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Abstract. Climate change affects precipitation phase, which
can propagate into changes in streamflow timing and magni-
tude. This study examines how the spatial and temporal dis-
tribution of rainfall and snowmelt affects discharge in rain–
snow transition zones. These zones experience large year-
to-year variations in precipitation phase, cover a significant
area of mountain catchments globally, and might extend to
higher elevations under future climate change. We used ob-
servations from 11 weather stations and snow depths mea-
sured from one aerial lidar survey to force a spatially dis-
tributed snowpack model (iSnobal/Automated Water Supply
Model) in a semiarid, 1.8 km2 headwater catchment. We fo-
cused on surface water input (SWI; the summation of rain-
fall and snowmelt on the soil) for 4 years with contrasting
climatological conditions (wet, dry, rainy, and snowy) and
compared simulated SWI to measured discharge. A strong
spatial agreement between snow depth from the lidar survey
and model (r2

= 0.88) was observed, with a median Nash–
Sutcliffe efficiency (NSE) of 0.65 for simulated and mea-
sured snow depths at snow depth stations for all modeled
years (0.75 for normalized snow depths). The spatial pat-
tern of SWI was consistent between the 4 years, with north-
facing slopes producing 1.09–1.25 times more SWI than
south-facing slopes, and snowdrifts producing up to 6 times
more SWI than the catchment average. Annual discharge in
the catchment was not significantly correlated with the frac-

tion of precipitation falling as snow; instead, it was correlated
with the magnitude of precipitation and spring snow and rain.
Stream cessation depended on total and spring precipitation,
as well as on the melt-out date of the snowdrifts. These re-
sults highlight the importance of the heterogeneity of SWI at
the rain–snow transition zone for streamflow generation and
cessation, and emphasize the need for spatially distributed
modeling or monitoring of both snowpack and rainfall dy-
namics.

1 Introduction

Due to increases in temperature, mountainous regions will
receive less snowfall and more rainfall (Barnett et al., 2005;
Stewart, 2009). This will alter the timing and amount of
snowmelt, which is a significant source for water resources
across the globe (Barnett et al., 2005; Marks et al., 1999;
Somers and McKenzie, 2020; Viviroli et al., 2007). On the
scale of the continental United States (US), a decrease in
the fraction of precipitation falling as snow (snowfall frac-
tion hereinafter) is expected to decrease stream discharge
(Berghuijs et al., 2014). Earlier stream discharge peaks in
response to earlier snowmelt and a decline in summer low
flows across the semiarid mountainous US have been re-
ported in both observational data records (McCabe et al.,
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2017; Luce and Holden, 2009; Regonda et al., 2005) and fu-
ture climate projections (Naz et al., 2016; Leung et al., 2004;
Milly and Dunne, 2020; Christensen et al., 2004). However,
lower snowfall fractions in much of the western US have not
yet led to a significant decrease in annual discharge (McCabe
et al., 2017). Therefore, understanding year-round discharge
responses, in particular the sensitivity of stream discharge to
changes in yearly snowfall fractions, is warranted and will
help us to anticipate how stream discharge might be affected
by climate change.

Variations in snowfall fractions can affect the temporal dis-
tribution of surface water inputs (SWI= rainfall+ snowmelt
onto the soil). Snowpacks store water and release snowmelt
later, whereas rain on snow-free ground immediately enters
the rest of the hydrologic system. After rainfall or snowmelt
reaches the ground surface, it might become stream dis-
charge, remain stored on the land surface or in the soil,
recharge deeper groundwater, or become evaporated or tran-
spired. Generally, water inputs from rain or snowmelt during
periods with high antecedent wetness and low evapotranspi-
ration rates are more likely to recharge groundwater and gen-
erate discharge (Jasechko et al., 2014; Molotch et al., 2009;
Hammond et al., 2019). Rainfall and snowmelt inputs might
result in similar runoff ratios (discharge /SWI) as long as
the overall catchment wetness is similar or if the catchment
is wet at key locations for water transport (Seyfried et al.,
2009). The relationship between discharge and antecedent
wetness conditions may reflect the ability of catchment stor-
age to provide a “memory effect” of past inputs that can
buffer short-term changes in inputs. However, this memory
varies among catchments and across years (depending, for
instance, on the local subsurface storage capacity or yearly
variations in evapotranspiration), so that changes in snow-
fall fractions might not always affect stream discharge. Pre-
vailing climatic conditions and subsurface storage capacity
might also influence how precipitation is partitioned after it
reaches the ground surface (Hammond et al., 2019), indicat-
ing that both the temporal and spatial distribution of SWI
are important when considering how snowfall fractions af-
fect seasonal to annual stream discharge generation.

Snowfall fractions may also influence the spatial distri-
bution of SWI. In the semiarid western US, rainfall magni-
tudes generally increase with elevation (Johnson and Han-
son, 1995). In regions with large snowfall fractions, this gen-
eral elevation-driven pattern can be overlain by impacts of
wind-driven redistribution of snow, which is dependent on
factors such as topography, aspect, wind speed, and wind
direction (Sturm, 2015; Tennant et al., 2017; Winstral and
Marks, 2014; Trujillo et al., 2007). Hence, differences in the
SWI distribution due to varying snow depths could be partic-
ularly substantial in areas where wind-driven redistribution
of snowfall is significant. The primary controls (e.g., topog-
raphy, aspect, and elevation) on snow depth and snow wa-
ter equivalent (SWE) are relatively consistent from year to
year, so the interannual distribution of snow is usually spa-

tially consistent (Parr et al., 2020; Sturm, 2015; Winstral
and Marks, 2002). The effects of elevation and aspect on
the spatial distribution of snow depth and, thus, the poten-
tial for SWI as snowmelt, have been well studied in both
high- and mid-altitude mountains (e.g., Grünewald et al.,
2014; López-Moreno and Stähli, 2008; Tennant et al., 2017).
Studies on snow drifting in seasonally snow-covered areas
(Mott et al., 2018), prairie and arctic environments (e.g.,
Fang and Pomeroy, 2009; Parr et al., 2020), and in the con-
text of avalanches (e.g., Schweizer et al., 2003) have shown
that snowdrifts can strongly influence the spatial water bal-
ance. These studies have also revealed that Equator-facing
slopes might only receive half as much SWI as snowmelt
compared with snowdrift areas (Flerchinger and Cooley,
2000; Marshall et al., 2019). In turn, water originating from
snowdrifts can locally control groundwater level fluctuations
(Flerchinger et al., 1992) and contribute to streamflow into
the summer season (Chauvin et al., 2011; Hartman et al.,
1999; Marks et al., 2002). The relative importance of spa-
tial snowmelt patterns is expected to increase with snowmelt
magnitude, which is sensitive to snowfall fractions. Hence,
quantifying spatial snowmelt patterns in areas that are not
seasonally snow covered, as well as determining the impor-
tance of snowdrifts for streamflow generation in these areas,
could be an important step in clarifying how stream discharge
is affected by snowfall fractions.

One area where the snowfall fraction varies substantially
from year to year is the rain–snow transition zone. The rain–
snow transition zone is an elevation band in which the dom-
inant phase of winter precipitation shifts between snow and
rain (Nayak et al., 2010), and it is often characterized by a
transient snowpack in (at least) parts of the defined area. Mul-
tiple studies in the European Alps and the northwestern US
have shown that snowfall fractions in the rain–snow transi-
tion zone are particularly vulnerable to increases in tempera-
ture associated with climate change (e.g., Stewart, 2009). For
example, towards the end of the century the snowfall fraction
in the Swiss Alps is projected to decrease by about 50 % at
∼ 2000 m and by about 90 % at∼ 1000 m. The current extent
of the rain–snow transition zone covers about 9200 km2 in
the Pacific Northwest of the US alone (here defined as Ore-
gon, Washington, Idaho, and the western part of Montana;
Nolin and Daly, 2006), and it is expanding and moving to
higher elevations in response to climate change (Bavay et al.,
2013; Nayak et al., 2010). This migration of the transition
zone can affect precipitation patterns as well as discharge
generation and timing across mountain ranges, with notable
effects at the elevations surrounding the transition zone.

