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Abstract. The potential benefits of seasonal streamflow fore-
casts for the hydropower sector have been evaluated for sev-
eral basins across the world but with contrasting conclu-
sions on the expected benefits. This raises the prospect of a
complex relationship between reservoir characteristics, fore-
cast skill, and value. Here, we unfold the nature of this re-
lationship by studying time series of simulated power pro-
duction for 735 headwater dams worldwide. The time se-
ries are generated by running a detailed dam model over
the period 1958–2000 with three operating schemes: basic
control rules, perfect forecast-informed operations, and re-
alistic forecast-informed operations. The realistic forecasts
are issued by tailored statistical prediction models – based
on lagged global and local hydroclimatic variables – pre-
dicting seasonal monthly dam inflows. As expected, results
show that most dams (94 %) could benefit from perfect fore-
casts. Yet, the benefits for each dam vary greatly and are
primarily controlled by the time-to-fill value and the ratio
between reservoir depth and hydraulic head. When realistic
forecasts are adopted, 25 % of dams demonstrate improve-
ments with respect to basic control rules. In this case, the
likelihood of observing improvements is controlled not only
by design specifications but also by forecast skill. We con-
clude our analysis by identifying two groups of dams of par-
ticular interest: dams that fall in regions expressing strong
forecast accuracy and having the potential to reap benefits
from forecast-informed operations and dams with a strong
potential to benefit from forecast-informed operations but
falling in regions lacking forecast accuracy. Overall, these
results represent a first qualitative step toward informing site-
specific hydropower studies.

1 Introduction

Hydropower is the leading form of renewable power, con-
tributing to 16 % of global electricity production and 62 % of
all renewable electricity generation (IHA, 2019). Total hy-
dropower production is expected to double by 2050, with
substantial growth in Asia, Africa, and South America (Zarfl
et al., 2015; Zhang et al., 2018). The sustainable operation
of hydropower facilities, however, is challenged by hydro-
climatic variability, namely, seasonal and interannual fluctu-
ations in streamflow – and hydropower output – driven by
large-scale climate drivers. Examples include the North At-
lantic Oscillation (NAO), affecting hydropower in Europe
(De Felice et al., 2018), or the El Niño–Southern Oscilla-
tion (ENSO), affecting one-third of the world’s hydropower
dams (Ng et al., 2017). An attractive management option to
limit these fluctuations is the use of adaptive reservoir oper-
ating policies based on seasonal streamflow forecasts (Troin
et al., 2021). Hydropower operators in snowmelt-dominated
regions, for instance, can rely on seasonal forecasts to com-
mit to reservoir drawdown in early winter in preparation for
future inflows. Yet, the benefits reaped from such a decision
(forecast value) may vary in response to the forecast accu-
racy, or skill, as well as the design specifications of the reser-
voir system at hand.

Perhaps unexpectedly, several studies have shown that us-
ing streamflow forecasts can lead to tangible gains (Kim and
Palmer, 1997; Block, 2011; Libisch-Lehner et al., 2019; Ah-
mad and Hossain, 2019) but also that these gains vary widely.
Maurer and Lettenmaier (2004), for instance, observed a
modest 1.8 % increase in hydropower production when re-
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operating the reservoirs along the Missouri River with per-
fect forecasts. Similarly, Rheinheimer et al. (2016) found a
1.2 % increase in the economic gain for the Sierra Nevada’s
hydropower system. In contrast, Hamlet et al. (2002) es-
timated that seasonal streamflow forecasts could raise hy-
dropower revenue by USD 153 million per year (> 40 %) in
the Columbia River basin. How do we explain such differ-
ences? To answer this question, we need to understand the
relationship between forecast skill, value, and reservoir char-
acteristics. There are two common approaches for tackling
this problem. In the analytical approach, one typically uses
synthetic forecasts and a hypothetical reservoir system to an-
alytically derive a relationship between the aforementioned
variables. For example, You and Cai (2008) derived a theoret-
ical relationship linking the ideal forecast horizon to various
factors, such as water stress level, reservoir size, or inflow
uncertainty. In a follow-up study, Zhao et al. (2012) inves-
tigated the relationship between forecast horizon and uncer-
tainty, identifying an effective forecast horizon that balances
the effects of horizon and uncertainty, providing the largest
benefit to the reservoir operators. On the other hand, the
experimental approach simulates the operations of existing
reservoir systems with seasonal streamflow forecasts to de-
termine their potential value and, where possible, to build an
empirical relationship linking forecast value, skill, and reser-
voir characteristics. Maurer and Lettenmaier (2004), for in-
stance, attributed the relatively low gains found for the Mis-
souri River basin to the system’s large storage capacity (rela-
tive to annual inflow). When studying the Sierra Nevada’s hy-
dropower system, Rheinheimer et al. (2016) found that fore-
cast value is insensitive to storage capacity, yet it is highly
sensitive to powerhouse capacity.

One limitation of the existing literature is that it illustrates
the potential benefits of seasonal forecasts on individual hy-
dropower dams or specific river basins. In turn, this leads to
a fragmented knowledge of how forecast skill and reservoir
characteristics translate into forecast value. A global-scale
assessment of forecast skill and value can fill this gap and
provide numerous benefits. First, evaluating forecast skill
and value for hundreds of hydropower sites can frame the
current body of knowledge within a larger scope and elicit
the wide range of possible benefits observed at individual
dams. Second, a global study offers a broad spectrum of ac-
tual reservoir characteristics, allowing for an in-depth anal-
ysis of how forecast value is modulated by reservoir char-
acteristics. To date, this important aspect has been primarily
demonstrated for water supply reservoirs (Anghileri et al.,
2016; Turner et al., 2017a), but it remains largely unexplored
for hydropower dams (Yang et al., 2021). Such added knowl-
edge may not necessarily lead to specific design guidelines
but may still be valuable to operators and planners. For ex-
ample, a quantitative relationship between reservoir charac-
teristics, forecast skill, and value could be applied in regional
analyses designed to determine the minimum forecast skill
required by an existing or planned reservoir network (Bertoni

et al., 2021). The expected continuous development of fore-
cast systems will only continue to foster such analyses (John-
son et al., 2019; Crochemore et al., 2020; Troin et al., 2021).

Here, we present a global analysis carried out on 753 head-
water dams, representing 10 % of the world’s installed hy-
dropower capacity. Specifically, we leverage recent studies
demonstrating global streamflow predictability conditioned
on large-scale climate variability (Ward et al., 2014; Lee
et al., 2018), and we develop seasonal inflow forecasts for
each dam. Then, we quantify the value of these forecasts by
comparing the amount of hydropower simulated with three
operating schemes based on realistic forecasts (issued by our
model), perfect forecasts, and control rules (no forecasts). We
leverage the wide range of climatic conditions and dam char-
acteristics available in our database to (1) explain how reser-
voir design properties and forecast skill affect the value of
seasonal forecasts and (2) identify key geographical regions
where dams can benefit most from forecasts. The relation-
ships between forecast skill, value, reservoir characteristics,
and geographic location revealed through these analyses rep-
resent a first step toward informing site-specific studies.

