumption that topo-
graphical aspect plays a major part in the spatial distribution
of snowfall and snowmelt temperatures. Based on this as-
sumption, this variant distributes the snowfall temperature in
Model 3, according to the topographical aspect. The snowfall
temperature distribution is done by Eq. (6):

TS,x = TSmin+(TSmax−TSmin)·[0.5·cos(aspectx)+1]PF, (6)

where

TSmin = lower bound of the snowfall temperature,

TSmax = upper bound of the snowfall temperature,

aspectx = topographical aspect of grid x (radians),

PF= power factor to distribute the aspect.

3.1.5 Aspect-distributed snowmelt temperatures
(Model 5)

In general, south-facing slopes are warmer in the Northern
Hemisphere, resulting in a faster melt of snow compared
to the north-facing slopes. This model, thus, distributes the
snowmelt temperature in Model 3 within a range defined by
minimum and maximum bounds of snowmelt temperature,
according to the topographical aspect. The snowmelt distri-
bution is represented by Eq. (7):

TM,x = TMmin+ (TMmax− TMmin) · [0.5 · cos(aspectx)+ 1]PF, (7)

where

TMmin = lower bound of the snowmelt temperature,

TMmax = upper bound of the snowmelt temperature,

aspectx = topographical aspect of grid x (radians),

PF = power factor to distribute the aspect.
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3.1.6 Radiation-induced melt model (Model 6)

The integration of radiation information in degree-day mod-
els can lead to better estimation of snowmelt (Hock, 2003).
This model was formulated to accommodate the radiation
data in addition to the aspect-based temperature distribution.
The radiation-induced melt was added to Model 5 by incor-
porating the diffused incident radiation on the snow pixel
on a cloud-free day. The incident global radiation is calcu-
lated using a viewshed-based algorithm “r.sun algorithm”
(Hofierka and Suri, 2002; Neteler and Mitasova, 2002) and
has an added advantage of radiation distribution in the val-
leys. Daily temperature difference (Tmax− Tmin) for each
grid was also calculated using interpolated daily minimum
and maximum temperatures and was used as a cloud-cover
proxy. For this study, pixels with a daily temperature dif-
ference above a certain threshold were assumed to be cloud
free, and this is where radiation-induced melt becomes ac-
tive. Likewise, temperature differences lesser than the thresh-
old render the pixels cloudy. The diffusion factor, ranging
from 0.2 for clear-sky conditions to 0.8 for overcast condi-
tions, diffuses the incoming radiation. The radiation-induced
melt is added to the melt outputs from the preceding mod-
els on cloud-free pixels and is calculated using Eq. (8). Fig-
ure 3 shows an example of diffused radiation calculated for a
cloud-free day in Baden-Württemberg.

Ms−R(t,x)=

 (1− alb) · rind ·RD(t,x)

if Tmx(t,x)− Tmn(t,x)≥ 5◦,
0 if Tmx(t,x)− Tmn(t,x) < 5◦,

(8)

where

Ms−R(t,x)= radiation-induced melt at grid x at time t
(mm),

RD(t,x)= diffused radiation at grid x at time t

(Wh m−2 d−1),

alb= albedo of snow,

rind = radiation melt factor (mm (Wh m−2 d−1)−1),

(Tmx(t,x)−Tmn(t,x))= temperature difference at time
t , as a cloud proxy to define clear-sky and overcast con-
ditions.

3.2 Data requirement of the models

Table 2 summarizes the input data requirement for each
model. The major inputs are the DEM, precipitation, and
temperature. The other variables are the derivatives from
these major inputs. For instance, daily temperature difference
was considered a proxy for the cloud information. The aspect
information and daily global radiation are derived from the
DEMs. In addition to the data presented in the table, the daily
MODIS snow-cover distribution is also required for model

Figure 3. Illustration of diffused radiation calculated using
“r.sun.daily” algorithm for Baden-Württemberg.

Table 2. Inputs required for the different model variants.

Models Spatial inputs Spatiotemporal inputs (daily)

DEM Precipitation, Mean Max/Min
mm temp., ◦C temp., ◦C

Model 1 yes yes yes –
Model 2 yes yes yes –
Model 3 yes yes yes –
Model 4 yes yes yes –
Model 5 yes yes yes –
Model 6 yes yes yes yes

calibration and evaluation. Freely available inputs such as
the DEM and the MODIS images provide a crucial flexibility
with minimum data requirement to drive the snowmelt mod-
els. Likewise, daily observed streamflows are also used for
calibration and validation of the HBV model.

3.3 Model calibration

The model calibration in this study was done in two dis-
tinct steps. Firstly, the six aforementioned snowmelt model
variants were calibrated using snow-cover distributions. The
second calibration step was done for two hydrological mod-
els, namely, the original HBV (Bergström, 1995), hence-
forth termed “standard HBV”, and a HBV model modi-
fied to accommodate the standalone melt outputs from the
best-performing snow-routine variant as inputs, from hence-
forth termed “modified HBV”. In order to calibrate the snow
model parameters, the snow cover simulated by the snow
model was compared with the MODIS observations on se-
lected days or periods with available data. A pixel was con-
sidered snow covered if the simulated snow water equivalent
exceeded a preconsidered snow water equivalent threshold of
0.5 mm which corresponds to a snow depth of approximately
2.5 mm.
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The calibration is based on the Brier score (BS) (Eq. 9). It
is a score function that measures the accuracy of probabilistic
predictions. The BS in this study refers to the mean squared
error between observed binary patterns of snow/no snow
from MODIS and the ones simulated by the extended degree-
day models. The Brier score varies between 0 and 1 with the
values closer to 0 indicating better agreement between the
model outputs and the MODIS image.