In addition to the expected decrease in snowfall fractions
with climate change, annual climate variations are expected
to increase almost everywhere across the planet (Seager et
al., 2012), affecting annual runoff efficiency (Hedrick et al.,
2020) and likely also influencing stream discharge timing
and magnitude. One well-documented discharge response is
that years in which catchments receive less snow have ear-
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lier snow-driven discharge peaks (McCabe and Clark, 2005;
Stewart et al., 2005). This is relevant because earlier spring
snowmelt has been linked to an increased risk of wildfire for
catchments across the western US (Westerling et al., 2006) as
well as to earlier and lower low-flows in the late-summer and
fall months (Kormos et al., 2016). In some catchments and
years, portions of the stream network might also completely
cease to flow, and this drying can alter the network’s ecolog-
ical and biogeochemical functioning (Datry et al., 2014). In
mid-elevation rain–snow transition zones, the annual snow-
pack variability is already relatively large. For example, in
the Reynolds Creek Experimental Watershed (RCEW; Idaho,
USA) the coefficient of variation (CV) of peak snow-water
equivalent (SWE) between 1964 and 2006 ranged from 0.28
to 0.37 for five high-elevation stations (2056–2162 m) and
was 0.72 for a mid-elevation weather station at the rain–
snow transition zone (1743 m; Nayak et al., 2010). This mid-
elevation variability suggests that year-to-year differences in
snowfall at the rain–snow transition zone might already be
substantial compared with nearby catchments at higher ele-
vations, and it allows for the investigation of catchment hy-
drologic responses to snowfall variations using a relatively
short data record, especially at sites where precipitation in-
puts are likely to be strongly reflected in stream discharge
(i.e., with a limited memory of past inputs). Using obser-
vations of hydro-climatically different years (e.g., rainy vs.
snowy) could reveal how discharge and stream drying at the
rain–snow transition zone has responded to past variations in
water inputs, thereby providing insight into how other small
(<10 km2) catchments with a similar vegetation cover and
precipitation regime might respond to future changes in rain–
snow apportionments.

Thus, the overarching goal of this work is to improve our
understanding of discharge responses to year-to-year varia-
tions in precipitation phase and magnitude. We do this at the
rain–snow transition zone – a region that experiences large
year-to-year variations in snowfall fractions, covers a signif-
icant part of the land surface, and might extend to higher el-
evations due to climate change. Specifically, we address the
following research questions:

1. How does the spatial and temporal distribution of SWI
at the rain–snow transition zone vary between particu-
larly wet, dry, rainy, or snowy years?

2. How does stream discharge timing and amount respond
to SWI in wet, dry, rainy, or snowy years?

3. Are variations in stream discharge related to variations
in yearly snowfall fractions?

Examining natural variation in snowfall fractions in the rain–
snow transition zone contrasts with other studies on snow-
related processes that focus on seasonally snow-covered
catchments. While many studies of snowmelt runoff exam-
ine seasonal responses at the landscape scale, here we focus

on hourly responses at a fine spatial resolution. This allows
us to investigate the spatial distribution of the snowpack and
snowmelt as well as the phase of precipitation and the tem-
poral distribution of SWI. Furthermore, while SWE is fre-
quently used as a summarizing variable for winter precipita-
tion when comparing precipitation to stream discharge, SWI
is more directly related to the timing and amount of water
resources; therefore SWI might be an important variable to
model in future work addressing similar questions.

2 Site description

Our study location is Johnston Draw, a 1.8 km2 headwa-
ter catchment at the Reynolds Creek Experimental Water-
shed (RCEW) in Idaho, USA. Elevations range from 1497 to
1869 m a.s.l., and the mean annual air temperature and pre-
cipitation are 8.1 ◦C and 609 mm, respectively (2004–2014;
Godsey et al., 2018a). Previous research in RCEW has shown
that mid-elevation catchments (1404 and 1743 m a.s.l.) have
seen an increase in minimum daily temperatures (+0.57 ◦C
per decade), reduced snowfall (−32 mm per decade), and
a decrease in streamflow (−13.8 mm per decade) over the
1965–2006 data record, whereas there has been no change
in total precipitation (Nayak et al., 2010; Seyfried et al.,
2011). These streamflow trends are unlikely to have been
driven by increased plant water use (caused by increased
temperatures) because there is only a short time window
(∼weeks) in which plant leaf out occurs, and there is still
sufficient soil water available in this water-limited environ-
ment (Seyfried et al., 2011). The catchment is underlain by
granite bedrock (79 %), with some basalt (3 %) and tuffs
(18 %) (Stephenson, 1970), and slightly deeper soils ex-
ist on the north-facing slopes, although the difference is
not significant (1.31±0.56 m vs. 0.77±0.34 m, respectively,
p value= 0.05; Patton et al., 2019). Annual average soil wa-
ter storage on the north-facing slopes is larger than on the
south-facing slopes, which is primarily due to the difference
in soil depth and a later start of vegetation growth compared
with south-facing slopes (Godsey et al., 2018a; Seyfried et
al., 2021). Snowberry (Symphoricarpos), big and low sage-
brush (Artemisia tridentate and Artemisia arbuscula, respec-
tively), aspen (Populus tremuloides) groves, and wheatgrass
(Elymus trachycaulus) characterize the north-facing slopes,
whereas the south-facing slopes host Elymus trachycaulus,
Artemisia arbuscula, mountain mahogany (Cercocarpus led-
ifolius), and bitterbrush (Purshia tridentate) (Godsey et al.,
2018a). Discharge at the catchment outlet is non-perennial,
and the stream at the catchment outlet typically flows from
early November until mid-July (MacNeille et al., 2020).
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3 Methods

3.1 Hydrometeorological and discharge data

We used hourly hydrometeorological data recorded at 11
weather stations throughout the catchment (Fig. 1; Godsey
et al., 2018a). The stations are placed at 50 m elevation inter-
vals on the north- and south-facing slopes, and they span a
∼ 300 m elevation range (1508–1804 m a.s.l.; see Marks et
al., 2013, for a detailed description). Observations started
in 2002, although some stations were placed only in 2005
or 2010, and some stations were decommissioned in 2017
(see Godsey et al., 2018a, for exact years). Air temperature,
solar radiation, vapor pressure, and snow depth were mea-
sured at hourly intervals at each of the stations, and additional
measurements of wind speed, wind direction, and precipita-
tion were available at jd125, jd124, and jd124b. The snow
depth time series were processed to remove gaps and unre-
liable measurements during storms, and they were smoothed
over an 8 h window in most cases and a 40 h window under
specific circumstances (Godsey et al., 2018a). Stream dis-
charge data (Godsey et al., 2018a) were obtained with a stage
recorder using a drop box weir at the watershed outlet (Pier-
son et al., 2001). Stage height was converted to discharge us-
ing a rating curve (Pierson and Cram, 1998), and discharge
was frequently measured by hand to ensure high data quality
(Pierson et al., 2001).