2 Data

2.1 Hydropower dam data

We use the database introduced by Ng et al. (2017), contain-
ing design specifications for 1593 hydropower reservoirs –
representing almost 40 % of the world’s installed hydropower
capacity. The database provides information on dam height,
storage capacity, maximum surface area, long-term average
discharge, upstream catchment area, geographic coordinates,
installed power capacity, maximum turbine flow, and operat-
ing goals (e.g., hydropower supply, flood control). The ma-
jority of these data are retrieved from the Global and Dam
(GRanD) database (Lehner et al., 2011) and complemented
with data from the International Commission on Large Dams
(ICOLD, 2011), the Global Lakes and Wetlands Database
(Lehner and Döll, 2004), and the Global Energy Observatory
(GEO, 2016). We filter out all dams affected by upstream reg-
ulation, reducing the number from 1593 to 753, representing
headwater-only dams. Filtering is based on the degree of reg-
ulation (DOR) for each dam, defined as the ratio between the
storage volume of the upstream dam(s) and the natural aver-
age discharge volume of a given river segment (Grill et al.,
2019). We retain only dams with DOR values equal to 0.

To model the relationship between storage and depth,
we use an approach commonly adopted in global studies
(Van Beek et al., 2011; Turner et al., 2017b). Specifically, we
model the storage–depth relationship with Kaveh’s method,
which assumes an archetypal reservoir shape (Kaveh et al.,
2013). This method estimates the reservoir surface area as a
function of volume, maximum surface area, depth, and max-
imum depth. For the limited number of cases in which max-
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imum depth is not available, we adopt Liebe’s method and
assume that the reservoir is shaped like an inverted pyra-
mid cut diagonally in half (Liebe et al., 2005). To test the
accuracy of these assumptions, we infer the bathymetry of
each dam from a high-resolution global hydrography dataset
(Yamazaki et al., 2019), and we retain for comparison ap-
proximately 200 reservoirs with dam height and storage ca-
pacity estimates comparable to those reported in the GRanD
database (see Sect. S1 in the Supplement). Results, reported
in Fig. S1 in the Supplement, indicate that forecast value is
not strongly affected by the approach adopted to model the
storage–depth relationship.

For each dam, we obtain a monthly inflow time series from
the Water and Global Change (WATCH) 20th century model
gridded global runoff dataset (Weedon et al., 2011). The
runoff data are generated by the global hydrological model
WaterGAP (Alcamo et al., 2003), which estimates the accu-
mulated runoff for each grid (0.5◦×0.5◦ resolution) using the
DDM30 river network (Döll and Lehner, 2002). The model is
calibrated with discharge data from the Global Runoff Data
Center and has been applied to many global water resources
studies (Döll et al., 2009; Haddeland et al., 2014). However,
the course spatial resolution may be a source of uncertainty
for dams located in small catchments. For this reason, we
modify the original WATCH database in three ways. First, we
consider only the period 1958–2000, which contains more
detailed forcing data (Weedon et al., 2011). Second, we man-
ually adjust the position of 270 dams (of the 753 dams) to
properly align them with the DDM30 river network, using
the HydroSHEDS river network (Lehner et al., 2008) and
satellite images. Finally, we correct the discharge data to ac-
count for any disparity between the upstream catchment area
defined by the DDM30 river network and the documented
upstream catchment area of each dam (Ng et al., 2017).

Climate-specific information for each dam location is also
obtained, based on the updated Köppen–Geiger climate clas-
sification, which is conditioned on global, long-term monthly
precipitation, and temperature time series (Peel et al., 2007).
Specifically, we use the Köppen–Geiger climate classifica-
tion that occurs most frequently in the grids upstream of each
dam.

2.2 Hydro-climatological data

The seasonal forecasts developed here depend on seven
potential predictors: four large-scale climate drivers
(ENSO, NAO, Pacific Decadal Oscillation (PDO), and
the Atlantic Multidecadal Oscillation (AMO)) and three
variables accounting for local processes (lagged inflow,
snowfall, and soil moisture). The four large-scale cli-
mate drivers are interannual, decadal, or multidecadal
quasi-periodic oscillations derived from oceanic and at-
mospheric fields, and they play a key role in determining
hydroclimate patterns across the world (Lee et al., 2018).
To characterize ENSO, we use the Niño 3.4 index, de-

fined as the anomalies of 3-month running-mean sea
surface temperatures (SSTs) in the Niño 3.4 region (https:
//www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Nino34/,
last access: 5 May 2022). The monthly PDO index
is defined as the leading principal component of
monthly SST anomalies in the North Pacific basin
(Zhang et al., 1997). It is obtained from the Joint In-
stitute for the Study of the Atmosphere and Ocean
(http://research.jisao.washington.edu/pdo/, last access:
5 May 2022). For NAO, we use the station-based seasonal
NAO index, which is the difference in normalized sea level
pressure between Lisbon and Reykjavik (Hurrell and Deser,
2010) (https://climatedataguide.ucar.edu/climate-data/
hurrell-north-atlantic-oscillation-nao-index-station-based,
last access: 5 May 2022). Finally, the AMO index
is defined as area-weighted average SST over the
North Atlantic basin (Enfield et al., 2001). We use
the monthly detrended and unsmoothed AMO in-
dex derived from the Kaplan SST dataset (https:
//www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/AMO,
last access: 5 May 2022). For the PDO and AMO indices,
we calculate 3-month running means to maintain seasonal
persistence.

Monthly soil moisture and snowfall data are obtained from
the ERA-40 reanalysis, developed by the European Centre
for Medium-Range Weather Forecasts (https://apps.ecmwf.
int/datasets/, last access: 5 May 2022) and WATCH forcing
data, respectively. For soil moisture, we aggregate all four
volumetric soil water layers of ERA-40. To properly account
for the basin-scale soil moisture and snowfall states (Maurer
and Lettenmaier, 2004), we calculate the area-weighted aver-
age soil moisture and snowfall of all upstream grids for each
dam using the DDM30 river network.

3 Methods

The goal of this study is to (1) quantify the value of seasonal
inflow forecasts for a global database of hydropower dams,
(2) illustrate how reservoir design properties and forecast
skill affect the value of seasonal forecasts, and (3) identify
regions that could benefit from application of seasonal fore-
casts. To achieve these goals, we first develop an inflow pre-
diction model for each of the 753 dams (Sect. 3.1). Then, we
simulate hydropower production for each dam under three
operating schemes that are based on perfect forecasts, real-
istic forecasts (issued by our inflow prediction model), and
control rules (no forecast) (Sect. 3.2). Finally, we evaluate
the performance of each operating scheme and identify the
reservoir design specifications that influence each system’s
performance (Sect. 3.3).
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Figure 1. Graphical representation of the monthly prediction (MP) model scheme. At each calendar month t , we develop seven independent
models to predict monthly inflows for the next 7 months: MP1 (t + 1), MP2 (t + 2), . . ., MP7 (t + 7).

