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Abstract. Rainfall-runoff modeling is of great importance
for flood forecast and water management. Hydrological mod-
eling is the traditional and commonly used approach for
rainfall-runoff modeling. In recent years, with the develop-
ment of artificial intelligence technology, deep learning mod-
els, such as the long short-term memory (LSTM) model, are
increasingly applied to rainfall-runoff modeling. However,
current works do not consider the effect of rainfall spatial
distribution information on the results. Focusing on 10 catch-
ments from the Catchment Attributes and Meteorology for
Large-Sample Studies (CAMELS) dataset, this study com-
pared the performance of LSTM with different look-back
windows (7, 15, 30, 180, 365 d) for future 1 d discharges and
for future multi-day simulations (7, 15 d). Secondly, the dif-
ferences between LSTMs as individual models trained inde-
pendently in each catchment and LSTMs as regional mod-
els were also compared across 10 catchments. All models
are driven by catchment mean rainfall data and spatially dis-
tributed rainfall data, respectively. The results demonstrate
that regardless of whether LSTMs are trained independently
in each catchment or trained as regional models, rainfall
data with spatial information improves the performance of
LSTMs compared to models driven by mean rainfall data.
The LSTM as a regional model did not obtain better results
than LSTM as an individual model in our study. However,
we found that using spatially distributed rainfall data can re-
duce the difference between LSTM as a regional model and
LSTM as an individual model. In summary, (a) adding in-
formation about the spatial distribution of the data is another
way to improve the performance of LSTM where long-term
rainfall records are absent, and (b) understanding and utiliz-

ing the spatial distribution information can help improve the
performance of deep learning models in runoff simulations.

1 Introduction

Rainfall-runoff simulations are vital for watershed water re-
sources management and risk analysis (Montanari, 2005;
Neitsch et al., 2011). In addition, rainfall-runoff simulation
plays an increasingly important role as a technical basis
for hydrological forecasting due to the frequent occurrence
of extreme hydrological events caused by climate change
(Grayman, 2011; Panagoulia and Dimou, 1997). As the most
widespread and essential tool for water science research, hy-
drological model plays a pivotal role in rainfall-runoff simu-
lation (Krause et al., 2005; Sood and Smakhtin, 2015). The
development of hydrological models cannot be separated
from the continuous research on hydrological processes. It is
on the basis of the continuous understanding of hydrological
processes that hydrological researchers have enough theoret-
ical basis for building models that describe the interrelation-
ship between the various hydrological elements and can sim-
ulate the overall hydrological cycle. The development of hy-
drological models has gone through two main stages, namely
lumped hydrological models and distributed hydrological
models (Devia et al., 2015). For example, the Stanford model
was the first lumped hydrological model with a solid theoret-
ical basis (Crawford, 1966). In 1977, British, Danish, and
French researchers jointly proposed the SHE (Systeme Hy-
drologique Europeen) hydrological model, which represents
the first generation of distributed hydrological models (Sa-
hoo et al., 2006). The variable infiltration capacity (VIC)
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model is a large-scale-distributed hydrological model devel-
oped by the University of Washington, the University of Cal-
ifornia at Berkeley, and Princeton University (Liang et al.,
1996). The distributed VIC model is based on the idea of
gridding to achieve distributed simulation of watersheds.

However, the fact that we cannot accurately describe every
process of the hydrological cycle leads to the necessary sim-
plifications in the hydrological model calculation process,
which is one of the contributing factors to simulation errors.
Since models based on physical mechanisms cannot fully de-
scribe the physical processes of the hydrological cycle, re-
searchers started to explore data-driven models for hydrolog-
ical modeling (Solomatine and Ostfeld, 2008). For example,
support-vector machines (SVMs) are often used to manage
the processing of hydrological model input data or to perform
hydrological simulations directly due to their advantages in
processing nonlinear problems (Ahmad et al., 2010; Sivapra-
gasam et al., 2001). Artificial neural networks (ANNs) are a
type of machine learning method that have been used for hy-
drological modeling since the 1990s. In the following years,
more research demonstrated that ANN models can achieve
comparable results to physical models while requiring less
data (Chang et al., 2015; Ömer Faruk, 2010). Although the
robustness of ANN models needs to be further investigated,
the ability of ANNs to capture the nonlinearity associated
with hydrological applications has led to its widespread use
(Ghumman et al., 2011).

In recent years, with the development of deep learning
techniques, long short-term memory (LSTM), as one type of
recurrent neural network (RNN) structure, has gained much
attention in processing time series data. Compared with the
traditional version of RNN, LSTM can solve its inherent
problem of gradient disappearance or explosion (Greff et
al., 2017; Hochreiter and Schmidhuber, 1997). LSTM has
been used in many fields, including hydrological, and has
achieved better results than traditional RNNs. For example,
Hu et al. (2018) compared the difference between ANN and
LSTM in simulation of flood events, and the results show
that LSTM models perform significantly better than ANN
models. Kratzert et al. (2018) trained LSTM models with
rainfall-runoff data from several watersheds, demonstrating
the potential of LSTM as a regional hydrological model,
one of which can predict flows in various watersheds. An
LSTM model was also used in combination with sequence-
to-sequence to simulate the discharge for the next few hours
(Xiang et al., 2020). A study by Gauch et al. (2021a) illus-
trated that LSTM can process different input variables at dif-
ferent time scales. Gauch et al. (2021b) then used LSTM as a
regional model and studied the relationship between LSTM
and training period length and number of training basins. Gao
et al. (2020) compared RNN, LSTM, and the gated recurrent
unit (GRU) network. Their results show that the accuracy of
LSTM and GRU models gradually improves and stabilizes
with the increase in time step.

