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Abstract. A strategy to evaluate the suitability of different
multiplicative random cascades to produce rainfall time se-
ries, taking into account climate change, inputs for green in-
frastructures models. The multiplicative random cascades re-
produce a (multi)fractal distribution of precipitation through
an iterative and multiplicative random process. In the current
study, the initial model, a flexible cascade that deviates from
multifractal scale invariance, was improved with (i) a tem-
perature dependency and (ii) an additional function to repro-
duce the temporal structure of rainfall. The structure of the
models with depth and temperature dependency was found
to be applicable in eight locations studied across Norway and
France. The resulting time series from both reference period
and projection based on RCP 8.5 were applied to two green
roofs with different properties. The different models led to a
slight change in the performance of green roofs, but this was
not significant compared to the range of outcomes due to en-
semble uncertainty in climate modelling and the stochastic
uncertainty due to the nature of the process. The hydrologi-
cal dampening effect of the green infrastructure was found to
decrease in most of the Norwegian cities due to an increase
in precipitation, especially Bergen (Norway), while slightly
increasing in Marseille (France) due to decrease in rainfall
event frequency.

1 Introduction

Hydrologic performance of stormwater green infrastructure
(GI) is usually divided between retention and detention. Re-
tention refers to water stored, infiltrated, or evapotranspi-
rated. Actual evapotranspiration can be estimated from a wa-
ter balance including potential evapotranspiration, accumu-
lated precipitation, a soil moisture evaluation function, and a
crop factor (Johannessen et al., 2017; Oudin et al., 2005). The
temporal resolution for modelled evapotranspiration process
for green infrastructure is typically daily (Stovin et al., 2013)
or hourly (Kristvik et al., 2019). Detention refers to water
temporarily stored in the GI before being discharged into a
downstream stormwater network. The process temporal res-
olution is typically minutes. Consequently, modelling GI de-
tention performance requires higher-resolution data to es-
timate its outflow (Schilling, 1991). Therefore, both high-
resolution climate data and projections at subdaily and sub-
hourly scales are needed in order to model GI and to estimate
their potential as a climate change adaptation measure.

In Norway and most of the European countries, precipi-
tation has been measured with tipping buckets in numerous
cities from years to decades. Moreover, climate projections at
daily resolution for future precipitation and temperature from
the EURO-CORDEX project are available at 1×1 km spatial
resolution in Norway (Dyrrdal et al., 2018) and 12× 12 km
resolution in France (Jacob et al., 2014). Consequently, the
use of such data by urban hydrologists to assess the resilience
of GI solutions to face climate change is conditioned by the
possibility to downscale them to a subhourly resolution.
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Downscaling includes two families of methods: dynamical
downscaling and statistical downscaling (Benestad, 2016).
Dynamical downscaling methods use physically based equa-
tions and are usually computationally expensive specially to
generate high-resolution data. Statistical downscaling con-
sists in improving the resolution of data based on statisti-
cal properties observed from a lower-resolution dataset. The
computational cost is lower; therefore, statistical methods
might still be used to fill the gap in the next decades until
the computational power is sufficient for routine dynamical
downscaling. In addition, the use of a stochastic approach
is necessary due to the current limitation in parametrization
of small-scale processes (below the truncation scale) and the
lack of coupling between resolved and parameterized scales
(Sanchez et al., 2016).

Statistical downscaling has already been extensively used
to temporally downscale data for various temporal resolu-
tions, usually hourly or daily data. Three popular methods
can be mentioned: (i) the method of fragment, (ii) the method
based on point process theory, and (iii) the method of mul-
tiplicative random cascades. The method of fragment (Li
et al., 2018; Lu et al., 2015) is a resampling method based on
k-nearest neighbours (Kalra and Ahmad, 2011), which has
been applied to derive hourly data from daily data. It can
be accurate and effective due to its resampling nature, but it
requires a large dataset, and by its design it cannot ensure
extrapolation from observed data. Therefore, it might not be
suitable to downscale climate projections. Methods based on
point process theory have been used (Glasbey et al., 1995;
Onof et al., 2000). The main principle is to generate storm
occurrences and then describe them based on rain cells and
statistical distribution based on Poisson point process. Mul-
tiplicative random cascades (MRCs) consist of using succes-
sively random cascades to split data inN data of finer resolu-
tion (N = 2 in most of the cases). It is a very popular method
that deserves further investigation (Gaur and Lacasse, 2018;
Rupp et al., 2012; Thober et al., 2014). They were origi-
nally based on the hypothesis of multifractal scale invariance
(Schertzer and Lovejoy, 1987) and were further developed by
Gupta and Waymire (1993) and Olsson (1998). While multi-
fractal scale invariance continues to be studied (Gires et al.,
2020), several studies noted a deviation from that behaviour
which led to the use of more flexible models (Koutsoyian-
nis and Langousis, 2011; Veneziano et al., 2006). Multiplica-
tive random cascades can be divided between canonical and
micro-canonical types. The canonical one ensures conserva-
tion on average, while the micro-canonical one ensures exact
conservation. The parameters of the canonical MRC are of-
ten calibrated by fitting between observed and simulated non-
centred moments of depths or intensity through the timescale
(Paschalis et al., 2012). The principle of micro-canonical
MRC is usually based on reverse cascades: studying how
the data are split and then reproducing the properties of the
weights distribution depending on different quantities. The
influences of timescale, rainfall intensity (Paschalis et al.,

2012; Rupp et al., 2009) or season (McIntyre et al., 2016)
have been extensively studied. Lombardo et al. (2012) sug-
gested that the commonly used MRC suffers from conceptual
weaknesses due to the non-stationary process of autocorre-
lation and proposed a method to improve the model. More
recently, Bürger et al. (2014, 2019) suggested to include a
temperature dependency in MRC models to make them more
robust. This also enables them to be used with projections.

Green infrastructures, due to their retention and detention
capacities, are seen as a promising solution to manage storm
water and cope with climate change, especially in cities
where urbanization increases. Among green infrastructures,
green roofs are especially suitable for dense urban centres.
They are designed to retain day-to-day rain by evapotranspi-
ration and attenuate major rainfall events (Stovin, 2010). De-
pending on their characteristics they can also help to detain
extreme rainfall (Hamouz et al., 2020). Due to the timescale
of their detention process, and their sensitivity to initial water
content at the beginning of a rainfall event, they are suitable
for evaluating downscaled time series. Moreover, it is espe-
cially relevant to evaluate their detention performance by the
end of the century under a scenario such as RCP 8.5 (Thorn-
dahl and Andersen, 2021). The results could be used to evalu-
ate, at strategic level, their potential in mitigating storm water
in order to make robust decision (Walker et al., 2013).

