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Abstract. The use of satellite sensors to infer rainfall mea-
surements has become a widely used practice in recent years,
but their spatial resolution usually exceeds 10 km, due to
technological limitations. This poses an important constraint
on its use for applications such as water resource manage-
ment, index insurance evaluation or hydrological models,
which require more and more detailed information.

In this work, the algorithm SM2RAIN (Soil Moisture to
Rain) for rainfall estimation is applied to two soil moisture
products over the Po River basin: a high-resolution soil mois-
ture product derived from Sentinel-1, named S1-RT1, char-
acterized by 1 km spatial resolution (500 m spacing), and a
25 (12.5 km spacing) product derived from ASCAT, resam-
pled to the same grid as S1-RT1. In order to overcome the
need for calibration and to allow for its global application, a
parameterized version of SM2RAIN algorithm was adopted
along with the standard one. The capabilities in estimating
rainfall of each obtained product were then compared, to as-
sess both the parameterized SM2RAIN performances and the
added value of Sentinel-1 high spatial resolution.

The results show that good estimates of rainfall are ob-
tainable from Sentinel-1 when considering aggregation time
steps greater than 1 d, since the low temporal resolution of
this sensor (from 1.5 to 4 d over Europe) prevents its ap-
plication for infer daily rainfall. On average, the ASCAT-
derived rainfall product performs better than S1-RT1, even
if the performances are equally good when 30 d accumulated
rainfall is considered (resulting in a mean Pearson correla-
tion for the parameterized SM2RAIN product of 0.74 and
0.73, respectively). Notwithstanding this, the products ob-

tained from Sentinel-1 outperform those from ASCAT in spe-
cific areas, like in valleys inside mountain regions and most
of the plains, confirming the added value of the high-spatial-
resolution information in obtaining spatially detailed rainfall.
Finally, the performances of the parameterized products are
similar to those obtained with the calibrated SM2RAIN al-
gorithm, confirming the reliability of the parameterized al-
gorithm for rainfall estimation in this area and fostering the
possibility to apply SM2RAIN worldwide, even without the
availability of a rainfall benchmark product.

1 Introduction

Water supplies are not endless. Water consumption has
steadily increased in the last century (Kummu et al., 2016),
and the current climatic crisis is expected to further increase
water intake: water availability is expected to reduce, while
irrigation demand increases. Many areas will experience wa-
ter scarcity due to this phenomenon, as it is already happen-
ing (Rockström et al., 2012). In this framework, water re-
source management is extremely important to increase con-
servation and use efficiency of this precious resource. Spa-
tially detailed measurements of various water cycle compo-
nents are therefore needed by stakeholders and companies
involved in water management, in order to increase inter-
vention capacities and to reduce wastage. To improve the
performance of hydrological models, high-quality input data
are needed whose resolution characteristics satisfy the de-
mand set by increasingly complex modeling approaches (Sil-
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berstein, 2006; Ragettli et al., 2013). Insurance companies
are demanding high-spatial-resolution data, even at monthly
temporal scale, with the purpose of developing index-based
insurances for small-scale agriculture (Enenkel et al., 2019;
Black et al., 2016). One of the most important variables for
these objectives is precipitation, indicated by the Global Ob-
serving Systems Information Center (GCOS) as an Essen-
tial Climate Variable (ECV), i.e., a variable whose knowl-
edge is needed in order to understand the evolution of the
climate, to assess the related risks and to develop mitigation
and adaptation strategies. Measurements of rainfall, the liq-
uid fraction of precipitation, are traditionally obtained from
rain gauge sensors, which are characterized by a high de-
gree of precision (La Barbera et al., 2002). Notwithstanding
this, the spatial variability of rainfall makes the current rain
gauge network inappropriate to describe its distribution over
the full globe in detail. The number of gauges is too scarce
with respect to Earth’s surface, and they are unequally dis-
tributed, since the majority of them are located in the most
developed countries (Villarini et al., 2008; Kidd et al., 2017;
Dinku, 2019).

In this framework, rainfall estimates derived from satellite-
based remote sensing measurements have demonstrated their
potential to support, integrate and in some cases substitute
ground-based networks (Barret and Beaumont, 1994; Kidd
and Levizzani, 2011). Historically, two main approaches
are adopted to estimate rainfall from space: the traditional
“top-down” approach, where the instantaneous precipitation
rate is estimated either from upwelling radiation emitted by
clouds or from the scattering properties of raindrops sensed
by radar and/or radiometers, and the more recent “bottom-
up” approach, where the rainfall rate over land is inferred
from soil moisture (SM) observations. The peculiarity of the
bottom-up approach lies in its capacity to estimate the accu-
mulated (not instantaneous) rate using the soil as a “natural
rain gauge” (Brocca et al., 2014). Among the algorithms that
use this approach (Crow et al., 2009, 2011; Pellarin et al.,
2013; Wanders et al., 2015), the algorithm SM2RAIN (Soil
Moisture to Rain) has distinguished itself for its versatility
and simplicity. By inverting the soil water balance equation,
this algorithm allows the amount of rainfall to be estimated
that occurred between two SM measurements. It has already
been applied worldwide to both regional (Tarpanelli et al.,
2017) and global (Ciabatta et al., 2018; Brocca et al., 2019)
satellite SM products, obtaining satisfactory results, in par-
ticular over regions characterized by scarce rain gauge den-
sity (Massari et al., 2020).

Nevertheless, the major limitation of satellite observations,
regardless of the adopted approach, is the inherent “techno-
logical” compromise between temporal and spatial coverage:
satellite-based SM and rainfall products are usually charac-
terized by a frequent revisit time (<1 d) and a coarse spatial
resolution (∼ 10–50 km). It is of primary importance to ob-
tain data with high temporal and spatial resolution, in order
to enhance the prediction capability of hydrological models

requiring high-resolution input data (Merlin et al., 2008) and
to increase the spatial accuracy of the information related to
water resource. The first attempt to accomplish the objective
of high spatial resolution was the use of downscaling proce-
dures. Many different approaches, from geo-statistical anal-
ysis to data fusion, have been developed in the last years in
order to obtain sub-pixel information from coarse-resolution
products (Peng et al., 2017) to be used in different applica-
tions (e.g., Dari et al., 2020). However, their results were of-
ten unsatisfactory because of the limitations of the auxiliary
data (e.g., cloud cover for optical data and model errors when
using model data) and the uncertainties of downscaling algo-
rithms (Peng et al., 2017).