Analyzing the current research applying LSTM to rainfall-
runoff simulation, we find that the spatial information of the
input is not fully utilized. The input features involved in the
rainfall-runoff simulation, for example, rainfall and temper-
ature, are not spatially distributed. Current research mostly
uses an aggregated value, for example, surface-mean value,
to drive LSTM models, which to some extent loses the spa-
tial distribution information of the features. The uneven spa-
tial distribution of these factors has a significant impact on
the formation of runoff, especially the formation of peak dis-
charge.

The aim of this study is to explore the potential impact of
spatial distribution information in rainfall-runoff simulation
using LSTM. Considering that rainfall is the most direct and
influential factor in rainfall-runoff simulation, the main ob-
jective of this study is to compare the results obtained using
the LSTM model driven by rainfall data with spatial distribu-
tion information with those obtained using the LSTM model
driven by basin mean rainfall data. The comparison includes
the following differences:

1. Look-back windows. Analyze how spatial information
affects the results of LSTM models under different input
sequence lengths.

2. Look-forward windows. With the fixed input sequence
length, use the LSTM with “many-to-one” structure
to simulate next day discharge and use the “many-to-
many” structure of the LSTM to simulate next multi-
day discharge. The effect of spatial information under
different look-forward windows is also analyzed.

3. Training settings. Analyze the effect of spatial informa-
tion on regional LSTM. LSTM is often used as a re-
gional model, combining data from catchments within
the region to train the model. The regional setting is of
particular interest because it allows the model to encap-
sulate different hydrological processes by learning from
more data and situations. The effect of spatial informa-
tion on the results when training LSTM using data from
each catchment separately is also considered.

The paper is structured is as follows. Section 2 describes the
data, the model structure, and the experimental design. Sec-
tion 3 analyzes and discusses results. Section 4 provides con-
cluding remarks and discusses future research.

2 Methods and dataset

2.1 The CAMELS dataset

In this study, we use the Catchment Attributes and Meteo-
rology for Large-Sample Studies (CAMELS) dataset from
the National Center for Atmospheric Research (NCAR; Ad-
dor et al., 2017a; Newman et al., 2015). The dataset con-
tains lumped meteorological forcing data and observed dis-
charges on a daily timescale starting in 1980 for most basins.
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Lumped meteorological forcing data were mainly calculated
from three grid data sources, namely Daymet (Thornton et
al., 2014), Maurer (Livneh et al., 2013), and NLDAS (Xia
et al., 2012). We used Daymet data in this study since it has
a better resolution of 1 km than the other two data sources.
CAMELS contains a total of 671 catchments with minimal
anthropogenic disturbance in the contiguous United States
(CONUS). All catchments are divided into 18 hydrologic
units (HUCs) according to the US Geological Survey’s HUC
map. In this study, we selected 10 catchments, 5 from the
Ohio region and 5 from the Pacific Northwest. The Ohio re-
gion is located in the east and the Pacific Northwest is located
in the west, which can better describe the different hydrolog-
ical conditions. For each catchment, CAMELS has the basin
mean forcing (lump) dataset, which includes the driving data
when using the lumped hydrological model. These are (i)
daily cumulative rainfall, (ii) daily minimum air temperature,
(iii) daily maximum air temperature, (iv) mean short-wave
radiation, and (v) vapor pressure. Here, the daily cumulative
rainfall is treated as the basin mean rainfall data without spa-
tial distribution information. For each catchment, CAMELS
also includes the hydrological response units it contains. As
can be seen in Fig. 1, instead of using the catchment mean
rainfall data (see the top of Fig. 1b), we extract the rainfall
of all hydrological response units in the catchment to form
a vector. The bottom of Fig. 1b shows that the catchment
has eight hydrological response units from which we extract
the corresponding eight rainfall datasets to form a vector of
size 8. Since each value in this vector represents the rainfall
at different locations in the catchment, we assume that the
vector can describe the rainfall at different locations, which
means it has spatial distribution information. We extracted
the rainfall data of each hydrological response unit, created
a dataset for the corresponding catchment, and regarded it as
rainfall with spatial distribution information. The locations
of the 10 catchments are shown in Fig. 1a. Table 1 shows the
basic information on each catchment and the size of the cor-
responding spatially distributed rainfall dataset. In addition,
CAMELS data include simulation results from the hydrolog-
ical model, which is the Snow-17 model coupled with the
Sacramento Soil Moisture Accounting Model (Newman et
al., 2015). In this study, we use the results of this model as a
benchmark to compare with the results of LSTM in Experi-
ment 1.

2.2 Long short-term memory network

RNNs are among the most frequently used deep learning
models to deal with sequential data. They are a superset of
feed-forward neural networks augmented by the inclusion of
recurrent edges that span adjacent time steps, introducing a
notion of time to the models (Lipton et al., 2015). The main
problem with RNN models is the occurrence of long-term
dependencies, which arise when the nodes of a neural net-
work have gone through many time steps of computation

and the features from a relatively long time ago have been
covered by the latest features (Sherstinsky, 2020; Bengio et
al., 1994). The main problem with RNN models is the oc-
currence of long-term dependencies, which arises when the
nodes of a neural network have gone through many time steps
of computation and the features from a relatively long time
ago have been covered by the latest features. The motivation
for an LSTM model is to solve the problem mentioned above.
As the name implies, long short-term memory is a neural
network with the ability to remember both long- and short-
term information. LSTM was first proposed by Hochreiter
and Schmidhuber (1997) in 1997 and has since gone through
several generations, resulting in a more systematic and com-
plete LSTM framework that has been widely used in many
fields. The reason why LSTM can solve the long-term de-
pendency problem of RNN is that LSTM introduces the gate
mechanism for controlling the delivery and loss of features.
The basic structure of LSTM is shown in Fig. 2. In the equa-
tions below, Ws are the weight matrices for different gates
(Wf for forget gate, Wi for input gate, Wc for output gate,
and Wo for gate unit); bs are the bias vectors for different
gates (bf for forget gate, bi for input gate, bc for output gate,
and bo for gate unit); tanh is the hyperbolic tangent activation
function; and σ is the sigmoid activation function.