While downscaling models have been used to model
the performance of green infrastructure under current cli-
mate (Stovin et al., 2017) or applied to intensity–duration–
frequency (IDF) curves to do an event-based simulation of
local stormwater measures (Kristvik et al., 2019), none has
been developed to produce future high-resolution time series
as input for green infrastructure models. The aim of this re-
search is to evaluate different MRC downscaling models and
their potential to produce input time series to predict the per-
formance of stormwater green infrastructure, for the case of
green roofs. In order to achieve this aim, different parts are
detailed in the paper: (i) the development of a general struc-
ture of MRC, (ii) the improvement of the MRC structure by
adding a temperature dependency, (iii) the addition of an or-
dering function to improve the temporal structure of the pro-
duced rainfall time series, (iv) the evaluation of the capability
to reproduce the performance of GI based on observed data,
and finally (v) the analysis of a possible shift in performance
of GI at the end of the century.

2 Methods

2.1 Meteorological data

Time series of precipitation and temperature from six loca-
tions in Norway and two in France, representing four differ-
ent climates (Table 1) according to the Köppen–Geiger clas-
sification (Peel et al., 2007), were used to apply the down-
scaling method. In Norway, the precipitation was measured
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by 0.2 mm plumatic tipping rain gauge manufactured by
Kongsberg Våpenfabrikk. The rain gauges were not heated
and thus did not operate in cold temperature. They were
successively replaced by Lambrecht 1518H3 (measuring tip
of 0.1 mm) in the 1990s and 2000s. The stations were op-
erated by the Norwegian Water Resources and Energy Di-
rectorate (NVE) and the Norwegian Meteorological Insti-
tute (MET). The data were quality checked by the Norwe-
gian Meteorological institute (MET) (Lutz et al., 2020). In
Lyon and Marseille, precipitation was measured by 0.2 mm
Précis-Mécanique tipping bucket rain gauges. Ten climate
projections (temperature and precipitation) on daily resolu-
tion with the RCP 8.5 for the period from 2071 to 2099
for Norwegian cities were available online https://nedlasting.
nve.no/klimadata/kss (last access: 26 May 2022; Dyrrdal
et al., 2018). For Lyon and Marseille (France), 12 climate
projections at daily resolution were available for the same
period and RCP (2071 to 2099, RCP 8.5) from http://www.
drias-climat.fr/ (last access: 25 May 2022). The RCP 8.5, a
scenario with a high gas-emission baseline leading to a radia-
tive forcing of 8.5 W m−2 in 2100, and the end of the century
were chosen to test the methods since it was the scenario and
period that deviate the most from the current climate among
the available data in both countries. In practice, it is rele-
vant to evaluate GI performance at the end of the century, but
their design could be based on a different period depending
on their lifetime.

2.2 Downscaling models and workflow

2.2.1 Data aggregation and processing

The historical data were aggregated two by two from 1 min
resolution (and accordingly 6 min) to more than 1 d resolu-
tion in order to capture a part of the uncertainty linked to
the estimation of the parameter of the models. The aggrega-
tion was done for each possible time steps: all multiples of 2
smaller than 1500 min (as there are 1440 min in a day). Dur-
ing the process of aggregation, both the weights, Eq. (1), and
the rainfall continuity indicator, Eq. (2), measuring the pro-
portion of high weight on the side of the highest neighbour-
ing depth were computed. Given j ∈ [1. . .750] a timescale in
minutes, i ∈ [0. . .N2j ] a time step with N2j the number of
time steps at scale 2j , and di,2j a rainfall depth, the weight
wi,2j , and the indicator Si,2j of the side of the neighbour
were calculated according to

wi,2j =
min(d2i,j ,d2i+1,j )

d2i,j + d2i+1,j
∈ [0;0.5] (1)

Si,2j =


0, if (di−1,2j = di+1,2j )∪ (d2i,j = d2i+1,j )

1, if (d2i,j > d2i+1,j ∩ di−1,2j > di+1,2j )

∪(d2i,j < d2i+1,j ∩ di−1,2j < di+1,2j )

2, if (d2i,j > d2i+1,j ∩ di−1,2j < di+1,2j )

∪(d2i,j < d2i+1,j ∩ di−1,2j > di+1,2j ).

(2)

2.2.2 Downscaling process

The MRC downscaling process consists of transforming
daily rainfall depths to rainfall depths at lower timescale, e.g.
1 min, by means of successive distribution of the depth of a
parent time steps between its two children time steps. The
process is repeated by iteration until the desired timescale is
reached. Figure 1 describes the downscaling process. In prac-
tice, the downscaling started at 1440 min (1 d) time step with
eight iterations to reach a time step of 5.625 min. The results
were interpolated and scaled to a 6 min time step for com-
parison with observed data. The final time step of 6 min was
chosen based on the resolution of original datasets in Lyon
and Marseille. Three steps are necessary to downscale a par-
ent time step to two children time steps. The occurrence of a
zero weight, i.e. the probability to assign all the water from
the parent time step to only one of the children time steps
(Fig. 1, centre left), is tested. This property is especially im-
portant and acknowledged by other studies. If a zero weight
does not occur, a non-zero weight wi,2j ∈]0,0.5] is gener-
ated from a probability distribution (Eq. 3b). It distributes
the depth from the parent time step between the two children
time steps, as illustrated in Fig. 1, centre right. Finally, the
weights wi,2j and 1−wi,2j have to be assigned to the chil-
dren time steps. The occurrence of SW (Eq. 4), i.e. allocating
the highest weight to the children with the neighbour with
the highest depth, is tested (Fig. 1, bottom).

u0,i,2j ∼ U([0,1]),

if u0,i,2j < P
(
W = 0|Stime = 2j, D = di,2j ,

T = Ti,2j
)
, then wi,2j = 0 (3a)

else, wi,2j ∼N
[0, 1

2 ]

(
1
2
, σ (Stime = 2j)2

)
(3b)

P(SW = 1), with SW ∈ {0;1} (4)

2.2.3 Downscaling models conceptualization and
calibration

Based on the observed data, six different MRC models were
developed. Different mathematical expressions and probabil-
ity distributions, detailed in Appendix A, were defined to rep-
resent Eqs. (3a), (3b) and (4), depending on the hypothesis
inherent to the later described models (Table 2). The models
consist in three generators: a zero-weight generator, a non-
zero-weight generator and a stochastic element permutation
generator (SEP generator). Each of the zero-weight and non-
zero-weight generators (Eqs. 3a and 3b) were considered to
vary with timescale (indicated with S in the model naming).
The letter I in the nomenclature indicates a depth/Intensity
for the zero-weight generator (Eqs. A2a–A2d). The temper-
ature dependency for the zero-weight generator (Eqs. A3a–
A3e) was indicated by the letter T in the nomenclature. The
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Table 1. Locations and input data for current and future climate. The climate column gives the Köppen–Geiger classification for climate.
Observed days is the number of observed days with data. YearPr is the annual precipitation in millimetre, YearWt the annual number of wet
days (> 1 mm). YearTe is the mean annual temperature; for these quantities the 5th, 50th, and 95th percentiles are given as indicators.