Recently, the newly launched Sentinel missions of the Eu-
ropean Earth Observation program Copernicus, has opened
up new possibilities to overcome these issues. Specifically,
the Sentinel-1 (S1) mission is composed of two satellites
that share the same orbit 180◦ apart and follow a strict ac-
quisition scenario with a 12 d repeat cycle (6 d by consider-
ing both satellites), each carrying an identical C-band Syn-
thetic Aperture Radar (SAR) sensor capable of sensing high-
resolution microwave backscatter (down to 5 m). This setup
leads to a revisit frequency of 1.5–4 d over Europe, thanks
to the overlap of the orbits. The condition of high spatial
and medium temporal resolution is, for the first time, met
by the two S1 satellites currently in orbit. SM measurements
with 1 km spatial resolution can be obtained from this mis-
sion (Bauer-Marschallinger et al., 2018).

The application of SM2RAIN to such data could therefore
provide high-resolution (1 km) rainfall estimates over land.
This approach, however, is limited by the need to calibrate
the SM2RAIN algorithm against a rainfall product with spa-
tiotemporal characteristics similar to those of the input SM.
Datasets with such spatiotemporal characteristics are rarely
available, due to the scarce density of ground-based networks
already mentioned, thus limiting the calibration and valida-
tion of high-resolution rainfall from SM2RAIN to only over
a few selected areas. This issue can be overcome by exploit-
ing the parameterized version of SM2RAIN which allows for
an estimation of SM2RAIN parameters by accepting a lim-
ited reduction in performance, using only knowledge on SM
noise, topographic complexity and the rainfall climatology,
without the need of a calibration procedure (Filippucci et al.,
2021).

In this work, both the parameterized and calibrated ver-
sions of SM2RAIN algorithm were applied to a SM product
derived from Sentinel-1 over the Po River basin in northern
Italy, with the scope of evaluating their capabilities in re-
producing high-resolution rainfall (1 km). The product, from
here on named S1-RT1, was obtained using a retrieval algo-
rithm based on a first-order solution of the Radiative Trans-
fer equation (RT1; Quast et al., 2019). It is characterized by
500 m spatial sampling and 1.5–4 d temporal resolution. The
Po River basin was selected as study area because a ground-
based rainfall dataset with 1 km spatial resolution and 1 h
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temporal resolution is available, thanks to the fusion of rain
gauges and weather radar measurements through the Mod-
ified Conditional Merging (MCM) algorithm (Bruno at al.,
2021). Furthermore, the Po River basin comprehends many
geographical features, such as mountains, hills, lakes, rivers
and plains, which make it a good test area for this analy-
sis. Both SM2RAIN versions were also applied to ASCAT-
derived SM, after it was regridded to S1-RT1 coordinates,
in order to assess the benefits derived from the use of high-
resolution SM by comparing the performances of the result-
ing rainfall products.

The paper is structured as follows: the study area and the
data collected for this study are presented in Sect. 2, and the
two SM2RAIN versions and the selected performance scores
are described in Sect. 3. The obtained results and the spatial
distribution analysis are shown in Sect. 4. Finally, the con-
clusions of the analysis are summarized in Sect. 5.

2 Study area and data

2.1 Study area

The analysis was conducted over the Po River basin, located
in northern Italy (Fig. 1). The basin extends from the West-
ern Alps to the Adriatic Sea, including Italian and Swiss ter-
ritories. The region covers an area of around 71 000 km2: the
Alps outline the boundaries of the basin to the north and west,
with altitudes up to 4809 m, while the Apennines mark the
south borders. The Po Plain extends to the central part of the
basin, broadly divided into a northern and a southern section:
the former is generally unsuitable for agriculture, while the
latter is more fertile and well irrigated. The average annual
precipitation ranges from ∼ 700 to ∼ 1500 mm yr−1 in the
analyzed period, 2016–2019, equally distributed during the
year, with maximums occurring during autumn and spring
seasons. The Po basin area is classified as Cfa (temperate
climate, without dry season and with hot summer) by the
Köppen–Geiger climate classification (Peel et al., 2007). In
this study, the fraction of the Po River basin external from the
Italian boundaries (black line in Fig. 1) was excluded from
the analysis due to the unavailability of rain gauge data.

2.2 Data

Several datasets were collected in this study to analyze
the feasibility of high-resolution rainfall estimations from
SM2RAIN. Specifically, SM products from ASCAT and S1
sensors were analyzed, alongside the selected benchmark
rainfall dataset MCM and the data needed for the parameter
estimations within the parameterized SM2RAIN algorithm,
i.e., SM noise from ASCAT, topography and rainfall clima-
tology.

SM measurements

SM data at 25 km spatial resolution (12.5 km spacing) were
obtained from ASCAT, while the high-resolution 1 km esti-
mates (500 m spacing) were derived from the application of
the S1-RT1 algorithm to Sentinel-1 data (Quast et al., 2019).
The spatial sampling was fixed at one-half of the spatial reso-
lution, according to the Nyquist–Shannon sampling theorem,
to maximize the details of each SM datum (Wagner et al.,
2013).

ASCAT is an active microwave sensor that measures
backscatter radiation at 5.255 GHz (C-band) mounted on
MetOp-A (launched 19 October 2006), MetOp-B (launched
17 September 2012) and MetOp-C (launched 7 Novem-
ber 2018) satellites. The combined use of multiple satellites
allows sub-daily estimates of relative SM to be achieved,
i.e., the soil moisture saturation fraction, over most of Earth
(Wagner et al., 2013). The SM data, together with the as-
sociated noise, were downloaded from the EUropean or-
ganisation for the exploitation of METeorological SATel-
lites (EUMETSAT) Satellite Application Facility on Support
to Operational Hydrology and Water Management (H SAF)
H115 and H116 products, comprehending data from both
MetOp-A and MetOp-B, within the period 2016–2019. Sur-
face state information is available with the dataset; therefore
data marked as “frozen” were discarded from the analysis.

The Sentinel-1 mission is composed of a constella-
tion of two polar-orbiting satellites, Sentinel-1A (launched
3 April 2014) and Sentinel-1B (launched 25 April 2016),
sharing the same orbital plane 180◦ apart, each carrying a
single C-band Synthetic Aperture Radar (SAR) instrument
operating at a center frequency of 5.405 GHz. S1 sensors can
operate in four exclusive imaging modes with different spa-
tial resolution (down to 5 m) and swath width (up to 400 km).
Particularly, the interferometric wide (IW) swath mode, the
main sensing mode over land, offers a 20 m× 22 m spatial
resolution with a 250 km swath. The revisit time of a single
satellite is 12 d, which reduces down to 6 d when considering
both sensors. However, since the acquisition strategy priori-
tizes European land masses over other regions, the effective
temporal resolution over Europe is between 1.5 and 4 d by
taking advantage of the overlapping ascending and descend-
ing orbits.

