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Abstract. Water management in sub-Saharan African river
basins is challenged by an uncertain future climatic, social
and economical patterns potentially causing diverging wa-
ter demands and availability, and by multi-stakeholder dy-
namics, resulting in evolving conflicts and tradeoffs. In such
contexts, a better understanding of the sensitivity of water
management to the different sources of uncertainty can sup-
port policymakers in identifying robust water supply policies
balancing optimality and low vulnerability against likely ad-
verse future conditions. This paper contributes an integrated
decision-analytic framework combining an optimization, ro-
bustness, sensitivity, and uncertainty analysis to retrieve the
main sources of vulnerability to optimal and robust reser-
voir operating policies across multi-dimensional objective
spaces. We demonstrate our approach on the lower Umbeluzi
river basin, Mozambique, which an archetypal example of
sub-Saharan river basin, where surface water scarcity com-
pounded by substantial climatic variability, uncontrolled ur-
banization rate, and agricultural expansion are hampering the
Pequenos Libombos dam’s ability to supply the agricultural,
energy, and urban sectors. We adopt an Evolutionary Multi-
Objective Direct Policy Search (EMODPS) optimization ap-
proach for designing optimal operating policies, whose ro-
bustness against social, agricultural, infrastructural, and cli-
matic uncertainties is assessed via robustness analysis. We
then implement the generalized likelihood uncertainty esti-
mation (GLUE) and PAWN uncertainty and sensitivity analy-
sis methods for disentangling the main challenges to the sus-
tainability of the operating policies and quantifying their im-
pacts on the urban, agricultural, and energy sectors. Numer-
ical results highlight the importance of a robustness analy-

sis when dealing with uncertain scenarios, with optimal non-
robust reservoir operating policies largely being dominated
by robust control strategies across all stakeholders. Further-
more, while robust policies are usually vulnerable only to hy-
drological perturbations and are able to sustain the majority
of population growth and agricultural expansion scenarios,
non-robust policies are sensitive also to social and agricul-
tural changes and require structural interventions to ensure
stable supply.

1 Introduction

The availability of freshwater is a limiting factor to food
production, energy generation, and industrial consumption
around the globe (Hermoso, 2017; Zampieri et al., 2018).
Investing in new infrastructure is still the predominant op-
tion to expand the storing and conveying capacity of fresh-
water, particularly in sub-Saharan Africa and southeast Asia,
which are areas that have a larger untapped potential (Fields
et al., 2009). Yet, this hard path water solution is evoking
contentious debates for the considerable environmental and
social costs of damming rivers (Moran et al., 2018), reaching
a point that the efficient operation of existing infrastructure,
rather than planning new ones, is becoming critical to bal-
ance the tradeoffs between supply and demand (Gleick and
Palaniappan, 2010). In sub-Saharan Africa, more than 2000
dams have been built, and over 200 are currently under con-
struction to enhance food security and increase hydropower
production (Kibret et al., 2016). However, projected changes
in climate, population growth, and agricultural patterns will
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likely challenge the ability of the existing and planned dams
to produce the level of benefits that triggered the invest-
ment for their construction (Giuliani et al., 2016b). Under-
standing the impact of those uncertainty sources on reservoir
operation is, therefore, key for developing robust operating
policies that support policymakers towards sustainable river
basin management.

An archetypal example of a highly regulated, fast-evolving
sub-Saharan hydrosystem is the lower Umbeluzi river basin,
Mozambique. About 45 km upstream of its delta in Maputo
Bay, the river flows in the Barragem de Pequenos Libom-
bos reservoir, which is operated to balance hydropower pro-
duction, urban supply to the 2 million inhabitants of Maputo
Province, and irrigation supply of the 3600 ha of agricultural
districts, which are mostly growing tropical fruits and sugar-
cane. A still ongoing 5-year-long drought has boosted crop
prices by about 50 %, hindering food access to a population
currently growing at rate of 0.6 % per year and exacerbating
conflicts among the urban, agricultural, and energy sectors.
Droogers et al. (2014) estimated a further annual increase of
2 % in the urban population and of 2 % in irrigated area for
the coming decades, while a projected 10 % climate-change-
induced reduction in precipitation seriously endangers the
existing fragile equilibrium among sectors. To cope with the
expected growth in water scarcity, the World Bank is funding
the Greater Maputo Water Supply Expansion Project, which
is a sequence of infrastructural interventions aimed at supply-
ing the city of Maputo with an additional inflow from the Sa-
bie River basin. Started in 2013, the project is expected to be
completed in the years that follow. The uncertain evolution
of climatic, agricultural, infrastructural, and social patterns
in the area calls for assisting policymakers in (1) the devel-
opment of robust reservoir operating policies, (2) a deep un-
derstanding of the main sources of vulnerability challenging
the sustainability of water supply strategies, and (3) a quan-
titative assessment of the impact of such uncertainty sources
across the agricultural, energy, and urban sectors.

To do so, we implement an integrated decision-analytic
framework combining an optimization, robustness, sensitiv-
ity, and uncertainty analysis with the threefold objectives
of (1) designing operating policies that integrate optimality
with low vulnerability against likely adverse future condi-
tions, (2) retrieving the main sources of vulnerability to water
infrastructure operation across a multidimensional objective
space, and (3) identifying the evolution in the system drivers
which causes a policy to become unsustainable.

The framework is composed of an optimization rou-
tine based on the evolutionary multi-objective direct pol-
icy search (EMODPS) to design optimal control policies,
whose robustness against deeply uncertain (i.e., with un-
known probability of occurrence) climate, socioeconomic,
and infrastructural scenarios is then tested by means of a ro-
bustness analysis. To discover the main uncertainty sources
and apportion their specific impact on the hydrological sys-
tem, we employ the generalized likelihood uncertainty es-

timation (GLUE; Beven and Binley, 1992) and the PAWN
density-based sensitivity analysis (SA) method (Pianosi and
Wagener, 2015), respectively.

The main sources of uncertainty that we consider are the
projected increase in water demand following urbanization
(population uncertainty) and irrigation development (agricul-
tural uncertainty) in the area, the magnitude of streamflow
depletion due to climate change (climatic uncertainty), and
the completion date of the Greater Maputo Water Supply Ex-
pansion Project (infrastructural uncertainty). The proposed
methodology builds upon recent studies in the field of multi-
objective reservoir operation (Giuliani et al., 2016b, 2019;
Denaro et al., 2017; Zaniolo et al., 2018, 2019) and of multi-
objective robust decision-making (Giudici et al., 2020; Her-
man et al., 2015) by employing SA to investigate the role
of uncertain exogenous drivers in shaping the effectiveness
of optimal control policies across multiple competing sec-
tors. So far, even though it has been recognized that optimal
planning and control methods should employ SA to iden-
tify water resources system vulnerabilities to both structural
and parametric uncertainties (Herman et al., 2019), only few
studies have developed quantitative analyses to support water
resource planning (e.g., Herman et al., 2015; Trindade et al.,
2017, 2019; Groves et al., 2019). To the best of the authors’
knowledge, the only application coupling SA with reservoir
operation and control problems is represented by Quinn et al.
(2019), where SA was employed with the aim of understand-
ing how optimized nonlinear control policies use endogenous
information (reservoir state) to prescribe releases in a multi-
reservoir, multi-objective context. Our framework comple-
ments the findings by Quinn et al. (2019) by investigating the
role of uncertain exogenous drivers in shaping the effective-
ness of optimal operating policies to sustain the agricultural,
urban, and energy sectors.