BS(t)=
1
N

N∑
t=1
(fi(t)−Oi(t))

2, (9)

where fi(t)= simulated snow-cover (0/1) on day t and pixel
i, oi(t)= observed snow-cover (0/1) on day t and pixel i

The objective function is the sum of the BS values over the
days with observed MODIS snow-cover:

OF=
K∑
k=1

BS(tk), (10)

where tk are the days with observed MODIS snow-cover.
The snow model parameters were identified by minimiz-

ing objective function in Eq. (10). In order to reflect the equi-
finality imparted by the model, the Robust Parameter Esti-
mation (ROPE) methodology was applied for the model pa-
rameter optimization. ROPE uses the concept of data depths
to identify best-performing robust parameter sets and their
properties for different calibration periods in different catch-
ments, with an underlying assumption that it identifies pa-
rameter sets without overemphasizing the processes defined
by the parameters. Further details regarding ROPE can be
found in Bárdossy and Singh (2008). For the calibration, the
following steps were carried out.

1. The bounds for the model parameters were set.

2. N random parameter sets (XN ) were generated in d di-
mensions of space limited by the bounds set in Step 1.

3. The models (snowmelt, standard HBV and the modified
HBV) were run for each parameter sets and the corre-
sponding objective functions were calculated.

4. Based on the model performance, a predefined subset of
the best-performing parameter sets X′N were drawn.

5. 2·N random parameter sets were again generated within
the bounds of the best-performing sets from Step 3.

6. A set of YM parameters were identified where for each
vector θεYM , the depth calculated with respect to the
subset X′N is greater than 0, i.e., D(θ) > 0.

7. Within the bounds defined by the “deep” parameter sets
in Step 6, further “N” parameter sets were generated so
that XN = YM .

8. Steps 3–6 were repeated for various iterations assum-
ing that the performance corresponding to YM does not
differ more than what one would expect from the obser-
vation errors.

A set of 1000 heterogeneous parameter vectors with similar
model performance in terms of the objective function were
generated. These sets of “good” points can be defined as the
parameter sets that are less sensitive and transferable, thereby
providing a “compromised” solution. These parameter vec-
tors were estimated for each region by assuming a spatiotem-
porally constant or variable (wherever possible) parameter
distribution and were estimated within a plausible range as
described in different snow modeling studies.

ROPE was applied to calibrate the snowmelt models, the
standard HBV model with snow, and the modified HBV with
external melt for this study. For the snowmelt models, the
calibration was initially done for both regions on daily snow-
cover images with more than 60 % valid pixels (< 40 % cloud
cover) for the snow season in different years. The snow sea-
son was selected as October–May for Baden-Württemberg
and September–June for Switzerland, assuming a possible
snow cover being present for the time period. The second cal-
ibration was the hydrological calibration with discharge data
at the catchment level and was done for the whole years of
2011–2015 in Baden-Württemberg and 2011–2018 in Swiss
catchments with 2010 as the warm-up year. Here, the mod-
ified HBV had the melt from the selected snowmelt model
as standalone input. The discharges simulated by the stan-
dard HBV and the modified HBV were compared for each of
the catchments. The Nash–Sutcliffe efficiency (NSE, Eq. 11)
was used to evaluate the performance of the melt inputs,
where the simulated and observed variables refer to modeled
and observed discharge at time t .

NSE= 1−

∑T
t=1
(
Y to −Y

t
m

)2∑T
t=1
(
Y to − Ȳ

T
o

)2 , (11)

where

Y tm = simulated variable at time t ,

Y to = observed variable at time t ,

Ȳ To = mean of observed variable for the time period T ,

T = length of time series.

3.4 Model validation

The calibrated parameter vectors were used to validate the
simulated snow patterns for different seasons using the sets
of MODIS images representative of the season as well as
for individual images representing unique isolated events,
for both BW and Switzerland. To analyze the performance
of the snow models at a catchment level and subsequently
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for the discharge evaluation, five catchments were selected
(viz. Neckar at Horb and Rottweil in BW and Reuss at
Seedorf, Thur at Andelfingen, and Aare at Brienzwiler in
Switzerland). At the catchment level, the snow routine pa-
rameters from the 1000 best parameter sets of the standard
HBV model calibrated on discharge were subset and used to
simulate the snow distribution in all the catchments for the
same time period. The corresponding Brier scores were cal-
culated. The validation was then done as a comparison of
the Brier scores calculated from the 1000 best parameters for
the selected snowmelt model calibrated on MODIS images
(for each catchment) and the 1000 best Brier scores obtained
from the snow routine of the standard HBV model calibrated
on discharge. To validate the performance of melt outputs
from the snow-cover calibrated snowmelt models, the 1000
best NSE values from the standard HBV model and the mod-
ified HBV model, both calibrated on discharge for the same
calibration period for all five catchments were compared. The
evaluation was assessed based on the ranges and dispersion
of the two sets of best NSE values.