3.2 Remotely sensed observations

To characterize the spatial distribution of snow depth, a 1 m
resolution snow depth product was calculated as the differ-
ence between a snow-off lidar flight (10–18 November 2007;
Shrestha and Glenn, 2016) and a snow-on lidar flight (18
March 2009, around the time of peak accumulation), here-
after referred to as lidar snow depth. Typical vertical accu-
racies for lidar surveys are ∼ 10 cm (Deems et al., 2013).
We assumed that uncertainties in both lidar surveys were un-
correlated, resulting in an overall uncertainty of ∼ 14 cm for
lidar snow depth (summation in quadrature of uncertainties
associated with each survey). All pixels that yielded a nega-
tive snow depth were excluded. The lidar snow depths were
higher than the weather station snow depths, but this pattern
was consistent across the catchment resulting in a strong lin-
ear relation between the two individual sets of snow depth
measurements (r2

= 0.88; Fig. S1 in the Supplement).
Because only one lidar observation was available near

peak snow accumulation, we also characterized snow pres-
ence throughout the season by mapping the snow-covered
area (SCA) using satellite-derived surface reflectance at a
3 m resolution, which is available starting in 2016 (four-band
PlanetScope scene; Planet Application Program Interface,
2017). This high-resolution imagery was critical for our anal-
ysis because snowdrifts in the rain–snow transition are rela-
tively small in extent. No high-resolution satellite imagery

was available for years that exhibited the key characteristics
that we sought to study (e.g., rainy, snowy, wet, or dry; see
Sect. 3.3), so we focused on a recent snow-covered period for
which streamflow data and Planet imagery were available (1
November 2018 until 31 May 2019) to assess snow coverage.
This targeted year was warmer than the year for which the li-
dar observations were available (mean annual air temperature
of 8.0 ◦C, compared with 6.7 ◦C in 2009), which may have
resulted in earlier peak streamflow, melt-out date, and dry-
out date for the stream. We manually selected all available
images in which the entire watershed was captured and for
which snow was visually recognizable and then removed all
images for which clouds significantly covered the watershed;
this process resulted in 41 usable images. The information
from all four spectral bands was then condensed to one layer
using a principal component analysis (“RStoolbox” package
in R). We used the Maximum Likelihood Classification tool
in ArcMap (Esri Inc., 2020) to identify the SCA, after man-
ually training the tool by selecting areas with and without
snow cover (mean of 26 895 pixels per class and median of
9019 pixels), visually aided by the original satellite imagery.
Obtaining training data was most challenging during peri-
ods in which almost the entire area was snow-free or cov-
ered with snow, for densely vegetated areas, and when part
of the catchment was shaded. To overcome the latter, we clas-
sified “snow-free”, “snow-covered”, and “shaded snow” ar-
eas in heavily shaded images and, afterwards, merged “snow-
covered” and “shaded snow” areas. The mean confidence for
all classifications is shown in Fig. S2 in the Supplement. Our
method differs from other satellite-derived snow products
that combine both visible and infrared light, but it yielded
a higher-resolution data product (3 m resolution vs. 30 m for
Landsat 8 or 500 m for MODIS) that was necessary to cap-
ture the snowdrifts in the rain–snow transition zone.

We also used the surface reflectance imagery to determine
the melt-out date of the snowpack for all years in which satel-
lite and discharge observations were available (2016–2019).
This was done by manually reviewing all available images
and visually determining when all snow had melted. Given
the high visiting frequency and limited cloudiness in early
summer, we estimate that an error of ∼ 2 d is appropriate for
these melt-out dates.

3.3 Spatially distributed snowpack modeling

We used the Automated Water Supply Model (AWSM;
Havens et al., 2020) to obtain spatially continuous estimates
of the distribution and phase of precipitation, snowpack char-
acteristics, and surface water inputs (SWI). The two major
components of the AWSM are the Spatial Modeling for Re-
sources Framework (SMRF; Havens et al., 2017) and iS-
nobal (Marks et al., 1999). SMRF was used to spatially dis-
tribute precipitation and all other weather variables (air tem-
perature, solar radiation, vapor pressure, precipitation, wind
speed, and wind direction) along an elevation gradient using
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Figure 1. Maps of the location of (a) the Reynolds Creek Experimental Watershed (RCEW) in the state of Idaho (USA; EPSG:4269 –
NAD83 projection); (b) the Reynolds Creek Experimental Watershed showing the elevation (white – lower and dark green – higher), the
100 m contour lines, the location of Johnston Draw (gray polygon), and two additional precipitation gauges (light blue dots); and (c) Johnston
Draw showing the weather stations (light blue dots), the stream (blue line), and the 10 m contour lines (black lines) overlain on a hillshade
digital elevation model.

the hourly measurements from the weather stations. We in-
cluded precipitation measurements from two stations within
the basin (jd125 and jd124b) and two stations outside of the
basin (jd144 and jd153; Fig. 1) to capture the elevation gra-
dient. Precipitation at the wind-exposed site, jd124, was ex-
cluded because of precipitation undercatch issues. The inter-
polated vapor pressure and temperature fields were then used
within SMRF to calculate the dew point and to further distin-
guish which fraction of precipitation fell as rain and/or snow.
The output from SMRF was then used to force iSnobal, a
physically based, two-layer snowpack model that accounts
for precipitation advection from rain and snow (Marks et al.,
1999).

The model was run at a 10 m resolution for 5 water years,
namely 2005, 2009, 2010, 2011, and 2014. We selected 2009
because the snow depth lidar survey was available in this
year, and we chose 2005, 2010, 2011, and 2014 because
they are hydroclimatically different. The year 2005 was rainy
(snowfall fraction was 63 % of the 2004–2014 mean and
23 % of 2005 total precipitation), whereas 2010 was snowy
(snowfall fraction was 155 % of 2004–2014 mean and 57 %
of 2010 total precipitation). The year 2014 was dry (precipi-
tation was 86 % of the 2004–2014 mean) and 2011 was wet
(precipitation was 132 % of the 2004–2014 mean) (Tables 1
and S3 and Fig. S4 in the Supplement) with snowfall frac-
tions of 41 % and 30 % of the total precipitation for each
year, respectively. The work was limited to 4 years because
we aimed to focus on differences in the distribution of SWI
and stream discharge for years that had different snowfall

fractions and total precipitation magnitudes. Therefore, these
strongly contrasting years were selected from 11 potential
years of record (Godsey et al., 2018a). More stations were
deployed towards the end of the 2004–2014 period, yielding
additional observations to force the model with meteorolog-
ical inputs and validate the model output of snow thickness;
therefore, we selected later years within this period if condi-
tions were similar. We focus on the 4 hydroclimatically dis-
tinct years in Sects. 4 and 5 of this paper, but we evaluate the
model performance for all 5 years.

In order to represent the spatial variability in snowfall and
the effects of wind redistribution of snow, we use the precip-
itation rescaling approach proposed by Vögeli et al. (2016)
that implicitly captures the spatial heterogeneity induced
by these processes using distributed snow depth informa-
tion (e.g., from lidar or structure from motion (SfM)). This
methodology can be used to rescale the precipitation falling
as snow to reproduce the observed snow distribution pat-
terns while conserving the initial precipitation mass estima-
tion. Given the intra- and interannual consistency of spatial
patterns of snow distribution (Pflug and Lundquist, 2020;
Schirmer et al., 2011; Sturm and Wagener, 2010), Trujillo
et al. (2019) extended the original implementation to utilize
historical snow distribution information to other years in the
iSnobal model. Following these successful implementations,
we used the spatial distribution of snow depth from the 2009
survey around peak snow accumulation to inform the snow-
fall rescaling to all years in the study period. Although us-
ing the 2009 survey to rescale snowfall in other years might
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Table 1. Precipitation, discharge, and SWI characteristics for each water year including total precipitation (average of precipitation measured
at jd124b and jd125); the fraction of precipitation falling as snow (snowfall fraction); date and DOWY (day of water year) of the start of
the snowy season (snowstart); date of the end of the snowy season (snowend), defined as < 1 cm of snow at weather station jd124b (except
for 2005, for which only data for weather station jd125 were available); date on which the simulated snow cover had melted (melt-out
date; SCA= 0); annual discharge (Qannual); runoff efficiency (Qannual /SWIavg); the start (Flowstart) and end (Flowend) of surface flow
at the catchment outlet; and simulated surface water input (SWI). We report the catchment-average SWI (SWIavg) as well as SWI from
rain (SWIrain), SWI from snowmelt (SWIsnow), the 98th percentile of SWI (SWI98), maximum SWI (SWImax), and the average SWI for
north-facing slopes (excluding the drift area, SWINF−drift) and south-facing slopes (SWISF).