2 Study area description

2.1 The Umbeluzi river basin

The Umbeluzi river flows across three countries (South
Africa, Eswatini, and Mozambique), draining an area of
about 5400 km2 (Fig. 1a) before discharging in the Indian
Ocean through the Espírito Santo Estuary south of Maputo
(Juizo and Hjorth, 2009). The hydroclimatic regime is sub-
tropical, with hot and wet summers from November to May,
followed by dry, warm winters from June to October (Fig. 2a
and b). The average annual streamflow in the lower Umbeluzi
(regulated through the Mnjoli Dam in Eswatini, in the up-
stream part of the river basin) is of about 220 Mm3 (corre-
sponding to 7 m3 s−1) and, following the hydroclimatic pat-
tern, is unevenly partitioned through seasons, with 78 % of
the total discharge occurring in summer (171 Mm3; corre-
sponding to 9.3 m3 s−1) and the remaining 22 % in winter
(49 Mm3; 3.75 m3 s−1). As far as the interannual variabil-
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Table 1. Summary of the main hydroclimatic variables and water
demand sources aggregated by sector.

Total Summer Winter
(Mm3) (Mm3) (Mm3)

Inflow 220 171 49
Upstream irrigation 22.8 12.1 10.7
Downstream irrigation 11.5 6.1 5.4
Environment 33 25.65 7.35
Urban 80 46.6 33.4

ity is concerned, the Umbeluzi river basin is characterized
by frequent prolonged droughts, with the average inflow re-
duced to only 119 and 100 Mm3 in 2007 and 2015, respec-
tively. Excluding the year 2000, where a terrible flood hit
Mozambique, causing about 800 fatalities, the wettest year
among those on record (2006–2016) was 2010, when the to-
tal discharge volume reached about 360 Mm3.

About 40 km upstream of the estuary, the river flows into
the Pequenos Libombos Dam (BPL). The dam has a stor-
age capacity (including 10.2 Mm3 of inactive storage) of
382 Mm3. The BPL was constructed in 1987 with the goal
of supplying water to the metropolitan area of greater Ma-
puto (including the municipalities of Maputo, Matola, and
Boane), especially during winter, when the system is of-
ten exposed to droughts. Other operation targets include hy-
dropower generation and irrigation supply, both upstream
and downstream of the reservoir. Upstream irrigation dis-
tricts extend for about 2500 ha and have an yearly water de-
mand of 22.8 Mm3 (Fig. 2c). They abstract water directly
from the reservoir to grow mainly tropical fruits (mango and
bananas). Water is discharged from the dam into a power
plant with a capacity of 1.8 MW. After flowing through the
turbine, the reservoir releases serve both urban and irrigation
(bananas and sugarcane) demands, which are estimated at
around 80 and 11.5 Mm3 yr−1 (Fig. 2c), respectively. To pre-
serve ecosystem sustainability, a minimum flow constraint,
corresponding to 15 % of the cyclostationary monthly inflow,
is imposed in the estuary. A summary of the main hydrocli-
matic patterns across seasons, including aggregated values of
water demands by sectors, is provided in Table 1.

Recently, a remarkable decrease in rainfall frequency and
intensity has caused the reservoir storage to drop up to less
than one-fifth of its maximum capacity, forcing local authori-
ties to suspend distribution for irrigation in 2016 (Macauhub,
2016) in order to ensure continuity in urban supply. This
dry pattern is expected to be further exacerbated by climate
change in the coming years, with an estimated precipitation
decrease of about 10 % and a temperature increase of 3 ◦C
(Droogers et al., 2014).

To mitigate the effect of frequent and prolonged drought
episodes hitting southern Mozambique, the World Bank have
recently financed the Greater Maputo Water Supply Expan-

sion project (GMWSEP; Miguel, 2019). The project con-
sists of a set of infrastructural interventions, mainly con-
stituted by a water treatment plant downstream the Coru-
mana dam, in the adjacent Sabie River basin, and by a 95 km
pipeline connecting the Corumana dam with the city of Ma-
puto, ensuring an additional water supply capacity of qC of
1.8 m3 s−1 (about 70 % of the current urban water demand).
The GMWSEP is expected to play a key role in not only
mitigating drought effects but also in sustaining the rapidly
increasing population of Maputo.

2.2 Umbeluzi model

We model the Umbeluzi river system (Fig. 1b) using a com-
bination of conceptual and empirical models, assuming a
daily time step for both physical processes and decisions. The
BPL dynamics are described by the mass balance equation of
the water volume st stored in the reservoir as follows:

st+1 = st + et+1− rt+1, (1)

where et+1 is net inflow to the reservoir in the interval [t ;
t+1] (i.e., inflow minus evaporation and seepage losses) and
rt+1 is the volume released in the same interval. This is fur-
ther decomposed into rd

t+1 and rup
t+1, representing the down-

stream releases for hydropower production, urban and irri-
gation supply, and the upstream pumping to the upstream
irrigation districts, respectively. The actual releases rd

t+1 =

f1(st ,u
d
t ,u

up
t ,et+1, t), and rup

t+1 = f2(st ,u
up
t ,u

d
t ,et+1, t) are

formulated according to the nonlinear stochastic relations
f1(·) and f2(·) between rup

t+1, rd
t+1 and the release decisions

u
up
t and ud

t (Piccardi and Soncini-Sessa, 1991). The latter are
in fact constrained by physical constraints (i.e., spillway acti-
vation and inactive storage threshold) within a discretionary
operating space by the maximum and minimum feasible re-
lease function (see Soncini-Sessa et al., 2007, for more de-
tails). In particular, the minimum release function constrains
the release to zero in case the available volume in the reser-
voir st equals the inactive storage (10.2 Mm3 s−1), while the
maximum hydraulic outflow rMAX

t+1 (including both upstream
and downstream releases) can be formulated as follows:

rMAX
t+1 = 4.6(ht − 15.25)0.5. (2)

Such constraints, in turn, imply interdependence among the
release decisions, so that the total release never exceeds the
feasible release. We assume here feedback operating rules,
parametric in ζ , where decisions are conditioned upon the
current system conditions, as follows:

u
up
t = f (t,It ,ζ ), (3a)

ud
t = g(t,It ,ζ ), (3b)

where It represents the information upon which the policy is
based. The analytical expression for the functions f and g
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Figure 1. (a) Study Area. (b) Topological map of the system.