SM retrievals at 1 km spatial resolution were obtained by
applying a first-order radiative transfer model (RT1) (Quast
et al., 2019) to a 1 km Sentinel-1 backscatter (σ0) dataset
sampled at 500 m pixel spacing (Bauer-Marschallinger et al.,
2021). RT1 is based on a parametric (first-order) solution to
the radiative transfer equation (Quast and Wagner, 2016) in
conjunction with a time-series-based nonlinear least-squares
regression to optimize the difference between (incidence-
angle-dependent) measured and modeled σ0. The scattering
characteristics of soil and vegetation are modeled via para-
metric distribution functions, and the relative SM content
(scaled between 0 and 1) is found to be proportional to the
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Figure 1. Po River basin elevation map from ASTGTM. The black line indicates the Italian boundaries, while the red line indicates the Po
River basin boundaries.

nadir hemispherical reflectance (N ) of the bidirectional re-
flectance distribution function used to describe bare-soil scat-
tering characteristics.

To correct effects induced by seasonal vegetation dynam-
ics, scaled leaf area index (LAI) time series provided by
the ECMWF ERA5-Land reanalysis dataset have been used
to mimic the temporal variability of the vegetation optical
depth, accounting for the attenuation of the radiation dur-
ing propagation through the vegetation layer. Remaining spa-
tial variabilities in soil and vegetation characteristics are ac-
counted for by the model parameters single-scattering albedo
(ω) and soil-scattering directionality (ts). Within the retrieval
procedure, a unique value for N is obtained for each times-
tamp, alongside a temporally constant estimate for ts and an
orbit-specific estimate for ω for each pixel individually. A
comparison of the obtained RT1 soil moisture retrievals to
ERA5-Land top-layer volumetric water content (swvl1) for a
set of ∼ 138000 pixels over a 4-year time period from 2016
to 2019 achieves an overall (median) Pearson correlation of
0.55 for areas classified as croplands and 0.65 for areas pri-
marily covered by natural vegetation. A detailed description
and performance analysis of the soil moisture dataset used
will be given in Quast et al. (2022).

Due to the presence of systematic differences between
Sentinel-1 acquisitions from different orbits, the obtained
soil moisture time series exhibits a periodic disturbance, at-
tributable to unaccounted differences in soil- and vegeta-
tion characteristics with respect to the different viewing-
geometries. To correct these systematic effects, the time se-
ries are split with respect to the Sentinel-1 orbit ID and nor-
malized individually to a range of (0, 1) prior to the incorpo-
ration into the SM2RAIN algorithm.

In order to obtain data with the same time spacing, SM
data were linearly interpolated at midday and midnight for
both datasets. If no data were found within 5 d, each datum
in the interval was set to Not a Number (NaN). ASCAT data

were resampled on a S1-RT1 grid using a weighted average
of the four nearest pixels, to allow for the inter-comparison of
the data. Finally, all the SM products were masked for frozen
soil and snow cover conditions, by downloading the soil tem-
perature (Tsoil) of the first soil layer (0–7 m) and snow depth
data from ERA5-Land (see description below) and excluding
the SM estimates obtained over pixels showing a Tsoil<2 ◦C
or a snow depth>0.01 m.

Rainfall measurements

Two rainfall datasets were considered, to be used as bench-
mark for the performance assessment and as input for the pa-
rameterized version of SM2RAIN, respectively. The first one
is a product derived from the integration of ground radar and
rain gauge measurements over the Italian territory through
the MCM algorithm (Bruno et al., 2021). A dense network
of rain gauges and weather radars is available over the Italian
territory, making it possible to obtain hourly rainfall mea-
surements in real time. While rain gauges allow for a good
estimation of point rainfall, radar measurements give a good
estimation of the general covariance structure of rainfall.
MCM uses radar data to condition the spatially limited in-
formation of rain gauges, generating a rainfall field with a
realistic spatial structure constrained by rain gauge values.
The resulting rainfall product is characterized by high spa-
tial (1 km) and temporal (1 h) resolution. These attributes
make it a suitable choice for the purpose of comparison with
SM2RAIN estimates from high-resolution SM. In this work,
the MCM hourly information was resampled to S1 data co-
ordinates. MCM data were temporally accumulated at 12 h,
obtaining two cumulated rainfall measurements per day, re-
spectively at midday and midnight. Rainfall measurements
greater than a threshold of 800 mm d−1 were considered not
valid and discarded from the analysis. Even if MCM data
were available for the full Po River basin, the territories out-
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side the Italian boundaries were excluded from the analysis
due to the absence of rain gauge data.

In order to apply the parameterized version of SM2RAIN
(see Sect. 3.2), the mean daily rainfall of each pixel in
the study area is needed. It was obtained by downloading
total precipitation and snowfall daily measurements from
the European Centre for Medium-Range Weather Forecasts
(ECMWF) Reanalysis fifth-generation Land product (ERA5-
Land) for the period 1981–2021. ERA5-Land provides es-
timation of various climate components combining models
with observations (Hersbach et al., 2020). The original ERA5
spatial resolution is around 30 km, resampled on a regular
25 km grid. ERA5-Land was produced by regridding the land
component of the ECMWF ERA5 climate reanalysis to a
finer spatial resolution (0.1◦). Daily rainfall data were ob-
tained by subtracting the snowfall component from ERA5-
Land total precipitation. The obtained rainfall data were then
regridded on the S1 grid using a weighted average of the four
nearest pixels, as done with ASCAT SM data. The 30-year
averaged mean daily rainfall was then calculated for each
pixel. This product was selected due to the high temporal
coverage, its worldwide availability and its accuracy.

Topography measurements

Elevation data from the Terra Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) global digital
elevation model (DEM) Version 3 (ASTGTM) were down-
loaded. The product provides altitude land data at a spatial
resolution of 1 arcsec (∼ 30 m resolution at the Equator). In
order to obtain the topographic complexity of each S1 pixel,
the standard deviation of the DEM values within each 500 m
pixel was calculated.

Data interpolation and regridding are expected to intro-
duce small-scale noise in the datasets. Notwithstanding this,
the interpolation is unavoidable in order to analyze all the
products with the same spatial and temporal sampling.