Location Observed
days

Climate Latitude Period YearPr YearWt YearTe

Bergen – Sandsli,
MET 50 480,
NVE no. 56.1.

6150 Cfb 60.4 Obs:
RCP 8.5:

1505, 2081, 2504
2240, 3012, 4009

153, 189, 218
169, 201, 238

−2.1, 8.0, 17.8
2.2, 10.3, 19.3

Bodø – Skivika,
MET 82 310,
NVE no. 165.11.

7204 Dfc 67.3 Obs:
RCP 8.5:

643, 991, 1858
1150, 1600, 2139

114, 152, 266
147, 178, 214

−3.9, 5.4, 15.4
−0.3, 8.1, 18.2

Lyon (France),
6 min time step

7671 Cfb 45.7 Obs:
RCP 8.5:

706, 865, 1161
550, 830, 1187

80, 97, 114
77, 105, 135

0.5, 12.8, 24.3
3.9, 15.9, 29.9

Hamar – Hamar II
(Disen),
MET 12 290

4011 Dfb 60.8 Obs:
RCP 8.5:

406, 546, 659
508, 689, 861

70, 92, 105
88, 110, 134

−9.8, 5.7, 18.6
−5.3, 8.1, 21.0

Kristiansand –
Sømskleiva,
MET 39 150,
NVE no. 21.49.

5219 Cfb 58.1 Obs:
RCP 8.5:

1155, 1512, 1868
1258, 1662, 2099

120, 137, 161
115, 142, 167

−0.9, 9.7, 18.6
0.3, 10.0, 20.5

Kristiansund –
Karihola,
MET 64 300,
NVE no. 110.1.

8664 Cfb 63.1 Obs:
RCP 8.5:

714, 1094, 2521
1440, 2051, 2829

131, 167, 226
153, 192, 230

−0.7, 7.8, 16.2
1.9, 9.6, 18.0

Marseille (France),
6 min time step

7305 Csa 43.3 Obs:
RCP 8.5:

310, 533, 840
250, 492, 767

35, 49, 64
33, 50, 68

4.1, 15.2, 26.2
7.3, 18.0, 30.6

Trondheim –
Risvollan,
MET 68 230,
NVE 123.38.

10 722 Dfc 63.4 Obs:
RCP 8.5:

669, 965, 1256
853, 1176, 1599

117, 150, 173
133, 163, 196

−6.1, 6.3, 17.9
−1.4, 8.6, 19.2

temperature dependency was added in an attempt to improve
the robustness of the model toward climate change under the
hypothesis that the change in rainfall pattern would be corre-
lated to the shift in temperature and that the existing observed
datasets already carry the necessary information for calibra-
tion. In the models MRCS-SEP, MRCSI-SEP and MRCSIT-SEP
(Table 2) the weights generated were permuted stochasti-
cally depending on the neighbour (indicated with SEP, Eqs. 4
and A5), while the MRCS, MRCSI, and MRCSIT model con-
sidered equal probability (0.5) to permute the two children
weights.

Similarly to Rupp et al. (2009), the generators of the MRC
models include timescale dependency through analytical for-
mulas. In practice it means that there is a single set of pa-
rameters per generator and not a different set at each cascade
step. It ensured a relatively parsimonious number of parame-
ters compared to other recent works on microcanonical MRC
where a set per cascade step is often used (e.g. 12 to 36 total
parameters by Bürger et al., 2019 or from 6 to 224 param-
eters per cascade step by Müller-Thomy, 2020). It should

be noted that based on dataset analysis and as advised by
Serinaldi (2010), despite the fact that universal and canonical
MRC represent the most parsimonious approach parameter-
wise, their microcanonical counterpart was preferred. This
choice of model that deviates from the hypothesis of multi-
fractal scale invariance was supported by several other stud-
ies (Koutsoyiannis and Langousis, 2011; Veneziano et al.,
2006). The number of parameters can be lower with the use
of universal MRCs which were excluded from this study
due to lack of flexibility (Serinaldi, 2010). It also allows the
model to be used with any desired initial resolution lower
than 1500 min. Homogeneity of the resolution in the input
datasets was not required for calibration and data process-
ing (i.e. the model can be calibrated using multiple datasets
with different resolutions between 1 min and 1 d). The pa-
rameters of each generator of MRC models and each loca-
tion required calibration. A single-step calibration, based on
the processed data, was sufficient for generators with only
timescale dependency. A multiple-step calibration with data
manipulation was necessary for generators with depth/inten-
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Figure 1. Workflow for downscaling to transfer a depth from time step T to time step T
2 . The red boxes involve the generation of a random

number. The process starts with 1440 min time step to reach 5.625 min. An interpolation is then done to reach a 6 min time step.

Table 2. Nomenclature of the models and various quantities taken into account by each model depending on the process considered; S is the
timescale, D the rainfall depth/intensity, T the temperature and N the close neighbour.

Model P(W = 0) P (W |W 6= 0) P (SW = 1) Number of

S I T N S I T N S I T N parameters

MRCS × × 8
MRCS-SEP × × × × 13
MRCSI × × × 14
MRCSI-SEP × × × × × 19
MRCSIT × × × × 13
MRCSIT-SEP × × × × × × 18

sity, temperature dependency, and for the non-zero-weight
generator. This choice was motivated by the development
of the model through data analysis and conceptualization of
the model. Especially, the steps and calibration of the three
generators were chosen to avoid compensation between pro-
cesses using a bottom-up approach (i.e. starting from local
properties and then add dependencies to progressively up-
scale the model). Additionally, the choice of regression over
timescale was used to avoid parameter sets that lead to the
correct distribution of precipitation intensities without tem-

poral consistency. Later studies can further improve the pro-
cedure to make it more easily calibrated. The optimizations
were based on non-linear least squares in the standard library
scipy.optimize with default parameters in Python (Virtanen
et al., 2020).

– The parameters of zero-weight generator with only
timescale dependency (Eq. A1) followed a single-step
calibration against observed zero-weight proportions by
non-linear least squares.
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– The parameters of the zero-weight generator with
timescale and depth dependency (Eqs. A2a–A2d) fol-
lowed a two-step calibration: (i) for each timescale, the
proportion of zero-weight depending on depth was eval-
uated using a weighted running window to compen-
sate for rare occurrence of extreme depths. The propor-
tion of zero weight depending on depth was then fitted
to a function (Eq. A2a). (ii) The functions modelling
the parameters depending on timescale were then cal-
ibrated by least squares (parameters of Eqs. A2b, A2c
and A2d).

– The parameters of zero-weight generator with
timescale, depth and temperature dependency
(Eqs. A3a–A3e) followed a similar calibration
procedure. (i) Using running windows of temperature,
the proportion of zero-weight depending on depth
was fitted by least squares for different temperatures
(Eq. A3a). (ii) Given a timescale the parameters
depending on temperature were fitted to a Gaussian
function (Eq. A3b). (iii) The parameters of the Gaussian
function depending on timescale were then fitted to set
of functions by least squares (Eqs. A3c, A3d and A3e).