3.5 Model uncertainty

A common problem of hydrological modeling is that, due
to the inaccurate observations and simplified representation
of the relevant hydrological processes, the parameters of the
models cannot be identified accurately. Due to this equifinal-
ity, a set of acceptable model parameters can be assessed. If
one can use specific additional information, the set of accept-
able model parameters may reduce, leading to uncertainty
reduction. In the case of snow modeling, the parameters of
a hydrological model can be split into two distinct parts:
the snow accumulation and melt parameters θs and the other
model parameters θm. If the snow model parameters θs are
calibrated independently of the model parameters, θm, one
receives a parameter set Ms – as the same problem of equi-
finality occurs for the snow models too. For each θs ∈Ms ,
one can calibrate the hydrological model parameters θm lead-
ing to a set Mm. This way, a well-performing parameter set
Msm =Ms×Mm can be obtained. However if the parameters
of the model θm are such that the model quality is the same as
for calibrating the parameters (θs,θm) by jointly (without us-
ing snow observations) obtaining the parameter set M , then
the parameter set Msm =Ms ×Mm ⊂M . This is because all
parameter combinations in Msm could also be obtained from
the traditional model calibration, but there are parameters in
M where parameter compensations lead to snow parameters
θs which are not acceptable for the snow model evaluation.
Thus, model calibration of the conceptual model may not
lead to a better model performance but instead can reduce
uncertainty. On the other hand, the separate calibration of the
hydrological model and the snowmelt model makes it possi-
ble to include more parameters into the snow model. If the
same model would be calibrated together with the hydrolog-
ical model, the increase of the number of parameters would

lead to a much more complex calibration procedure. In the
results section this is demonstrated for the models consid-
ered.

4 Results

4.1 Model results

4.1.1 Switzerland

For the calibration of the snowmelt model variants, a set of
MODIS images for the whole snow season of 1 Septem-
ber 2012 till 30 June 2013 for Switzerland was selected as the
reference snow-cover distribution series. The calibration per-
formance values of model variants are expressed in terms of
Brier scores as well as confusion matrices depicting the pro-
portion of true and false identifications of snow and no-snow
pixels. The overall model error, i.e., the sum of falsely identi-
fied instances of snow and no-snow pixels, is the Brier score.
Table 3 shows the calibration results of different model vari-
ants as normalized confusion statistics calculated for the ref-
erence time period for Switzerland. The columns of the con-
fusion statistics table indicate the proportions of true nega-
tives (both “no snow”), false positives (MODIS: “no snow”,
simulated: “snow”), true positives (both “snow”), and false
negatives (MODIS: “snow”, simulated: “no snow”). All six
models reported good Brier scores ranging from 0.084 to
0.095. The results indicate that the models have very close
performance when calibrated over the course of a whole
snow season in Switzerland. Model 6, with the radiation-
induced melt, has the best performance in terms of overall
Brier scores as well as the reduction in the false recogni-
tion of snow. This model, however, slightly overestimates
the snow in the region. Figure 4 shows the validation of the
radiation-based model on the snow-cover image for a rela-
tively cloud-free day (8 January 2013). The figure shows that
the model calibrated on the whole season adeptly mimics the
MODIS snow-cover distribution for the day with a very good
Brier score of 0.077. The left plot in the figure is the MODIS
image for the reference day, the central plot shows the sim-
ulated image for the day, and the right one shows the differ-
ences in prediction.

The model performances were further scrutinized in dif-
ferent elevation zones in both regions in terms of underes-
timation, overestimation, and total estimation errors. Under-
estimation error is the average normalized false negative in-
stances, overestimation error is the average normalized false
positive instances, and total error is the mean Brier scores for
each elevation zone. Figure 5 shows the results for Switzer-
land. Model 6 showed a reduction in overestimation error
throughout the elevation zones in comparison to other mod-
els. However, the model was underestimating snow for el-
evations below 1500 m a.s.l. The overall error, however, re-
mains lower for the < 500 and > 2500 m a.s.l. regions. The
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Table 3. Normalized confusion matrices for the calibration periods (a) Switzerland for 1 September 2012 till 30 June 2013 (b) Baden-
Württemberg for 1 October 2012 till 31 May 2013.

(a) Switzerland

True positive False positive True negative False negative Brier score

Model 1 0.625 0.036 0.280 0.059 0.095
Model 2 0.621 0.039 0.289 0.050 0.089
Model 3 0.626 0.035 0.289 0.051 0.086
Model 4 0.625 0.035 0.289 0.050 0.085
Model 5 0.622 0.039 0.293 0.047 0.086
Model 6 0.610 0.050 0.306 0.034 0.084

(b) Baden-Württemberg

Model 1 0.758 0.031 0.169 0.042 0.073
Model 2 0.759 0.032 0.168 0.041 0.073
Model 3 0.760 0.034 0.167 0.040 0.074
Model 4 0.758 0.032 0.168 0.041 0.073
Model 5 0.756 0.030 0.171 0.043 0.073
Model 6 0.762 0.027 0.173 0.037 0.064

Figure 4. MODIS inferred (left) vs. Model 6 simulated snow distribution (center) and differences between MODIS and simulated image
(right); (a) Switzerland (b) Baden-Württemberg.
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mean error remained the lowest, implying the best perfor-
mance among the variants.