Figure 2. Cyclostationary average of the main hydroclimatic variables computed over a 10 d moving window. (a) Precipitation and stream-
flow, (b) temperature, (c) downstream irrigation demand, and (d) upstream irrigation demand. The shaded areas represent the 10th–90th
interquartile range for each variable.
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depends upon the optimization problem formulation, and it
is provided in Sect. 3.2.2.

The aggregated downstream irrigation supply is modeled
by means of a diversion dam, represented mathematically
with an empirical exponential function (Celeste and Billib,
2009) parametric in α and β of the following form:

uit+1 =

min

(
W d
t ·

(
rd
t+1
α

)β
, rd
t+1

)
if rd

t+1 ≤ α

min
(
rd
t+1,W

d
t

)
else,

(4)

where W d
t is the aggregated downstream irrigation demand

(Fig. 2d). Equation (4) defines the fraction of releases to be
diverted for irrigation purposes as inversely proportional to
α and exponentially growing with respect to β. It follows
that, according to the values assumed by such parameters,
urban supply could (as it occurs, for example, in the case of
α > rd

t+1 or for β > 1 when α

rd
t+1
< 1) or could not (α < rd

t+1)

be placed in the foreground with respect to irrigation. Even
though this does not correspond to the actual operating rule
of the diversion dam (which systematically prioritizes urban
supply in the case of water scarcity conditions), this study
aims at exploring the whole irrigation–urban supply tradeoff.
Therefore, Eq. (4) is set such that solutions that also favor
irrigation could be discovered.

The periodic sequence of the control laws (over a period
of 365 d) described in Eqs. (3a), (3b), and (4) constitutes the
control policy πθ , where θ = |ζ ,α,β| represents the vector
of the control policy parameters.

The diversion rules allow hedging the water abstractions
to account for downstream users (i.e., the city of Maputo),
and the actual diverted flows r it+1 are constrained by the en-
vironmental flow requirement in the Espírito Santo Estuary
qe
t as follows:

r it+1 =min
(
uit+1,

(
rd
t+1− q

e
t

)+
,qmax

)
, (5)

where qmax is the maximum diversion channel capacity.
Finally, the amount of water to be diverted for urban sup-

ply to the city of Maputo rw
t+1 is computed as follows:

rw
t+1 =min

((
rd
t+1− r

i
t+1− q

e
t

)+
,Ww

t

)
, (6)

where Ww
t is the urban demand.

The data necessary for the implementation of the analysis
for the time period of December 2016–January 2006 were
provided by the Administração Regional de Águas (ARA)
do Sul, which is the water agency responsible for river basin
management in southern Mozambique (including the Um-
beluzi).

3 Methods and tools

3.1 Integrated decision-analytic framework

The integrated decision-analytic framework we adopted is
represented in Fig. 3. The approach is composed of three
main blocks, namely optimization (O), robustness (R), and
sensitivity uncertainty (SU).

Block O is responsible for generating operating policies
which are optimal under historical conditions. Block R ex-
tracts the optimal policies that are also robust against fu-
ture changes in climate (climatic uncertainty), irrigation de-
mand (irrigation demand uncertainty), infrastructures (in-
frastructural uncertainty), and urban demand (population un-
certainty). Block SU bridges robust policies (RPs) with the
operating objectives variability in response to uncertain input
realizations and allows the identification of the main sources
of vulnerability for the hydrosystem.

The three blocks are interconnected as follows: first, to ex-
plore tradeoffs among stakeholders under the historical cli-
matic, agricultural, infrastructural, and urban demand drivers
value (i.e., the baseline), we define the operating objectives,
and run a multi-objective evolutionary algorithm to identify
the optimal operating policies via optimization-based simu-
lation. Then, we assess their robustness with respect to the fu-
ture evolution of the drivers by perturbing the baseline across
all the four (climatic, agricultural, infrastructural, and popu-
lation) uncertainty dimensions to generate the states of the
world (SOWs). We then re-simulate the system iteratively
perturbed by the SOWs for each of the optimal operating
policies identified via optimization and compute the worst
objective function values. The robust policy for each stake-
holder is subsequently identified as that yielding the best
performances in the worst condition (minimax robustness
metric). To disentangle the sources of vulnerability for the
RPs, we implemented an uncertainty and sensitivity analysis
framework. In particular, uncertainty analysis is employed
to quantify the objective function variability in response to
the uncertain future evolution of the system’s drivers. Here,
following the well-known definition of behavioral parame-
ters (Beven and Binley, 1992; Montanari, 2005), we identify
the behavioral system perturbations as those SOWs satisfy-
ing predefined performance requirements, i.e., those yielding
acceptable objective function values. A sensitivity analysis is
responsible for determining the relative contribution of each
individual uncertainty source in shaping the objective space
and for ranking them across policies and objectives by means
of a sensitivity index.

Further details about each block in Fig. 3 are provided in
the following sections.
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Figure 3. The integrated decision-analytic framework adopted in this study. Bold text identifies the output of a certain block which enters
the subsequent block.

3.2 Optimization

3.2.1 Operating objectives

We model the stakeholders affected by the operation of the
BPL dam through the following four utility functions.

1. The upstream irrigation deficit J IU, which is expressed
as the square difference between water supply and de-
mand (to be minimized) as follows:

J IU
=

1
Ny

N∑
t=1

(
bt
(
W

up
t − r

up
t+1
)+)2

, (7)

where N (days) is the simulation horizon, Ny are the
number of years in the simulation horizon, and bt is
a weight representing higher losses when the deficit
occurs during the growing season. W up

t and rup
t+1 are

the irrigation demand and the amount of water pumped
from the reservoir to upstream irrigation, respectively.
The quadratic water supply deficit has been a traditional
formulation in reservoir operations since the work by
Hashimoto et al. (1982). The square of the irrigation
deficit accounts, in fact, for crop vulnerability by penal-
izing higher shortages, which are more likely to com-
promise the crop growth with respect to more frequent
but smaller shortages, which are less dangerous to the
crops.

2. The downstream irrigation deficit J ID is defined simi-
larly as in Eq. (7) (to be minimized) as follows:

J ID
=

1
Ny

N∑
t=1

(
bt

(
W d
t − r

i
t+1

)+)2

, (8)

where W d
t and r it+1 are the irrigation demand and the

reservoir releases diverted for downstream irrigation, re-
spectively.

3. The urban deficit for the city of Maputo JUD is com-
puted as the difference between urban supply and de-
mand (to be minimized) as follows:

JUD
=

1
Ny

N∑
t=1

max
((
Ww
t − r

w
t+1− q

C
t

)
,0
)
, (9)

where Ww
t , rw

t+1, and qC
t are the urban demand, the

reservoir release diverted for urban supply, and the ad-
ditional inflow from Corumana dam, respectively.