– The non-zero-weight generator consisted of a truncated
normal distribution on [0, 0.5] with µ= 0.5 (Eq. 3b)
and a function σ depending on timescale (Eq. A4). It
was chosen against more commonly used beta distribu-
tions (McIntyre et al., 2016) after a goodness-of-fit test
was applied to the historical data. The calibration was
done in two steps. (i) σ was evaluated by non-linear
least squares for each timescale. (ii) The parameters of
Eq. (A4) were calibrated against the evaluated σ de-
pending on timescale by least squares.

– The parameters of the SEP generator (Eq. A5) followed
a single-step calibration by least squares with processed
proportion of high weight on the side of highest neigh-
bour depending on timescale.

2.3 Green Infrastructure modelling

In order to quantify the influence of rainfall input in green
roof performance estimation, two green roofs located in
Trondheim were modelled. They were selected due to data
availability and the contrast of their behaviours: (i) a typi-
cal extensive green roof (E-Green roof) with sedum vege-
tation, 30 mm of substrate, and 10 mm “eggbox” drainage
layer (Hamouz and Muthanna, 2019), and (ii) a detention-
based extensive green roof (D-Green roof) with sedum veg-
etation, 30 mm of substrate, and 100 mm of lightweight clay
aggregates (Hamouz et al., 2020). The model (Eqs. 5a–5c)
was a simple reservoir model with smoothed linear function
(Eq. 5c) for the outflow, Oudin’s model for potential evap-
otranspiration (PET, Eq. 5b) and a soil moisture evaluation

function to estimate actual evapotranspiration (AET) (Johan-
nessen et al., 2017).

WCi =WCi−1+Pi−1−Qi−1

−WCi−1×PETi ×C (5a)

PETi =

{
0, if Ti <= 5 ◦C
Ra
λρ
× 0.01× (Tmean+ 5), if Ti > 5 ◦C

(5b)

Qi =



SK

1+exp(− 4×K
SK
×(WCi−WCK−

SK−1
2×K ))

,

if WCi >WCK + SK−1
2×K

K × (WCi −WCK)+ 1
2 ,

else

(5c)

WCi is the water content (mm) at time ti . Pi is the precip-
itation (mmmin−1). The discharge Qi (mmmin−1) is based
on the empirical (Eq. 5c). The temperature Tmean is in de-
grees Celsius, and the extra-terrestrial radiation Ra is derived
from the latitude and the Julian day. The constant 1

λρ
≈ 0.408

depends on latent heat and volumetric mass of water. The
factor C is a calibrated factor depending on the maximum
storage and the crop factor. The smoothed linear function
(Eq. 5c) has three parameters: K the conductivity slope, SK
the smoothing factor and WCK the starting delay. The model
was developed based on data from extreme tests with ar-
tificial precipitation (Hamouz et al., 2020) by establishing
a relationship between water content and runoff. The out-
flow depending on water content was used as input for cal-
ibration of the parameters of the discharge function using a
Bayesian calibration with DREAM setup (Laloy and Vrugt,
2012). It should be noted that the model remains limited as it
lumps processes and neglects dynamical effect, i.e. the wet-
ting of the aggregates and substrate and the spatial distribu-
tion of water content within the roof (Hamouz et al., 2020).
The D-Green roof’s model was tested against measured dis-
charge with, as input, a rainfall series of 2.5 months from
10 July to 25 September 2018 and a 1-month series from
5 September to 5 October 2019. The E-Green roof’s model
was tested against measured discharge with a rainfall series
from April 2017 to September 2017 as input. Snow periods
were mostly excluded for the evaluation.

2.4 Evaluation of the downscaling models

For each location, the observed precipitations were aggre-
gated to daily resolution and downscaled to obtain 200 time
series of 6 min time step. They were used to model the ex-
tensive and detention-based extensive green roofs in paral-
lel. It should be noted that irrigation needs and snow periods
were neglected since the primary objective of the study was
to evaluate the produced time series. There were 10 projec-
tions available in Norway for the RCP 8.5 and 12 in France
with the EURO-CORDEX project. Each projected time se-
ries was downscaled 20 times (200 simulations for Norwe-
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gian locations, and 240 simulations for French locations) to
capture the following: (i) the variability between the projec-
tions and (ii) the variability due to the nature of the down-
scaling model. The number of simulations per location and
per period was chosen to ensure reasonably low simulation
time and represent the stochastic uncertainty inherent to the
downscaling process. The stability of the percentile estimator
with 200 simulations was verified against 1000 simulations
in one model and one location to validate the choice.

To evaluate the performance of the downscaling model and
the projected performance of green roofs, different indicators
were used:

– The lag-1 autocorrelation depending on timescale was
evaluated. It was chosen to assess the temporal struc-
ture of the produced time series. The autocorrelation
depending on lag time for timescale 6, 48 and 180 min
were used for an in-depth analysis.

– The survival distribution of precipitation and discharge
from both roofs were assessed at 6 min time steps. This
approach is similar to the use of flow duration curves
recently applied to green roofs by Johannessen et al.
(2018). The exceedance probabilities were presented
with a log axis to account for extreme probabilities. The
median, 5th and 95th percentiles of the downscaled time
series were represented. The survival distribution of dis-
charge from the roofs with downscaled time series com-
pared to the distribution based on observed data indi-
cates the applicability of the downscaled time series as
an input for green infrastructure modelling.

– Along with the survival distribution, a performance in-
dicator derived from the Kolmogorov–Smirnov (KS)
distance was used. The KS distance was indeed not rel-
evant for the survival distributions where the extreme
probabilities are of prime importance. The authors did
not find a standard indicator for such cases in the litera-
ture; therefore the following indicator, which penalizes
more errors for extreme probabilities, was developed:

KSrel =max
(

DistribSim,median−DistribObs

DistribObs

)
. (6)

– Three different discharge thresholds were used to report
exceedance frequency on different operating modes:
1 L s−1 ha−1 for small events, 10 L s−1 ha−1 for major
events and 100 L s−1 ha−1 for extreme events. Those
thresholds were chosen in common for all roofs to facil-
itate comparison. They represent a compromise to have
the same operating modes for each location even if the
occurrence of those modes differs due to different cli-
mate conditions. Small event durations were counted in
days per year, major events in hours per year and ex-
treme events in minutes per year.

– The distribution of dry periods and the retention fraction
were computed. They are not expected to be affected by
the downscaling process since the dry periods affect-
ing the roofs can be observed on daily resolution, and
the retention fraction can be estimated with conceptual
models using daily time-step data. However, they pro-
vide additional information to analyse the behaviour of
the roofs.