4.1.2 Baden-Württemberg

The different snow models were also tested in this region in
Germany. The region was selected to test the efficacy of the
approach in a shorter-duration snow region. Here, the snow
season of 1 October 2012 till 31 May 2013 was selected as
the reference period, and the corresponding MODIS images
were used for calibration . As in Switzerland, all models were
able to mimic the snow-distribution pattern for the reference
day very well. Model 6 outperformed all the other model
variants as shown by the proportion of true and false pre-
dictions in Table 3. A gradual improvement in model per-
formance with additional parameterization can be inferred
from the table. Though comparable, Model 6 Brier scores
have a starker contrast with other model results, in com-
parison to the Swiss results. A good improvement in true
recognition and a subsequent reduction in false identification
can be observed with the radiation-based model. An illus-
tration of the validation of Model 6 on a cloud-free day of
4 March 2013 can be seen in Fig. 4. The simulated image
matches the MODIS image for the day with about 93 % ac-
curacy, which reflects the strength of the seasonal calibration.
Likewise, elevation-based discretization of the model perfor-
mance in Baden-Württemberg, as depicted by Fig. 5, shows
that the radiation-based model and Model 1 have the lowest
underestimation error. The error, however, increases with in-
creasing elevation. The overestimation error is the lowest for
Model 4, and the trend decreases as the elevation increases
for all but Model 1. The overall error is highly reduced with
Model 6 throughout all elevation zones as indicated by the
right panel.

Though all the models perform very well in the overall sce-
nario as well as in all the elevation zones as reflected in the
performance scores, Model 6 was selected for both Switzer-
land and Baden-Württemberg, owing to the lowest overall
error, and from here on it is used as the reference model for
further analysis.

4.2 Sensitivity analysis of different thresholds for
snow/no-snow differentiation

Sensitivity analysis was carried out for different thresholds
using the reference model for both Baden-Württemberg and
Switzerland to identify the best snow/no-snow differentia-
tion. The time period used for the analysis was from 2013–
2015. The thresholds analyzed were the Normalized Dif-
ference Snow Index (NDSI) thresholds to demarcate the
snow and no-snow pixels in the reference MODIS images;
cloud threshold as a percentage of valid pixels to demar-
cate the number of daily images to be used as a reference
series to calibrate against; and the snow detection threshold
to define the simulated snow water equivalent (SWE) as a

snow pixel in the simulated snow cover distribution. Differ-
ent NDSI thresholds ranging from 1 to 95, cloud thresholds
ranging from 10 % to 90 %, and detection thresholds from 0
to 5 mm were considered for the analysis. A NDSI thresh-
old of 1 means that the MODIS images with pixel value
greater than 1 was considered a reference snow pixel. Like-
wise, a cloud threshold of 10 % indicates that, for a given
calibration period, images with less than 10 % cloudy pixels
would be selected for calibration. Similarly, a SWE threshold
of 0.5 mm would mean that the pixels with simulated SWE
above 0.5 mm were considered a simulated snow pixel. The
detailed results are presented in the Appendix Figs. A1, A2,
and 6.

From the figures, it can be clearly inferred that a NDSI
threshold of 30, cloud threshold of 10 %, and a SWE thresh-
old above 0.5 mm could achieve the best performance in
terms of Brier scores in Switzerland. Likewise, the results
for BW show that a SWE detection threshold of 2.0 mm or
above, coupled with the NDSI threshold of 30 and a cloud
threshold of 10 %, gives the best simulation of the snow
cover distribution. The results for both regions are similar to
each other, which highlights the applicability of the adopted
methodology in different snow regimes.

4.3 Sensitivity analysis on the selection of calibration
periods

A sensitivity analysis on the selection of different calibra-
tion periods was also carried out for the snow season of
2012–2013. For this, the reference model was calibrated
against sets of daily MODIS images representing different
stages in a snow season – viz. whole season (September–
June for Switzerland and October–May for BW), onset
season (September–February for Switzerland and October–
February for BW), melt season (March–June for Switzer-
land and March–May for BW), peak snow month (Febru-
ary for both), and the day with highest amount of cloud-
free snow (18 February for Switzerland and 12 February for
BW). The thresholds were adopted as per the earlier sec-
tion (i.e., for BW, NDSI: 30, cloud %: 10, SWE thresh-
old: 2.5 mm; for Switzerland, NDSI: 30, cloud %: 10, SWE
threshold: 0.5 mm). The reference model was calibrated for
all the aforementioned seasons using the ROPE algorithm.
One thousand best parameter vectors were identified for each
season. These parameters for each calibrated period were
then iteratively checked for whether they were contained
within the convex hull defined by the validation parame-
ters to identify the percentage of these contained parame-
ter sets. Subsequently, the calibrated parameters were vali-
dated for each season to analyze the temporal transferability
of the parameter vectors and identify the best calibration set
that would work well with all the seasons/periods. Figure 7
presents the validation of calibrated parameters in different
seasons. This validation is expressed as the percentage of
the reference parameter vectors for each season/period con-
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Figure 5. Model performances in different elevation zones (left: overestimation error, middle: underestimation error, right: total error
(Brier score), dashed: mean error for all elevation zones); (a) Switzerland; (b) Baden-Württemberg.