4. The hydropower production in the BPL power plant
JHP (to be maximized) is as follows:

JHP
=

1
Ny

N∑
t=1

HPt , (10a)

where HPt is the hydropower production (MWh) on day
t , which is defined as follows:

HPt = ηgγwht rd
t+1 · 10−6, (10b)
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where η is the turbine efficiency (70 %), g = 9.81 m/s2

is the gravitational acceleration, γw = 1000 kg/m3 is the
water density, ht is the net hydraulic head, and rd

t is the
turbine flow.

3.2.2 EMODPS

The optimal operating policies under the baseline are
designed using evolutionary multi-objective direct policy
search (EMODPS) (Giuliani et al., 2016b). EMODPS is a
simulation-based optimization approach which has been re-
cently demonstrated (Giuliani et al., 2016b) to successfully
overcome the major limitations associated with traditional
stochastic dynamic programming (i.e., curses of dimension-
ality, modeling, and multiple objectives) and derivatives. It is
constituted by the following three main modules: (1) direct
policy search (DPS), (2) nonlinear approximating networks,
and (3) multi-objective evolutionary algorithms (MOEAs).

DPS is employed to explore the parameter space θ =

|ζ,α,β| of the system operating policy πθ that optimizes the
expected long-term cost as follows:

π∗θ = argmin
θ

(Jθ ) , (11a)

where, in the following:

Jθ = |J IU,J ID,JUD,−JHP
| (11b)

is subject to Eqs. (1) to (6), where finding π∗θ means finding
(1) the optimal parameters ζ ∗ ∈ Z of the BPL reservoir op-
erating policy and (2) the optimal parameters [α∗,β∗] ∈2irr
for the regulation of the irrigation diversion canal. The pa-
rameters are intended to be optimal with respect to the objec-
tives Jθ . The reservoir operating policy is selected such that
policy inputs It can provide information feedback for the up-
stream and downstream release decisions uup

t (It ),u
d
t (It ). In

this study, it is represented with a nonlinear approximating
network of the Gaussian radial basis function (RBF) fam-
ily, which is known for their generalization ability and robust
performances in validation (Giuliani et al., 2016b; Quinn
et al., 2019).

Mathematically, the operating policy can be expressed as
follows:

u
k=|up, d|
t =

n∑
i=1

wki exp

[
−

m∑
j=1

(
I(t),j − ci, j

bi, j

)2
]
, (12)

where n is the number of RBFs, wki is the weight of each
RBF,m is the number of inputs, and c and b are the center and
radii of the RBF. The reservoir operating policy parameter
vector is therefore constituted as ζ = [wki ,ci, j ,bi, j ], and the
number of parameters nζ to be found is n(2m+ k).

The input vector It = |et , st ,sin(2πt/365),cos(2πt/365)|
includes the previous day’s inflow to the reservoir et , the stor-
age in the reservoir st , and time t , which is here represented

by a combination of sine and cosine functions sin(2πt/365)
and cos(2πt/365).

Following Giuliani et al. (2016a), the number n of RBFs is
set to m+ k+ 1= 7. In addition to those of the reservoir op-
erating policy, the two parameters α and β of the power law
employed to approximate the diversion dam (as in Eq. 4) also
need to be optimized. Following the above, the dimension of
the parameter space equals n(2m+ k)+ 2= 72.

In order to explore the parameter space and discover op-
timal values, we employ multi-objective evolutionary al-
gorithms (MOEAs). The term evolutionary refers to the
natural randomized mating, selection, and mutation pro-
cesses that are mimed by the algorithms to evolve a Pareto-
approximate set of solutions (Deb, 2001; Coello et al.,
2007). MOEAs have proved to successfully deal with com-
plex multi-objective optimization problems, including wa-
ter reservoir operations (Maier et al., 2014). In this study,
we employ the self-adaptive Borg MOEA (Hadka and Reed,
2013), which has been shown to guarantee high robustness
in solving a variety of multi-objective problems when com-
pared to other MOEAs (Salazar et al., 2016).

3.3 Robustness

We perform a robustness analysis with the aim of evaluat-
ing the robustness of the various operating policies identi-
fied via EMODPS over an ensemble of future realizations of
the climatic, agricultural, infrastructural, and urban demand
drivers. According to Herman et al. (2015), a robustness anal-
ysis is usually carried out by performing the following se-
quential steps: (1) generation of alternative policies, (2) sam-
pling of possible future scenarios, and (3) computation of ro-
bustness metric via system re-simulation. Table 3 provides a
conceptualization of the three aforementioned steps tailored
upon this study, following the well known XLRM framework
(Lempert, 2003). In the framework, X values are the exoge-
nous uncertainty sources, L (of lever) values are the differ-
ent alternative water management strategies (i.e., the policies
identified via optimization) to be explored, M (of measure)
values refer to the performance metrics used to rank the de-
sirability of the different policies (L) in the face of the ex-
ogenous uncertainties (X), and, finally, R values refer to re-
lationships in the system (i.e., the model), which define how
the exogenous uncertainties (X), policies (L), and the out-
comes (M) are tied together and relate to each other (Ciullo
et al., 2019).

In other words, the alternative operating policies are those
identified via optimization, while the generation of future
scenarios is performed by perturbing historical trajectories,
assuming independent uniform distribution for the perturba-
tion multipliers (Pianosi and Wagener, 2016). The multiplier
range is either defined by a priori expert knowledge of the
system or based on experimental results. Climatic, agricul-
tural, infrastructural, and population scenarios are then com-
bined to generate a set of uncertain states of the world. Then,
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Table 2. Conceptualization of the robustness analysis implemented in this study.

Uncertain factors (X) Policies (L)

Climate Optimal operating policies found via optimization
Irrigation demand
Additional inflow from Corumana dam
Urban water demand

Relationship (R) Performance metrics (M)

Umbeluzi model Minimax robustness metric

the Umbeluzi model is used to re-simulate the system for
each policy across all the SOWs. Each simulation produces
a performance metric, used to assess the robustness of each
policy. Among the robustness metrics available in the lit-
erature (for a review, see McPhail et al., 2018), we select
minimax, a metric that identifies the solution providing the
best performance assuming the realization of the worst con-
ditions.

More details on the formulation of states of the world and
on the robustness metrics are provided below.