2.5 Hybrid event-based downscaling

In order to assess the applicability of downscaled time series
to predict the future performance of green infrastructure, the
methods were compared to the current recommended prac-
tice in the locations: the use of an event-based design method
based on IDF curves with a climate factor (CF) (Kristvik
et al., 2019). In particular, the variational method (Alfieri
et al., 2008) is applied. It consists, given a return period,
in considering the constant-intensity rainfall leading to the
highest discharge. It should be noted that the comparison in-
tended to follow the recommended design method and not
to follow the guidelines of a specific city since they can
differ in terms of regulation. For instance, in Trondheim a
threshold for maximum discharge has to be fulfilled (Trond-
heim Kommune, 2015), while in Lyon the first 15 mm of a
20-year return period has to be retained, and beyond those
15 mm a threshold is set for maximum discharge from the
parcel (Greater Lyon council, 2020). The longest available
time series, which originated from Trondheim, was the most
adequate for this example. For 2-, 5- and 10-year return pe-
riod rainfall and runoff events, three approaches were com-
pared: (i) peak runoff of runoff events based on an observed
precipitation time series (reference), (ii) peak runoff of rain-
fall events based on variational method, the IDF curves and
with and without climate factor (typical design approach),
and (iii) a hybrid approach based on downscaling 105 rainfall
events with a daily depth based on the return period curves
with and without climate factors. This last approach used the
MRCSIT-SEP model, the initial water content was set to the
most probable value based on analysis of a long time se-
ries. According to the current recommendation in Norway
for Trondheim municipality, a climate factor of 1.4 was ap-
plied (Dyrrdal and Førland, 2019).

3 Result and discussion

3.1 Green infrastructure model

The parameterized empirical reservoir model was applied to
the extensive green roof and the detention-based extensive
green roof. The performance was evaluated both on the time
series and individual events extracted from the time series.
The criteria were (i) Nash–Sutcliffe efficiency (NSE) indi-
cator on time series for both discharge and water content,
(ii) NSE for rainfall events defined with a minimum inter
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events time of 6 h to analyse further the behaviour of the
model, and (iii) the volumetric error on the time series to
account for model retention evaluation. The water content
was estimated directly from discharge measurement using
the empirical curve. The performance was as follows:

– NSE> 0.8 for both discharge and water content for the
extensive green roof. For the three most intense events
the NSE ranged from 0.9 to 0.75. The water balance
error was found to be 2.1 %.

– NSE> 0.94 for both discharge and water content for
the detention-based extensive roof. For the three most
intense events the NSE ranged from 0.96 to 0.85. The
water balance error was found to be 5 %.

The conceptual limitation of the model can be seen in
Fig. 2 at the beginning of the events of the testing period.
It suggests that short events with low intensity are not re-
produced well by the model as it cannot represent the delay
induced by the wetting of the different layers of the roofs.
Since the objectives of this study involve the use of a simple
model to reproduce the behaviour of two roofs, the model
was not further improved.

3.2 Analysis of climates properties

Figure 3 presents the zero-weight proportion depending on
timescale, depth and temperature for two different datasets
(Bodø and Hamar). In Fig. 3a the proportion of zero-weight
decreases with increasing timescale for Bodø. In Hamar the
proportion decreases until 45 min and increases for higher
timescales. Based on this observation, two types of datasets
were identified in terms of zero-weight occurrence. For data
from Bodø, Bergen, Kristiansund and Trondheim, the pro-
portion of weights that equalled zero decreased with increas-
ing timescale. For the data from Hamar, Lyon, Marseille and
Kristiansand, the proportion decreased until 45 min timescale
and increased afterwards (Fig. B1a). Given a timescale, the
proportion of weight equal to zero was not uniform de-
pending on the weights (e.g. Bodø and Hamar Fig. 3b with
a timescale of 48 min). Therefore, the monotony or non-
monotony of the proportion of weights equalling to zero de-
pending on timescale can be explained by different distribu-
tions of depth in the observed data. The proportion depended
on depth, which is consistent with previous work (Rupp et al.,
2009). It should be noted that a high proportion of zero-
weight is linked to shorter and more intense rainfall events.
It could explain why the proportion is higher in Lyon than in
Bergen (cf. Appendix B, Fig. B1a).

In Fig. 3b, the zero-weights proportion decreases with in-
creasing depth for the case of Bodø. In the case of Hamar,
it increases for depth higher than 2 mm. Figure 3c and d
show that a temperature dependency may explain this be-
haviour. In Bodø, the proportion depending on depth gives
similar results for different ranges of temperature at 48 min

resolution (Fig. 3c). On the contrary, in Hamar, the subsets
with lower temperature lead to a lower proportion of weights
being equal to zero, compared to subsets with higher tem-
perature (Fig. 3d). Moreover, the higher depths were ob-
served in subsets with higher temperature. The increase ob-
served in Hamar can be explained by the distribution of ob-
served values. It is consistent with the observation of dif-
ferent temporal distributions of rainfall for different tem-
perature ranges such as convective rains (Berg et al., 2013;
Zhang et al., 2013). If, given a depth of 10 mm at resolution
of 48 min, the probability to have a weight equal to zero is
higher, then there is a higher probability to have an intense
rainfall. The non-homogeneity of observed datasets and the
shift in temperature with climate change might lead to incon-
sistency in time series produced by the downscaling meth-
ods that exclude depth and/or temperature dependency. The
48 min timescale was chosen to exemplify these properties.
The same properties can be observed for different timescales,
but the magnitude differs and tends to lower with higher
timescale (Fig. B1b, c and d). Developing a model without
temperature dependency might prevent comparability of pa-
rameters between locations and does not necessarily lead to
parameter parsimonious models. Moreover, a model such as
MRCSI can result in overfitting when used with datasets like
Hamar. The functions necessary to represent the behaviour
without considering the temperature dependency are more
complex and less explanatory. Based on this analysis it was
possible to add the temperature dependency and conceptu-
alize a more explanatory model (MRCSIT, with Eqs. A3a–
A3e) with more robust results for the influence of climate
change. This underlies the hypothesis that the information
about the correlation between rainfall and precipitation will
be expressed in the same way through those variables in the
future.

3.3 Evaluation of the downscaling methods

An overview of the performance of the downscaling and
green roof models in Bergen is presented on Fig. 4. All the
downscaling models performed similarly in terms of dry-
period distribution and slightly underestimated the dry pe-
riods in observed data (Fig. 4b). The dry periods were di-
rectly linked to the zero-weight probability. In green infras-
tructure modelling, the length of the dry periods influences
the retention performance as it can lead to water stress hin-
dering evapotranspiration. However, dry periods leading to
water stress can be also evaluated with daily time-step series
(there is no need for minute time-step series). Therefore, dry
periods longer than the initial daily resolution are not signif-
icantly affected by downscaling.

The distribution of precipitation (Fig. 4a) was properly re-
produced by MRCSI, MRCSI-SEP, MRCSIT, and MRCSIT-SEP
(KSrel = 1 in this case, indicating that the maximum dis-
tance has the same order of magnitude in data and model
results) models, while MRCS and MRCS-SEP underestimated
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Figure 2. Testing of the green roof’s reservoir model. Observed and modelled runoff of the detention-based extensive green roof (D) model
on 10-day period (a) and extensive green roof (E) for a period of 8 d (b) in Trondheim.