3.1 Dam inflow prediction model

Seasonal streamflow forecasting approaches include physi-
cally based (mechanistic) models, such as GloFAS (a global-
scale forecasting system; Emerton et al., 2018; Harrigan
et al., 2020); empirical or statistical (data-based) models
that leverage the relationship between large-scale climate
drivers and local hydro-meteorological processes (Block,
2011; Gelati et al., 2014; Giuliani et al., 2019); and con-
ceptual (parametric) models that integrate hydrological pro-
cesses at the catchment scale (Lindström et al., 2010; Devia
et al., 2015). Here, we select the second approach because
of two reasons. First, the prediction horizon of most openly
available global reforecasts (from a few days to 3–4 months)
falls short of our preferred lead time (up to 7 months),
which is needed to test the potential of realistic forecasts
for a broad spectrum of reservoirs – including those char-
acterized by slow storage dynamics. Second, reforecasts is-
sued by global-scale forecasting systems are only available
for a relatively short hindcast period (typically 2 decades;
Harrigan et al., 2020), whereas the time series of globally
available hydro-climatological data are significantly longer.
It should be noted that these two statements may change in
the near future as the boundaries of global-scale forecast-
ing systems keep getting extended (see Sect. 5.2). For ex-
ample, there already exist global reforecasts from physically
based models with a prediction horizon of 7 months and
hindcast periods of about 30 years (https://hypeweb.smhi.se/
explore-water/forecasts/seasonal-forecasts-global/, last ac-
cess: 5 May 2022).

Our long-range inflow prediction model uses principal
component regression (PCR) and includes four lagged large-
scale climate drivers, snowfall, and prior inflow and soil
moisture conditions to predict future inflows at 735 dams.
This approach is readily implemented globally and has
demonstrated fair (realistic) predictive skill at 1200 stream-
flow stations (Lee et al., 2018). While Lee et al. (2018) pre-
dicted seasonal (3-month) streamflow averages, here we de-
velop independent monthly prediction (MP) models for the
subsequent 7 calendar months. For example, forecasts issued
at the end of February include monthly inflows from March
(MP1) to September (MP7).

The methodology relies on the following steps, illustrated
in Fig. 1. First, we normalize (log-normalize for streamflow)
and detrend all predictors and streamflow observations to
avoid spurious correlation. Then, we estimate the lag correla-
tions between future monthly inflows over the next 7 months
(t + 1 to t + 7) and historical climate indices (t − 1 to t − 8),
snowfall (t to t − 8), and inflow and soil moisture in cur-
rent month (t). Only statistically significant predictors are
subsequently used to develop the MP models. If only a sin-
gle (statistically significant) predictor exists, we apply a lin-
ear regression (LR) model; otherwise, we apply the PCR
model to avoid possible multi-colinearities. In the PCR pro-
cess, we truncate only the last principal component, which
is typically associated with multi-colinearities, as suggested
by Jolliffe (2002) and Wilks (2011). To select the optimal
lag times of the predictors, we apply a leave-one-out cross-
validation (LOOCV) scheme. Specifically, all combinations
of lag times of the predictors are cross-validated; then, the
optimal set of lag times is determined based on the mini-
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mum mean squared error (MSE). The models are developed
with 70 % of the available data (corresponding to the period
1958–1987) and validated with the remaining data (1988–
2000) so as to measure the model’s independent performance
over the recent period. In the validation process, we evaluate
the model performance using two skill scores, namely, the
mean squared error skill score (MSESS) and the Gerrity skill
score (GSS) (Sect. S2 and Fig. S2). If an MP model has no
statistically significant predictors or either an MSESS or GSS
value lower than 0, the long-term average for that month (i.e.,
the climatological mean) is applied instead. The overall ac-
curacy of the reservoir inflow predictions is assessed with the
Kling–Gupta efficiency (KGE), which compares correlation,
bias, and variability of the predicted and observed discharge
(Gupta et al., 2009). The KGE is defined as

KGE= 1−
√
(r − 1)2+ (β − 1)2+ (γ − 1)2, (1)

where r is the correlation coefficient, β the bias ratio of the
mean inflow (µs/µo), γ the variability ratio (CVs/CVo), µ
the mean flow, CV the coefficient of variation, and s and o are
two indices indicating simulated (predicted) and observed in-
flow values, respectively.

3.2 Reservoir operation model

3.2.1 Reservoir model

An essential component of the operating scheme is the reser-
voir mass balance described below:

St+1 = St +Qt −Et −Rt −Spillt , (2a)
0≤ St ≤ Scap, (2b)
0≤ Rt ≤min(St +Qt −Et ,Rmax), (2c)

where St is the reservoir storage at month t , Qt the inflow
volume (retrieved from the WaterGAP model, as described in
Sect. 2.1), Et the evaporation loss, and Rt the water released
through the turbines. The evaporation lossEt is calculated by
multiplying the surface area of a reservoir (at each time pe-
riod t) by the potential evaporation, retrieved from the Water-
GAP model. Both St and Rt are constrained by the reservoir
design specifications. Specifically, the storage cannot exceed
the reservoir capacity Scap (Eq. 2b), while the discharge is
bounded by the water availability and capacity Rmax of the
turbines (Eq. 2c). Excess water, if any, is spilled:

Spillt =max(0,St +Qt −Rt −Et − Scap). (2d)

The hydropower production Pt (in MW) is calculated as
follows:

Pt = η · ρ · g · rt ·ht , (3)

where η is the efficiency of the turbines (assumed con-
stant at 0.9 over the simulation period), ρ the water density

(1000 kgm−3), g the gravitational acceleration (ms−2), rt the
average release rate (m3 s−1) implied by the monthly release
volume Rt , and ht the hydraulic head (m). The last variable
is taken as the average head between time t and t + 1.

3.2.2 Benchmark scheme: control rules

Our benchmark operating scheme relies on the approach pro-
posed by Ng et al. (2017), in which the behavior of the hy-
dropower operators is modeled as an optimal control prob-
lem. This approach builds on two main assumptions. First,
the goal of the operators is to maximize hydropower produc-
tion over the long term. This objective provides a tangible
indication of hydropower performance, so it is commonly
adopted in large-scale studies (e.g., Van Vliet et al., 2016).
Second, the release decisionRt depends on the reservoir stor-
age St , the previous period’s inflow volumeQt−1, and month
of year t , which is a common choice in real-world reservoir
operating schemes (Hejazi et al., 2008). In other words, the
approach assumes that each reservoir is operated through a
unique periodic look-up table of turbine release decisions,
which is generated through stochastic dynamic programming
(Loucks et al., 2005; Soncini-Sessa et al., 2007). In the opti-
mization, the inflow process is modeled with a first-order,
periodic Markov chain, whose parameterization is derived
from the inflow data. This means that climatology and in-
terannual inflow variability are embedded in this operating
scheme. Such schemes are more sophisticated than operat-
ing schemes relying only on storage level and time of the
year (Denaro et al., 2017; Giuliani et al., 2019; Ahmad and
Hossain, 2020) and are more consistent with inferred oper-
ating rules (Turner et al., 2020). A detailed validation of the
operating rules – based on values of observed hydropower
production in 107 countries during the period 1980–2000 –
is reported in Turner et al. (2017b). The time series of all
process variables (e.g., inflow, storage, release, hydropower
production) obtained by the benchmark control scheme
are available on HydroShare (http://www.hydroshare.org/
resource/ca365ffb1a1f49df8b77e393be965fd8, last access:
5 May 2022).