3.3.1 Formulation of the states of the world

We divide the future sources of uncertainty into the following
four categories: (1) climatic, (2) agricultural, (3) infrastruc-
tural, and (4) social. They are driven by uncertainty in (1)
streamflow, (2) irrigation demand, (3) additional inflow from
Corumana dam, and (4) population growth rate and are here
characterized as follows:

1. Climatic uncertainty. We generate high-resolution sce-
narios of rainfall and temperature for the Umbeluzi river
basin to the year 2100 by the quantile–quantile map-
ping (QQ mapping) downscaling procedure. We ap-
ply QQ mapping to coarse-resolution data from three
different regional circulation models (ICHEC RCA4,
ICHEC RACMO, and ICHEC HIRHAM5, developed
by the Swedish Meteorological and Hydrological In-
stitute, the Royal Netherlands Meteorological Institute,
and the Danish Meteorological Institute) simulated over
three distinct representative concentration pathways,
i.e., RCP 2.6, RCP 4.5, and RCP 8.5 (Field, 2014).
We use the resulting nine precipitation and temperature
trajectories to force an HBV model (Lindström et al.,
1997) validated over the control period, generating nine
inflow trajectories. We then use the minimum (0.05) and
the maximum (0.4) of the projected percentage inflow
decrease as the feasibility set boundary of a uniform dis-
tribution, from which we extracted K = 10000 inflow
multipliers in the interval [0.6, 0.95], using simple ran-
dom sampling. As a result, the historical inflow (which
includes both dry and wet hydrological conditions) is
decreased in the different scenarios by as much as 40 %

(as the product between the historical trajectories and
the multipliers). Such a methodological procedure for
the generation of the states of the world is often referred
to as the delta method (Brown et al., 2012) and has been
widely used in the literature (see, for example, Bertoni
et al., 2019). One of its main drawbacks is not being
able to account for a seasonal shift in the hydrological
regime which would naturally follow a change in the
hydroclimatic patterns. However, the 110 000 (10 000
multiplier perturbations of the 11 years of historical
data) hydrological years upon which the system is sim-
ulated provide a states of the world discretization grid
which is dense enough to consider both the extremes
and the intermediate scenarios over which the robust-
ness of the various operating policies are computed.

2. Irrigation demand uncertainty. Droogers et al. (2014)
estimated the expansion in irrigated area in the study
site to be up to 25 %. For the irrigation demand trajec-
tories, we, therefore, assume a constant irrigation multi-
plier, drawing K samples from an uniform distribution
over [1, 1.25], using simple random sampling. As a re-
sult,K irrigation demand scenarios are generated as the
product between each multiplier and the historical irri-
gation demand time series.

3. Additional inflow from Corumana dam uncertainty. The
World Bank is currently financing the Greater Maputo
Water Supply Expansion project, which started in 2013
and is still under development. The project is com-
pounded of a water treatment plant downstream of the
Corumana dam and by a 95 km pipeline connecting Co-
rumana dam with the city of Maputo and ensuring an
additional water supply of 1.8 m3 s−1. The completion
day cd of the project is treated as a stochastic variable
for whichK samples are drawn from a uniform discrete
distribution in the interval [0, H ], where H = 11 years
(i.e., the simulation horizon for an individual SOW). As
a result, K additional inflow from Corumana dam sce-
narios are generated. In each scenario, the inflow from
Corumana dam on a day t is computed as follows:

qC
t =

{
1.8 if t ≥ cd

0 else.
(13)
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Table 3. Statistical extremes of the SOWs aggregated by uncertainty
source.

Streamflow Current value 220
(Mm3 yr−1) Driest year 60

Wettest year 342

Upstream irrigation Current value 22.8
(Mm3 yr−1) Minimum demand 22.8

Maximum demand 28.5

Downstream irrigation Current value 11.5
(Mm3 yr−1) Minimum demand 11.5

Maximum demand 14.4

Urban demand Current value 80
(Mm3 yr−1) Minimum demand 80

Maximum demand 98

Inflow from Corumana dam Current value 0
(Mm3 yr−1) Minimum demand 0

Maximum demand 56

4. Urban water demand uncertainty. The growth for the
city of Maputo is expected to be up to 2 % per year. Ur-
ban demand multipliers are, therefore, assumed here to
be constant every year, and a sample of size K is ex-
tracted from a uniform distribution within the range [1,
1.02]. Therefore, the urban demand trajectory in a cer-
tain scenario can be computed as the exponential incre-
ment of the historical urban demand.

As a result, K = 10000 deeply uncertain SOWs embed-
ding inflow, irrigation demand, additional inflow from Coru-
mana dam, and urban demand scenarios are generated. Each
of the K sets could be seen as a vector composed of four
parameters (i.e., one multiplier for each uncertainty source)
sampled from their uniform distribution. The set 4, includ-
ing all the states of the world where the operating policies
are evaluated, is generated with a Latin hypercube sampling
(LHS) across the four dimensions of the uncertainty sources,
with a sample size Nu = 5000 (cardinality of 4).

Table 3 provides a summary of the descriptive statistics of
the SOWs aggregated by uncertainty source, including the
driest and wettest year, the maximum and minimum water
demand, and the maximum and minimum yearly inflow from
Corumana dam.

3.3.2 Robustness metric

To select the most robust alternative for each of the stake-
holders, we used the minimax robustness metric. The com-
putation of the metric requires Nu simulations, i.e., one for
each SOW χ ∈4.

The minimax identifies, among the optimal control poli-
cies π∗ designed via EMODPS, the most robust alternative
π r
∈ π∗ as being the one attaining the best performance in

the worst among the SOWs, as follows:

π r
= argmin

π∗

(
max
χ∈4

J (π∗,χ)

)
. (14)

This metric, usually associated with a high-risk aversion at-
titude, selects the alternative, assuming that the worst future
conditions will be realized (Wald, 1950).

3.4 Sensitivity and uncertainty

In many hydrological applications, a sensitivity analysis
(SA) and uncertainty analysis (UA) are often closely related,
to the point that certain UA techniques, such as scenario dis-
covery (SD) and factor mapping (FM), could be assumed to
be SA methods. Yet, while UA is used for quantifying the un-
certainty in the output, SA is typically adopted to apportion
the output uncertainty to the different uncertainty sources
(or input factors; Saltelli et al., 2008). Following this line
of thought, one could use the FM or SD to determine which
uncertain input combination might cause robust policies to
perform poorly. Those techniques usually classify the (un-
certain) input samples as either behavioral or non-behavioral,
depending on whether the response variable (in this applica-
tion, it is the objective function) exhibits a certain pattern or
not. In our study, the distinction between behavioral and non-
behavioral perturbations is performed through the GLUE un-
certainty analysis, which has been indeed developed starting
from some of the basic ideas of regional SA and factor map-
ping, while the PAWN SA method (Pianosi et al., 2016) was
used to identify the major sources of vulnerability. Despite
their many similarities, the two techniques often offer a valu-
able complement to each other, with SA providing valuable
extra insights to UA on the identification of the most relevant
uncertainty sources.

3.4.1 GLUE

We perform the quantification of the output variability in re-
sponse to the four uncertainty sources considered in the pa-
per by employing the GLUE method. In particular, GLUE
allows for determining which SOW results in optimal robust
policies that yield unacceptable results. The implementation
of GLUE encompasses several steps, most of which are al-
ready included either within the robustness or the sensitivity
analysis.

A brief summary is provided below.

1. Generation of the states of the world. As described
above, SOWs are obtained in this study by near-random
sampling of the perturbed time series of inflow, irriga-
tion demand, infrastructure, and population.