WY Units 2005 2009 2010 2011 2014
rainy lidar available snowy wet dry

Precipitation mm 542 549 531 693 450
Snowfall fraction – 0.23 0.49 0.57 0.41 0.30
Snowstart DOWY 16 October∗ (16) 1 November (32) 4 October (4) 6 November (37) 20 October (20)
Snowend DOWY 1 March∗ (152) 19 April (201) 26 May (238) 1 May (213) 6 April (188)
SCA= 0 2 June (245) 14 June (257) 16 June (259) 18 June (261) 14 May (226)

Qannual mm 62 81 117 307 80
Q/SWIavg – 0.11 0.14 0.21 0.46 0.16
Flowstart DOWY 11 November (38) 22 November (54) 12 November (43) 24 October (24) 28 October (28)
Flowend DOWY 25 August (328) 25 August (328) 26 August (329) – 13 July (285)

SWIavg mm 557 587 553 672 506
SWIsnow mm 145 271 310 229 170
SWIrain mm 412 316 243 443 336
SWI98 mm 982 1394 1513 1588 1015
SWImax mm 2005 3350 3863 3892 2219
SWINF−drift mm 551 568 534 665 490
SWISF mm 505 456 407 556 430

∗ Dates based on measurements at jd125 (outlet) rather than 124b (close to top of the catchment; see Fig. 1).

have induced some uncertainty, verification of the interan-
nual consistency in the snow distribution in this catchment
by comparing the lidar snow depth and the satellite imagery
indicated that this uncertainty is likely to be small.

3.4 SWI

One of the model outputs from iSnobal is surface water in-
put (SWI), which represents snowmelt from the bottom of
the snowpack, rain on snow-free ground, or rain percolating
through the snowpack. Rainfall is directly counted as SWI
when it falls over snow-free ground, and it is included in the
energy and water balances when it falls onto the snowpack.
To calculate snowmelt, iSnobal solves each component of the
energy balance equation for each model time step using the
best available estimations of forcing inputs. Melt occurs in
a pixel when the accumulated input energy is greater than
the energy deficit (i.e., cold content) of the snowpack. If the
accumulated energy input is smaller than the energy deficit,
the sum of current hour melt and previous hour liquid wa-
ter content will be carried over into the next hour. If that
hour’s input energy conditions are negative, the liquid mass
is refrozen into the column. Sublimation and evaporation of
liquid water from the snow surface and condensation of liq-
uid water onto the snow surface is computed as a model out-

put term, although these quantities were not considered here.
Canopy interception must be handled a priori when develop-
ing the model forcing input, and it was also not considered
here. Although not accounting for the latter introduces some
uncertainty, we expect this to be small with the shrub and
grass vegetation types in Johnston Draw catchment. Lastly,
iSnobal is limited to snow processes only, which means that
SWI “exits” the modeling domain. In reality, SWI travels to
the stream as surface or subsurface runoff, could be stored in
the soil until it evaporates or is transpired, or could recharge
deeper groundwater storages. The route that SWI takes de-
pends on the overall catchment wetness as well as the local
energy balance (e.g., incoming radiation) and vegetation ac-
tivity. In this paper, we computed SWI for each pixel and
time step and assumed that all SWI generated in simulated
snow-free pixels was rain and that all SWI generated in sim-
ulated snow-covered pixels was snowmelt.

3.5 Model evaluation

Model results were evaluated in two ways: first, the simulated
snow depths were compared to lidar snow depths covering
the entire basin on 18 March 2009; second, the temporal vari-
ation of the simulated snow depths were compared to snow
depths measured at each of the weather stations for all simu-
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lated years. The latter comparison was done using model re-
sults from a 30 m× 30 m area surrounding each station; this
is equivalent to 3× 3 grid cells because the model was run
at a 10 m resolution. We computed the root-mean-square er-
ror (RMSE) and Nash–Sutcliffe efficiency (NSE; Nash and
Sutcliffe, 1970) for the observed vs. simulated snow depths
as well as the NSE for the normalized observed vs. normal-
ized simulated snow depths (NSEnorm). NSEnorm reflects the
ability of the model to reproduce the dynamic behavior of the
snowpack.

3.6 Comparison with discharge

The phase and magnitude of precipitation and the magnitude
and temporal distribution of SWI were compared to annual
discharge and the stream dry-out date. The stream dry-out
date is the day when the stream first ceased to flow at the
catchment outlet. For comparisons across seasons, we de-
fined winter as December, January, and February; spring as
March, April, and May; summer as June, July, and August;
and fall as September, October, and November. To compare
SWI with the dry-out date, we also calculated how much SWI
occurred during the water year before the stream dried. No
delays were considered when comparing SWI to discharge
(e.g., discharge as a fraction of SWI in January results from
dividing discharge in January by SWI in January). Discharge
metrics were also compared to the flashiness of SWI inputs,
which was calculated as the sum of the difference in total
SWI from day to day, divided by the sum of SWI (also known
as the Richards–Baker flashiness index; Baker et al., 2004).
Further metrics included the fraction of time that more than
half of the catchment was snow-covered as well as the melt
rate between the date on which there was 40 % snow cover-
age in the catchment and the date on which the catchment
was snow-free. A threshold of 40 % snow coverage was cho-
sen because this resulted in an approximately linear melt rate
for all years.

4 Results

4.1 Snow depth observations

The lidar snow depth ranged from 0 to 5.3 m on the date
of acquisition (18 March 2009), which was near peak snow
cover (median of 0.4 m and CV of 0.91; Fig. 2a). The south-
facing slopes had little to no snow cover (mean of 0.3 m),
whereas the north-facing slopes were covered with 0.7 m of
snow on average. For the years studied here, during the ap-
proximate duration of the snowy season between 15 Novem-
ber and 15 April, the average snow depth for all north-
facing stations was more than 5 times that of the average
snow depth at south-facing stations (0.20 vs. 0.04 m, respec-
tively), and the snowpack lasted almost 90 d longer on aver-
age (132 vs. 43 d, respectively). Weather stations on north-
facing slopes and at higher elevations generally had deeper

snowpacks and were covered with snow for longer than sites
on the south-facing slopes or at lower elevations (Godsey
et al., 2018a). The snowpack distribution was also affected
by wind-driven redistribution of snow. For instance, snow
depths at jdt2 (north facing) and jdt3b (south facing) were
consistently lower than at the weather stations directly below
them in elevation (jdt1 and jdt2b, respectively). Large snow-
drifts formed in some western parts of the watershed, up to a
maximum depth of 5.3 m (90th percentile of all snow depths
was 1.2 m; Fig. 2a). Wind-driven redistribution of the snow in
Johnston Draw is facilitated by a relatively consistent south-
westerly wind direction (average of 225◦ during storms) and
high wind speeds (average of 6.7 m s−1 during storms at the
wind-exposed station of jd124; Fig. S5 in the Supplement).