tained by the hull defined by the validation parameter sets
for Baden-Württemberg and Switzerland, respectively. The
figures indicate that the calibrated parameters for the whole
season work well for different validation periods in both re-
gions, with a relatively higher containment of the calibration
parameters in reference to the validation sets. In Switzerland,
the melt season calibration exhibits a better temporal trans-
ferability as indicated by the higher proportions of the param-
eter vectors in each season, whereas in Baden-Württemberg
the onset season calibration shows higher transferability of
the parameters. Based on these results, it was concluded that
the melt season calibration in Switzerland and the onset sea-
son calibration in Baden-Württemberg imparted more robust
parameter sets for both study areas. The whole season cal-
ibration showed good agreement with other periods in both
regions. Figure 8 provides a better understanding of the Brier
score dispersion for the regions for these selected calibration
periods. In Baden-Württemberg, the onset season calibration
is well validated for the peak snow season and the single-
day event. The melt season calibration is also comparable
with the onset season performance. The whole season cali-
bration has better performance for onset and melt seasons but
with a more uncertain validation for the peak snow month

and single-day image, as shown by the boxplot bounds. In
Switzerland, melt season calibration shows a better valida-
tion for almost all the seasons. This indicates that the im-
ages available towards the end of the season can simulate the
whole snow season very well. However, the seasonal calibra-
tion performance remains similar as in the case of Baden-
Württemberg.

4.4 Snowmelt model results at catchment level

The reference snowmelt model (Model 6) was also cali-
brated for two catchments in Baden-Württemberg and three
in Switzerland on snow-cover distribution for the winter sea-
son throughout 2010–2015 (BW) and 2010–2018 (Switzer-
land). ROPE was used to calibrate the models and obtain
1000 sets of best-performing parameter vectors for each
catchment, based on the overall Brier scores. The simulated
snow-cover distribution was compared with the ones esti-
mated by the HBV’s snow routine to assess the representa-
tion of snow accumulation and melt processes within. The
1000 HBV snow parameter sets were subsetted from the best-
performing parameter vectors obtained during ROPE calibra-
tion of the HBV model on discharge for each catchment.
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Figure 6. Model performance for different thresholds in (a) Switzerland and (b) Baden-Württemberg; left panel: the shaded regions indicate
the performance for different SWE thresholds; right panel: solid and dashed lines, respectively, show performance values for 10 % and 20 %
cloud thresholds. Detection threshold in the x-axis level refers to the SWE thresholds.

Figure 7. Percentage of calibrated parameter sets contained by the convex hull defined by the validation parameter sets.
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Figure 8. Model performance in the validation periods (a) Switzerland (left panel: validation results for melt season calibrated parameters,
right panel: validation results for whole season calibrated parameters) and (b) Baden-Württemberg (left panel: validation results for on-
set season calibrated parameters, right panel: validation results for whole season calibrated parameters); x-axis labels “calib.”: calibration
performance for the same season, “valid.”: validation performance using the reference season parameters.

The comparison results are shown in Fig. 9. It is evident
from the violin plots that the snowmelt models clearly out-
perform the HBV snow routine in all catchments while es-
timating the snow-cover distribution estimation. The median
Brier score values for the snowmelt models in all catchments
are lesser than their counterparts. Moreover, the 1000 best
Brier score values for the snowmelt models depict a very
narrow spread in contrast to a much wider spread from the
HBV’s snow routine. This shows the uncertainty of the HBV
during the simulation of snow accumulation and melt, which
hints towards a compensating effect with other non-snow
parameters. This spread is more pronounced in the Horb
and Rottweil catchments, which are characterized by shorter-
duration snow. The results suggest that HBV’s snow routine,
when calibrated on discharge together with the other model
parameters, is not able to capture the snow dynamics in the
BW region as compared to the spread in Swiss catchments
with longer-duration snow. This approach thus adds value to
these regions as the calibrated snow-cover distribution pro-
vides a strong basis for estimating available water coming

from snow, as these regions are dependent on the melt wa-
ters. The results thus strongly indicate that the use of a stan-
dalone snowmelt model, in this study, provides a very stable
and reliable representation of the snow-cover distribution and
in turn the melt.

The boxplots showing the dispersion of the parameters are
shown in Fig. 10. The y axis shows the normalized param-
eter values based on their min–max range set for optimiza-
tion. The boxplots indicate that (apart from the radiation melt
factor, rind, TMmax, TMmin, and to some extent TS) all the
parameter ranges are relatively stable and less sensitive to
the model performance. These four parameters are, however,
constrained by the objective function, and it is understand-
ably so, because these parameters are more sensitive as they
govern the appearance and disappearance of the snow.