Whenever information passes through an LSTM cell, there
are actions that determine what old information is discarded
and what new information is added. The structures that con-
trol the addition and subtraction of information to and from
the cell state are called gates. There are three such gates in an
LSTM cell, namely forget gate, input gate, and output gate.

The forget gate determines which information needs to be
noted and which can be ignored. The information from the
current input xt and the hidden state ht−1 is passed through
the sigmoid function. Sigmoid generates a value between 0
and 1, which can be used to describe whether a part of the
old output is necessary (by bringing the output closer to 1).
This value of f t is the output of the forget gate.

f t = σ ·
(
Wf ·

[
ht−1,xt

]
+ bf

)
(1)

The input gate performs two steps to update the cell state.
First, the current state xt and the previously hidden state ht−1
are passed to a second sigmoid function. Next, the same
information about the hidden state and the current state is
passed through the tanh function. To regulate the network,
the tanh operator creates a vector ct , where all possible val-
ues are between −1 and 1.

it = σ ·
(
Wi ·

[
ht−1,xt

]
+ bi

)
(2)

ct = tanh ·
(
Wc ·

[
ht−1,xt

]
+ bc

)
(3)

The next step is to decide on and store the information
from the new state in the cell state ct . The previous cell state
ct−1 is multiplied by the forget vector f t . If the result is 0, the
information is removed from the cell state. Next, the network
takes the output value of the input vector it , which updates
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Table 1. Overview of the selected catchments; for precipitation and temperature, mean and standard deviation are reported.

ID Region Code Area Mean Daily minimum No. of
name (km2) precipitation air temperature HRU

(mm d−1) (C)

1 Ohio 03164000 46.15 3.66± 8.07 4.20± 8.52 64
2 03069500 58.41 4.00± 6.69 2.07± 0.24 32
3 03070500 64.72 3.67± 6.58 3.84± 9.30 8
4 03213700 59.10 3.47± 6.43 5.54± 8.91 41
5 03281500 69.22 3.76± 7.52 6.26± 9.15 27
6 Pacific 13340000 73.87 2.96± 4.32 − 1.44± 6.88 193
7 Northwest 12025000 33.43 4.58± 7.21 4.82± 4.86 12
8 12358500 81.11 3.36± 5.18 − 2.38± 8.14 36
9 13337000 89.69 3.61± 5.54 − 1.56± 6.99 34
10 13338500 73.75 2.37± 3.75 − 1.34± 6.95 41

Figure 1. (a) Ten catchments and their locations in the state; (b) examples of spatially distributed rainfall data in this study.

the cell state and thus provides the network with a new cell
state ct .

ct = ct−1�f t + ct � it (4)

The output gate will determine the value of the next hid-
den state, which contains information about the previous in-
put. First, the model passes the current state and the value
of the previous hidden state to a third sigmoid function. The
resulting new cell state is then passed through the tanh func-
tion. Based on this output value, the network decides what
information the hidden state should have. This hidden state

is used for output. The new cell state and the new hidden state
are transferred to the next time step.

ot = σ ·
(
Wo ·

[
ht−1,xt

]
+ bo

)
(5)

ht = ot � tanh(ct ) (6)

In summary, the forget gate determines what relevant in-
formation from previous steps is needed. The input gate de-
termines what relevant information can be added to the cur-
rent step, and the output gate ultimately determines the next
hidden state.
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Figure 2. Basic LSTM layer structure with a detailed calculation illustration shown in the LSTM cell at time step t .

2.3 Performance evaluation criteria

In this study, the performance of each model is evaluated
by statistical error measurements and characteristics of dis-
charge process error including the Nash–Sutcliffe efficiency
coefficient and root mean square error (RMSE).

The Nash–Sutcliffe efficiency coefficient (NSE) is often
used to verify the

goodness of the hydrological model simulation results.
NSE is calculated as follows:

NSE= 1−
∑n

1(p
t
− q t )2∑n

1(p
t − q t )2

, (7)

where p is the model simulation discharge at time t , q t is the
observed discharge at time t , and q t is the mean of observed
discharge. NSE takes the value of negative infinity to 1. NSE
close to 1 means that the model quality is good and credible;
NSE close to 0 means that the simulation results are close to
the mean level of the observed values, i.e., the overall results
are credible, but the simulation error is large. If NSE is much
less than 0, the model is not credible.

The RMSE assesses how well the predictions match the
observations. Depending on the relative range of the data,
values can range from 0 (perfect fit) to +∞ (no fit). RMSE
is calculated as follows:

RMSE=

√∑n
1(p

t
− q t )2

n
, (8)

where pt is the model’s simulation discharge at time t , q t is
the observed discharge at time t , and n is the length of the
sequence.

We also used the error of peak discharge (EPD) to measure
the ability of the model to simulate peak discharge. Since
there are multiple peak discharges in the sequence, we used
the mean of all peak discharge EPDs as an indicator. EPD
can be calculated as follows:

EPD=
1
n
·

n∑
1

∣∣∣ptp− q tp∣∣∣
q tp

· 100%, (9)

where q tp is the observed peak discharge at time t,ptp is the
modelled peak discharge at time t , and n is the number of
peak discharges in the dataset.