3 Methods

3.1 SM2RAIN

The algorithm adopted to estimate the rainfall accumulated
between two consecutive SM measurements was SM2RAIN,
developed by Brocca et al. (2013, 2014) by inverting the soil
water balance equation, which is given by

Zn
dSM(t)

dt
= p(t)− r (t)− e (t)− g (t) , (1)

where Z [mm] is the depth of the considered layer, n
[m3 m−3] is the soil porosity, SM(t) is the relative SM [–],
p(t) is the rainfall rate [mm d−1], r(t) is the surface runoff
rate [mm d−1], e(t) is the evaporation rate [mm d−1] and
g(t) is the drainage rate [mm d−1]. During rainfall events,

evaporation and surface runoff can be considered negligible
(Brocca et al., 2015), and Eq. (1) can be simplified as

p(t)= Z∗
dSM(t)

dt
+ g(t), (2)

with Z∗ = Zn. Finally, by expressing the drainage rate ac-
cording to the Famiglietti and Wood (1994) relationship,
SM2RAIN equation can be obtained:

p(t)= Z∗
dSM(t)

dt
+ a SM(t)b, (3)

where a [mm d−1] is the saturated hydraulic conductivity,
and b [–] is the exponent of the Famiglietti and Wood equa-
tion. In order to take the low depth sensitivity of satellite
SM (few centimeters) as well as the inherent signal noise
into account, an exponential filter (Wagner et al., 1999; Al-
bergel et al., 2008) is applied to the data before the appli-
cation of SM2RAIN algorithm. In this study, we adopted a
modified exponential filter in which the characteristic time
length, T , is decreasing with increasing SM according to a
two-parameter power law (Brocca et al., 2019). These two
parameters are therefore needed along with Z∗, a and b to
obtain an estimation of the rainfall between two consecutive
SM measurements. In the standard SM2RAIN application,
the five parameters are obtained through calibration against
a reference rainfall dataset with similar spatial and temporal
resolution by minimizing the root mean square error (RMSE)
between the estimated and reference data. The calibrated
SM2RAIN algorithm has already been applied to different
satellite and in situ SM datasets (Ciabatta et al., 2018; Brocca
et al., 2019; Filippucci et al., 2020), showing good perfor-
mance worldwide, particularly over poorly gauged regions in
comparison with other rainfall datasets (Massari et al., 2020).

3.2 Parameterized SM2RAIN

Filippucci et al. (2021) developed four parametric relation-
ships that allow the SM2RAIN parameters to be obtained
along with the T parameter of the original exponential filter
(not the modified version above adopted), without calibra-
tion. It is therefore possible to deduce T ,Z∗, a and b from the
knowledge of SM time series and its noise, the topographic
complexity and the mean daily rainfall of the standard year
(obtained by averaging the rainfall on the same day of year
(DOY)). In particular,

T = 0.8351+ 1.2585SMnoise SD(|SMd|)

+ 0.2777
SD(|SMd|)

P
topC, (4)

where SMnoise is the average SM noise in the considered
pixel, (|SMd|) is the standard deviation of the absolute val-
ues of the SM temporal variations, P is the pixel mean daily
rainfall and topC is the topographic complexity.
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After the calculation of T and the application of the expo-
nential filter to the SM time series, it is possible to calculate
the remaining SM2RAIN parameters according to

Z∗ = 10.0678+ 0.5350
P∣∣SMf d

∣∣ (5)

a =−1.3177+ 13.3579 Z∗
∣∣SMf d

∣∣ (6)

b = 3+
2

0.4118 + 0.324 ∗ loga
, (7)

where
∣∣SMf d

∣∣ is the average of the absolute values of the
filtered SM temporal variations. The coefficients of the equa-
tions above are slightly different from those published in Fil-
ippucci et al. (2021), in which the DEM adopted to obtain the
pixels topC had a spatial resolution of 5 arcmin, unsuitable
for the current analysis. Therefore, the parametric relation-
ships were recalculated by substituting the previous ETOPO5
DEM information with ASTGTM DEM, repeating the same
steps of Filippucci et al. (2021).

3.3 Performance scores

In order to assess the performance of the rainfall estimates
obtained from SM2RAIN, different metrics were calculated
in comparison with the reference dataset, MCM, specifically
as follows:

– Linear Pearson’s correlation (R). This is an index to ex-
press the linear relationship between two sets of data. Its
value ranges between −1 and +1, where −1 indicates
perfect negative linear relationship, +1 means perfect
positive linear relationship and 0 means no statistical
dependency. By considering the estimated and observed
rainfall Pest and Pobs, the Pearson correlation can be ob-
tained by

R =

∑
(Pest−Pest)(Pobs−Pobs)√∑
(Pest−Pest)2

∑
(Pobs−Pobs)2

, (8)

where Pest and Pobs are the average values of the esti-
mated and observed rainfall, respectively.

– Bias. This index measures the systematic over- or under-
estimation of one dataset with respect to the reference
data. In this paper, it is calculated as the difference be-
tween the estimated and the observed rainfall: therefore,
negative bias values indicate a systematic rainfall un-
derestimation, while positive bias values mean the op-
posite:

bias=
∑

(Pest−Pobs). (9)

– Root mean square error (RMSE). This is widely used to
measure the differences between two population values

because it takes into account three different sources of
error together: decorrelation, bias and random error. It
can be obtained by calculating the square root of the
mean quadratic difference between two datasets:

RMSE=
√
(Pest−Pobs)2. (10)

4 Results

4.1 Rainfall validation

In order to obtain rainfall measurements from the SM
datasets, the SM2RAIN algorithm was applied to both AS-
CAT and S1-RT1 SM products using both the calibrated and
parameterized versions. In the calibrated SM2RAIN algo-
rithm, the algorithm parameters were estimated by minimiz-
ing the RMSE with respect to the MCM rainfall product at
daily timescale for both ASCAT and S1-RT1 SM. For the
parameterized SM2RAIN version, the algorithm parameters
were obtained through the parametric relationships devel-
oped by Filippucci et al. (2021), as mentioned above. Since
no information regarding S1-RT1 SM noise was available,
ASCAT SM noise characteristics were used to calculate S1-
RT1 SM2RAIN parameters, assuming that since both AS-
CAT and S1 sensors operate in the C-band, the noise affect-
ing the two SM products is similar. Indeed, the noise level of
S1-RT1 is expected to be higher than the ASCAT one. This
sub-optimal configuration can therefore be considered as a
first step to test the data: better results should be obtained
when more accurate noise information is available.

The obtained rainfall can then be accumulated at the de-
sired time step. In order to consider the different temporal
resolution of the selected SM products (sub-daily for AS-
CAT and from 1.5 to 4 d for S1), three accumulation time
steps were chosen: 1, 10 and 30 d. The daily rainfall was only
calculated for the ASCAT product, since the low temporal
resolution of S1 prevents significant results being obtained at
daily intervals.

Figure 2 shows the average 30 d rainfall obtained by the
application of the parameterized SM2RAIN to ASCAT and
S1-RT1 SM products. By comparing the two figures, the im-
proved resolution of the rainfall obtained from S1-RT1 SM
with respect to ASCAT SM is evident: the higher spatial res-
olution of S1-RT1 allows for the generation of detailed fea-
tures, even if this is with a granular effect, likely due to the
uncertainties of the measurements, and with patterns related
to the spatial variation of S1 temporal resolution.