2. Specification of the objective function. This function is
defined in this study as being each of the four objectives
that constitutes the four-dimensional objective function
in Eq. (11b).
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3. Definition of the threshold values for the behavioral sys-
tem perturbation set. Here, the threshold value is de-
fined for each operating policy as the fifth percentile of
all the objective function realizations, after simulating
the system for Nu SOWs. The behavioral perturbations
are defined as the multiplier values keeping the objec-
tive function below the threshold.

From a computational perspective, the GLUE algorithm re-
quires, for a certain robust operating policy, a re-simulation
of the system for each χ ∈4 (i.e., for each of the states of
the world generated during the robustness analysis). At ev-
ery simulation, the value of the objective function is com-
puted and stored. Upon completing this step, an empirical
cumulative distribution function (CDF) is fit to each dimen-
sion of the four objective functions (i.e., the operating ob-
jectives). Then, the algorithm checks whether a state of the
world leads (or not) to an objective value below a certain
threshold (which, in this study, is set as the fifth percentile
of the objective CDF). In the former case, the SOW (and the
system perturbation set that the SOW is constituted by) is
classified as behavioral and, in the latter, as non-behavioral.
Considering the expected adverse effect which most of the
uncertain future realization of the external system drivers
might have on water availability and demands, the choice
of the fifth percentile as a threshold value is representative
of the stakeholder desire to stay as close as possible to the
historical performance.

3.4.2 PAWN

To identify the main sources of vulnerability across robust
policies, we use the PAWN sensitivity analysis (Pianosi and
Wagener, 2015). PAWN is a distribution-based method, and
its choice lies in its applicability to nonlinear models (Ama-
ranto et al., 2020) and its independency from the type of
output distributions (for example, symmetric, multimodal,
or highly skewed). In addition, several studies (Zadeh et al.,
2017; Pianosi and Wagener, 2018) have shown the capacity
of PAWN to provide stable results for relatively low sample
sizes.

In PAWN, the sensitivity of the output y (in this specific
case, the objective function value) to variations of an in-
put xi (climate, agriculture, infrastructure, and population)
is measured as the distance between the unconditional and
conditional empirical cumulative distribution (CDF) of y.
The distance between the distributions is measured by the
Kolmogorov–Smirnov (KS) statistics, computed as follows:

KS(xi)=max
y
|Fy(y)−Fy|xi(y)|, (15)

where Fy(y) is the empirical unconditional distribution of
y, and F(y|xi)(y) is the empirical conditional distribution of
y when the ith input is kept fixed at the nominal value xi.
Considering the dependence of KS on the nominal value,
the PAWN method considers KS statistics over a prescribed

number of nominal values and then computes the sensitivity
index as follows:

Si = max
xi=x

(1)
i , ... ,x

(nc)
i

[KS(xi)], (16)

where x(1)i , . . . ,x
(nc)
i are nc randomly sampled values for the

fixed input xi. By definition, all the KS(xi) values, and con-
sequently the sensitivity indices Si, vary in the range [0, 1].
The closer the unconditional distribution Fy(y) is to the con-
ditional ones F(y|xi)(y), the smaller the KS(xi) values and,
therefore, the smaller the sensitivity of y to xi and vice versa.

Operatively, Fy(y) is computed for a certain policy by it-
eratively simulating the system for Nu SOWs, generating,
therefore, Nu realizations of each objective upon which the
empirical CDFs are constructed (Fig. 4). The computation
of F(y|xi)(y) requires Nc SOW simulations for each of the nc
nominal values of xi (as shown in Fig. 4 for xi = inflow). The
unconditional empirical CDF for each uncertainty source is,
therefore, estimated upon (nc ·Nc) system realizations.

Considering M uncertainty sources, the total number of
system evaluations required for implementing PAWN for a
single policy is, therefore Nu+ (M · nc ·Nc), where Nu and
Nc are the number of SOWs used for the unconditional and
conditional distributions, respectively, while nc is the number
of nominal value for the uncertainty sources.

In this study, we fixedNu,Nc and nc to 5000, 2000, and 12.
The decision is based on the observation of the uncertainty
bounds in the sensitivity index obtained by 100 bootstraps of
the input–output realizations upon which it is computed.

4 Results and discussion

4.1 Optimization: multi-objective tradeoffs

The Pareto-optimal policies obtained by solving the opti-
mization problem defined in Eqs. (11a) and (11b) are re-
ported in Fig. 5. We run the optimization on the baseline,
i.e., the historical hydrological (1 inflow= 0), agricultural
(1 irrigated area= 0), infrastructural (no external supply),
and social (population growth= 0) conditions. Each line is
a different policy, each axis represents an optimization ob-
jective, and the crossing point identifies the objective value
derived from the implementation of a certain policy (normal-
ized between minimum and maximum) which is to be mini-
mized. The ideal solution is a horizontal line intersecting all
four axes at their bottom. The extent of the conflicts is pro-
portional to the slope of the lines connecting two adjacent
axis. The color of the lines represents the most robust pol-
icy for each stakeholder and will be discussed more in detail
later.

Not surprisingly, the most conflicting objectives under the
baseline scenarios are hydropower and upstream irrigation,
since the latter is the only stakeholder that cannot benefit
from the dam releases from hydropower generation, and it
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Figure 4. PAWN conceptual framework, with the unconditional objective function distribution in black and conditional objective function
distribution in red.

Figure 5. Policy performance across sectors under the baseline scenario. IU is the upstream irrigation, HP is the hydropower, UD is the urban
deficit, and ID is the irrigation downstream.

subtracts a potential source of water release for energy pro-
duction by the pumping out of the reservoir to satisfy crop
requirements. The combined urban and irrigation demand
downstream is about 50 % of the turbine maximum capac-
ity in the power plant and can, therefore, be satisfied by hy-
dropower releases.

In order to compromise, solutions between upstream, ur-
ban, and downstream irrigation can be achieved at the ex-

penses of hydropower (as can be seen by the purple line in
Fig. 5), with a 10 % reduction in energy production leading
to a near-zero deficit for all the other stakeholders.

4.2 Robustness: probabilistic tradeoffs

Figure 6a presents the most robust (MR) solutions for
each stakeholder (defined as those performing best in the
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worst system configuration) under deeply uncertain scenar-
ios, along with where such solution would fall when ranked
for other stakeholders. The red line identifies a generic non-
robust (NR) policy, which generates the 90th percentile in the
overall robustness ranking. Even though, historically, NR led
to objective values close to those of the most robust solution
for upstream irrigation (robust upstream irrigation – RIU;
green lines in Figs. 5 and 6), it experiences a dramatic per-
formance degradation under deep uncertainty, highlighting
the importance of a robustness analysis in a multi-objective
decision-making framework for the discovery of optimal so-
lutions with low vulnerability against the uncertainties in
their forcing realization.