3.2.3 Forecast-informed scheme

To assess the value of seasonal streamflow forecasts, we
adopt an adaptive scheme based on the receding horizon
principle (Bertsekas, 1976). At month t , we use a determin-
istic 7-month streamflow forecast to determine the value of
the release decisions for the next 7 months, and then we im-
plement only the decision Rt for the first month. At month
t+1, when a new 7-month forecast becomes available, a new
sequence of release decisions is determined. Each decision-
making process is formulated through an optimization prob-
lem that maximizes the hydropower production over the fore-
cast horizon while accounting for the benefits associated with
the resulting storage at the end of the forecast horizon:
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min
Rt ,Rt+1,...,Rt+6

6∑
i=0

Pt+i +X(St+7), (4)

where Pt is the hydropower production (see Eq. 3), and X(·)
is a function accounting for the long-term effect of the re-
lease decisions. Specifically, the function penalizes decisions
that solely optimize energy production in the short term, risk-
ing water availability depletion in the long term. Following
a common practice in forecast-informed schemes (Soncini-
Sessa et al., 2007), we set X(·) equal to the benefit function
obtained by the benchmark control rules, which contains in-
formation about the expected long-term hydropower produc-
tion for a given storage level. Thus, the real-time informa-
tion provided by the forecasts may alter decisions otherwise
based solely on the benchmark scheme. As our inflow fore-
cast model gives a deterministic 7-month forecast, the opti-
mization problem is solved at each time step using determin-
istic dynamic programming (Turner et al., 2017a).

The scheme is implemented using both “perfect” and
realistic forecasts. Both benchmark and forecast-informed
schemes are simulated over the period 1958–2000. The stor-
age of all reservoirs is initialized at full capacity at the be-
ginning of each simulation. During the simulation, all release
decisions are constrained to satisfy downstream environmen-
tal flow requirements, calculated using the variable monthly
flow method (Pastor et al., 2014). The implementation of
stochastic and deterministic dynamic programming (for con-
trol rules and forecast-informed scheme, respectively) re-
quires us to discretize the values of storage and release. In
particular, storage is discretized into 500 uniform values,
while release is discretized into 20 uniform values between 0
and Rmax (Turner et al., 2017a). For each reservoir, we check
that the ratio between Rmax and number of discretized values
(for release) is larger than the ratio between Scap and number
of discretized values (for storage), thereby ensuring that dif-
ferent release decisions lead to different storage levels when
transitioning between two simulation time steps. For stochas-
tic dynamic programming, we also discretize inflow accord-
ing to the bounding quantiles of 1.00, 0.95, 0.7125, 0.4750,
0.2375, and 0.00 (as recommended by Stedinger et al., 1984).
The likelihood of each flow class is computed for each month
using inflow data from the WaterGAP model. All experi-
ments are carried out with the R package reservoir (Turner
and Galelli, 2016).

3.2.4 Considering additional operating objectives and
finer temporal scales

Of the 735 headwater dams in the database, 174 dams are
also operated for flood control purposes. For these dams, we
penalize spill to account for flood control and formulate the
optimization objective as follows (in both benchmark and
forecast-informed schemes):

min
Rt ,Rt+1,...,Rt+6

6∑
i=0

(
w1 ·

Spillt+i
p95(Q)

+w2 ·

(
1−

Pt+i

P

))
+X(St+7), (5)

where w1 and w2 are the weights associated with the flood
control and hydropower objectives (set to 0.5 here), p95(Q)

the 95th percentile of the inflow time seriesQ, and P the dam
installed hydropower capacity (in MW). Clearly, additional
objectives may influence hydraulic head or the release trajec-
tory, thereby affecting hydropower production (Zeng et al.,
2017).

A second modification of the reservoir operation model
concerns the monthly decision-making time step, which may
not be suitable for reservoirs with small storage capacity
relative to inflow (time-to-fill value). We therefore identify
a group of 94 reservoirs for which the time-to-fill value is
shorter than 2 months, and we adopt for this group only a
weekly time step. Since the inflow forecasts have a monthly
resolution, we disaggregate each forecast into four values us-
ing the k-nearest-neighbors algorithm (Nowak et al., 2010).
Further details are reported in Sect. S3.

3.3 Reservoir performance evaluation

It is reasonable to hypothesize that the value of seasonal
streamflow forecasts – here measured in terms of hydropower
production – depends not only on predictive skill but also
on reservoir characteristics. For example, a reservoir con-
strained by small turbine capacity may perform adequately
utilizing control rules alone, as storage is sufficient to buffer
inflow variability. We are thus interested in quantifying fore-
cast value as well as understanding how value varies as a
function of both skill and reservoir characteristics. This leads
us to the following performance metrics.

3.3.1 Impact of design characteristics on perfect
forecast-based operations

Initially excluding the effect of actual forecast skill, the fol-
lowing performance metric represents the expected improve-
ment from perfect forecast-informed operations as compared
to control-rules-based operations:

IPF =
HPF−Hctrl

HPF
× 100%, (6)

where HPF and Hctrl represent the total hydropower pro-
duction (for the period 1958–2000) obtained with perfect
forecast-informed operations and control rules, respectively.
A value equal to zero indicates that the control rules are
comparable to the (perfect) forecast-informed operations,
whereas a positive value suggests that forecast-informed op-
erations could be beneficial. Even though some dams are op-
erated with an additional flood control objective, we use the
same measure for all dams so as to ensure a consistent com-
parison of forecast value.
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Figure 2. Percentage of dams whose inflow is significantly correlated with lagged predictors (ENSO, NAO, PDO, AMO, and snowfall) and
1-month ahead predictors (inflow and soil moisture) in each calendar month.

To understand how reservoir characteristics may influence
benefits attained with perfect forecasts, we proceed in two
steps. First, we label each dam as case (also referred to
as success) if it has the desired property of an IPF value
larger than the mean value of IPF across all dams. Otherwise,
the dam is labeled as non-case. (As this labeling is rather
arbitrary, we later assess the sensitivity of our analysis to
changes in the threshold.) Second, we explain the likelihood
of achieving success through a logistic regression model in
which the probability of the binary response variable tak-
ing a particular value is a function of the predictor variables.
We consider two predictors, namely, (1) the ratio of reservoir
storage capacity to the mean monthly inflow (xfill, measured
in months) and (2) the ratio of maximum reservoir depth
to maximum hydraulic head (xdepth). The second predictor
varies between 0 and 1 and indicates the extent to which hy-
draulic head is dependent on the depth of the reservoir. The
logistic regression model is cross-validated with a 10-fold
cross-validation scheme and evaluated using two metrics: ac-
curacy and Cohen’s kappa (McHugh, 2012). Accuracy is the
ratio of correctly predicted observations (true positives and
true negatives) to the total number of observations. Cohen’s
kappa is an adjusted accuracy score that accounts for the pos-
sibility of correct predictions occurring by chance. The mod-
eling exercise is carried out with the R package caret. For
additional details, please refer to Sect. S4 and Tables S1–S3
in the Supplement.

3.3.2 Impact of forecast skill and design characteristics
on realistic forecast-based operations

Integrating realistic forecasts in lieu of perfect forecast infor-
mation, we introduce the following performance metric:

IDF =
HDF−Hctrl

HPF
× 100%, (7)

where HDF represents the total hydropower production (for
the period 1958–2000) obtained using realistic forecast-
informed operations. IDF is then combined with IPF to cal-
culate the performance metric I that quantifies the potential
improvement between realistic and perfect forecast-informed
operations:

I =
HDF−Hctrl

HPF−Hctrl
=
IDF

IPF
. (8)

A value of I equal to 1 indicates that benefits from the ac-
tual forecasts equal those utilizing perfect forecasts. A value
of 0 denotes performance equivalent to applying the control
rules only, while a negative value implies that the forecast-
informed scheme is inferior to the control rules. We calculate
this metric only for the subset of dams achieving a value of
IPF greater than the mean value of IPF to better understand if
the benefits modeled with perfect forecasts may be attainable
with realistic forecasts.