2.4 Experimental setup

Considering the start and end times of rainfall data for all sta-
tions in the two catchments, for each catchment, we have a
total of 11 680 data points at the daily timescale, which are
from 1 January 1980 to 23 December 2011. All model cali-
bration and training was performed using data from 1 Jan-
uary 1980 to 11 October 2008. All model evaluation was
done using data from 12 October 2008 to 23 November 2011.
All data were normalized before being imported into the
model. In this study, we set up three experiments. Experi-
ment 1 and Experiment 2 were used to study the performance
of LSTM for “one time step output”. In Experiment 1, LSTM
was trained as an individual model in each catchment sepa-
rately. For each catchment, we used catchment mean rain-
fall data and spatially distributed rainfall data as input rain-
fall data. We considered different lengths of the input se-
quence, mainly 7, 15, 30, 180, and 365 d. In Experiment 2,
LSTM was used as a regional model. Specifically, training
data from catchments 1–5 were combined to train regional
model 1, and training data from catchments 6–10 were com-
bined to train regional model 2. The trained regional model
was used for the corresponding catchment in order to test the
effect of the model. For each regional model, we used dif-
ferent types of rainfall data separately. It is noted that the
vector length used to describe the rainfall spatial distribution
information is not consistent for each catchment due to the
inconsistent number of HRUs contained in each catchment.
When using the regional LSTM, we need to keep the vec-
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Table 2. Input data, output data, and training process for three experiments.

ID Input data Type of rainfall Training process Output

Exp. 1 M,P 1. Basin mean rainfall data
2. Spatially distributed rainfall

1. LSTM as individual model
for each catchment

D for the next one day

Exp. 2 M,P 1. Basin mean rainfall data
2. Spatially distributed rainfall

2. LSTM as regional model D for the next one day

Exp. 3 M,P 1. Basin mean rainfall data
2. Spatially distributed rainfall

1. LSTM as individual model
for each catchment/ 2. LSTM as
regional model

D for the next few days
(7 / 15 d)

Figure 3. Comparison of performance of Experiment 1 using different types of rainfall data.

tor lengths of the corresponding catchments the same, so that
we can gather the data from different catchments together
to train the model. We standardized the length of spatially
distributed rainfall data for each catchment to 20 when us-
ing the regional LSTM. For the catchment whose length is
greater than 20, we fused some of the hydrological response
units and take the average value as the rainfall of the fused
units. For the catchment whose length is less than 20, we
added enough 0 elements to the vector to make the length 20.
Experiment 3 was designed to examine the performance of
LSTM for “n time step output”. In Experiment 3, the look-
back window of the LSTM was set to 365 d based on the
results of the first two experiments. We examined the model
for the next 7 and 15 d and considered the difference between
LSTM as an individual model for each catchment and a re-
gional model. Each model was also driven separately using
different rainfall data. We usedM for meteorological data in-
cluding daily minimum air temperature, daily maximum air
temperature, mean short-wave radiation, and vapor pressure;
D for discharge data, and P for rainfall data. The input and
output data for the three experiments (Experiments 1–3) are

shown in Table 1. We tested two-layer LSTM with hidden
states of 64 and 128, and batch sizes of 64 and 128. Finally,
in all experiments, we used a two-layer LSTM structure with
a cell/hidden state of 128 for each layer. The dropout rate was
set at 0.2 in the experiment, and the batch size was 128. For
each training procedure in the three experiments, the num-
ber of epochs is 200. We repeated each training procedure
10 times and selected the best-performing model parameters
by validation data for the future test.

3 Results and discussion

3.1 Comparison of the results from different types of
rainfall-driven data for “one time step output”
simulation using LSTM as individual model
(Experiment 1)

In Experiment 1, each catchment was trained separately. We
compared the model results for different look-back windows
driven by different types of rainfall data. The simulation re-
sults of the hydrological model are also placed in each table

Hydrol. Earth Syst. Sci., 26, 2387–2403, 2022 https://doi.org/10.5194/hess-26-2387-2022



Y. Wang and H. A. Karimi: Impact of spatial distribution information of rainfall in runoff simulation 2393

Table 3. Performance of Experiment 1 driven by catchment mean rainfall data.

ID 7 d 15 d 30 d 180 d 365 d Benchmark

RMSE NSE RMSE NSE RMSE NSE RMSE NSE RMSE NSE RMSE NSE
(mm d−1) (mm d−1) (mm d−1) (mm d−1) (mm d−1) (mm d−1)

1 0.71 0.74 0.61 0.80 0.60 0.81 0.62 0.80 0.59 0.82 0.67 0.65
2 1.82 0.70 1.52 0.79 1.42 0.81 1.29 0.85 1.40 0.82 1.97 0.78
3 1.92 0.59 1.77 0.65 1.76 0.65 1.44 0.77 1.45 0.76 2.08 0.64
4 1.14 0.56 1.03 0.65 0.87 0.74 0.73 0.82 0.76 0.81 0.92 0.60
5 1.60 0.71 1.53 0.74 1.60 0.71 1.16 0.85 1.21 0.83 1.77 0.78
6 0.96 0.80 0.98 0.79 0.89 0.83 0.59 0.92 0.58 0.92 0.91 0.84
7 1.70 0.86 1.75 0.85 1.51 0.89 1.51 0.89 1.65 0.87 1.92 0.84
8 1.25 0.80 1.30 0.86 1.24 0.87 0.97 0.84 1.17 0.83 1.71 0.82
9 1.39 0.76 1.38 0.80 1.34 0.81 1.12 0.87 1.06 0.85 1.75 0.81
10 0.60 0.75 0.61 0.78 0.57 0.80 0.37 0.89 0.37 0.90 0.65 0.73

Table 4. Performance of Experiment 1 driven by spatially distributed rainfall data.

