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Abstract. The Middle East and North Africa (MENA) region
has experienced more frequent and severe drought events
in recent decades, leading to increasingly pressing concerns
over already strained food and water security. An effective
drought monitoring and early warning system is thus criti-
cal to support risk mitigation and management by countries
in the region. Here we investigate the potential for assim-
ilation of leaf area index (LAI) and soil moisture observa-
tions to improve the representation of the overall hydrologi-
cal and carbon cycles and drought by an advanced land sur-
face model. The results reveal that assimilating soil mois-
ture does not meaningfully improve model representation of
the hydrological and biospheric processes for this region, but
instead it degrades the simulation of the interannual varia-
tion in evapotranspiration (ET) and carbon fluxes, mainly due
to model weaknesses in representing prognostic phenology.
However, assimilating LAI leads to greater improvement, es-
pecially for transpiration and carbon fluxes, by constraining

the timing of simulated vegetation growth response to evolv-
ing climate conditions. LAI assimilation also helps to correct
for the erroneous interaction between the prognostic phenol-
ogy and irrigation during summertime, effectively reducing
a large positive bias in ET and carbon fluxes. Independently
assimilating LAI or soil moisture alters the categorization of
drought, with the differences being greater for more severe
drought categories. We highlight the vegetation representa-
tion in response to changing land use and hydroclimate as
one of the key processes to be captured for building a suc-
cessful drought early warning system for the MENA region.

1 Introduction

The Middle East and North Africa (MENA) region has ex-
perienced intensified drought events during recent decades
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that are attributable to climate change (Bergaoui et al., 2015;
Cook et al., 2018; Pachauri et al., 2014). Multiple dimensions
of food, water, and energy security are affected by drought
in the MENA countries, leading, in some instances, to in-
creased social disparities, political disruption, and disease
outbreaks (Müller et al., 2017; Rajsekhar and Gorelick, 2017;
Stanke et al., 2013; Weinthal et al., 2015). While efforts
have been made to cope with these extreme events through
the engagement of multi-sectoral and interdisciplinary col-
laborations among communities and across scales, strategic
drought risk management linked to operational drought early
warning systems for the region are not yet in place (Pul-
warty and Sivakumar, 2014; Verner et al., 2018). Recogniz-
ing the complexity in defining drought and the broad range of
drought impacts, drought experts have favored using a Com-
posite Drought Indicator (CDI) approach that combines in-
dicators from different climate variables such as precipita-
tion, soil moisture, vegetation, and evapotranspiration (ET)
into a single product through a “convergence of evidence”
framework (Hayes et al., 2012). Such approaches have been
applied to four MENA countries (i.e., Morocco, Tunisia,
Lebanon, and Jordan) through a United States Agency for
International Development (USAID)-funded project in de-
veloping the MENA Regional Drought Management Sys-
tem (MENA RDMS; Bijaber et al., 2018; Fragaszy et al.,
2020; Jedd et al., 2020). Accurate estimates of these con-
stituent variables are therefore necessary for developing re-
liable drought assessments with CDI. Advances in remote
sensing and Earth observation technologies offer the abil-
ity to infer precipitation, soil moisture, and vegetation from
different sensing platforms at various spatiotemporal reso-
lutions. While these measurements offer valuable informa-
tion on the changes in land surface conditions, they suffer
from spatiotemporal gaps in coverage from orbital configu-
rations and sensing limitations, and, for soil moisture, a lim-
itation to shallow sensing depths (∼ a few centimeters), re-
stricting their direct use for drought representation (Brocca
et al., 2017; Kerr et al., 2016). Extending the utility of spa-
tially incomplete and temporally infrequent remote sensing
data to improve the representation of variables such as root
zone soil moisture is needed for improving CDI estimation.

Earth system models are powerful tools for generating
continuous soil moisture profiles with full spatiotemporal
coverage and provide additional information on the distri-
bution of water resources, carbon fluxes, and their impact on
hydroclimate over a broad range of scales. However, because
of the uncertainties in the simplified model physics in repre-
senting complex real-world systems and deficiencies inher-
ent in meteorological forcing inputs, soil, and vegetation pa-
rameters, model-based estimates are subject to error. Ground
measurements can serve to constrain the estimation of model
parameters, but such observations are very limited or unavail-
able for the MENA region. Therefore, one approach to mit-
igating the model uncertainties and extending the value of

remote sensing products is to merge them through data as-
similation (DA; Reichle, 2008).