Furthermore, while in historical conditions the robust so-
lution for irrigation downstream (robust downstream irriga-
tion – RID) and for the city of Maputo (robust urban deficit –
RUD) produce substantially the same urban deficit (Fig. 5),
RID provides much higher objective value under deep un-
certainty. Following the opposite line of thought, it is also
evident how the historical conflicts between the two stake-
holders are exacerbated under deep uncertainty, and RUD be-
comes one of the worst (94th out of 100 policies) to adopt for
downstream irrigation. A possible explanation lies in the way
the diversion dam is operated in water scarcity conditions
(occurring mainly under deep uncertainty). RID, by fulfill-
ing 99 % of the crop water demand, prioritizes irrigation and
increases the urban deficit. RUD, instead, systematically en-
sures urban water supply to the city of Maputo, generating
an irrigation deficit even in historical conditions.

The cumulative distributions of performance under deep
uncertainty represented in Fig. 6b, along with those found
through multi-objective optimization (gray lines), confirm
that (1) the NR policy, being on the right side of each box,
systematically offers poor performances in all objectives,
(2) deep uncertainty might generate disputes among down-
stream irrigation and the city of Maputo, with one of the
highest irrigation deficits produced by RUD (Fig. 6b1), and
(3) the existing conflicts between upstream irrigation and hy-
dropower are exacerbated by both water scarcity and the in-
crease in irrigation demand (Fig. 6b2).

The almost straight vertical purple line at the top left cor-
ner in Fig. 6b1 also evidences how downstream irrigation is,
overall, the stakeholder less vulnerable to deep uncertain sce-
narios. This is also observable by the high density of gray
policies close to the zero-deficit – even in the worst scenario.
In addition, about 80 % of the optimal policies still ensure an
irrigation deficit value within the historical deficit range [0,
102 (m3 s−1)2 yr−1].

By observing the cloud of gray CDFs, one could notice
how some of the operating policies do not monotonically in-
crease towards higher objective values but instead shows sud-
den discontinuities. Such discontinuities are probably due to
the realization of states of the world causing the reservoir
level to reach the lower limit of the discretionary operating
space. In other words, the variation in the external forcings

(most likely a decrease in inflow) is such that, for certain NR
operating policies, the reservoir level triggers a zero-release
condition for a certain time period. The absence of releases
is reflected in the objective value, which suddenly increases
due to no supply availability to cover the water demand.

Finally, the objective function of RHP (robust hy-
dropower) shown in Fig. 6b4 rapidly increases, even for
smaller system perturbations, making hydropower the most
vulnerable sector to deep uncertainties. The possible expla-
nation is twofold because the hydropower sector has the
higher water consumption and is solely dependent on inflow.
Both conditions make it particularly sensitive to adverse hy-
droclimatic scenarios, while the latter further exacerbates its
sector vulnerability due to the absence of favorable infras-
tructural measures to mitigate the water scarcity impact.

4.3 Sensitivity and uncertainty

To allow for a comparative discussion on how different
SOW realizations unevenly shape the vulnerability of differ-
ent control policies, we select the most and the least robust
among the operational alternatives described above for each
sector and analyze the corresponding sensitivities and uncer-
tainties. As mentioned before, hydropower solely depends on
inflow and exhibits the same qualitative behavior for all the
operating policies. For this reason, results for this sector are
not further discussed here.

Figure 7a and b represent a scatterplot of the downstream
irrigation objective in correspondence with its relative forc-
ing perturbation for RID (most robust alternative for down-
stream irrigation) and RUD (least robust alternative among
those performing best for at least one stakeholder), respec-
tively. Colors identify, for a specific policy, those SOWs
whose realization causes the objective function to assume
values below the fifth percentile (defined as the thresh-
old values for the behavioral perturbation set). The robust-
ness of RID against an uncertain future condition is high-
lighted by the zero deficit produced in more than 4000 out
of 5000 input realizations and by the irrigation deficit below
1 (m3 s−1)2 yr−1 in the remaining (Fig. 7a). Furthermore, in-
flow represents the only influential factor for this control pol-
icy (as can be seen in Fig. 7a1). In particular, the irrigation
deficit is produced only when the streamflow multiplier falls
below 0.65. This practically means that, for any future cli-
matic conditions that generate streamflow reduction to be-
low 35 %, RID is able to ensure water supply regardless of
the expansion (among those embedded in the SOWs) in the
irrigated area.

Figure 7c and d show the value of the downstream irri-
gation sensitivity index (SI) to the uncertainty sources. The
average value of the SI is represented by a black horizontal
line, while the colored box describes the 10–90 interquartile
range derived by 100 bootstraps of the input–output realiza-
tions over which the SI is computed. The near-zero sensi-
tivity values to agricultural, infrastructural, and population
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Figure 6. (a) Ranking of the best solution according to each stakeholder, along with where these solutions fall when ranked according to
other stakeholders. (b) Cumulative distribution functions for the four objectives, using the most robust alternative for each stakeholder. The
red line represent a non-robust solution.

uncertainties seem to confirm the above discussion on the ro-
bustness of RID (Fig. 7c). When adopting RUD, instead, an
irrigation deficit is generated as soon as any inflow perturba-
tion occurs, and the objective function value (which increases
up to 140 (m3 s−1)2 yr−1) is also shaped by the expansion in
the irrigated area (Fig. 7b), with sensitivity values to agricul-
tural expansion up to 0.42 (Fig. 7d). From a practical per-
spective, the main difference between RID and RUD relates
to how an expansion in irrigated area might be perceived as
an opportunity, in the first case, and as a potential source of
conflicts, in the latter case.

As far as the urban deficit is concerned, the increase in
the objective value during the 2010 drought (Fig. 8a3 and
b3) highlights the pivotal role of the Greater Maputo Water
Supply Expansion Project for ensuring continuity of supply.
However, when RUD is adopted, urban deficit stabilizes at
around 80 m3 s−1 yr−1 immediately after the event, and re-
mains constant even if the project is not completed by the
end of the simulation horizon. In other words, if the infras-
tructure is built before the drought, little or no deficit is gen-
erated. Otherwise, the system recovers from the event, and
afterwards the urban water demand is fulfilled regardless of
the construction time and the population growth. The oppo-
site is true for NR, where the deficit keeps growing, which is
also augmented by the increase in water demand caused by
population growth. This is also evident from the increased

sensitivity to infrastructure and population, with SI values
reaching values up to 0.83 and 0.32, respectively (Fig. 8d).
The comparison between RUD and NR suggests that the
structural intervention in the former case is a fundamental
action to undertake in order to cope with extreme hydrologi-
cal scenarios, while in the latter it becomes pillar for the ev-
eryday operation of the system, especially when population
growth increases the water demand in the metropolitan area
of greater Maputo.

Finally, upstream irrigation experiences a sudden increase
in irrigation deficit as soon as inflow decreases and irriga-
tion demand grows (Fig. 9a and b). Unlike downstream ir-
rigation districts, the upstream agricultural sector, not being
able to re-use water from other sectors, is less flexible to a
change in the external drivers and, therefore, less robust to
their uncertain realizations. However, when comparing RIU
(Fig. 9a) and RHP (Fig. 9b), it is evident that the irrigation
deficit grows unevenly among policies, as it is dramatically
high (over 500 (m3 s−1)2 yr−1) in the latter and substantially
lower in the former.