To explain how the metric I varies, we use a linear regres-
sion model accounting for both forecast skill and reservoir
characteristics. The predictor characterizing the forecast skill
is xMdAPE, which is the median absolute percentage error of
the forecast and is used in place of KGE as it shows a higher
correlation with I . (While KGE gives a broad view of the
forecast skill by comparing correlation, mean, and standard
deviation of the predicted and observed inflows, MdAPE ac-
counts for the forecast error at every time step of the inflow
time series. This may make MdAPE a more suitable predic-
tor, as the error at each time step affects the release decisions
and, ultimately, hydropower production.) The second predic-
tor is xexceed, the fraction of time that inflow exceeds the max-
imum turbine release rate. For more details on the choice of
predictors, please refer to Sect. S5 and Tables S4–S6.

4 Results

In this section, we first present the accuracy of the inflow pre-
diction models (Sect. 4.1) and performance of the forecast-
informed schemes (Sect. 4.2). Then, we quantify the extent
to which reservoir design characteristics and forecast skill
affect the value of seasonal forecasts (Sect. 4.3). Lastly, we
classify all dams according to their potential to benefit from
forecasts, and we identify key geographical regions that may
benefit the most from forecasts (Sect. 4.4).
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Figure 3. Number of months in which a predictive model is developed (left) and corresponding KGE (right). Taking a model with a lead-time
of 1 month (MP1) as reference (a), we report the difference between MP1 and MP4 (b) and MP1 and MP7 (c).

4.1 Potential predictors and accuracy

As shown in Fig. 2, reservoir inflow exhibits significant cor-
relation with climate and local drivers (potential predictors).
Yet, this relationship changes across the annual cycle. Eval-
uating months when a higher percentage of dams is signifi-
cantly correlated with predictors, some well-known climatic
teleconnections can be observed – e.g., ENSO and winter–
spring streamflow in North America and Europe, NAO and
spring–summer peak flows in the northern extratropical re-
gions, and PDO and summer streamflow in southeastern
North America and central South America (Fig. S3). On av-
erage, 27 %, 37 %, 28 %, 20 %, and 36 % of the reservoir
catchments are significantly correlated with ENSO, NAO,
PDO, AMO, and snowfall, respectively. Additionally, and
not surprisingly, inflow for most dams (72 %) exhibits sig-
nificant 1-month lead autocorrelation. An exception is repre-
sented by some dams during the period March-April, espe-
cially in areas with minimal baseflow (Figs. 2 and S3). Soil
moisture at a 1-month lead is statistically significantly corre-

lated with inflow at 47 % of dams across all months with a
seasonality similar to inflow.

Reservoir inflow and climatic predictors are often (signifi-
cantly) correlated across several lead months. In these cases,
climate predictors are very likely to be included in multiple
MP models for various leads, although the correlation may
decrease with longer lead-time. When a climate predictor is
significantly correlated with reservoir inflow at a 1-month
lag (MP1), 74 % and 38 % of the time it is also included
at the 4-month lag (MP4) and 7-month lag (MP7), respec-
tively. Snowfall has a similar retention rate. However, and as
expected, autocorrelation in inflow and soil moisture drops
more precipitously with longer lead; only 53 % (28 %) of the
time, when lagged inflow and soil moisture are included as
predictors in MP1, they are also included in MP4 (MP7).
Globally, an average of 2.7, 1.7, and 0.9 predictors are in-
cluded in the MP1, MP4, and MP7 models, respectively.
In very few cases, the number of predictors increases with
longer lead-time. For months when no potential predictors
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are identified, or either MSESS or GSS is less than zero, the
long-term mean inflow for that month is used.

Across the annual cycle, the average number of months in
which at least one predictor is included (and thus a predictive
model developed) is equal to 8.3 months (MP1), 6 months
(MP4), and 4.2 months (MP7) (see Fig. 3). As noted previ-
ously, a lack of long-lead inflow autocorrelation is predom-
inantly responsible for this drop (and thus for increased re-
liance on climatology-based forecasts). Prediction accuracy
also decreases with lead-time; average KGE values are 0.64
and 0.56 for MP1 and MP7, respectively (Fig. 3). Given
that prediction accuracy generally declines with lead time,
the highest KGE scores across all MP models are associated
with MP1 for 68 % of the dams. For the remaining models,
the highest prediction accuracy is recorded for 5 % (2 %) of
dams in the MP4 (MP7) models, emphasizing that skillful
forecasts at longer leads do exist, such as in Europe or north-
western and southeastern USA (Fig. 3b and c). As for the ge-
ographical distribution of KGE, we find relatively high KGE
scores in several regions, including North America, eastern
South America, Europe, and some regions in western Africa
and Asia, where inflows correlate with most of the consid-
ered predictors (Figs. 3 and S3). For some regions that of-
ten exhibit skillful precipitation predictability based on well-
known teleconnections and hydroclimate mechanisms, such
as northwestern South America, East Africa, and southeast-
ern Africa (Lee et al., 2018), this is not readily apparent on
the KGE maps (Fig. 3), owing primarily to the regions’ low
dam density and thus a small sample size.

For all MP models, the KGE has an average value of about
0.56, which is regarded as a fair skill score outcome. While
uniquely tailored forecasts could be produced for each dam
considering more local influences, the current prediction ap-
proach performs well globally and reflects achievable long-
range inflow predictions. Considering the superior perfor-
mance of the MP1 model, the forecast skill of MP1 only is
retained to represent the overall forecast skill in the follow-
ing analyses. (For an additional analysis concerning the rela-
tionship between dam performance and the speed with which
forecast skill decreases, please refer to Sect. S6 and Fig. S4.)

4.2 Performance of forecast-informed operations

The expected performance of perfect and realistic forecast-
informed operations is notably different across the 735 hy-
dropower dams (Fig. 4). With perfect forecast-informed op-
erations (Fig. 4a), we observe a substantial increase in hy-
dropower production with respect to the baseline control
rules. Specifically, 94 % of dams exhibit a positive value of
the performance metric IPF; mean improvement is 4.7 % and
maximum improvement is 60 %. For the small number of
dams that do not benefit from perfect forecasts, the value
of IPF does not drop below −1.7 %. Small negative values
of IPF may be a result of the discretization needed by dy-
namic programming to optimize the release sequence (Eq. 4),

hence allowing control rules to outperform perfect forecast-
informed operations. (Recall that storage and release are dis-
cretized into 500 and 20 values, respectively: when the stor-
age level falls between two discrete levels, the closer level is
selected and the optimum release decision for that discrete
level is implemented. This decision may sometimes be sub-
optimal, giving rise to negative values of IPF.) Considering
all dams collectively, an additional 24 TWhyr−1 of hydro-
electricity is generated when adopting the perfect forecast-
informed approach in lieu of baseline control rules. This is
equivalent to 0.57 % of the 4200 TWh of hydropower glob-
ally generated in 2018 (note that the headwater dams used
here represent 10 % of the world’s installed capacity) (IHA,
2019). Such modest global benefit and large range of indi-
vidual benefits suggest that the forecast value is highly de-
pendent on the reservoir characteristics (see Sect. 4.3).