Assimilating remote sensing measurements that contain
information on either surface soil moisture or vegetation can
affect the simulation of root zone soil moisture. Evidence
from previous soil moisture DA studies suggests that DA can
provide higher skill in estimating both surface and root zone
soil moisture, benefiting applications such as agricultural
drought monitoring and irrigation management (Bolten et al.,
2009; De Lannoy and Reichle, 2016; Kolassa et al., 2017;
Kumar et al., 2012; Lei et al., 2020; Liu et al., 2011). In par-
ticular, the improvement could be larger in data-sparse re-
gions, as the model skill without assimilation in data-rich re-
gions such as in the U.S. is generally high owing to abundant
ground reference data sets (Kolassa et al., 2017). Similarly,
vegetation-related products, such as leaf area index (LAI)
can also inform the variations in surface and root zone soil
moisture by influencing water uptake and the partitioning of
evapotranspiration. Prior studies have shown that assimilat-
ing LAI helps to improve the estimation of evapotranspira-
tion, root zone soil moisture, carbon fluxes, and crop yields
(Albergel et al., 2017; Barbu et al., 2014; Ines et al., 2013;
Kumar et al., 2019b; Mocko et al., 2021; Xie et al., 2017).

In this study, taking the northern part of Morocco as an ex-
ample, we report on the separate assimilation of soil moisture
and LAI into the Noah-MP land surface model (LSM) in a
configuration where the input parameters and meteorological
forcing data sets are customized for the MENA region. In this
region, much of the agricultural lands are dominated by rain-
fed agriculture. However, irrigation activities may still play
a critical role in altering the root zone soil moisture and the
associated energy and carbon fluxes for irrigated areas. The
water demand for irrigation may also vary widely in a chang-
ing climate that may include persistent droughts (Kharrou et
al., 2011). Therefore, we set up LSM simulations both with
and without the presence of such human water management.
Our objectives are twofold. First, we investigate the overall
performance of the data assimilation system by comparing
the simulated ET and carbon fluxes with a variety of multi-
source remote sensing data sets. Second, we examine the po-
tential of data assimilation for improving the representation
of root-zone-soil-moisture-based drought, which serves as an
input for the CDI estimates for the MENA region (Bijaber et
al., 2018).

2 Materials and methods

2.1 Model configuration

All the simulations are conducted using the Noah-MP
LSM, version 4.0.1, implemented within the framework of
the NASA Land Information System (LIS; Kumar et al.,
2006; open-source software available at https://github.com/
NASA-LIS/LISF/, last access: 14 September 2020). Build-
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ing on the Noah LSM (Ek et al., 2003), the Noah-MP model
advances its structure by including multi-physics options for
radiation transfer, prognostic phenology, surface water infil-
tration, runoff, and groundwater schemes. A detailed descrip-
tion of the model and its performance can be found in Niu et
al. (2011) and Yang et al. (2011).

Noah-MP is configured with four soil layers with the layer
thicknesses, varying from 0.1, 0.3, 0.6, and 1 m, from the sur-
face down to the bottom, making a total of 2 m. Water move-
ment in the soil layers is simulated using the Richards equa-
tion. A simple groundwater reservoir beneath the soil layer
allows for soil moisture–groundwater interaction and related
runoff production. Noah-MP allows for the prognostic repre-
sentation of vegetation growth, using a prognostic phenology
scheme (Dickinson et al., 1998) in combination with a Ball–
Berry photosynthesis-based stomatal resistance scheme (Ball
et al., 1987; Bonan, 1996; Collatz et al., 1991). It simulates
the carbon uptake and allocation among leaf, stem, wood,
and root in response to cold and drought stress, thus inferring
the seasonal growth of the leaf area and predicting carbon
fluxes, such as gross primary production (GPP) and net pri-
mary production (NPP). The LAI is calculated from leaf car-
bon mass by multiplying by the specific leaf area. The green-
ness vegetation fraction (GVF), which divides a grid cell into
a fractional vegetated area and a fractional bare ground area,
is derived from LAI based on a simple exponential function.
On the one hand, the vegetation photosynthesis rate is par-
tially constrained by water stress through leaf assimilation,
which is a function of the soil moisture controlling factor.
On the other hand, canopy growth conditions can, in turn,
affect moisture partitioning via GVF, thus affecting the par-
titioning of water and energy fluxes, such as evaporation and
transpiration. Given the way Noah-MP represents vegetation
phenology, assimilating either surface soil moisture or LAI
can alter the soil moisture and vegetation conditions, as well
as the partitioning of water, energy, and carbon fluxes.