The results of R, RMSE and bias with respect to the se-
lected time steps are shown in Fig. 3. In order to maximize
the reliability of the obtained performances, the rainfall ac-
cumulation was carried out by summing up only timestamps
available in both the SM2RAIN estimations and the bench-
mark, for each SM2RAIN product separately. In this way S1-
RT1 performances can be better assessed, since a direct accu-
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Figure 2. Estimated average 30 d accumulated rainfall from the
parameterized SM2RAIN applied to ASCAT (a) and S1-RT1 (b)
SM product for the period 2016–2019. Map copyright © 2021
GeoBasis-De/BKG (© 2009), Google, Inst. Geogr. Nacional Im-
magini © 2021 TerraMetrics.

mulation would penalize this product due to the long period
of no data caused by S1 low temporal resolution.

The SM2RAIN product obtained from ASCAT allows us
to reproduce the rainfall of the Po River basin well at daily
timescale, thanks to the high temporal resolution of ASCAT
(sub-daily frequency), with a median R of 0.61 for the pa-
rameterized product and 0.64 for the calibrated product, con-
firming the good quality of the data and the importance of
its temporal resolution. At higher aggregation time steps, the
median R of the parameterized (calibrated) ASCAT-derived
rainfall products improves to 0.71 (0.75) for the 10 d accu-
mulation period and to 0.74 (0.77) when 30 d accumulation
is considered. Good results are also obtained from the ap-
plication of SM2RAIN to S1-RT1, with a median R of 0.61
(0.65) and 0.73 (0.75) at 10 and 30 d accumulation time, re-
spectively. Apart from ASCAT-derived rainfall performing
better than the one from S1-RT1 at 10 d, they are equally
good for the 30 d accumulated rainfall. The results also con-
firm the good capabilities of the parameterized SM2RAIN
algorithm in rainfall estimation, considering the small differ-
ences between the performances obtained by the two algo-
rithm versions. The only exception is the bias index, which,
as expected, is significantly larger in the parameterized prod-
ucts compared to the calibrated ones. The increased bias is
due to the ERA5-Land data used to obtain the climatology
of the area since its spatial resolution is much lower than the
one adopted for this study (i.e., 1 km), and the average spatial
pattern of rainfall is quite different from the one measured by
MCM.

4.2 Spatial validation of rainfall products

Even if the ASCAT product (with lower spatial resolution)
is on average the best-performing, the spatial comparison of
the performances is important to understand the added value
of high-resolution SM. In order to better evaluate the differ-
ences between the rainfall estimated from ASCAT and S1-
RT1, Pearson’s correlation performances of the 30 d accu-
mulated rainfall derived from the two SM products are ana-
lyzed in this section. This temporal step was selected since
it is suited for a quality comparison of the two products, be-
ing less influenced by the different temporal resolution of the
sensors and because it is optimal for agricultural application.

Generally good performances are obtained from both rain-
fall products, as shown in Fig. 4a and b. Some areas with low
R values are shared by both ASCAT- and S1-RT1-derived
rainfall products. Over mountain areas, the errors are mostly
related to the lower accuracy of C-band SM data, due to shad-
owing effects and layover (a distortion that occurs in radar
imaging when the signal reflected from the top of a tall fea-
ture is received by the emitter before the one of the base;
Ulaby et al., 1981). The presence of water bodies at the river
outlet and over the paddy fields in the western part of the
Po basin also affects SM and hence rainfall retrieval accu-
racy. Finally, the yellow “holes” in the correlation maps re-
semble the errors caused by low-quality gauge data, which
affect the rainfall estimation surrounding the gauge sensor. It
should also be noticed that many low-performing areas are
located close to urban centers, which may affect both the SM
retrieval quality and the rain gauge measurements, as dis-
cussed in the following section. Notwithstanding this, it is
impossible to remove the alleged “bad” gauge stations from
the benchmark product, as MCM is an operative product, and
the clear identification of these stations is often challenging.

The spatial comparison between the performances of the
ASCAT- and S1-RT1- derived rainfall is shown in Fig. 4c,
displaying the difference between the correlation values of
the two products. Red areas mean that the S1-RT1 product
is performing better, whereas blue areas highlight where AS-
CAT is providing more accurate rainfall estimates. First of
all, it should be noted that while the ASCAT-derived rainfall
product shows average correlation values over the mountain-
ous region in the north and west of the map (see Fig. 1 for
comparison with the DEM map), S1-RT1 correlation is ei-
ther extremely low or extremely high. This important differ-
ence is caused by the high spatial resolution of the S1-RT1
product: the improved resolution allows the “good” signal
originating from the valleys to be clearly distinguished from
the “bad” signal coming from the mountain slopes, affected
by the noise generated from the aforementioned shadowing
and layover effects. This distinction results in areas with very
good (valleys) and very bad (mountains) rainfall estimations.
The spatial resolution of ASCAT on the other hand does not
allow the signals of the two geographical features to be dis-
tinguished, causing lower performances over the valleys and
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Figure 3. Violin plots of Pearson’s correlation (R, a), root mean square error (RMSE, b) and bias (c) between the rainfall from MCM and
from SM2RAIN applied to ASCAT and S1-RT1. ASCAT-derived rainfall was accumulated at 1, 10 and 30 d, while the rainfall from S1-RT1
was accumulated at 10 and 30 d. Each violin shape is obtained by rotating a smoothed kernel density estimator. The green violins are obtained
by calibrating SM2RAIN against MCM, while the red violins are derived from the parameterized SM2RAIN procedure.

Figure 4. Spatial Pearson’s correlation (R) between the 30 d accumulated rainfall derived from MCM and the application of the parameterized
SM2RAIN to ASCAT (a) and to S1-RT1 (b) SM products. Panel (c) shows the difference between ASCAT and S1-RT1 correlation maps,
while panels (d) and (e) show the percentage of invalid images per pixel respectively for ASCAT and S1-RT1.
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higher performances over the slopes in comparison with S1-
RT1. The low performances of the pixels located over the
mountain slopes are also responsible for the long violin plot
tails of S1-RT1 performances that can be noticed in Fig. 3.
S1-RT1 results are particularly lower than those from AS-
CAT due to the fact that S1-RT1 product calibration was car-
ried out without considering any snow masking, thus reduc-
ing the quality of the solution in the pixels affected by snow
cover.