When realistic forecast-informed operations are adopted
(Fig. 4b), a smaller number of dams exhibit increased hy-
dropower production. IDF ranges from −24 % to 28 %, with
25 % of dams showing a positive value of IDF. The 184 dams
with positive IDF values show an average improvement of
2.3 % and collectively contribute an additional 1.7 TWhyr−1

in hydropower production, which is 7 % of the 24 TWh of ad-
ditional hydropower obtainable from perfect forecasts. This
decline in performance is expected, as realistic forecasts in-
troduce a non-negligible prediction error. Yet, it should also
be noted that less than 20 % of dams have a KGE value be-
low 0.5, whereas a disproportionately larger number of dams
exhibit a negative IDF value. This suggests that for a large
number of dams control-rules-based operations are superior
to realistic forecast-informed operations. For dams with poor
IDF and high KGE, two features are noteworthy: first, KGE
may not fully capture the relationship between forecast skill
and value, and, second, reservoir characteristics are an im-
portant factor influencing the value of realistic forecasts.

4.3 Evaluation of prediction accuracy and reservoir
characteristics

To understand the extent to which reservoir characteristics
may modulate the value of seasonal forecasts, we identify
a logistic regression model that explains the likelihood of
achieving success with perfect forecasts (IPF larger than
4.7 %, i.e., the mean value of IPF across all dams) as a func-
tion of two predictors, xfill (the ratio of reservoir storage ca-
pacity to the mean monthly inflow) and xdepth (the ratio of
maximum reservoir depth to maximum hydraulic head). A
10-fold cross-validation yields a model accuracy and kappa
statistic of 0.785 and 0.535, respectively. (Note that the per-
centage of dams labeled as cases and non-cases is equal to
37 % and 63 %, respectively.)

As illustrated in Fig. 5 and Table 1, both predictors influ-
ence the probability of achieving success. For xfill values ex-
ceeding 10 months, dams are highly unlikely to benefit sub-
stantially from seasonal forecasts. This suggests that a large

https://doi.org/10.5194/hess-26-2431-2022 Hydrol. Earth Syst. Sci., 26, 2431–2448, 2022



2440 D. Lee et al.: Forecast values in global hydropower

Figure 4. Improvements in hydropower production using perfect (a) and realistic (b) forecasts. The terms IPF and IDF indicate the relative
improvement in hydropower production (with respect to the basic control rules) provided by perfect and realistic forecasts. Nearly all dams
are able to benefit from perfect forecasts, but only 25 % of dams benefits from realistic forecasts.

storage capacity effectively acts as a buffer against inflow
uncertainty. Hence, both control rules and perfect forecast-
informed operations tend to attain similar performance. We
also observe that some of the smaller dams (xfill < 2) fail
to attain increased hydropower production even though they
are predicted to do so (red triangles in the blue shaded re-
gion; Fig. 5). This is because weekly operations decrease
IPF for some of these dams to below the mean IPF, turn-
ing them from cases (if operated on a monthly basis) into
non-cases. This suggests that more frequent release decisions
may reduce forecast value, since the benchmark operating
rules have more opportunities to adjust release decisions. For
smaller dams, xdepth becomes a critical factor. High values
of xdepth indicate that the hydraulic head is highly dependent
on the reservoir depth, which is in turn dependent on cur-
rent and near-future inflows for dams that cannot accumulate
large inflow volumes. Thus, forecast-informed operations be-
come crucial to maintain a high hydraulic head and maximize
hydropower production. For hydropower dams that have a
low value of xdepth, a high hydraulic head is maintained even

Table 1. Coefficients of logistic regression to predict if IPF > 4.7 %.
The term “Estimate” represents the increase in log-odds of a dam
being classified as case (or success) per unit increase in the value of
the predictors.

Predictors Estimate Std. error Z value Pr(> |z|)

(Intercept) −1.16 0.25 −4.62 < 0.01
xdepth 2.84 0.31 9.25 < 0.01
xfill −0.10 0.01 −8.76 < 0.01

when storage is low, thereby minimizing the utility of fore-
casts. These are systems relying on waterfalls, or hilly ter-
rains, to divert part of the water and gain hydraulic head.

Considering only the subset of 269 dams that have an IPF
value larger than 4.7 %, we apply a linear regression model
to estimate the performance metric I . This time, the pre-
dictors include xMdAPE (median absolute percentage error of
forecast inflows) and xexceed (the fraction of time that inflow
exceeds the maximum turbine release rate). The linear re-
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Figure 5. Probability of success estimated using a logistic regres-
sion model with predictors xdepth and xfill (in log scale). Red cor-
responds to a probability of success equal to zero, meaning that the
dam is likely to do well with the control rules. Blue represents a
probability of success equal to 1, meaning that a dam is likely to
benefit from forecast-informed operations. Each point in the plot
represents one of the 735 dams. Blue circles represent dams la-
beled as cases (or success) (IPF > 4.7 %) and red triangles represent
non-cases. The size of the blue circles represents the value of IPF.
All red triangles have the same size. Dams below the dashed line
(xfill = 2) are operated with a weekly time step. Dams with low val-
ues of xfill (small storage capacity relative to inflow rate) and high
xdepth (lacking a natural waterfall) are more likely to benefit from
forecast-informed operations.

gression model has an adjusted R2 of 0.31, which can be
increased further by considering other variables related to in-
flow variability and hydraulic head. The reader is referred to
Tables S4–S6 for more complex models that include addi-
tional predictors.

The results are presented in Table 2 and illustrated in
Fig. 6. As expected, higher forecast skill (lower xMdAPE) in-
creases the potential benefits realized by the realistic fore-
casts; a 1 % decrease in xMdAPE increases I by 0.03. Reser-
voir characteristics can play an important role, as certain con-
figurations allow dams and hydropower production to bene-
fit from realistic forecasts. Specifically, we find that dams
in which inflow frequently exceeds maximum turbine re-
lease (large values of xexceed) are more likely to benefit from
forecast-informed operations – even when forecasts are not
very accurate, as shown by the diagonal divide in Fig. 6. This
is predominantly a result of both forecast and observed in-
flow frequently exceeding the maximum turbine release rate,
a situation in which the release decision would be the same
regardless, so consequently inaccurate forecasts do not pe-
nalize hydropower production.

Figure 6. Potential benefits realized by realistic forecast (I) pre-
dicted using linear regression with predictors xexceed and the me-
dian absolute percentage error (xMdAPE). Red corresponds to nega-
tive values of I, meaning that the performance of realistic forecasts
is worse than the one attained by control rules. Blue corresponds
to positive values of I, meaning that realistic forecasts outperform
control rules. Each point corresponds to one of the 269 dams with
IPF > 4.7 %. The corresponding color represents the value of I at-
tained via simulation with the reservoir operation model. Dams with
accurate forecasts and high values of xexceed (inflow frequently ex-
ceeds maximum turbine release) tend to have greater hydropower
benefits realized from realistic forecasts.