Figure 3. Dependency of the probability to have a weight equal to zero on timescale (a), rainfall depth (b), and temperature (c, d) for datasets
observed in Bodø and Hamar. Panels (b), (c), and (d) are based on data at 48 min resolution.

low precipitation and overestimated high precipitation depths
(KSrel = 102 meaning that the maximum distance reached
2 orders of magnitude). This was expected as the time steps
with high depth have higher probability to not be split in the
observed data. This is not the case for MRCS and MRCS-SEP
models, for which probability is uniformly distributed. In
Bergen, the observed precipitations were within the range
of 90 % coverage interval for MRCSI, MRCSI-SEP, MRCSIT,
and MRCSIT-SEP. For the four later mentioned models, the

discharge of the D-Green roof was underestimated by 1 or-
der of magnitude with a KSrel of 1.7× 101 (Fig. 4c), due
to the behaviour of the roof with rare high discharge. The
hyetographs produced by downscaling probably tend to gen-
erate less favourable hyetographs for this roof. Although the
discharge of the E-Green roof did not fall in the 90 % cover-
age interval, it can be considered as slightly underestimated
since the magnitude is similar with a KSrel of 2.0 (Fig. 4d).
However, this was not the case for all locations, as in Hamar

https://doi.org/10.5194/hess-26-2855-2022 Hydrol. Earth Syst. Sci., 26, 2855–2874, 2022



2864 V. Pons et al.: Downscaling models to forecast green roof detention performance

the most extreme precipitation tended to be underestimated,
while the discharge from both roofs had the same order of
magnitude as the observed data but tended to be overes-
timated. These findings could suggest inconsistency in the
temporal structure of rainfall. This hypothesis can be con-
firmed by the autocorrelation (Fig. 5) being overestimated at
6 min time step.

The autocorrelation was underestimated by MRCS and
MRCS-SEP models. The use of the rainfall continuity indica-
tor increased the lag-1 autocorrelation for all models but did
not improve the overall performances. The models MRCSI,
MRCSI-SEP, MRCSIT, and MRCSIT-SEP underestimated the
lag-1 autocorrelation between 48 and 300 min timescales, but
an in-depth analysis with different lags at 48 and 180 min
timescale shows that despite that underestimation for lag-1
the general behaviour of the observed time series is repro-
duced. Similar observations were done for other locations.

To evaluate the produced time series it is necessary to com-
pare the discharge with observed time series to the discharge
with downscaled time series. For most of the locations, the
predicted range of precipitation or discharge deviated for
lowest probabilities from the values obtained with observed
time series: (i) when the precipitation range matched with
the observed distribution, the discharge tended to be overes-
timated; (ii) when the precipitation was underestimated, the
discharge with observed data tends to lie in the range ob-
tained from downscaled time series. While the downscaled
time series suffer from some limitation when compared to
results obtained from the observed time series, the raw dis-
charge time series might as well not be suitable for robust
decision making in green infrastructure implementation as
it does not represent the natural variation of performance of
green infrastructure.

In order to evaluate the potential of discharge from down-
scaled time series to approach the range of performance
linked to natural variability, a 3-year moving window was
used on precipitation and discharge time series resulting from
observed precipitation. The resulting 5th and 95th percentiles
of the annual duration exceeding 1, 10 and 100 L s−1 ha−1

are presented in Fig. 6 to evaluate the time series in dif-
ferent operating modes of the roofs. It is compared to the
stochastic variability (5th and 95th percentiles) from the
six models. Each horizontal line in Fig. 6 represents the
range between 5th and 95th percentiles for the threshold
and model considered. The different thresholds represent
the discharge for respectively small events, for major events
and extreme events. In Fig. 4, the thresholds correspond to
0.006, 0.06 and 0.6 mm min−1. A good estimate is defined
by a complete or partial overlap between the observed nat-
ural variability and the stochastic variability range; the or-
der of magnitude of the estimates should be similar. For in-
stance, in Bergen (first column), the observed range of the
E-Green roof higher than 100 L s−1 ha−1 (third row) is pre-
dicted, based on observed input, from 4 to 10 min; the MRCS
model provided values around 200 min; it is not a good es-

timate as there is no overlap and the order of magnitude
varies; the MRCSI model resulted in a range from 10 to
20 min. It is a good estimate as the ranges are overlapping,
and the orders of magnitude are similar. The MRCS and
MRCS-SEP models tend to underestimate the order of mag-
nitude of the range of exceedance frequencies of the small
events (1 L s−1 ha−1) (in Bergen, Hamar and Marseille) but
tend to overestimate major (10 L s−1 ha−1) (Hamar) and ex-
treme events (100 L s−1 ha−1) (Bergen, Bodø, Hamar and
Marseille). The other models gave mostly good estimates for
each of the thresholds (Figs. 6, C1). In Marseille, the mod-
els MRCSI, MRCSI-SEP, MRCSIT, and MRCSIT-SEP tended to
underestimate the higher bound of the extreme event precip-
itation with values lower than 50 min yr−1, whereas the ob-
served time series led to a maximum of 90 min yr−1. How-
ever, those models kept the order of magnitude, while MRCS
and MRCS-SEP models estimated it higher than 102 min. The
same behaviour was observed with Hamar (Fig. 6) and Lyon
datasets (Appendix C, Fig. C1). This suggests that the models
performed worse for dryer locations, possibly due to the cal-
ibration procedure since fewer wet days are available for cal-
ibration. MRCSI and MRCSIT performed similarly, but due
to its structure, MRCSI may overfit to the calibration data. It
could result in an inaccurate prediction in the case of signifi-
cant temperature shift between the calibration and prediction
datasets. To conclude, MRCS and MRCS-SEP lead to overes-
timation of the natural variability, while MRCSI, MRCSI-SEP,
MRCSIT, and MRCSIT-SEP give more accurate estimates.