ID 7 d 15 d 30 d 180 d 365 d Benchmark

RMSE NSE RMSE NSE RMSE NSE RMSE NSE RMSE NSE RMSE NSE
(mm d−1) (mm d−1) (mm d−1) (mm d−1) (mm d−1) (mm d−1)

1 0.67 0.76 0.61 0.81 0.54 0.85 0.54 0.85 0.50 0.87 0.67 0.65
2 1.78 0.71 1.56 0.78 1.22 0.86 1.21 0.87 1.30 0.85 1.97 0.78
3 1.94 0.58 1.66 0.69 1.56 0.72 1.43 0.77 1.43 0.77 2.08 0.64
4 1.08 0.61 1.04 0.63 0.86 0.75 0.69 0.84 0.70 0.83 0.92 0.60
5 1.56 0.72 1.39 0.78 1.37 0.79 1.04 0.88 1.02 0.88 1.77 0.78
6 0.87 0.84 0.85 0.85 0.80 0.86 0.53 0.94 0.53 0.94 0.91 0.84
7 1.73 0.85 1.68 0.86 1.42 0.90 1.53 0.88 1.51 0.89 1.92 0.84
8 1.34 0.85 1.32 0.85 1.31 0.85 1.47 0.82 1.30 0.86 1.71 0.82
9 1.63 0.72 1.47 0.78 1.36 0.81 1.08 0.88 1.08 0.88 1.75 0.81
10 0.64 0.75 0.62 0.77 0.51 0.84 0.38 0.91 0.39 0.91 0.65 0.73

for comparison. Table 3 shows the performance of Experi-
ment 1 driven by catchment mean rainfall data. From the ta-
ble, we can see that there is a gradual improvement in the
performance of the simulation as the length of look-back
windows increases. Except for catchment 7, where the best
model occurs at look-back windows of 30 and 180, the best
results for all other catchments are at look-back windows of
180 and 365 d. The catchment with the largest improvement
in RMSE is catchment 3, where the RMSE is 1.92 with a
look-back window of 7 d and 1.45 with a look-back win-
dow of 365 d. The catchment with the largest improvement in
NSE is catchment 4, where the NSE is 0.56 with a look-back
window of 7 d and 0.81 with a look-back window of 365 d.
Comparing the results of the LSTM model with the bench-
mark, we can see that the results of the LSTM model are
overall better than those of the benchmark. When the look-
back window is 7 or 15 d, the results of some catchments are
slightly worse than the benchmark, such as for catchment 4
and catchment 1. However, when the look-back window is
larger than 15 d, the results of LSTM outperform the bench-
mark.

Table 4 shows the performance of Experiment 1 driven
by spatially distributed rainfall data. We can see that for the
LSTM driven by spatially distributed rainfall data, the results
are better than for the shorter look-back windows when the
look-back window is 180 or 365 d. For example, for catch-
ment 2, the RMSE for look-back windows of 7 and 365 d are
1.78 and 1.30, respectively, with an improvement of 0.48.
The largest improvement in NSE is with catchment 4, with
an NSE of 0.56 when the look-back window is 7 and 0.81
when the look-back window is 365. We also compared the
results of LSTM with the benchmark. The results are similar
to those driven by catchment mean rainfall data. The results
of the LSTM model are generally better than the benchmark.
Based on the results in Tables 3 and 4, we can conclude that
for runoff simulation, increasing the look-back window can
improve the simulation performance of the LSTM. In our ex-
periments, regardless of the type of rainfall data used to drive
the LSTM, the simulations with look-back windows of 180
and 365 d outperform the models with 7, 15, and 30 d. Com-
pared with RNN, LSTM can learn long-term dependence.
The long look-back window can provide more information
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Table 5. Comparison of EPDs of Experiment 1 using different types of rainfall data.

1 2 3 4 5 6 7 8 9 10

180 d (1) 0.24 0.24 0.25 0.27 0.26 0.16 0.16 0.17 0.22 0.22
(2) 0.17 0.25 0.25 0.28 0.21 0.14 0.16 0.15 0.23 0.22

360 d (1) 0.20 0.28 0.25 0.31 0.24 0.17 0.18 0.20 0.22 0.21
(2) 0.15 0.23 0.26 0.29 0.22 0.14 0.18 0.20 0.21 0.20

(1) driven by catchment mean rainfall data; (2) driven by spatially distributed rainfall data.

Figure 4. Comparison of performance of Experiment 1 using different types of rainfall data.

for establishing the relationship between the input and out-
put data, which can improve the performance of the model.

Figure 3 shows how we compare the differences in the re-
sults obtained by driving LSTM with different types of rain-
fall data. The comparison for RMSE is shown in the left
panel. Positive values indicate that the results driven by spa-
tially distributed rainfall data are better than those driven by
mean rainfall data. The right panel shows the comparison of
NSE. Negative values indicate that the results driven by spa-
tially distributed rainfall data outperform mean rainfall data-
driven results. We find that the results driven by spatially dis-
tributed rainfall data are better than those driven by mean
rainfall data. In particular, when the look-back windows are
180 and 365 d, which represent the better models for each
catchment, the results driven by spatially distributed rainfall
data are generally better than the results driven by mean rain-
fall data. For example, for NSE, when the look-back window

is 365 d, the results obtained from spatially distributed rain-
fall data are better than those obtained from mean rainfall
data. However, we find that for catchment 8, the RMSE ob-
tained for the mean rainfall data with a look-back window of
180 d is 0.5 smaller than the one obtained for the correspond-
ing spatially distributed rainfall data, which is the largest dif-
ference.

Table 5 compares the error of peak discharge obtained
from different types of driver data. As can be seen from the
table, the simulation of peak discharge is better in the re-
sults obtained using spatially distributed rainfall data. Ex-
cept for catchment 4, where the best simulation results oc-
cur in the mean rainfall data, the best results for the other
nine catchments occur in the results of spatially distributed
rainfall data. Figure 4 compares the catchment 10 discharge
process using different types of rainfall data. We can see that
the discharge process obtained by spatially distributed rain-
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Figure 5. Comparison of performance of Experiment 1 using different look-back windows.

Table 6. Comparison of performance of the regional model (HUC 1) using different types of rainfall data.

Driven by catchment mean rainfall data.