4.5 Validation in hydrological models

The best-performing parameter vector from the snowmelt
models for each catchment was used to simulate the melt wa-
ters exiting the snow regime, which was, in turn, used in the
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Figure 9. Violin plots comparing the performance of the reference snowmelt model in different catchments and HBV’s snow routine in terms
of Brier scores. The height of the violin plots shows the range of Brier scores whereas the shape of the curve depicts their density.

modified HBV model to simulate the hydrologic implications
of the melt as a standalone input. The modified HBV was
calibrated on discharge for the whole time series for each of
the catchments. This was done with three iterations of ROPE.
The standard HBV was also calibrated on the same discharge
data but with five ROPE iterations. With the ROPE calibra-
tion, 1000 robust parameter sets were identified for both hy-
drological models. The best NSE values were subsequently
compared to assess the performance of the snowmelt models
against the HBV. The results are shown in Fig. 11 and Ta-
ble 4. The results show that the addition of melt improves the
hydrological model performance in each of the catchments,
notably in the snow dominated ones in Reuss and Aare. The
median NSE values show improvement in all of the catch-
ments in the study domain. The NSE spread is also smaller
in the case of modified HBV. This highlights uncertainty re-
duction, as the hull containing the equifinal parameter vec-
tors becomes smaller as a result of lesser parameters to cali-
brate for the modified HBV variant. The results suggest that
the improvement in model performance comes with a better
computational efficiency and a better “mimicry” of the snow
accumulation and melt.

Table 4. Comparison of HBV and modified HBV NSE perfor-
mance.

HBV NSE values Modified HBV NSE values

Min Max Median Min Max Median

Rottweil 0.595 0.672 0.609 0.663 0.724 0.676
Horb 0.653 0.700 0.663 0.738 0.821 0.755
Aare 0.395 0.566 0.424 0.658 0.678 0.663
Reuss 0.635 0.779 0.656 0.781 0.796 0.785
Thur 0.702 0.768 0.712 0.731 0.776 0.739

5 Discussion

It is a big challenge and a highly imperative one to im-
prove the snowmelt routines in widely and successfully
tested rainfall–runoff models like HBV (Bergström, 2006;
Girons Lopez et al., 2020). In this milieu, to evaluate the
snow processes based on spatial distribution of snow, we
implemented an image-based pattern calibration approach
using MODIS-inferred snow-cover distribution for a sin-
gle day or a duration of snow season of a given year. The
calibration was done based on pixel-based binary informa-
tion (“1”:“snow”, “0”:’‘no snow”) from the MODIS images
in Switzerland and Baden-Württemberg. The MODIS data,
available freely across the world and at a daily resolution,
provide a plausible alternative to ground-based data for im-
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Figure 10. Reference snowmelt model parameter dispersion for different catchments.

mediate verification of snowmelt models. Widely used and
computationally simplistic temperature index models with
low data requirements were considered in the study and were
modified wherever possible to gain enhanced model perfor-
mance.

We found that all the model variants calibrated on a set of
individual snow-cover images for the whole season were able
to track the MODIS snow distribution with very good accu-
racy. These models were evaluated based on a Brier score
which represents the total false recognition of snow and no-
snow pixels. Results from all the models are comparable and
very close in simulating the snow-cover distribution. The
models’ performance in terms of overestimation, underesti-
mation, and total estimation errors were further scrutinized
in different elevation zones. We observed that for Switzer-
land, characterized by the longer-duration snow, all the mod-
els were found to show decreasing overestimation error with
increasing elevation, except Model 6 where the model error
slightly increases in the mid-elevation zones. However, the
model performances in terms of underestimation errors tend
to increase with higher elevations. We found that the mean
overall error remained the lowest for Model 6 with the ra-
diation component for Switzerland. In Baden-Württemberg,
the overall error is the lowest for all elevation zones with
the radiation-based model. While some of the model vari-

ants were able to track the snow-cover distribution with bet-
ter accuracy, we did not find a model-specific clear trend of
prediction errors in different elevation zones. Based on the
mean performance, Model 6 was deemed accurate enough
to simulate the snow-cover distribution with a higher accu-
racy in identifying snow and no-snow pixels, reflected on
the low Brier score values. As a reference model for fur-
ther analysis, we selected this relatively complex variant with
daily potential clear-sky radiation for both regions. The in-
clusion of radiation-induced melt has been found to provide a
more realistic spatial distribution of melt rates (Hock, 1999).
However, it is to be noted that since this approach is flexi-
ble enough to work with different snowmelt modules which
can simulate the snow-cover distribution, we selected the rel-
atively complex radiation-based model to assess the added
value of the robust binary data selected for calibration pur-
pose.