3.4 Assessment of green roof future performance

All six models were used to assess the performance of green
roofs for future climate as illustrated for Bergen in Fig. 7. It
was nevertheless acknowledged that MRCS and MRCS-SEP
models gave less accurate estimates. The four model MRCSI,
MRCSI-SEP, MRCSIT, and MRCSIT-SEP lead to similar re-
sults in Bergen (Fig. 7). The difference in estimates be-
tween the models with coherence indicator (MRCSI-SEP,
MRCSIT-SEP) and without (MRCSI-SEP, MRCSIT-SEP) was
negligible in comparison to the stochastic uncertainty inher-
ent to the models and the variability linked to the different
projections available under RCP 8.5 (Fig. 7). In Bergen, ac-
cording to the projections, the performance of the two solu-
tions is likely to lead to worse performance: under the cur-
rent climate, the 100 L s−1 ha−1 exceedance was lower than
1 min for the D-Green roof; according to the MRCSIT-SEP
model it might reach between 5 and 19 min in future cli-
mate. It suggested a shift in the order or magnitude from
100 to more than 101 min. Similarly, the E-Green roof might
have a 100 L s−1 ha−1 exceedance shift from 101 to 102 min.
It means that the threshold would regularly be reached.
As illustrated by Figs. 8 and C2, the performance shift de-
pends highly on the location. While the 100 L s−1 ha−1 ex-
ceedance of the green roofs was likely to get worse in Bergen,
it was found to stay stable despite a small increase in Bodø
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Figure 4. Model performance with data from Bergen current climate for MRCS, MRCS-SEP, MRCSI, MRCSI-SEP, MRCSIT, and
MRCSIT-SEP with a range from 5th to 95th percentiles. Observed input represents the fine-resolution observed time series or simulation
using this time series as input.

Figure 5. Autocorrelation with data from Bergen current climate for MRCS, MRCS-SEP, MRCSI, MRCSI-SEP, MRCSIT, and MRCSIT-SEP
with a range from 5th to 95th percentiles. Autocorrelation with different lags for 6, 48, and 180 min timescales, and lag-1 autocorrelation
depending on timescale. They are compared to the observed input which represents the fine-resolution observed time series.
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Figure 6. Performance of the downscaled time series in Bergen, Bodø, Hamar, and Marseille; exceedance frequency for small events, major
events, and extreme events. The stochastic variability linked to the downscaled time series is evaluated with the 5th to 95th percentiles.
Observed represents the fine-resolution observed time series or simulation using this time series as input. The 5th to 95th percentiles were
estimated with a 3-year moving window. Due to log axis, occurrences lower than 100 are not visible.

and to improve in Hamar and Marseille. The increase of ex-
ceedance frequency in the Norwegian cities was due to an
increase in precipitation (Table 1). However, the increase in
temperature led to an increase in potential evapotranspiration
and therefore might have attenuated or even counterbalanced
the effect of rainfall increase by lowering the initial water
content in the roofs at the beginning of a rainfall event. The
Table 3 shows that the retention fraction was likely to de-
crease in Bergen, Bodø, Hamar, Kristiansand and Kristian-
sund. It was found to increase more significantly in Lyon,
Marseille and slightly in Trondheim. The models with tem-
perature dependency performed similarly to the model with
only depth dependency in most of the locations. However, in
Lyon and Marseille, the 100 L s−1 ha−1 exceedance or pre-
cipitation predicted differed from 16–27 to 21–50 min (14–
30 to 14–43 in Marseille). This suggests that some loca-
tions are more sensitive than others to temperature-dependent
patterns. The models MRCSI, MRCSI-SEP, MRCSIT, and
MRCSIT-SEP allow the evaluation of shift in performance for
the different roofs using exceedance range.

3.5 Design perspectives

The potential of downscaling models to improve the current
practices was investigated. Figure 9 presents results based on
continuous simulation, on the variational method and on the
hybrid approach with downscaled events. It shows that the
variational method underestimated the peak runoff with ob-
served data, and the distribution from the hybrid approach
covered them. It suggests that the variational method might
not be enough conservative when compared to peak runoff
from runoff events instead of rainfall events. Even if the re-
sults from the hybrid event-based downscaling lead to realis-
tic distribution based on probable rainfall events, the down-
scaling models might need a different calibration or concep-
tualization to be optimized specifically for extreme events.
Moreover the initial water content for the events remains a
limitation of this method. The observed peaks show a range
of possible outcomes, which highlights the limitations of the
variational method with a single estimate, whereas the hybrid
downscaling-event based method, leading to a range of prob-
able outcomes, gave promising results that can lead to more
robust design and decision making. Due to its characteris-
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Figure 7. Comparison between performance under current climate and future climate in Bergen for the MRCS, MRCS-SEP, MRCSI,
MRCSI-SEP, MRCSIT, and MRCSIT-SEP with a range from the 5th to 95th percentiles. They are compared to observed input which rep-
resents the fine-resolution observed time series or simulation using this time series as input.

Table 3. Retention fraction in the different locations defined as the sum of outflow divided by the sum of precipitation.

Location Bergen Bodø Lyon Hamar

Period Observed Projected Observed Projected Observed Projected Observed Projected

D-Green roof 0.20 0.17 0.21 0.20 0.43 0.47 0.47 0.40
E-Green roof 0.19 0.16 0.21 0.20 0.39 0.44 0.44 0.38

Location Kristiansand Kristiansund Trondheim Marseille

Period Observed Projected Observed Projected Observed Projected Observed Projected

D-Green roof 0.24 0.22 0.25 0.20 0.27 0.30 0.41 0.47
E-Green roof 0.22 0.20 0.24 0.20 0.26 0.29 0.36 0.42

tics, the shift in performance between current climate and
future climate is higher for the E-Green roof than for the D-
Green roof. This is due to the detention layer in the D-Green
roof which is not saturated by a 10-year return period event
(Hamouz et al., 2020).

4 Conclusions

In this study, multiplicative random cascades models with
different variable dependency were developed. They were
based on a study of timescale, depth, and temperature charac-
teristics of the datasets to ensure a consistent structure in the

view to apply them to daily-resolution climate projections.
The applicability of the synthetic time series to be used as
input for performance modelling of green infrastructure was
evaluated. They were used to predict the shift in runoff ex-
ceedance under a future climate.

Six downscaling models were developed: two models with
only timescale dependency (MRCS and MRCS-SEP), two
models with timescale and depth dependency (MRCSI and
MRCSI-SEP), and two models with timescale, depth and tem-
perature dependency (MRCSIT and MRCSIT-SEP). The mod-
els MRCS-SEP, MRCSI-SEP and MRCSIT-SEP include a rain-
fall continuity property with the intention of improving the
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Figure 8. Future performance of green roofs (D and E) in Bergen, Bodø, Hamar and Marseille; exceedance frequency for small events,
major events and extreme events. The stochastic variability linked to the downscaled time series is evaluated with the 5th to 95th percentiles.
Observed represents the fine-resolution observed time series or simulation using this time series as input. The 5th to 95th percentiles were
estimated with a 3-year moving window. Due to log axis, occurrences lower than 100 are not visible.

temporal structure of the rainfall. The parametrization of
the models ensures the continuity of the different properties
modelled and a low number of parameters.