7 d 15 d 30 d 180 d 365 d

ID RMSE NSE RMSE NSE RMSE NSE RMSE NSE RMSE NSE
(mm d−1) (mm d−1) (mm d−1) (mm d−1) (mm d−1)

1 1.40 0.27 1.79 0.22 1.38 0.21 1.00 0.48 0.99 0.48
2 1.90 0.67 1.74 0.72 1.40 0.82 1.27 0.85 1.30 0.84
3 1.90 0.59 1.69 0.68 1.54 0.73 1.41 0.77 1.54 0.73
4 1.13 0.57 1.35 0.38 1.19 0.52 1.31 0.43 1.04 0.64
5 1.68 0.68 1.59 0.71 1.70 0.67 1.36 0.79 1.43 0.77

Driven by spatially distributed rainfall data

1 1.14 0.42 1.26 0.32 1.37 0.21 0.91 0.57 0.82 0.65
2 1.94 0.65 1.62 0.76 1.43 0.81 1.43 0.81 1.30 0.84
3 1.79 0.64 1.63 0.70 1.48 0.75 1.36 0.79 1.38 0.79
4 1.08 0.61 1.31 0.42 1.33 0.40 0.87 0.75 1.00 0.66
5 1.72 0.67 1.59 0.71 1.60 0.71 1.27 0.82 1.11 0.86

fall is closer to the actual one. The results obtained by spa-
tially distributed rainfall are also better in the simulation of
flood peaks. Coupling NSE with RMSE, we can see that good
performance can be achieved by using LSTM for runoff sim-
ulation. The results of LSTM using longer look-back win-
dows are generally better than those of the benchmark and
shorter look-back windows. The spatially distributed rainfall
data can provide more information to the input data, which

helps the LSTM to better identify the relationship between
the input and output data, and thus build a more accurate
model.

https://doi.org/10.5194/hess-26-2387-2022 Hydrol. Earth Syst. Sci., 26, 2387–2403, 2022



2396 Y. Wang and H. A. Karimi: Impact of spatial distribution information of rainfall in runoff simulation

Table 7. Comparison of performance of the regional model (HUC 2) using different types of rainfall data.

Driven by catchment mean rainfall data

7 d 15 d 30 d 180 d 365 d

ID RMSE NSE RMSE NSE RMSE NSE RMSE NSE RMSE NSE
(mm d−1) (mm d−1) (mm d−1) (mm d−1) (mm d−1)

6 0.83 0.85 0.92 0.82 0.91 0.82 1.05 0.75 0.93 0.77
7 1.80 0.84 1.82 0.84 1.83 0.84 1.80 0.84 1.59 0.88
8 1.35 0.84 1.37 0.84 1.50 0.81 0.95 0.92 1.02 0.91
9 1.36 0.81 1.40 0.80 1.37 0.81 0.87 0.92 0.82 0.93
10 0.96 0.44 0.83 0.58 0.88 0.53 0.55 0.82 0.57 0.80

Driven by spatially distributed rainfall data

6 1.07 0.75 1.05 0.76 1.03 0.77 0.77 0.87 0.78 0.87
7 1.60 0.87 1.46 0.90 1.56 0.88 1.32 0.91 1.33 0.91
8 1.63 0.77 1.60 0.78 1.54 0.80 1.17 0.88 0.97 0.92
9 1.59 0.74 1.56 0.75 1.37 0.80 0.90 0.92 0.79 0.92
10 0.77 0.64 0.80 0.61 0.99 0.40 0.51 0.84 0.38 0.91

3.2 Comparison of the results from different types of
rainfall-driven data for “one time step output”
simulation using LSTM as regional model
(Experiment 2)

In Experiment 2, we examined the effect of different types
of rainfall data on the model when the LSTM is used as a
regional model. The data from catchments 1–5 were used
together to train regional model HUC 1, and the data from
catchments 6–10 were used together to train regional model
HUC 2. We applied the trained model to each catchment sep-
arately and compared the performance.

Tables 6 and 7 show the results obtained by training the
regional model with different types of rainfall data. Firstly,
combining the results of the two regional models, we can see
the same trend as in Experiment 1, that is, for each model,
the optimal performance occurs when the look-back win-
dows are 180 and 365 d. This also proves that extending the
look-back windows can improve the model’s performance.
For HUC 1, we found that spatially distributed rainfall data
in all catchments achieved better results, except for catch-
ment 2, where mean rainfall data achieved slightly better sim-
ulation results. Similarly, we found that in HUC 2, except for
catchment 8, where the mean rainfall data obtained slightly
better results than the spatially distributed rainfall data, the
spatially distributed rainfall data also obtained better results.
Figure 6 shows the EPDs of HUC 1 and HUC 2, where we
only count the results for the look-back windows of 180 and
365 d, where the models are more effective. From the figure,
we can see that for both HUCs, the EPDs obtained by training
the models with spatially distributed rainfall data are gener-
ally smaller than those obtained by training with catchment
mean rainfall data. This illustrates that adding information on
the spatial distribution of rainfall can also improve the sim-

ulation of the model when the LSTM is used as the regional
model.

The LSTM as a regional model is a widely used method
for runoff simulation. One of the main reasons is that suffi-
cient training data is a prerequisite for a deep learning model
to achieve good results, and using data from different catch-
ments of the same hydrological unit can increase the amount
of training data. Here, we compare the results obtained by
using LSTM as a regional model with those obtained by us-
ing LSTM as an individual model for each catchment. Ta-
ble 8 shows the differences between the three metrics. In
the table, a positive value of RMSE means that the regional
model is worse than the individual model; a positive value
of NSE means that the regional model is better than the
individual model; a positive value of EPD means that the
regional model is worse than the individual model. From
the figure, we did not observe the general phenomenon that
LSTM as a region model achieves better results than an in-
dividual model. For example, for catchments 1, 4, 5, 6, and
10, the RMSE and NSE using the LSTM as an individual
model for each catchment are better than the LSTM as a re-
gional model. This result is consistent for two different types
of derived data. One possible reason is that although LSTM
as a regional model can be trained with more training data,
data from different catchments increase the possibility of in-
consistency in the data. Similar discharges may correspond
to different input data in different catchments, and similar
inputs may correspond to different discharges in different
catchments. This may have a negative impact on the learning
process of LSTM. However, when comparing the difference
of LSTM as a regional model and LSTM as an individual
model from different types of data, we find that using spa-
tially distributed rainfall data can reduce the difference be-
tween LSTM as a regional model and LSTM as an individual
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Figure 6. Comparison of EPDs of Experiment 2 using different types of rainfall data.