We also carried out a sensitivity analysis on the differ-
ent thresholds used in the study to differentiate between the
snow and no-snow pixels. We found out that a NDSI thresh-
old of 30, a cloud percentage threshold of 10 %, and a SWE
threshold of above 2.0 mm perform with very good accuracy
for a seasonal calibration where all MODIS images fitting
the cloud threshold criteria are used to calibrate the mod-
els in both regions. A closer look into the analysis suggests
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Figure 11. Performance comparison of the standard and the modified HBV models in terms of NSE in different catchments. The shape of
the violin plots indicates the density plots for the 1000 best NSE values for each model.

that, for Baden-Württemberg, NDSI thresholds of 30 and
40 give similar results when the SWE threshold of higher
than 2.0 mm is used with 10 % cloud thresholds. In Switzer-
land, NDSI threshold of 30 showed the best performance
with SWE thresholds higher than 0.5 mm. However, it is to
be mentioned that this analysis was done assuming MODIS
as the observed snow-cover distribution. Earlier studies on
the NDSI thresholds (Tong et al., 2020; Härer et al., 2018)
have suggested that a threshold of 40 can be used for ro-
bust estimates of snow cover from MODIS. However, in re-
ality, the spatial detail of MODIS and the associated uncer-
tainty (Tong et al., 2020) make it harder to know where the
snow actually is. Coupled with this is the uncertainty asso-
ciated with the precipitation data. These added uncertain-
ties make it harder to recommend a definite threshold for
future applications. The adopted calibration technique was
found to be more sensitive towards the NDSI threshold, par-
ticularly in Switzerland, as can be observed from Appendix
Fig. A1. In contrast, Appendix Fig. A2 shows that the sensi-
tivity to NDSI is not that significant in Baden-Württemberg.
It is thus our observation that a NDSI threshold of 20–50
can be considered to demarcate the snow/no-snow informa-

tion for MODIS-based snowmelt simulations, along with a
SWE threshold of 0.5–5 mm for longer-duration snow condi-
tions and 2–5 mm for relatively shorter-duration snow condi-
tions, without much loss in model performance. Nester et al.
(2012) have also identified a SWE thresholds of 2.5 mm as
optimum for error analysis with MODIS SCA. A cloud de-
tection threshold of 10 % was found to be the ideal threshold
for the selection of MODIS images for calibration, although
our methodology is not that sensitive in terms of cloud cover-
age as can be seen in the appendix figures. This highlights the
fact that this calibration on binary pixel information can also
be done on patches of snow-covered pixels free from clouds,
which makes this approach very flexible. However, differ-
ent studies have found cloud threshold to be a critical factor
during the evaluation of model errors. Şorman et al. (2009)
adopted a cloud threshold of 20 % for a multi-variable hy-
drological model calibration. Nester et al. (2012) suggested
a cloud threshold of 80 % as there were no significant differ-
ences in model errors for< 50 % and 50 %–80 % cloud cover
in their study.

The sensitivity analysis on the selection of dates of the
MODIS images for calibration showed that the selection of
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the dates has a very strong impact on the model performance
and in turn on transferability of parameters. The melt season
calibration in Switzerland and the onset season calibration in
Baden-Württemberg were found to have the best validation
in other seasons and periods. With a more clearly defined
melt season in Switzerland, we found out that the images
towards the end of the snow season were adequate enough
to simulate the snow processes within the snow season with
good accuracy, and these calibrated parameters were found to
be robust as shown by the spread of Brier scores in the valida-
tion periods (refer Fig. 8). However, in Baden-Württemberg,
which is characterized by a distinct onset but a more uncer-
tain melt season (lesser snow availability), the onset season
calibration was observed to be more robust and transferable
to other validation periods. On a catchment level, three catch-
ments in Switzerland and two in Baden-Württemberg were
selected. The snowmelt model was calibrated using multi-
ple images for winter seasons throughout the time period to
obtain a set of 1000 robust parameter vectors. The temper-
atures demarcating snow and melt onset and the radiation
melt factor were deemed sensitive to the overall Brier scores.
The Brier scores from these 1000 simulations were com-
pared with the ones estimated with parameters in the HBV’s
snow routine. The calibrated snow model significantly out-
performs the HBV’s snow model calibrated on discharge in
all of the catchments. This has also been discussed by Udnæs
et al. (2007) and Parajka and Blöschl (2008) in their respec-
tive studies showing that calibration on SCA in addition to
runoffs improved the snow model efficiency. Furthermore,
our results clearly show that the uncertainty in simulation of
the snow-cover distribution is significantly reduced when us-
ing a dedicated snowmelt model, as the snow parameters in
the HBV calibrated on discharge are compensated with other
non-snow parameters. This compensation leads to a more un-
certain representation of the snow accumulation and melt dy-
namics. This decrease in uncertainty with a simplified cal-
ibration approach using freely available data is noteworthy
as the calibrated parameter vectors are more robust as com-
pared to the ones calibrated on discharge. Similar findings
have been pointed out by Riboust et al. (2019), where they
discussed the increased robustness of the snow model pa-
rameters when SCA was added to the calibration. Since this
methodology implements the calibration at pixel level on bi-
nary (“snow”, “no-snow”) information instead of depths, rel-
atively complex snowmelt models are also calibrated with
more robustness and without over-calibration of the models.
This can be attributed to the robust data selected for calibra-
tion and the spatial extent of the satellite images used for
simulation. It is to be noted that this study does not intend
to assess the performance of any specific hydrological model
predictions; however, it does aim to assess the performance
of the melt outputs of snowmelt models calibrated on snow-
cover distribution in a basic hydrological model. We deem
it important to point out that though two of the Swiss catch-
ments, Aare and Reuss, are glaciated, the glacial melt was not