A smaller difference in performance can be noticed over
the plain, in particular in the northeastern section, where
S1-RT1 rainfall performs overall better than ASCAT. Con-
versely, in the southern section and specifically over the areas
surrounding the Po River and its tributaries, ASCAT-derived
rainfall is better than S1. An explanation of this behavior can
be found in the intensive irrigation practice over this area. Ir-
rigation events cause an increase of the fields SM (Filippucci
et al., 2020) that should be sensed by satellite sensors. How-
ever, the area surrounding the Po River is composed by many
small fields (a few hectares each) managed by different farm-
ers, where the irrigation timing is not concurrent. The AS-
CAT sensor is not able to distinguish the resulting irrigation
signal (Brocca et al., 2018) because of its low spatial reso-
lution (25 km) that cause the signals of each field to overlap
and average with each other. S1, instead, is more sensitive to
the irrigation signal, thanks to its higher spatial resolution.

Considering that the rainfall benchmark product does not
contain irrigation information, the drop in Pearson’s correla-
tion of the S1-RT1-derived rainfall with respect to ASCAT
could be related to the sensitiveness of the former to the
aforementioned irrigation events and not to the SM signal
quality. It could be an additional information of great scien-
tific interest, but, unfortunately, the absence of detailed irri-
gation data for the Po Valley makes it difficult to verify this
hypothesis.

Finally, it should also be noted that this analysis could be
biased in the areas characterized by a high presence of miss-
ing values (NaN) for one product with respect to the other,
which hampers the statistical significance of the performance
indices. Notwithstanding this, the absence of patterns in the
maps that resemble the NaN distribution percentage shown
in Fig. 4d and e fosters the validity of the analysis, even if S1
temporal resolution still affects the average rainfall pattern
(compare Fig. 4e with 2b).

The performance comparison with respect to RMSE and
bias and a comparison of the calibrated SM2RAIN products
is omitted for the sake of brevity because no relevant addi-
tional information can be obtained from it.

In Figs. 5 and 6, rainfall and SM time series of two pix-
els selected in the northwest of the Po basin are shown, as
an example of the increased capacity of S1-RT1 for rainfall
retrieval in the mountainous area. Since these pixels are se-
lected in a topographic complex area, they should not be con-
sidered representatives of the overall performance and avail-
ability of the satellite rainfall products, rather an example of

the improved performance derived from the use of S1-RT1
high-resolution SM. Winter and early-spring measurements
are masked in both pixels, due to frozen conditions or snow
cover, according to ERA5-Land information. The pixel in
Fig. 5 is selected over one of the mountain valleys of the
Italian territory (7.152◦ E, 45.710◦ N), inside the Italian re-
gion Valle d’Aosta, in order to show how S1 spatial resolu-
tion increases the capabilities in rainfall estimation over such
a region. By observing the rainfall time series in Fig. 5a and
the standard month distribution in Fig. 5b, it can be noted
how S1-RT1-derived rainfall is in better accordance with the
observed one, in particular during autumn months. During
late spring and summer, S1-RT1 and ASCAT estimates are
more similar, while S1-RT1 often underestimates the ob-
served rainfall, also with respect to ASCAT. In Fig. 5d, the
same behavior can be noted on the averaged SM trends, with
the SM sensed by S1-RT1 being on average less than the one
from ASCAT during late spring–summer and greater during
the autumn season, probably due to the additional vegetation
correction operated within S1-RT1.

Figure 6 shows the time series of a pixel selected over
the mountain slopes, in the vicinity of the previous one
(7.410◦ E, 45.824◦ N). While ASCAT SM estimates (Fig. 6c
and d) show patterns that are similar to those in Fig. 5, the
S1-RT1 signal is completely different. The SM saturates in
the summer period and goes down in autumn, with a strong
seasonality that is poorly affected by the rainfall events. This
is most probably an issue of the vegetation correction, since
it adds a strong seasonality to pixels that realistically exhibit
little vegetation coverage, also due to the low spatial res-
olution (with respect to S1-RT1) of the LAI product used
for correcting vegetation seasonalities. This erroneous vege-
tation seasonality is then counteracted by an erroneous SM
seasonality. As expected, the poor quality of SM estimations
greatly affects SM2RAIN capabilities in calculating rainfall
in these areas, resulting in a very high rainfall rate perceived
during summer and a very low one during winter, in contrast
with the observed data.

Finally, Fig. 7 shows the time series of a pixel selected
over the plain (10.684◦ E, 44.805◦ N). As can be noted, the
period of unavailability of the rainfall datum is greatly re-
duced in comparison with Figs. 5 and 6, since this area is
characterized by higher temperature during the winter and by
minor snow cover probability. Overall, S1-RT1 SM shows a
greater variability during the summer season with respect to
ASCAT (Fig. 7c, d), thanks to both the vegetation correction
and the higher spatial resolution. This leads to a greater accu-
racy in the peak rainfall detection of summer 2018 and 2019
(Fig. 7a). On the other hand, an overestimation of 2017 sum-
mer rainfall (potentially due to an error in SM estimation or
to an irrigation event) and an underestimation of winter 2019
(probably due to SM saturation) are found. Overall, the rain-
fall estimate from S1-RT1 is in good accordance with the ob-
served one (Fig. 7b), proving both the validity of the derived
rainfall product and its usefulness for hydrologic modeling.
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Figure 5. Example of SM and rainfall time series over a pixel (7.152◦ E, 45.710◦ N) where the parameterized SM2RAIN applied to S1-RT1
outperforms SM2RAIN-ASCAT. In (a), the time series of the observed (blue) and estimated (red SM2RAIN-ASCAT, green SM2RAIN-S1-
RT1) 10 d accumulated rainfall products are shown, while panel (c) displays SM time series averaged with a 3 d window. Finally, panels (b)
and (d) contain the standard month average of the rainfall and SM products, respectively. The periods masked for frozen soil conditions or
snow cover are highlighted in grey.

Figure 6. Example of SM and rainfall time series over a pixel (7.410◦ E, 45.824◦ N) where the parameterized SM2RAIN-ASCAT outper-
forms SM2RAIN applied to S1-RT1. In (a), the time series of the observed (blue) and estimated (red SM2RAIN-ASCAT, green SM2RAIN-
S1-RT1) 10 d accumulated rainfall products are shown, while panel (c) displays SM time series averaged with a 3 d window. Finally, panels
(b) and (d) contain the standard month average of the rainfall and SM products, respectively. The periods masked for frozen soil conditions
or snow cover are highlighted in grey.

5 Discussion

The obtained results show that the high-resolution informa-
tion from S1 sensors allows the accuracy of SM (and thus of
rainfall) to be increased in areas where coarse-resolution data
are not able to obtain reliable estimates. Conversely, over
some regions, the rainfall obtained from the application of
SM2RAIN to S1-RT1 SM shows worse performance with
respect to the one obtained when the algorithm is applied to
ASCAT data, as is the case over many mountainous areas.