4.2 Snow depth model performance in space and over
time

Simulated snow depths on the day of the lidar survey agreed
well with the lidar snow depth (r2

= 0.88; Fig. 2a, b, c).
The residual snow depths (lidar− simulation) were approx-
imately normally distributed, with a mean of 0.2 m (see
Fig. S6 in the Supplement for a histogram and quantile–
quantile plot). The largest differences (maximum difference
of 1.1 m) between the simulated and measured snowpack
were for isolated 10 m pixels on both the north- and south-
facing slopes (Fig. 2a, b, c). The spatial pattern of the li-
dar snow depth also agreed well with the spatial patterns of
snow-covered area (Fig. 2a, d), and there was a strong agree-
ment between the simulated snow-covered area for 2009
(Fig. 2e) and the snow-covered area determined from satellite
imagery for 2019 (Fig. 2d), including the modeled duration
of snow cover and the number of satellite images in which
snow-covered areas were observed. The largest discrepancy
between the simulated and imagery-based snow duration was
in the scour zone west of the snowdrifts, where the model un-
derestimated snow duration. Nonetheless, the consistent lo-
cations of the snowdrifts between 2009 (observed and simu-
lated) and 2019 (observed) indicates that the model captured
the spatial distribution of the snowpack.

The median NSE for the hourly simulated snow depths
compared to observations at the weather stations ranged from
0.22 (wet 2011) to 0.86 (snowy 2010) for all modeled years
and weather stations, with the RMSE ranging from 0.008 to
0.097 m (Table 2; see Fig. S7 in the Supplement for time se-
ries of all simulated and observed snow depths). The RMSE
was equal to or lower than 0.1 m for all years, with the year
in which the NSE performance was lowest (wet 2011) having
an RMSE of 0.046 m. The temporal variation of the snow-
pack at each of the weather stations was well captured by the
model; the median NSE for the normalized snowpack depths
(NSEnorm) ranged from 0.65 to 0.94 (median of 0.75), al-
though there were some sites and years with low NSE val-
ues (Table 2). Both high and low NSE values are observed
at nearly all of the stations (e.g., the NSE range at jdt4 was
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from −9.60 to 0.91, and the range at jdt1 was from 0.01 to
0.83) with lower values at some sites in 2011. Possible ex-
planations for the relatively low performance at the remain-
ing sites are discussed further in Sect. 5.3. Despite the low
performances for some years and locations, the normalized
snow depths were largely acceptable (35 out of 40 year–
location combinations had a NSEnorm value above 0.5; Ta-
ble 2). The generally strong performance lends confidence
that the simulation of ablation and accumulation processes in
the model is reasonable and implies that the temporal distri-
bution of snow-covered area (SCA) and surface water input
(SWI) simulated by the model are reliable.

4.3 Spatial and temporal pattern of surface water
inputs (SWI)

The spatial pattern of SWI was similar for all years, with
the highest SWI occurring in the snowdrifts (maximum
SWI (SWImax) was 3892 mm, and 98th percentile of SWI
(SWI98) was 1235 mm, both in wet 2011; Fig. 3, Table 1).
Annual SWI across the rest of the catchment varied less,
with north-facing slopes receiving 45 to 127 mm more SWI
than south-facing slopes (values for rainy 2005 and snowy
2010, respectively; Table 1). Snowdrift locations received
1.7 to 2.7 times more SWI than the catchment average (ra-
tio SWI98 /SWIavg). Summarizing SWI by aspect (see polar
diagrams in Fig. 3) revealed the highest SWI on northeast-
facing slopes and roughly equal annual SWI for all other as-
pects. Differences between the northeast-facing slopes and
other parts of the catchment were largest in snowy 2010 (a
ratio of the major / minor axis of the polar plot of 1.29) and
smallest in rainy 2005 and dry 2014 (ratio of 1.13 and 1.17,
respectively).

Weekly sums of SWI ranged from 0 to ∼ 75 mm in all
years (Fig. 4). Summer most frequently had weeks with-
out SWI generation, whereas the highest weekly SWI oc-
curred with simultaneous rainfall and snowmelt (i.e., rain-
on-snow events, such as the one visible in February 2014
in Fig. 4d). However, large rainfall events without snow-
fall or snow cover in spring of rainy 2005 (weekly SWI of
∼ 75 mm) and in fall of wet 2011 (weekly SWI of ∼ 50 mm;
gray peaks in Fig. 4a and c) also generated high SWI. In
2011, the majority of SWI was generated in winter and spring
(47 % between December and May; see inset in Fig. 4c),
whereas most SWI was generated in winter (54 % between
December and February; Fig. 4d) in dry 2014. In 2005 and
2010, most SWI was generated in spring (March–May 32 %
and 46 %, respectively). Similar amounts of SWI occurred
in spring in 2005 and 2010 (339 and 388 mm, respectively);
however, in 2005, 93 % came from rain, whereas only 35 %
came from rain in 2010. Average daily spring SWI rates were
higher in snowy 2010 than in rainy 2005 (mean spring SWI
rate of 3.7 mm d−1 in 2010 vs. 2.9 mm d−1 in 2005). Over-
all, variations in weekly and daily SWI rates were lower in

snowy 2010 (CV daily SWI of 1.71) than in all other years
(2.50 in 2005, 2.14 in 2011, and 2.65 in 2014).

4.4 Stream discharge

Streamflow was least responsive to SWI at the beginning of
each water year (Fig. 5). For instance, in 2005 and 2010,
174 and 108 mm of SWI occurred before 1 February (31 %
and 20 % of annual SWI), whereas discharge amounted to
only 7 % and 1 % of its yearly total during that same period.
Similarly, 82 mm of SWI in October 2011 resulted in less
than 1 mm discharge, whereas 180 mm of SWI in November–
January led to 62 mm of discharge. SWI generally resulted
in most discharge when SWI rates were high, such as during
a 3 d rain-on-snow event in February 2014 (SWI of 75 mm
and discharge of 29 mm) or during spring snowmelt in April
2011 (SWI of 108 mm and discharge of 102 mm). Such in-
dividual precipitation events had a strong influence on the
annual runoff efficiency. For instance, 2014 had a slightly
higher runoff efficiency (0.16) than 2005 (0.11) and 2009
(0.14), mostly due to the high runoff generation during one
rain-on-snow event (29 mm, 36 % of yearly discharge).

Annual discharge was highest in 2011 (307 mm, 43 % of
SWI) and lowest in 2005 (62 mm, 11 % of SWI). Despite
similar SWI in 2005 and 2010 (SWIavg of 553 and 557 mm,
respectively; Table 1), snowy 2010 had nearly twice as much
annual discharge as rainy 2005 (117 mm or 21 % of SWI vs.
62 mm or 11 % of SWI, respectively). Apart from these 2
years, there was no relation between annual discharge and
the annual snowfall fraction (Fig. 6c) nor between annual
discharge and the amount of SWI produced by rainfall or
snowmelt in different seasons (winter, spring, summer, or
any combination of these periods). By considering additional
years (for which SWI was not simulated), we found that an-
nual discharge was positively related to the amount of precip-
itation recorded at the lowest-elevation precipitation station
(jd125, r2

= 0.83; Fig. 6a). Annual discharge was slightly
higher for years that were preceded by a year that received
above average annual precipitation (see Fig. S8 in the Sup-
plement), but the correlation coefficient decreased when in-
cluding the precipitation totals recorded in the preceding year
(e.g., annual discharge vs. precipitation in the same year +
0.5 times precipitation previous year). This indicates that any
memory effect is likely to be small in this catchment. Fre-
quent stream drying (16 out of 18 years between 2003 and
2020, data not shown; the stream did not cease flow in 2006
and 2011) and the high potential evaporation rates in this
semiarid, high desert system (evapotranspiration accounts for
nearly 90 % of precipitation in the nearby Upper Sheep Creek
catchment; Flerchinger and Cooley, 2000) also suggest that
any water in the shallow, “active” subsurface storage is likely
limited and that any memory effect, if present, is perhaps
constrained to deeper subsurface water storages.