Table 2. Coefficients of linear regression to predict I.

Predictors Estimate Std. error Z value Pr(> |z|)

(Intercept) −0.18 0.12 −1.485 0.139
xMdAPE −0.03 0.004 −8.554 < 0.01
xexceed 2.36 0.30 7.752 < 0.01

4.4 A classification of hydropower dams

Building on the results described above, we divide the dams
into four groups on the basis of their potential to benefit
from perfect forecast-informed operations (high potential if
IPF > 4.7 % and low potential otherwise) and forecast skill
(good forecast if xMdAPE < 20 % and poor forecast other-
wise). The cutoff value for IPF is inferred from the previ-
ous analysis (logistic regression model), while the cutoff for
xMdAPE divides the 735 dams into two groups of one-third
(good forecast) and two-thirds (poor forecast) of the obser-
vations. The distribution of the dams across the four groups
(and Köppen–Geiger climate zones) is reported in Table 3.
Two groups of dams of particular interest include (1) dams
that fall in regions expressing strong forecast accuracy and
have the potential to reap benefits from forecast-informed op-
erations (9 % of the total number of reservoirs) and (2) dams
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with a strong potential to benefit from forecast-informed op-
erations but lack forecast accuracy (28 %). As discussed in
Sect. 5, this lack of forecast accuracy could be readily ad-
dressed by adopting more sophisticated forecast models or
further leveraging local predictors.

As described in Sect. 4.3, the potential of a dam to benefit
from forecasts is largely dependent on its design specifica-
tions, which present comparable values in areas with sim-
ilar orography and design practices. Forecast skill, on the
other hand, is largely dependent on climate teleconnections,
which tend to present regional patterns. Further, considering
these factors coincidentally is also insightful. Figure 7 illus-
trates the distribution of the four possible groups of dams
across the thirty climate zones of the Köppen–Geiger cli-
mate classification system. We notice a few interesting pat-
terns. First, dams with high potential but lacking accurate
forecasts (panel (a), red triangles) are often found in hu-
mid subtropical climate zones (Cwa, Cfa), particularly in the
southeast regions of Australia, China, USA, and South Amer-
ica. The trend is also true – but not statistically significant
– for dams in Southeast Asia (tropical rainforest, Af) and
US Pacific Northwest (warm summer Mediterranean, Csb).
Second, dams with good forecasts (panels (a) and (b), blue
triangles) are mostly located in the tropical savanna climate
zone (Aw, mainland Southeast Asia, India, Brazil, and west-
ern Africa) and subarctic climate zone (Dfc, Canada, Russia,
northeastern Europe). While the majority of these dams have
poor to fair potential, which can be attributed to relatively
large time-to-fill values, the remaining dams with character-
istics conducive for forecast-informed operations can read-
ily benefit from including climate signals into their forecast
models. This also applies to dams along the US–Canadian
border. These dams are located in a humid continental cli-
mate zone (Dfb), whose statistical significance for high fore-
cast accuracy has been masked by differences in performance
between dams located in Europe and North America. Third,
dams with low potential and poor forecasts are primarily
found in Europe and east Asia (panel (b), red triangles). This
trend is significant (p < 0.05) for dams in the Alps (alpine
climate, ET), in particular for dams that are characterized by
large time-to-fill values and small reservoir depth to maxi-
mum hydraulic head ratios. This classification of dams based
on climate zones, potential to benefit from perfect forecast-
informed operations, and forecast skill is complemented by
an additional analysis informed by the Hydrological Climate
Classification (Knoben et al., 2018), which also accounts
for hydroclimate characteristics. Please refer to Sect. S7 and
Fig. S5.

5 Discussion

5.1 Implications for planning and management of
hydropower projects

In this study, we examine the relationship between seasonal
streamflow forecasts and global hydropower production, ac-
counting for the influence of reservoir characteristics. Specif-
ically, we develop seasonal inflow forecasts for 735 head-
water dams based on lagged global and local hydroclimatic
variables. The forecasts exhibit fair skill globally, but higher
skill in several regions, including the northern extratropical
regions and the areas characterized by tropical savanna cli-
mate (e.g., mainland Southeast Asia, eastern South Amer-
ica, and western Africa). In agreement with earlier work, our
forecasts exhibit well-known teleconnections, such as NAO
influencing spring–summer peak flow in the northern extrat-
ropical regions (Lee et al., 2018), ENSO influencing stream-
flow in Southeast Asia (Sankarasubramanian et al., 2009;
Räsänen and Kummu, 2013), and ENSO / PDO influencing
winter–spring streamflow in the Pacific Northwest (Hamlet
et al., 2002; Voisin et al., 2006).

We then illustrate the relationship between forecast skill,
value, and reservoir characteristics by adopting forecasts in
the reservoir operations model. While 94 % of dams consid-
ered could benefit from perfect forecasts, only 25 % demon-
strate improvements when using our realistic forecasts –
a fairly low percentage if we consider the forecast skill
achieved globally. This highlights the fundamental role of
reservoir characteristics in shaping the relationship between
forecast skill and value. Key design specifications include
time-to-fill value, which is a characteristic identified by other
recent studies (Anghileri et al., 2016; Turner et al., 2017a;
Yang et al., 2020); hydraulic head, which is largely depen-
dent on reservoir depth; and the frequency of inflows exceed-
ing maximum turbine release rates, which is a design spec-
ification that allows operators to work with a larger margin
of forecast error during high-inflow periods. It is worth em-
phasizing here that these results are not intended to provide
site-specific operational guidelines, but they do represent a
first, qualitative step toward determining the potential benefit
of seasonal streamflow forecasts for hydropower operators.
The relationships identified here could be used, for exam-
ple, to understand forecast potential for a given reservoir or
to characterize the interplay between climatology, hydrology,
and dam characteristics in a large region of interest.

By combining information on reservoir characteristics,
forecast skill, and climatic zones, we identify large regions
in which dams would benefit the most from forecast applica-
tion. One such group consists of dams with a strong potential
to benefit from forecast-informed operations and that possess
good forecast accuracy. In particular, for the tropical savanna
and subarctic climate, we observe teleconnections that result
in higher forecast accuracy. Dams with favorable character-
istics in these regions can gain additional benefits from in-
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Table 3. Distribution of dams across climate zones. In columns 2–9, H and L indicate the potential (high/low) of benefiting of forecasts,
while G and P indicate the quality (good/poor) of realistic forecast. Columns 2–5 (6–9) are the number (percentages) of dams in each group.
The last two columns report the percentages of dams with high potential and good forecast, respectively. Values reported in italics indicate
whether the observed frequency is statistically different from the expected frequency (global average in the final row) (p < 0.05 using χ2

test).