taken into account. This was mainly because of the MODIS
limitation to identify the glaciers (Muhammad and Thapa,
2020) and to avoid further parameterization of the hydrolog-
ical model to include a glacier component. Since our aim is
to evaluate the snowmelt model calibration, both hydrolog-
ical models were calibrated on equal terms with a similar
approach with results comparable to each other. We found
good improvement in the NSE performance in all the catch-
ments while using the modified HBV. Parajka and Blöschl
(2008) also concluded that the median runoff model effi-
ciency increased when MODIS data were used for the cal-
ibration in comparison to a traditional discharge calibration.
Bennett et al. (2019) concluded in a similar tune with their re-
sults showing MODIS fractional snow-covered area (fSCA)
improving the internal snow timings as well as the hydrolog-
ical simulations. Our results further show that the NSE dis-
persion is also reduced with the modified HBV simulations,
indicating a reduction in model uncertainty as both sets of
parameters required for calibration as well as the set of equi-
final parameters become smaller. This gain in performance
comes with better computational efficiency, as the modified
HBV calibration converges faster. This allows for incorpo-
ration of additional parameters in the independent snowmelt
models to better represent the snow dynamics, as opposed
to the fact that additional parameters in hydrological models
impose further complexity during calibration. With a dedi-
cated snowmelt model, this can be achieved as it is relatively
quicker to calibrate on the images, and the resulting melt can
be used in the hydrological models for efficient calibration.
Di Marco et al. (2021) also concluded that a combination
of MODIS fractional snow-cover area and streamflow data
led to a reduction of predictive uncertainty of a hydrological
model, thereby leading to sharper and reliable flow simula-
tions. Furthermore, the strength of this approach lies in the
simplicity, spatial flexibility, and global availability of the
model input data, which can be very useful for snowmelt and
hydrological predictions in data-scarce regions.

6 Conclusions

The study presented a methodology to evaluate a daily
MODIS snow-cover-based calibration in identifying distribu-
tion patterns of snow in snow-dominated regimes in Switzer-
land and Baden-Württemberg (Germany). Specifically, dif-
ferent model modifications were employed to assess the im-
provement in the simulation of snow distribution with lesser
input requirements. By calibrating at pixel level on binary
information, relatively complex snowmelt modules can be
calibrated with more robustness, as the uncertainty associ-
ated with calibration data is reduced, as is often the case with
calibrations based on snow depth or snow water equivalent.
From our results, we can conclude the following:
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a. It was observed that the methodology does well in mim-
icking the snow-cover distribution in regions with rela-
tively higher accuracy with all the models.

b. For the study regions, NDSI thresholds and SWE
thresholds for snow/no-snow differentiation, respec-
tively, for the MODIS and simulated snow distribution
were identified along with the best cloud percentage
threshold option critical for the selection of MODIS im-
ages for calibration.

c. Depending on the snow regimes, the results suggest that
a set of MODIS images within a period during the snow
season are adequate to adeptly simulate the snow-cover
distribution for the whole season.

d. Comparison of the snowmelt model’s performance with
the HBV’s snow routine shows that the uncertainty in
the representation of snow accumulation and melt pro-
cesses can be reduced with a standalone calibration of a
snowmelt model, as HBV calibration on discharge usu-
ally exhibits a compensating behavior with other non-
snow parameters. The improvement in model perfor-
mance can be deemed for “a right reason” with a better
representation of the underlying snow processes.

e. The calibration using readily available images used in
this method offers adequate flexibility, albeit with sim-
plicity, to calibrate snow distribution in mountainous ar-
eas across a wide geographical extent with reasonably
accurate precipitation and temperature data, especially
in data-scarce regions, with parameters estimated with
MODIS. The other data used for the snow models can be
derived from publicly available digital elevation mod-
els.

The reduction in model uncertainties, primarily with the
snow-distribution estimation and with the discharge simu-
lation, adds value to provide improved conceptualization of
the temperature-index model routines and further potential
model updating in future work. Furthermore, this approach
is not dependent on the choice of hydrological model, as it
can be extended to any hydrological model that can identify
the snow-cover distribution.
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Appendix A: Sensitivity analysis for different thresholds

A1 Switzerland

Figure A1. Sensitivity analysis results for NDSI, cloud percentage, and SWE thresholds in Switzerland; detection threshold in the figure
refers to the SWE thresholds.
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A2 Baden-Württemberg

Figure A2. Sensitivity analysis results for NDSI, cloud percentage, and SWE thresholds in Baden-Württemberg; detection threshold in the
figure refers to the SWE thresholds.

Code availability. Codes for the snowmelt models and the model
evaluation are available at https://doi.org/10.5281/zenodo.6549342
(Gyawali, 2022). The codes for the ROPE-based optimization
scheme can be explored from https://github.com/faizan90/depth_
funcs (Anwar, 2020).
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and Riggs, 2016). The DEM was obtained from https://srtm.csi.
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