Finally, the analysis highlighted some areas in which the ac-
curacy of the rainfall obtained from the application of both
the calibrated and parameterized SM2RAIN to ASCAT or
S1-RT1 SM products is stably low, as discussed in Sect. 4.2.
This issue can depend on multiple factors, such as SM sig-
nal quality, failure of the SM2RAIN algorithm hypothesis or
accuracy of the benchmark rainfall product. An attempt to
identify these areas is made here, by highlighting the pixels
in which Pearson’s correlation between the 30 d accumulated

Hydrol. Earth Syst. Sci., 26, 2481–2497, 2022 https://doi.org/10.5194/hess-26-2481-2022



P. Filippucci et al.: High-resolution (1 km) satellite rainfall estimation from SM2RAIN applied to Sentinel-1 2491

Figure 7. Example of SM and rainfall time series over a pixel (10.684◦ E 44.805◦ N) selected in the plain. In (a), the time series of the
observed (blue) and estimated (red SM2RAIN-ASCAT, green SM2RAIN-S1-RT1) 10 d accumulated rainfall products are shown, while
panel (c) displays SM time series averaged with a 3 d window. Finally, panels (b) and (d) contain the standard month average of the rainfall
and SM products, respectively. The periods masked for frozen soil conditions or snow cover are highlighted in grey.

rainfall from MCM and the four SM2RAIN-derived products
is always less than a threshold, fixed at 0.65, as shown in
Fig. 8. Multiple areas of stable low performances can be dis-
tinguished in the figure, highlighted in blue. Two main rea-
sons for this behavior can be identified: issues with the SM
sensing and issues with the benchmark product.

In particular, the blue areas located in mountainous region
in Fig. 8, in the north and the west of the map, should be
affected by both the source of error, since in topographically
complex areas, SM retrieval is difficult, and weather radar ac-
curacy drops. Notwithstanding this, ASCAT performance is
still higher than that of S1-RT1 in these areas (compare with
Fig. 4). This fact has a threefold explanation: first, S1-RT1
SM estimations are obtained without considering any snow
masking; thus their accuracy over mountain region regularly
affected by snow cover is limited. Second, the low quality of
ASCAT SM retrieval over topographically complex areas is
mitigated by the presence of valleys and/or a plateau in each
ASCAT pixel in which SM accuracy is higher. Third, the
SM2RAIN algorithm hypothesis could be invalid over these
areas since the runoff rate should be not negligible. Indeed,
SM2RAIN conditions state that the runoff rate is negligible
during the rainfall event, but the low temporal resolution of
S1 overcomes the duration of most of the events, questioning
the condition’s validity.

Instead, the areas in Fig. 8 within the light blue rectan-
gles are characterized by the presence of paddies and wa-
ter bodies: here the low performance should be caused by

low SM quality, due to the impossibility of retrieve SM in-
formation over flooded areas with active microwave sen-
sors. Finally, the remaining blue regions should be affected
by low quality of the benchmark product. This can be re-
lated either to “bad”-performing gauge stations, recogniz-
able through the central position of a gauge with respect to
the low-performing area (e.g., the two regions in the center–
east black rectangles), or to issues with weather radar and
rain gauge measurements, where the blue patterns are con-
centrated between two or more rain gauges (e.g., the region
within the black rectangles in the southwest).

In order to better analyze this aspect, three stations located
within the three black rectangles in Fig. 8 were selected, to-
gether with the nearest-neighbor stations. The MCM time
series of the pixels that include the stations were extracted,
in order to compare them and assess the quality of the se-
lected rain gauges. The qualitative comparison of the sta-
tions is shown in Fig. 9, where the scatter plots for each pair
of rain gauges are shown, together with their position in the
map (Fig. 9a). In particular, a clear issue with the rain gauge
named A1 can be appreciated in Fig. 9b, with this sensor
measuring rainfall peaks up to 300 mm d−1, absent from the
nearest gauges. The issue can be confirmed by the low Pear-
son correlation between its time series and the one of the
nearest rain gauge, equal to 0.53, that is significantly lower
than the mean Pearson correlation calculated between each
couple of nearest stations within the study area, equal to 0.87
(standard deviation equal to 0.1). Also, Fig. 9c shows strange
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Figure 8. Map of Po River basin. The blue pixels indicate the areas where Pearson’s correlation between the 30 d accumulated rainfall from
MCM and the calibrated and parameterized SM2RAIN applied to ASCAT or S1-RT1 is stably less than a threshold of 0.65. The light blue
rectangles surround the areas with paddy areas or abundant water bodies, while black rectangles outline areas with alleged “bad”-performing
gauge stations. Finally, the white dots show the gauge station locations and the green dots the rain gauge selected to be analyzed further. Map
copyright © 2021 GeoBasis-De/BKG (© 2009), Google, Inst. Geogr. Nacional Immagini © 2021 TerraMetrics.

patterns of rainfall: even if there are no large peaks, several
rainfall events are sensed with different magnitude by the two
stations named B1 and B2, as can be noticed by looking at
the number of points that tends to the x and y axis which
indicate severe over- or underestimation. Also in this case,
the measured Pearson correlation is lower than the average,
equal to 0.71. Finally, station C1 (Fig. 9d) measures several
peaks of rainfall that are higher than those recorded by the
nearest rain gauge, C2. Notwithstanding this, in this case,
the variation between the two sensors seems to be caused by
the natural rainfall spatial variability, as demonstrated by the
high Pearson correlation between the two time series, equal
to 0.88. This was expected since the low-performing region
is not located around one of the stations but in between them,
over a hilly area that could affect the weather radar measure-
ments.

Errors in the selected benchmark product are a known lim-
itation of the direct validation of rainfall datasets. This fact
is also the proof of the need of further research in the rain-
fall measurement fields, since the merging of different rain-
fall products, each with its limitation often complementary,
can be beneficial, allowing a more reliable estimate to be ob-
tained.