Comparison of annual discharge and the stream dry-out
date to metrics describing the phase and magnitude of pre-
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Figure 2. (a) Lidar snow depth (m) at 3 m resolution on 18 March 2009 and (b) simulated snow depths for the same day, where yellow
indicates low snow depths, blue indicates high snow depths, and gray indicates the areas for which the snow depth could not reliably be
determined from the lidar measurement (see Sect. 3.2). (c) Hexagonal bin plot comparing the observed and simulated snow depths, with
gray colors indicating fewer pixels and blue indicating more pixels included per bin. (d) The fraction of images for which sites were snow
covered, using 3 m resolution satellite imagery for the available images (n= 41) of water year 2019 (see Sect. 3.2), and (e) the fraction of
time during which each pixel was snow covered, using the simulated snow cover from the beginning of water year 2009 until all snow had
melted (n= 238). Bushes and trees (marked in gray in panel d) inhibited the exact determination of the snow cover for the satellite imagery
in some locations.

Table 2. The Nash–Sutcliffe efficiency (NSE; Nash and Sutcliffe, 1970) and root-mean-square error (RMSE) for simulated and observed
snow depths at each weather station as well as the NSE for normalized (z-transformed) snow depths (NSEnorm). Dashes (–) indicate that no
observed snow depths were available in that year. See Fig. S7 in the Supplement for the time series of observed and simulated snow depths.

Outlet North facing South facing Upper region Median

Station jd125 jdt1 jdt2 jdt3 jdt4 jdt2b jdt3b jdt4b jdt5 jd124b

NSE 2005 0.83 – – – – – – – – – 0.83
2009 0.45 0.67 0.09 0.95 0.91 – – – 0.65 0.84 0.67
2010 0.01 0.92 0.91 0.68 0.86 – – – 0.67 0.92 0.86
2011 0.40 −0.46 0.63 0.03 −9.60 0.52 0.76 0.54 −0.06 −5.56 0.22
2014 0.80 −2.07 0.76 0.49 0.25 0.39 0.60 0.80 0.81 0.66 0.63

NSEnorm 2005 0.87 – – – – – – – – – 0.87
2009 0.65 0.50 0.50 0.83 0.85 – – – 0.89 0.97 0.83
2010 0.25 0.94 0.92 0.96 0.95 – – – 0.68 0.94 0.94
2011 0.86 0.34 0.73 0.89 −0.86 0.55 0.75 0.67 0.63 0.15 0.65
2014 0.77 0.59 0.75 0.81 0.64 0.33 0.64 0.72 0.80 0.79 0.74

RMSE (m) 2005 0.01 – – – – – – – – – 0.01
2009 0.11 0.10 0.19 0.05 0.08 – – – 0.11 0.09 0.10
2010 0.12 0.03 0.05 0.11 0.09 – – – 0.09 0.06 0.08
2011 0.03 0.06 0.04 0.08 0.30 0.02 0.02 0.02 0.05 0.15 0.08
2014 0.01 0.06 0.02 0.04 0.05 0.02 0.02 0.01 0.02 0.02 0.03
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Figure 3. Maps showing the yearly sum of surface water inputs
(SWI, mm) for (a) rainy 2005, (b) snowy 2010, (c) wet 2011, and
(d) dry 2014, with polar diagram insets showing the average sum of
SWI per 10 m grid cell for each aspect (binned per 22.5◦). Higher
SWI values are shown in darker colors, lower SWI values are shown
in lighter colors, and SWI values are capped at 2000 mm to enhance
the contrast. Maximum annual SWI values are shown in Table 1,
and a map of simulated SWI for 2009 is shown in Fig. S13 in the
Supplement.

cipitation, the temporal distribution of SWI, and key charac-
teristics of the snowpack highlighted the importance of the
magnitude and timing of SWI (Fig. 7). Significant relation-
ships with annual discharge were found for annual precipita-
tion (Fig. 6a) and the sums of precipitation and snowfall in
spring (Figs. 7 and S9 in the Supplement). The dry-out date
of the stream was significantly correlated with annual precip-
itation, the sum of winter and spring precipitation and spring
snowfall, spring precipitation as a fraction of SWI, the melt-
out date of the snowpack, and the sum of SWI before the
dry-out date (Figs. 7 and S9 in the Supplement). No signif-
icant correlation was found between the annual, winter, and
spring snowfall fraction and annual discharge and the stream
dry-out date (Fig. 7).

5 Discussion

5.1 Spatial variability in SWI

Snow drifting and aspect-driven differences in snow dynam-
ics caused a strong variability in the spatial pattern of the
snowpack (Fig. 2a) and SWI (Fig. 3). We found that the spa-
tial pattern in simulated SWI was similar across all years,
with snowdrifts receiving up to 7 times more SWI than the
catchment average (SWImax /SWIavg in 2010; Table 1). Even
in rainy 2005, SWI was more than 3.5 times higher in the
snowdrifts (SWImax of 2005 mm) compared with the catch-

ment average (SWIavg of 573 mm; Table 1). In our mod-
eling routine, the spatial consistency between years is pre-
determined by the snowfall rescaling (see Sect. 3.3), but this
likely also reflects real-world conditions, as suggested by
the spatial agreement between the independently collected
satellite imagery and lidar snow depths (Fig. 2). Most im-
portantly, the nearly 4-fold variation in SWI over less than
1 km distance is equivalent to the average precipitation dif-
ference between most of Reynolds Creek and the peaks of the
Cascade Mountains in Oregon hundreds of kilometers away
or, equivalently, shifting from a semiarid steppe to coastal
mountain snowpack. This difference directly affects water-
limited processes such as weathering or plant species distri-
bution. In Johnston Draw, this is clearly visible: aspen stands
are located directly below snowdrifts (Kretchun et al., 2020),
and sagebrush dominates the rest of the catchment. Because
snowdrifts drive the spatial pattern of SWI, it is crucial to
quantify wind-driven redistribution processes as well as cap-
ture aspect and elevation-driven processes, even at the rain–
snow transition zone.

Snowdrifts delivered 4.2 % (2005) to 7.2 % (2010) of the
basin-total annual SWI on just∼ 2 % of the land surface, and
snow in drifts persisted longer, compared with non-drift ar-
eas, into the spring season (Fig. 2d, e). Previous work in the
seasonally snow-covered Reynolds Mountain East catchment
showed that snowdrifts indeed hold a large fraction of total
catchment snow water equivalent (SWE), with 50 % of to-
tal SWE on just 31 % of the catchment area (Marks et al.,
2002), and SWI varying strongly in space, ranging from 150
to 1100 mm for individual grid cells (10–20 m) in the rel-
atively dry water year 2003 (Seyfried et al., 2009). Snow-
drifts in Johnston Draw were shallower (up to 5 m in 2009)
and covered a smaller portion of the area (∼ 2 %) than in
the higher-elevation Reynolds Mountain East catchment, but
they were proportionally even more important in the rain–
snow transition zone, holding up to 15 % of SWE during
peak SWE in snowy 2010 and 25 % in rainy 2005. Water
originating from snowdrifts has been shown to locally con-
trol groundwater level fluctuations (Flerchinger et al., 1992)
and contribute to streamflow into the summer season (Chau-
vin et al., 2011; Hartman et al., 1999; Marks et al., 2002).
For instance, in the Upper Sheep Creek watershed, also in
RCEW, Chauvin et al. (2011) showed that the lowest stream
discharge was recorded for the year in which snowdrifts
were least prominent. In Johnston Draw, the stream dry-out
date was positively correlated with the drift melt-out date
(Fig. 6b), suggesting that isolated snow patches are also im-
portant at this location for sustaining streamflow. These re-
sults do not reveal the mechanism or influence of the specific
drift location, as neither subsurface flow nor streamflow gen-
eration processes were measured or simulated. Nonetheless,
observations of snowdrifts from high-resolution satellite im-
agery are largely consistent with model simulations of SCA
(Fig. 2) and, thus, may be used to predict stream drying in
drift-influenced watersheds.
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Figure 4. Weekly sums of surface water inputs (SWI, summation of rainfall and snowmelt, green polygons, mm), rainfall (gray polygons,
mm), and specific discharge (black line graph, mm) for (a) rainy 2005, (b) snowy 2010, (c) wet 2011, and (d) dry 2014. Background panels
are colored according to the different seasons (fall, winter, spring, summer, fall). The polar diagram insets indicate the fraction of SWI (fSWI)
in each season. Squares at the top of each panel indicate the annual center of mass for snowmelt (white), rainfall (gray), SWI (green), and
discharge (black).