Figure 7. Comparison of performance of Experiment 2 using LSTM as regional model and individual model.
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Table 8. Comparison of the performance between using LSTM as a regional model and an individual model: (1) driven by catchment mean
rainfall data; (2) driven by spatially distributed rainfall data.

model. We counted the absolute values of different metrics in
Table 8. The RMSE, NSE, and EPD between LSTM as a re-
gional model and LSTM as individual model are 0.2± 0.15,
0.11± 0.11, and 0.06± 0.05, respectively, when using mean
rainfall data to drive the model. When a spatially distributed
rainfall data-driven model is used, the RMSE, NSE, and EPD
between LSTM as a regional model and LSTM as an indi-

vidual model are 0.19± 0.10, 0.07± 0.07, and 0.04± 0.03,
respectively.
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Table 9. Comparison of performance using LSTM as an individual model for “n time step output”.

1 2 3 4 5 6 7 8 9 10

7 d RMSE (mm d−1) 0.62 1.2 1.5 0.68 1.28 0.61 1.49 1.28 1.14 0.39
(1) NSE 0.80 0.87 0.75 0.85 0.81 0.92 0.88 0.86 0.87 0.91

EPD 0.23 0.28 0.23 0.29 0.28 0.14 0.18 0.24 0.21 0.21

7 d RMSE (mm d−1) 0.57 1.14 1.49 0.66 1.05 0.42 1.47 1.28 1.03 0.39
(2) NSE 0.83 0.88 0.75 0.85 0.88 0.96 0.88 0.86 0.89 0.91

EPD 0.13 0.25 0.30 0.27 0.24 0.09 0.20 0.24 0.18 0.21

15 d RMSE (mm d−1) 0.67 1.39 1.64 0.73 1.28 0.58 1.74 1.36 1.19 0.43
(1) NSE 0.77 0.82 0.70 0.82 0.81 0.93 0.85 0.84 0.85 0.89

EPD 0.21 0.24 0.29 0.25 0.26 0.16 0.20 0.26 0.29 0.27

15 d RMSE (mm d−1) 0.57 1.23 1.51 0.58 1.10 0.51 1.60 1.34 1.11 0.34
(2) NSE 0.83 0.86 0.74 0.89 0.86 0.94 0.88 0.85 0.87 0.93

EPD 0.15 0.24 0.28 0.23 0.21 0.10 0.18 0.25 0.19 0.16

(1) driven by catchment mean rainfall data; (2) driven by spatially distributed rainfall data.

Table 10. Comparison of performance using LSTM as a regional model for “n time step output”.

1 2 3 4 5 6 7 8 9 10

7 d RMSE (mm d−1) 1.79 1.51 1.59 1.25 1.36 0.58 1.33 1.24 1.14 0.76
(1) NSE 0.66 0.79 0.71 0.48 0.79 0.93 0.91 0.87 0.87 0.65

EPD 0.89 0.35 0.30 0.40 0.29 0.13 0.19 0.23 0.23 0.40

7 d RMSE (mm d−1) 0.73 1.43 1.57 0.93 1.04 0.77 1.32 1.01 0.87 0.37
(2) NSE 0.73 0.81 0.72 0.71 0.88 0.87 0.92 0.91 0.92 0.92

EPD 0.30 0.30 0.33 0.27 0.24 0.10 0.16 0.15 0.14 0.15

15 d RMSE (mm d−1) 1.34 1.60 1.88 1.22 1.36 0.88 1.65 1.27 0.90 0.76
(1) NSE 0.70 0.77 0.60 0.50 0.79 0.90 0.87 0.88 0.92 0.65

EPD 0.58 0.32 0.29 0.37 0.30 0.14 0.28 0.18 0.15 0.38

15 d RMSE (mm d−1) 0.98 1.26 1.40 1.14 1.17 0.86 1.50 1.04 0.81 0.43
(2) NSE 0.50 0.85 0.78 0.57 0.84 0.84 0.89 0.91 0.93 0.89

EPD 0.31 0.25 0.28 0.31 0.25 0.13 0.16 0.16 0.14 0.18

(1) driven by catchment mean rainfall data; (2) driven by spatially distributed rainfall data.

3.3 Comparison of the results from different types of
rainfall-driven data for “n time step output”
simulation (Experiment 3)

In Experiment 3 we tested the simulation ability of LSTM
for n time steps output. Based on the results of Experiment 1
and Experiment 2, we found that longer look-back windows
can achieve better simulation results. For the future multi-day
simulation, we used a look-back window of 365 d. Our goal
is to simulate the future 7 and 15 d discharges. The results of
using LSTM as an individual model are shown in Table 9. We
can see that the error obtained by simulating the discharge for
the next 7 d is smaller than the error obtained by predicting
the discharge for the next 15 d. Prediction for multiple days in
the future is a much more difficult task. Comparing the sim-
ulation results of mean rainfall data and spatially distributed

rainfall data, we find that the results obtained by using spa-
tially distributed rainfall data are better than those obtained
by using mean rainfall data. For the next 7 d of simulations,
catchments 8 and 10 have the same results for different types
of driven data. For the next 15 d of simulations, the results ob-
tained for spatially distributed rainfall data in all catchments
are significantly better than those obtained for mean rainfall
data.