6 Conclusions

Rainfall measurements from space are more and more used
to increase the rainfall distribution knowledge and to im-
prove water resource management capabilities, but their spa-
tial resolution is limited due to technological limitations. In
this work, the SM2RAIN algorithm was applied to a 1 km
spatial resolution SM product from S1 obtained through an
algorithm based on a first-order solution of the Radiative
Transfer equation, RT1, over the Italian fraction of the Po
River basin (Fig. 1), to obtain a high-resolution rainfall prod-
uct from satellite remote sensing. This region was selected
due to the availability of a benchmark dataset from radar and
rain gauge data, obtained through the MCM algorithm. Two
versions of SM2RAIN were applied in this analysis to com-
pare the resulting performances: one uncalibrated, to foster
the high-resolution rainfall estimation in other regions where
benchmark data are unavailable, and one calibrated against
the observed data. In order to assess the improvements re-
lated to the high spatial resolution of S1, SM2RAIN was
also applied to ASCAT SM, resampled to S1-RT1 grid for
comparison. The analysis was carried out at different tempo-
ral accumulation steps (1, 10 and 30 d) to take the different
temporal resolutions of the two SM products, 1.5 to 4 d for
S1-RT1 and sub-daily for ASCAT, into account.

The results (Fig. 3) show that it is indeed possible to obtain
high-resolution rainfall data from S1, even if the low tem-

Hydrol. Earth Syst. Sci., 26, 2481–2497, 2022 https://doi.org/10.5194/hess-26-2481-2022



P. Filippucci et al.: High-resolution (1 km) satellite rainfall estimation from SM2RAIN applied to Sentinel-1 2493

Figure 9. Panel (a) shows the boundary of the Po River basin, together with the position of three couple of stations (A1–A2, B1–B2 and
C1–C2) with alleged “bad” MCM performance. The scatter plots of the daily rainfall measured by each couple of stations are then shown in
(b), (c) and (d).

poral resolution of the data does not allow daily rainfall to
be calculated. It is instead possible to calculate it with AS-
CAT data due to the higher temporal resolution, with good
results (median R of 0.61 and 0.64 for the parameterized and
calibrated SM2RAIN). When 10 d accumulated rainfall is
considered, S1-RT1-derived rainfall from the parameterized
(calibrated) SM2RAIN performs quite well, with a median
R of 0.61 (0.65), but ASCAT performances are higher, with
a median R of 0.71 (0.75). At higher temporal accumulation
steps, the performance differences reduce, until ASCAT- and
S1-RT1-derived rainfall reach almost equal R for the 30 d
accumulated rainfall (around 0.75). A similar conclusion can
be deduced by analyzing the RMSE index, while for the bias
index the differences between the calibrated and the parame-
terized SM2RAIN results are larger, probably due to the low
spatial resolution of the product used to obtain the Po River
basin climatology (ERA5-Land).

Even if on average the rainfall from ASCAT seems to be
slightly better-performing than the one from S1, the analysis
of the spatial distribution of R shows instead the true ben-
efits of the high-resolution SM (Fig. 4). In complex moun-
tain regions, S1 obtains extremely good performance over
the valleys and bad performance over the ridges, unsuited for
SM remote sensing, whereas ASCAT R always represents an
average of the two signals due to the lower spatial resolu-
tion. S1-derived rainfall is generally better-performing than
the one from ASCAT, also in the northern section of the Po
Valley plain, while the latter is better in the southern section,

where irrigation is widely practiced. The fragmentary nature
of the irrigation in this area could be the cause of this phe-
nomenon: S1-RT1 should be more sensitive than ASCAT to
the signal generated by various small fields, where irrigation
in not concurrent, thanks to its higher spatial resolution, but
since irrigation is not considered in the benchmark product,
the resulting R is reduced.

Some areas with stable low performance of rainfall estima-
tion were also identified (Fig. 8), caused by the limitations of
SM2RAIN algorithm (e.g., areas in which runoff rate is not
negligible), of the SM remote sensing (areas in which SM es-
timation is impossible, e.g., flooded or snow-covered areas)
and of the benchmark product (e.g., topographically complex
areas).

Summing up, high-resolution rainfall from satellite remote
sensing is possible and is able to observe features that are av-
eraged in products with lower spatial resolution, like the pre-
cipitation within mountain valleys and potentially the fields’
irrigation. Notwithstanding this, the low temporal resolution
is currently a limitation for its application in many fields,
even if high-spatial-resolution rainfall at monthly temporal
resolution is still useful for agriculture, water resource man-
agement and index-based insurances. Future research steps
should try to address this issue, e.g., by exploiting the in-
tegration of high-spatial-resolution products (characterized
by low frequency) with high-temporal-resolution products
(characterized by low spatial resolution).
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Appendix A

In this paper, the performance indexes were calculated at
three different temporal steps: 1, 10 and 30 d. In order to
obtain them, the time series of each estimated product and
the observed one were accumulated according to the selected
period by considering only the intervals in which the data
were available in both the datasets. This choice was made to
obtain the best accurate assessment of each product, by cal-
culating its potential in estimating rainfall against a concur-
rent dataset. Notwithstanding this, the comparison of ASCAT
and S1-RT1 based on such performances could be biased be-
cause in this way the analyzed indexes are calculated against
two different benchmark datasets, each representing only the
selected overlapping timestamps. In this section, we decided
therefore to calculate the performance indexes again by accu-
mulating the rainfall of the observed and estimated datasets
only over the periods in which the three datasets (i.e., MCM,
ASCAT and S1-RT1) are available together and to insert in
this appendix the corresponding figures with respect to the
newly calculated indexes: Figs. 4 (A1) and 5 (A2). To fur-
ther increase the comparison quality and to avoid the period
in which just one Sentinel-1 sensor was in orbit and thus the
associated drop in performance, only the data subsequent to
1 October 2016 were considered for the new index calcula-
tion.

Figure A1. Violin plots of Pearson’s correlation (R, a), root mean square error (RMSE, b) and bias (c) between the rainfall from MCM and
from SM2RAIN applied to ASCAT and S1-RT1. ASCAT-derived rainfall was accumulated at 1, 10 and 30 d, while the rainfall from S1-RT1
was accumulated at 10 and 30 d. Only the periods in which all three products are available are considered in the accumulation. Each violin
shape is obtained by rotating a smoothed kernel density estimator. The green violins are obtained by calibrating SM2RAIN against MCM,
while the red violins are derived from the parameterized SM2RAIN procedure.

In comparison with the paper’s results, here ASCAT
performances increase, evidently due to the removal of
some low-performing data, as confirmed by the appearance
of some patterns within the ASCAT correlation maps in
Fig. A2a that resemble the invalid pixel percentage distri-
butions map of Fig. A2d. Notwithstanding this, the areas in
which S1-RT1 outperforms ASCAT are almost identical, al-
though shrunk, confirming the paper’s results.
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Figure A2. Spatial Pearson’s correlation (R) between the 30 d accumulated rainfall derived from MCM and the application of the parame-
terized SM2RAIN to ASCAT (a) and to S1-RT1 (b) SM products, only considering the periods for which all three products are available.
Panel (c) shows the difference between ASCAT and S1-RT1 correlation maps, while panel (d) shows the percentage of invalid images per
pixel.
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