The MRCS and MRCS-SEP were not sufficient to pre-
dict the future performance of green infrastructure as they
lead to an overestimation of runoff; the MRCSI, MRCSI-SEP,
MRCSIT, and MRCSIT-SEP lead to better performance: it was
possible to predict runoff exceedance frequency with similar
order of magnitude as the estimate of the natural variability
of performance based on observed time series. The structure
of the MRCSI and MRCSI-SEP models makes them more vul-
nerable to overfitting than MRCSIT and MRCSIT-SEP, which
makes them less reliable for future performance estimates.
However, the differences between them were negligible com-
pared to the variability linked to the different outcome of
climate models, the variability inherent to the model and
its accuracy. The MRCS-SEP, MRCSI-SEP and MRCSIT-SEP
add an equation to improve the temporal structure of down-
scaled rainfall. The models predicted higher runoff from the
detention-based extensive green roof, which is consistent

with their properties; however the change in performance
was not significant compared to stochastic uncertainty.

Using the RCP 8.5, the different downscaling and the
green roof models suggest that the performance shift due to
climate change highly depends on the location. The runoff
exceedance is likely to increase in Bergen while slightly de-
creasing in Lyon and Marseille and keeping the same order
of magnitude in the other locations. The results were com-
pared to one of the current practices: the use of the variational
method with a climate factor. It highlighted the limitation of
this practice that provides a singular estimate and underesti-
mates the observed peaks. A hybrid method using downscal-
ing on extreme events led to promising results by estimating
a distribution of performance of peak runoff.

The models performed well in the eight locations and
four different climates. The use of a more advanced calibra-
tion procedure with Bayesian methods should improve the
results. Similarly, a sensitivity analysis could improve the
parametrization, especially for the models with depth and
temperature dependency in order to fix non-behavioural pa-
rameters. The current study does not include irrigation, and
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Figure 9. Performance depending on the return period in Trond-
heim for the extensive green roof (a) and the detention-based ex-
tensive green roof (b). The transparent coloured area is the distribu-
tion based on the hybrid event-based downscaling under current cli-
mate; the dotted line denotes the use of CF; the points represent the
peaks runoff of runoff events from observed precipitation; the ver-
tical lines the results found based on the variational method (VM):
2-, 5- and 10-year return periods are displayed.

snow modelling a study centred on green infrastructure mod-
elling is therefore needed to extend the results. In order to be
applied in practice on event-based simulation for design per-
spectives, the downscaling models need to be improved with
a calibration procedure developed for extreme events and not
on the complete spectrum of observation as in the current
study.

Appendix A: Generators description

A1 Zero-weight generator with only timescale
dependency

ZeroGenS(Stime)= a14× log(Stime)
4a13× log(Stime)

3

+ a12× log(Stime)
2

+ a11× log(Stime)+ a10 (A1)

A2 Zero-weight generator with both timescale and
depth dependency

ZeroGenSI(di,2j ,Stime = 2j)=

1
1+di,2j−P3(Stime)

f0(Stime)

+

(
1− 1

1+di,2j−P3(Stime)

f1(Stime))
)
,

if di,2j > P3(Stime)

1, else

(A2a)

f0(Stime)=
S
a00−1
time × (1+ Stime)

−a00−a01

a02
+ a03 (A2b)

P3(Stime)= b13× S
3
time+ b12× S

2
time

+ b11× Stime+ b10 (A2c)

f1(Stime)=


A× (1− 1

1+exp(− 4×B
A
×(WCi−C−

A
2×B ))

,

if Stime > C−
A

2×B

B × (Stime−C), else

(A2d)

A3 Zero-weight generator with timescale, depth and
temperature dependency

ZeroGenSIT(di,2j ,Ti,2j ,Stime = 2j)=

1
1+ di,2j

gauss(Ti,2j ,Stime)

(A3a)

gauss(Ti,2j ,Stime)=

A0(Stime)× exp

(
(Ti,2j −µT (Stime))

2

2× σT (Stime)2

)
(A3b)

µT(Stime)= a14× S
4
timea13× S

3
time+ a12× S

2
time

+ a11× Stime+ a10 (A3c)

A0(Stime)=
b0

(1+ Stime)b1
(A3d)

σT(Stime)=
c0

(c2+ Stime)c1
(A3e)

A4 Non-zero-weight generator

It consists in a truncated normal distribution described by
Eq. (3b). The function σ depends on timescale:

NonZeroGenS(Stime)= a10× (Stime)
1
a11 + a12. (A4)

A5 SEP generator

The stochastic element permutation follows a function gener-
ating the threshold to be compared to a uniformly generated
random number depending on timescale:

SEPGenS(Stime)= a14× log(Stime)
4a13× log(Stime)

3

+ a12× log(Stime)
2

+ a11× log(Stime)+ a10. (A5)
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Appendix B: Data analysis

Figure B1. Zero-weight probability depending on timescale for Bergen, Lyon, Marseille, Trondheim, Kristiansund and Kristiansand (a).
Zero-weight probability depending on the rainfall depth for different timescale: 24 min (b), 108 min (c) and 360 min (d) for Bodø and
Hamar.

Appendix C: Other locations performance

Figure C1. Performance of the downscaled time series in Lyon, Kristiansand, Kristiansund and Trondheim; exceedance frequency for
small events, major events and extreme events. The stochastic variability linked to the downscaled time series is evaluated with the 5th to
95th percentiles. Observed represents the fine-resolution observed time series or simulation using this time series as input; the 5th to 95th
percentiles were estimated with a 3-year moving window. Due to log axis, occurrences lower than 100 are not visible.
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Figure C2. Future performance of green roofs (D and E) in Lyon, Kristiansand, Kristiansund and Trondheim; exceedance frequency for
small events, major events and extreme events. The stochastic variability linked to the downscaled time series is evaluated with the 5th to
95th percentiles. Observed represents the fine-resolution observed time series or simulation using this time series as input. The 5th to 95th
percentiles were estimated with a 3-year moving window. Due to log axis, occurrences lower than 100 are not visible.

Appendix D: Table of abbreviations

Abbreviation Meaning
GI Green infrastructures
MRC Multiplicative random cascades
IDF curves Intensity–duration–frequency curves
NVE Norwegian Water Resources and En-

ergy Directorate
MET Norwegian Meteorological Institute
PET Potential evapotranspiration
AET Actual evapotranspiration
E-Green roof Extensive green roof
D-Green roof Detention-based extensive green roof
RCP 8.5 Representative Concentration Path-

way scenario with a 8.5 W m−2 radia-
tive forcing in 2100

NSE Nash–Sutcliffe efficiency
VM Variational method
Si,2j Rainfall continuity indicator at time

step i and timescale 2j
di,2j Depth [mm] at time step i and

timescale 2j
wi,2j Minimum weight at time step i and

timescale 2j from aggregation of
depths D2i,j and D2i+1,j

SW Random discrete variable of neigh-
bour of the highest weight

CF Climate factor

Code availability. The code is still under development and not suf-
ficiently commented at the moment for dissemination. It is the in-
tent of the authors to make it publicly accessible in the future. In the
meantime code is available by communication to the author under
reasonable request.

Data availability. The data from the Norwegian locations can be
provided by the authors upon request. The Lyon and Marseille rain-
fall data, owned by the municipalities, have been made available to
the authors. The authors do not own the data and cannot make them
publicly accessible.
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