Figure 5. Cumulative surface water inputs (SWI, dashed lines, mm)
and discharge (colored polygons, mm) for each of the water years
(dark green – rainy 2005, light blue – snowy 2010, dark blue –
wet 2011, and light green – dry 2014). Circles indicate the day on
which the stream ceased to flow at the catchment outlet (dry-out
date; please note that the stream did not cease to flow in 2011), and
diamonds indicate the day on which all snow had melted from the
catchment (melt-out date).

5.2 Temporal variability in SWI and discharge
response

We found that the majority of SWI occurred in winter and
spring and that catchment-average SWI was more uniform
in time in snowy 2010 than in the other years (CV of daily
SWI in 2010 was 1.7, whereas other years ranged from 2.14
to 2.65). The steadier water inputs in the snowmelt period
might explain why annual discharge in snowy 2010 was dou-
ble that of rainy 2005 despite similar total SWI. More stable
water inputs from snowmelt rather than flashy water inputs
from rain could have led to wetter soils and higher soil con-
ductivity rates, allowing more water to pass through the sub-
surface towards the stream or towards deeper storage (Ham-
mond et al., 2019). Previous work in the nearby Dry Creek
Experimental Watershed (Idaho) showed that water stored in
the soil dries out approximately 10 d after snowmelt (McNa-
mara et al., 2005). For the years on record here, streamflow
was sustained for a minimum of 59 d after the melt-out date
(Table 1), even though SWI is generally low after June each
year (Fig. 4). This underscores that it is likely that deeper
flow paths contribute to the stream in early summer. This is
also consistent with stream discharge being nearly unrespon-
sive to SWI during the dry catchment conditions in the be-
ginning of each water year (Fig. 5). During fall, subsurface
water storage across the catchment is low; thus, any SWI dur-
ing this period likely results in recharge or evaporation rather
than stream discharge (Seyfried et al., 2021). Air tempera-
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Figure 6. Scatterplots of (a) annual discharge at the catchment outlet (mm) and annual precipitation at the lowest precipitation gauge (jd125,
mm; see Fig. S14 in the Supplement for a comparison with simulated mean catchment precipitation), (b) the day that surface flow in the
stream ceased (dry-out date, shown as day of water year – DOWY) and the day on which all snow had melted (melt-out date, DOWY), (c)
the annual runoff ratio (annual discharge / annual precipitation at jd125) and the annual snowfall fraction (–), and (d) the stream dry-out date
and the annual snowfall fraction. Years in which the stream did not dry out are projected to the last day of the hydrological year. The r2 and
p values for linear regressions between the variables in each panel are (a) r2

= 0.83 and p value= 0.001, (b) r2
= 0.74 and p value= 0.023,

(c) r2
= 0.23 and p value= 0.524, and (d) r2

= 0.12 and p value= 0.730.

ture also has a small effect on the runoff efficiency, particu-
larly in the summer season. The runoff efficiency, calculated
as summer discharge divided by summer precipitation for the
2004–2014 record, was significantly correlated with summer
air temperatures (r2

=−0.54, p value= 0.08; Fig. S10 in
the Supplement), whereas this relationship was insignificant
on the annual scale (r2

=−0.43, p value= 0.217; Fig. S11
in the Supplement). This suggests that evapotranspiration,
which is directly affected by the ambient air temperature,
has some influence on runoff efficiency, despite the catch-
ment being an overall water-limited environment. Warmer
winter air temperatures result in higher runoff efficiencies
(r2
= 0.48, p value= 0.131; Fig. S10 in the Supplement),

which is likely due to faster melt-out and more saturated
soils, as described above. However, further simulations are
required to fully understand how precipitation amounts, tim-
ing, and location interact with subsurface water storage to
control stream discharge.

In contrast with our hypothesis and what has been sug-
gested in the literature (e.g., based on the comparison of 420

catchments in the continental US using the Budyko frame-
work; Berghuijs et al., 2014), neither annual discharge nor
the stream dry-out date were correlated with snowfall frac-
tion (Figs. 6, 7). Instead, annual discharge and the stream
dry-out date were more correlated with total precipitation
and the snowpack melt-out date. This highlights the impor-
tance of the temporal distribution of SWI, which is not cap-
tured in an annual snowfall fraction. The temporal distribu-
tion of SWI might be less important for predicting stream
discharge and cessation in more humid catchments (in which
precipitation is more evenly distributed over the year and/or
in which more precipitation events occur) or in larger catch-
ments, such as those considered in Berghuijs et al. (2014;
range of catchment areas between 67 and 10 329 km2). We
found that individual precipitation events can also heavily
influence the yearly runoff efficiency, as described for 2014
(Sect. 4.4). As such, considering interannual variability and
rainfall or snowmelt events is an important addition to annual
average values when investigating how precipitation affects
discharge in semiarid regions.
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Figure 7. Heat plot showing the Pearson correlation coefficients
(α = 0.1) for comparisons between annual discharge, the stream
dry-out date, and precipitation and snowpack metrics. Significant
correlations are marked in dark red (negative) and dark blue (posi-
tive), insignificant correlations are marked in light blue (positive) or
light red (negative), and correlations without a direction are marked
in white (r<0.3). For most metrics, the comparison is based on the
2004–2014 data record (n= 11 years). The comparison with the
melt-out date (marked with one asterisk) is based on the simulated
years (n= 5) and the years for which satellite imagery was available
(2016–2019, n= 4; which totals to n= 9). For the SWI flashiness
index, the melt rate, the number of days on which at least half the
catchment was snow covered, and the sum of SWI before the dry-
out date (marked with two asterisks), we used only the years that
were simulated (n= 5). Scatterplots of all significant correlations
can be found in Fig. S9 in the Supplement.

Bilish et al. (2020) similarly found that streamflow was
not correlated with the snowfall fraction for a small catch-
ment with an ephemeral snowpack in the Australian Alps.
They attributed this to the frequent occurrence of mid-winter
snowmelt: the snowpack melted out several times each year,
independent of the annual snowfall fraction, and, thus, did
not store a significant amount of water. Field observations
at Dry Creek, a nearby semiarid catchment that includes a
rain-dominated and a snow-dominated area, also suggested
that the snowfall fraction was not related to annual discharge
for a small sub-catchment at the rain–snow transition zone
(treeline sub-catchment, 0.015 km2), but the snowfall frac-

tion was correlated with annual discharge when consider-
ing the entire Dry Creek catchment (28 km2, James McNa-
mara, personal communication, 2021). Another study at Dry
Creek suggested that the snowfall fraction is less important
than spring precipitation to satisfy the evaporative demands
of upland ecosystems (McNamara et al., 2005), emphasizing
the importance of the temporal distribution of SWI for other
semiarid catchments. For the years studied here, we found
that streamflow was sensitive to spring precipitation and to-
tal precipitation but that the snowfall fraction did not signifi-
cantly affect stream discharge (Figs. 6, 7).