Climate HG HP LG LP HG % HP % LG % LP % High % Good %

Af 0 9 3 3 0.00 0.60 0.20 0.20 0.60 0.20
Am 4 6 5 4 0.21 0.32 0.26 0.21 0.53 0.47
Aw 7 6 26 4 0.16 0.14 0.61 0.09 0.30 0.77
BWh 2 2 2 0 0.33 0.33 0.33 0.00 0.67 0.67
BWk 0 3 1 0 0.00 0.75 0.25 0.00 0.75 0.25
BSh 1 2 4 6 0.08 0.15 0.31 0.46 0.23 0.39
BSk 0 2 6 5 0.00 0.15 0.46 0.39 0.15 0.46
Csa 4 11 9 19 0.09 0.26 0.21 0.44 0.35 0.30
Csb 6 15 4 10 0.17 0.43 0.11 0.29 0.60 0.29
Cwa 5 25 8 16 0.09 0.46 0.15 0.30 0.56 0.24
Cwb 1 3 7 2 0.08 0.23 0.54 0.15 0.31 0.62
Cfa 2 56 6 58 0.02 0.46 0.05 0.48 0.48 0.07
Cfb 9 15 9 41 0.12 0.20 0.12 0.55 0.33 0.24
Dsa 0 2 1 2 0.00 0.40 0.20 0.40 0.40 0.20
Dsb 2 3 5 4 0.14 0.21 0.36 0.29 0.36 0.50
Dsc 0 1 1 1 0.00 0.33 0.33 0.33 0.33 0.33
Dwa 0 5 1 8 0.00 0.36 0.07 0.57 0.36 0.07
Dwb 1 1 2 1 0.20 0.20 0.40 0.20 0.40 0.60
Dwc 2 1 2 0 0.40 0.20 0.40 0.00 0.60 0.80
Dfa 0 1 6 5 0.00 0.08 0.50 0.42 0.08 0.50
Dfb 13 21 32 41 0.12 0.20 0.30 0.38 0.32 0.42
Dfc 7 10 33 20 0.10 0.14 0.47 0.29 0.24 0.57
ET 1 2 7 36 0.02 0.04 0.15 0.78 0.07 0.17

Total 67 202 180 286 0.09 0.28 0.25 0.39 0.37 0.34

tegrating large-scale climate signals within forecast models.
Another interesting group consists of dams that may bene-
fit from forecast-informed operations but lack adequate fore-
cast accuracy. Such dams are located in maritime Southeast
Asia, the Pacific Northwest, and the humid subtropical cli-
mate of the southeast regions of Australia, China, USA, and
South America. These are areas in which watershed-specific
analyses may bring immediate benefits to hydropower oper-
ators. Such analyses will likely require more nuanced hydro-
climatological data than those adopted here – from observed
precipitation in the upstream catchment (Denaro et al., 2017)
to temperature and precipitation data forecasted by numeri-
cal weather prediction models (Ahmad and Hossain, 2020).

Finally, it is worth noting that the implications of our
study go beyond existing reservoirs: dam planning over large
scales may also benefit from these findings. For example, un-
tapped hydropower potential (Zhou et al., 2015; Hoes et al.,
2017) and seasonal streamflow predictability could be evalu-
ated to derive some first, qualitative, conclusions on expected
reservoir characteristics and performance. A case in point is
run-of-the-river dams: these systems have a short time-to-
fill characteristic and are therefore suitable for implementing
forecast-informed reservoir sizing and operations (Bertoni

et al., 2021). Conversely, if new dams are constructed in ar-
eas known to lack forecast skill or monitoring systems, then a
larger storage capacity may be justifiable for dams operating
with basic control rules.

5.2 Limitations and opportunities

Like any other global study, the large spatial domain requires
building on a number of assumptions that must be properly
contextualized. First, we assume that the goal of dam oper-
ators is to maximize hydropower production over the long
term (in addition to providing flood control). While this ob-
jective provides a tangible indication of forecast value, it may
not be fully representative of the local conditions encoun-
tered by operators. For example, operators may be interested
to maximize revenue (Anghileri et al., 2018), supply the bulk
of power to the grid (Zambon et al., 2012), or complement
the generation of other renewable energy sources (Graabak
et al., 2019). To account explicitly for these aspects, one
needs to model the role that dams play in the power market,
as recently done for the western USA (Voisin et al., 2020),
England (Byers et al., 2020), or the Greater Mekong (Chowd-
hury et al., 2020, 2021). With these models, one could also
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Figure 7. Distribution of dams across climate zones based on their potential to benefit from perfects forecasts. The top (a) and bottom (b)
panels represent dams with “high potential” (IPF > 4.7 %) and “low potential” (IPF ≤ 4.7 %), respectively, while “good forecast” and “poor
forecast” represent dams with MdAPE less than or greater than 20 %, respectively.

infer the willingness to pay for improved streamflow fore-
casts based on the economic value derived from their use
(Arnal et al., 2016).

Second, release decisions at individual dams may be af-
fected by joint operations between multiple reservoirs. The
analysis could thus be better supported by more accurate data
and tailored hydrological models surpassing those adopted
here. Importantly, these data could include qualitative or
quantitative forecasts. Although precipitation and stream-
flow predictions are not used consistently across the world
(Adams and Pagano, 2016), medium- to long-range forecasts
are increasingly being adopted by water utilities – as recently
shown by Turner et al. (2020) for 300 dams in the contermi-
nous United States. Access to observed and inferred release
decisions could thus help researchers provide a more robust
and nuanced estimate of forecast value. Accurate data and
tailored hydrological models could also help quantify the ex-
tent to which operators may benefit from predicting other

variables than the average inflow, such as the inflow peak
over a given horizon (Bertoni et al., 2021).

Finally, the investigation of alternative forecast approaches
may be warranted. In particular, our deterministic long-range
forecasts could be replaced by probabilistic ones, based,
for example, on ensemble dynamical forecasts or statistical
models including a stochastic representation of the resid-
uals. By adopting probabilistic forecasts, one could repre-
sent additional operational aspects, such as the capacity of
hydropower dam managers to inform their decisions based
on probabilistic information. Such an extension to our study
could possibly uncover greater potential for improving dam
operations (Zhao et al., 2011) and allow for a more nu-
anced quantification of forecast value. When considering the
forecast system, it is also important to note that regional-
and global-scale forecasting systems are gaining momentum
(Kirtman et al., 2014; Emerton et al., 2018), showing skill-
ful forecasts over large spatial domains and long prediction

Hydrol. Earth Syst. Sci., 26, 2431–2448, 2022 https://doi.org/10.5194/hess-26-2431-2022



D. Lee et al.: Forecast values in global hydropower 2445

horizons (Arnal et al., 2018; Towner et al., 2019), and this
may justify investigation. Importantly, such approaches may
not be limited to headwater dams, as long as the underpin-
ning hydrological model (coupled with seasonal forecasts)
includes a realistic representation of water management de-
cisions (Pechlivanidis et al., 2020).

6 Conclusions

This analysis expands the existing body of knowledge on the
relationship between forecast skill, value, and reservoir de-
sign for the hydropower sector. As expected, a positive rela-
tion between skill and value exists; however, we also demon-
strate that value is strongly modulated by reservoir charac-
teristics. The two extreme cases are represented by dams that
can be profitable with little regard for forecast accuracy and
dams that do not appear to benefit from seasonal streamflow
forecasts. Considering reservoir characteristics and forecast
skill together, we identify regions with high potential to ben-
efit from forecast-informed operations whether forecast ac-
curacy is good or poor. Research that integrates these find-
ings with hydrological-electricity models to quantify eco-
nomic benefits is warranted. Specifically, this may reflect the
willingness to pay for improved forecast models. Such an as-
sessment could provide guidance and insight for large-scale
hydropower planning and management, particularly as en-
ergy systems become more interconnected.
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