We also examined the simulation results for future mul-
tiple days when LSTM is used as a regional model. From
Table 10, we can see that in general, the regional model ob-
tained using spatially distributed rainfall data has better sim-
ulation results. Except for catchment 6, the best models for
the next 7 d are spatially distributed rainfall data-driven mod-
els. The spatially distributed rainfall data-driven model has
better results for all catchments for the next 15 d. The results
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Table 11. Comparison of Experiment 3 between using LSTM as a regional model and an individual model: (1) driven by catchment mean
rainfall data; (2) driven by spatially distributed rainfall data.

for multi-day simulations are the same as those of Experi-
ment 1 and Experiment 2. We can conclude that the rain-
fall data with spatial distribution information can improve
the rainfall simulation results of LSTM. In particular, for
the future multi-day simulations, the addition of rainfall data
with spatial analysis information lends a significant advan-

tage over the LSTM driven by mean rainfall data. By com-
paring different types of regional models, we also find that
rainfall data with spatial analysis information can also im-
prove the simulation results of LSTM as a regional model.

Table 11 shows the comparison of LSTM as an individual
model for each catchment and as a regional model for future
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multi-day simulations. As in Experiment 2, we did not ob-
serve a significant advantage of LSTM as a regional model.
In general, the regional model is better than the individual
model for catchments 7, 8, and 9, which means that the re-
sults of the regional model are slightly better than the results
of LSTM as an individual model for HUC 2. For catchments
1, 2, 3, 4, and 5, the results of the individual model are gener-
ally better than those of the regional model. When comparing
the effect of different types of driving data on the differences,
we also find that the differences between individual and re-
gional models driven by spatially distributed rainfall data are
relatively small.

4 Conclusions and future research

Deep learning models, especially LSTMs, have received in-
creasing attention in rainfall-runoff simulation studies. The
current LSTM-based studies are still mainly from a data-
driven perspective and few studies have investigated the dif-
ferent simulation results from different types of meteorologi-
cal data or construction of models based on the physical rela-
tionships of rainfall and runoff. In this study, rainfall, which
has the greatest influence on runoff, is used as the object of
study. The basin mean rainfall data are used as the rainfall
data without spatial distribution information, and the vector
composed of rainfall on hydrological response units in the
catchment is used as the rainfall data with spatial distribution
information. The impact of the two types of rainfall data on
the performance of the deep learning model is compared and
analyzed.

Based on the results of Experiment 1 and Experiment 3,
we conclude that the LSTM has a good performance com-
pared to the benchmark when performing runoff simulations.
In our experiments, the model performs better with look-
back windows of 180 and 365 d than with look-back win-
dows of 7, 15, and 30 d. The trend holds for both 1 d and
multi-day simulations. The long look-back window can pro-
vide more information for establishing the relationship be-
tween the input and output data, which can improve the per-
formance of the model. The trend is not affected by the type
of rainfall data.

We used two approaches to train the LSTM model. One is
to treat the LSTM as an individual model and train it indepen-
dently in each catchment. The second is to use the LSTM as a
regional model, using data from all catchments in the region
for training. Based on the results of Experiment 2 and Ex-
periment 3, we found that regardless of the approach, rainfall
data with spatial information can improve the model’s perfor-
mance when compared to the model driven by mean rainfall
data. In particular, the spatially distributed rainfall data im-
proves the simulation results more when simulating the next
multi-day discharges. The spatially distributed rainfall data
can provide more information to the input data, which helps
the LSTM to better identify the relationship between input

and output and thus build a more robust model. Our findings
suggest that increasing the spatial distribution information of
the input data can improve the performance of the model,
whether the LSTM is used as an individual model or as a
regional model for runoff simulation.

We also compared the difference between LSTM as an
individual model and LSTM as a regional model. Accord-
ing to the results of our experiments, we did not observe
that LSTM as a regional model achieved better results than
LSTM as an individual model. In some catchments the re-
gional model gives better results, while in others the indi-
vidual model gives better results. This conclusion applies to
both 1 d and multi-day simulations. However, we found that
using spatially distributed rainfall data can reduce the differ-
ence between LSTM as a regional model and LSTM as an
individual model. Although LSTM as a regional model can
be trained with more training data, data from different catch-
ments increase the possibility of inconsistency in the data.
Similar discharges may correspond to different input data in
different catchments, and similar inputs may correspond to
different discharges in different catchments. This may have a
negative impact on the learning process of LSTM.

When we compared the results of spatially distributed
rainfall data in Experiment 1, i.e., increasing the spatial dis-
tribution information of the input data, with the results of
mean rainfall data in Experiment 2, i.e., increasing the size
of the training data, we found that the results of the two are
comparable. The variables related to runoff generation are
characterized by uneven spatial distribution, such as rainfall,
temperature, humidity, etc. Understanding and utilizing the
spatial distribution information of these variables can help
improve the performance of deep learning models in runoff
simulations. This is especially true for those regions where
data are scarce, since raster rainfall data with spatial distribu-
tion information are currently available from many sources.
Adding information about the spatial distribution of the data
is another way to improve the performance of deep learning
models.

There are some gaps that can be continued to be investi-
gated in the future. For example, in this study, the rainfall
of the hydrological response unit of the catchment is used
to represent the spatial distribution of rainfall information.
We can obtain raster-type rainfall data from satellite data,
climate models, and other sources, which may be able to
better represent the spatial distribution of rainfall. We only
consider comparing the basin mean rainfall and spatially dis-
tributed rainfall; however, other driving data, such as temper-
ature and pressure, also have spatial distribution characteris-
tics. How to increase the spatial distribution information of
all features on the basis of the uniform resolution of different
features and compare the influence of the input conditions on
the model results is also a research direction worth pursuing
in the future.
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