The higher sensitivity (SI> 0.9) of upstream irrigation
deficit to agricultural expansion occurring when RHP is
adopted (Fig. 9d) seems to identify a systematic pattern in the
comparison between the most robust and least robust poli-
cies. For all the stakeholders analyzed, the latter have not
just been consistently vulnerable to inflow decrease but also
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Figure 7. Behavioral perturbations (a, b) and sensitivity index (c, d) for the robust upstream irrigation (purple) and robust urban deficit (blue)
policies.

to the other non-hydroclimatic system perturbations. In other
words, (1) infrastructural interventions become a must, as re-
flected by the increased urban deficit when the GMWSEP
is not built (Fig. 8b3), (2) population growth exerts a non-
negligible pressure on the water system and contributes to-
wards increasing urban deficit (Fig. 8d), and (3) agricultural
expansion is consistently limited by a lack of water availabil-
ity (Fig. 9b and d). The opposite is true for RPs. Despite be-
ing (as expected) vulnerable to a decrease in inflow (even if
lower in magnitude with respect to NR policies), they rely on
new infrastructure only in emergency conditions and are able
to sustain increases both in terms of population and irrigated
area.

5 Conclusions

In this study, we implement an integrated decision-analytic
framework combining optimization, robustness, sensitivity,
and uncertainty analysis to better understand the major

sources of uncertainty for water supply strategies in the lower
Umbeluzi river, Mozambique. The results provide important
insights on the robustness and vulnerability of reservoir oper-
ation to exogenous perturbations in managing multiple con-
flicting objectives.

In particular, the main findings of this paper are as follows:

– Optimal reservoir operating policies exploring similar
tradeoffs in current conditions might lead to substan-
tially different results under deeply uncertain scenarios.
Specifically, the non-robust optimal solution presented
in this study was largely dominated by 90 % of the op-
erating policies across all objectives once the system is
perturbed.

– In water scarcity conditions, some new (i.e., not de-
tected under historical conditions) tradeoffs between
downstream irrigation and the urban supply suddenly
emerge. In fact, while it is possible to explore operating
policies ensuring maximum satisfaction for both stake-
holders in current conditions, the two stakeholders are
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Figure 8. Behavioral perturbations (a, b) and sensitivity index (c, d) for the robust urban deficit (blue) and non-robust (red) policies.

found to be in systematic competition, with the most
robust policy for greater Maputo being in the 95th per-
centile (96th out of 100) when ranked for downstream
irrigation.

– Overall, downstream irrigation appeared to be the least
vulnerable stakeholder, with about 60 % of the control
policies ensuring an objective value in the worst pos-
sible condition lower than the maximum computed by
forcing the system with the historical trajectories.

– A robust policy for downstream irrigation ensures sus-
taining agricultural production with near-zero deficit for
the majority of the agricultural water demand scenar-
ios considered in this study. The only source of vulner-
ability in this case would be a streamflow reduction,
which, however, produces only a marginal deficit in-
crease even in the worst conditions. The opposite holds
true when choosing the less robust policy, with objective
values suddenly increasing even for small perturbations
in streamflow and irrigation demand.

– As expected, hydropower production resulted in being
solely dependent on inflow realizations. Furthermore, it
was the least robust sector among those considered, with
a fast decrease in the objective function values as soon
as the system is perturbed.

– The implementation of the Greater Maputo Water Sup-
ply Expansion Project appears to be vital for sus-
taining urban water supply. However, while its role
can be envisioned solely as a drought mitigator when
adopting robust policies (even for maximum population
growth rates), it becomes essential to mitigate day-to-
day deficits for non-robust solutions.

– Overall, it is possible to conclude that robust policies
are usually vulnerable only to hydrological perturba-
tions and are able to sustain the majority of the popula-
tion growth and agricultural expansion scenarios. More-
over, infrastructural interventions become crucial only
in extreme drought conditions. On the contrary, non-
robust policies are also sensitive to social and agricul-
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Figure 9. Behavioral perturbations (a, b) and sensitivity index (c, d) for the robust upstream irrigation (green) and robust hydropower
(yellow) policies.

tural changes and require structural interventions to en-
sure stable supply.

From a methodological and computational perspective, the
proposed decision-analytic framework could be easily ap-
plied to any type of water system. However, in this study,
the framework, conclusions, and discussions have been cus-
tomized for the BPL river basin. Therefore, a possible fu-
ture research path could be directed towards testing the pro-
posed methodology across a range of hydro systems in order
to assess how the stakeholders’ tradeoffs, policy robustness,
and vulnerabilities are shaped by inherently different water
availability and demand trajectories. The aforementioned re-
sults, in terms of UA and SA, are specifically tailored to
the parametric input perturbation set employed to generate
the SOWs. Even though each perturbation set can be well
documented from the literature, unexpected changes in one
of the exogenous factors (i.e., higher population growth or
lower streamflow availability) could shape the behavior of
the system, altering, therefore, the extent to which a certain
policy is vulnerable to each uncertainty source. One of the

main limitations of this study is the assumption of indepen-
dence among the distributions used for the generation of the
historical trajectories multipliers which constitute the foun-
dation for developing the states of the world. Even though
such an assumption allows us to explore the full range of the
variability in the exogenous drivers of the system, and has
been successfully applied in recent hydrological applications
(see, for example, Pianosi and Wagener, 2016, and Amaranto
et al., 2020), a study entangling the covariance among the
uncertainty sources could provide further insights on the ro-
bustness of each operating policy and can tailor the sensi-
tivity analysis to a more reliable set of perturbations. It is,
therefore, a recommendation for a future research exercise.
In this study, the sources of vulnerability and the uncertain
output realizations of the optimal water supply strategies are
investigated only for robust policies. Therefore, RA and SA
are sequential methodological steps rather than being inter-
dependent. Future research could be developed towards im-
plementing SA methods that establish feedback loops with
RA in order to enhance the robustness of operating poli-
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cies against uncertain exogenous factors. Furthermore, ro-
bust policies are selected here according to the minimax ro-
bustness metric. Minimax, by identifying the best alternative
in the worst possible input realization, encompasses the risk-
adverse behavior of the decision-maker. However, other cri-
teria are available in the literature (see Giudici et al., 2020,
for a review), with each of them representing a different level
of risk perception and its associated definition of a robust
operating policy. For a more comprehensive analysis, one
could include additional robustness metrics in the experimen-
tal setup and evaluate how the choice of the metric shapes the
selection of robust policy and the identification of the sources
of vulnerability. A possible architecture in this regard can
be found in Herman et al. (2015), where four different ro-
bustness definitions are considered, and robust planning de-
cisions are developed accordingly.
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