5.3 Limitations and opportunities

Although the model adequately reproduced the spatial snow-
pack patterns and dynamics (Fig. 3 and Table 2), temporal
variations in the snow depths (i.e., melt and accumulation)
recorded at the weather station locations were simulated bet-
ter than the absolute snow depths. To investigate why simula-
tions of snow depths were poor for some stations and years,
we calculated the average and precipitation-weighted aver-
age wind directions, wind speeds, and snow densities for all
events during which the snowfall fraction was higher than
0.2 (i.e., 20 %; see Table S12 and Fig. S13 in the Supple-
ment) from the station data. Although wind speed and direc-
tions were generally consistent (Fig. S13 in the Supplement),
in 2011, the combination of higher snow densities (stronger
cohesion of snow particles; 122 kg m−2) and lower wind
speeds (less energy for transport; 5.7 m s−1) compared with
2009 (102 kg m−2 and 6.5 m s−1, respectively; precipitation-
weighted averages in Table S12) might have led to less wind
redistribution of snow in that year and correspondingly re-
sulted in underpredictions of snow depths at north-facing and
high-elevation sites in 2011 (jdt3, jdt4, jdt5, and jd124b). As
NSE values are based on squared errors, the divergence be-
tween the simulated and observed snow depths impacted the
model performance more severely in 2011 than in years with
shallower snowpacks (i.e., 2005 and 2014). The snowpack
density, wind speed, and wind direction values in 2005 di-
verged most from 2009, from which the lidar observations
were used, but nonetheless had a relatively high performance
(NSE= 0.83), possibly because data from only one station
were available for validation.

In addition to the uncertainty in the spatial redistribution
of snow depending on wind speeds, wind direction, and snow
densities, we suggest three additional reasons for the differ-
ences between simulated and observed snow depths. First,
the varying performance at jd125 might be related to inaccu-
racies in calculating the phase of precipitation, which would
most strongly affect lower elevations at which the phase
shifts more often from rain to snow. Any uncertainty in the
magnitude or phase of precipitation would decrease model
efficiency because precipitation was interpolated based on el-
evation, after which the proportion of precipitation falling as
snow was redistributed based on the lidar snow depths (see
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Sect. 3.3). Second, the simulated snow depths reflect all pro-
cesses occurring in each 10 m grid cell (our model resolu-
tion), whereas the ultrasonic snow depth measurements rep-
resent processes at ∼ 1–3 m2. Therefore, small differences
between the simulated and observed snow depths are ex-
pected. Third, iSnobal is a mass and energy balance model;
therefore, it is optimized to correctly model mass. Thus,
model evaluation using snow depths (instead of SWE) is less
favorable, as small differences in snow densities and SWE
could lead to significant differences in snow depths. How-
ever, as snow depth measurements were available and SWE
measurements were not, we focused on snow depth. Uncer-
tainties were also present in the weather station snow depths
as well as in the lidar-based snow depths and the satellite-
based SCA analysis. We compared the spatial patterns from
the lidar and satellite imagery to test if the spatial pattern
was consistent between these two data sources and found
this to largely be the case (Fig. 2). As such, we are confi-
dent that, despite the uncertainties of our analysis, we cap-
tured the within-catchment variability of the snowpack and
also adequately modeled the variability in SWI that we set
out to investigate.

Discrepancies between simulated and observed snow
depths are challenging to solve, especially for areas with an
ephemeral snow cover (Kormos et al., 2014) or with complex
vegetation patterns, such as the sagebrush in Johnston Draw.
Shallow snow covers are more sensitive to small variations in
energy fluxes than deeper seasonal snow covers (Pomeroy et
al., 2003; Williams et al., 2009). As a result, small errors in
the spatial extrapolation of the forcing data or in the forcing
data itself (e.g., uncertainty in the observed relative humidity
or temperature) can introduce uncertainties in the model re-
sults (Kormos et al., 2014). For instance, the transition from
snow-covered to snow-free areas results in a large change in
albedo, which influences solar radiative fluxes. The snow-
pack at the rain–snow transition zone can melt out several
times per year, even within a single day, and melt-out dates
are variable across the catchment. Therefore, a small error
in the simulated melt-out date for each cell can result in a
larger error in the basin-average or yearly results. Perhaps
these challenges are also a reason for the limited number of
studies that have simulated warm snowpacks (Kormos et al.,
2014; Kelleners et al., 2010), despite multiple regional stud-
ies highlighting that the rain–snow transition zone is expand-
ing and that regional climates are changing rapidly (Klos et
al., 2014; Nolin and Daly, 2006). Challenges linked to snow
ephemerality likely also affected our results, but the agree-
ment between the observed and simulated snow depths indi-
cates that at least the general patterns of accumulation and
melt in space and over time were represented by the simu-
lations, at a scale that was small enough to characterize the
snowdrifts.

Regardless of the challenges that come with studying an
intermittent snow cover, the relationship between the snow-
pack melt-out date and stream dry-out date poses interest-

ing opportunities to inform hydrological models or evaluate
model results with independent observations. Measurements
of SCA can be obtained through satellite imagery and are,
thus, easier and cheaper to obtain than SWE or snow depth
measurements (e.g., Elder et al., 1991). Satellite observations
can be particularly helpful to investigate remote areas that
exceed a feasible modeling domain, and they can be used to
inform or evaluate models. Given the restrictions for satellite
imagery imposed by clouds and the visit frequency, particu-
larly for areas with an ephemeral snow cover that might melt
out in a single day, a combination of satellite imagery and
snowpack modeling seems a promising way to leverage these
observations while ensuring the fine temporal resolution that
might be needed to study stream cessation.

6 Conclusions

As a result of climate change, the rain–snow transition zone
will receive more rain and less snow, which may influence
the spatial and temporal distribution of surface water inputs
(SWI, summation of rainfall and snowmelt). The goal of this
work was to quantify the spatial and temporal distribution of
SWI at the rain–snow transition zone as well as to assess the
sensitivity of annual stream discharge and stream cessation to
the temporal distribution of SWI and to the annual snowfall
fraction. To this end, we used a spatially distributed snow-
pack model to simulate SWI during 5 years, of which 4 had
contrasting climatological conditions. We found that the spa-
tial pattern of SWI was similar between years and that snow
drifting and aspect-controlled processes caused large differ-
ences in SWI across the watershed. Snowdrifts received up
to 6 times more SWI than other sites, and the difference be-
tween SWI from the snowdrifts and catchment average SWI
was highest for the year with the highest snowfall fraction.
This highlights that the snowfall fraction affects the spatial
variability in SWI, with more rain leading to less variability.
The majority of SWI occurred in winter or spring, which was
also the time that the percentage of SWI becoming stream-
flow was highest (up to 94 % in April 2011). Over the 2004–
2014 data record, annual discharge was insensitive to snow-
fall fraction and depended more on total and spring precipi-
tation. The stream dry-out date was also sensitive to total and
spring precipitation. In addition, stream cessation was posi-
tively correlated with the last day on which there was snow
present anywhere in the catchment, which indicates that the
persistence of snowdrifts in small parts of the catchment is
critical for sustaining streamflow. This study highlights the
heterogeneity of SWI at the rain–snow transition zone, its
impact on stream discharge, and, thus, the need to spatially
and temporally represent SWI in headwater-scale studies that
simulate streamflow.
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