2.2 Data assimilation configuration

2.2.1 SMAP soil moisture data assimilation (SSM-DA)

This study makes use of the Soil Moisture Active Pas-
sive (SMAP) Enhanced Level 3 (L3_E) passive soil mois-
ture estimates derived by the National Aeronautics and
Space Administration Jet Propulsion Laboratory (O’Neill
et al., 2020). This SMAP L3_E product provides gridded
soil moisture retrievals at 06:00 LT (local time; descending)
and 18:00 LT (ascending) on a 9 km Earth-fixed grid, along
with the ancillary data and quality assessment flags, start-
ing from 31 March 2015. The product has been evaluated
against many in situ networks (Cui et al., 2018; Li et al.,
2018; Tavakol et al., 2019) and showed a clear spatial varia-
tion in performance, with better performance in regions with
lower soil wetness, sparse vegetation, and temperate climate
(Zhang et al., 2019). The product has also been proved to

have higher information content with a capability to detect
irrigation signals and improve irrigation simulations in large-
scale LSMs (Kumar et al., 2018; Lawston et al., 2017; Felfe-
lani et al., 2018). The bilinear interpolation method is used
to regrid the 9 km product to a model space of 0.05◦. The
assimilation is performed using a one-dimensional ensem-
ble Kalman filter (EnKF; Reichle et al., 2002), similar to
the assimilation strategy employed in Kumar et al. (2014),
which allows the updating and propagation of a selected set
of model states on the basis of relative uncertainty between
the observations and the model ensemble. To address biases
between the SMAP retrievals and Noah-MP soil moisture,
the SMAP soil moisture estimates are rescaled to the model
climatology at a monthly scale for the period 2015–2019,
using cumulative density function (CDF) matching (Reichle
and Koster, 2004). An ensemble of 20 members is generated
by perturbing the meteorological forcing fields and the sur-
face soil moisture state, representing the uncertainty of the
model estimates. The temporal correlation of the perturba-
tion was chosen to be 1 d for the forcing fields and 1 h for
the surface soil moisture state via a first-order autoregressive
model. The observation error standard deviation for the un-
scaled soil moisture retrievals is set to 0.04 m3 m−3, with a
temporal correlation of 1 d, following Kumar et al. (2019a).
Moreover, quality control flags were imposed so that we as-
similate only data points recommended by the SMAP re-
trieval quality flag for unfrozen soils with vegetation water
content of less than 5 kg m−2. Perturbation bias corrections,
following Ryu et al. (2009), were applied to all the perturbed
forcing fields and surface soil moisture states to avoid the bi-
ases introduced by the nonlinear processes in the model. A
summary of the perturbation settings is shown in Table 1.

2.2.2 MODIS LAI data assimilation (LAI-DA)

The level 4, 8 d composite LAI product with 500 m pixel
size is used for LAI data assimilation, as obtained from the
MCD15A2H version 6 Moderate Resolution Imaging Spec-
troradiometer (MODIS) product, starting from July 2002
(Myneni et al., 2015). The algorithm chooses the best pixel
available from all the acquisitions of MODIS sensors located
on NASA’s Terra and Aqua satellites. This version 6 product
has been improved, as compared to previous versions, owing
to the advanced input of the surface reflectance product and
multiyear land cover product, and is able to provide reliable
biophysical information in response to climate (Yan et al.,
2016a, b). The averaging upscaling method is used to bring
the LAI product into the model resolution of 0.05◦. Similar
to the DA configuration for SSM-DA, an ensemble size of
20 members with the same meteorological forcing perturba-
tion settings are set for LAI-DA using the EnKF algorithm.
The model state vector in this DA instance only includes the
LAI variable. Once the LAI is updated from the assimilation,
the leaf carbon mass is updated by dividing LAI with the spe-
cific leaf area. Additive perturbation with a standard devia-
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Table 1. Ensemble perturbation parameters in the assimilation simulations.

Variable Type SD Temporal Perturbation cross-correlations
correlation

Met forcings SW LW Precip

SW M 0.2 (dimensionless) 24 h 1 −0.5 −0.8
LW A 30 W m−2 24 h −0.5 1 0.5
Precip M 0.5 (dimensionless) 24 h −0.8 0.5 1

LSM states for SSM-DA

Surface SMC A 0.02 m3 m−3 1 h

LSM states for LAI-DA

LAI A 0.01 m2 m−2 1 h

Note: SD is for standard deviation. Multiplicative (M) or additive (A) perturbations are applied to the meteorological (Met)
fields, with incident shortwave radiation (SW), incident longwave radiation (LW), precipitation (Precip), and the model
states, including surface soil moisture content (SMC) and LAI.

tion of 0.01 (–) is applied for both the modeled and observed
LAI fields with a temporal correlation of 1 h. A total of two
layers of quality control flags are applied to select reliable
retrievals prior to the assimilation in order to ensure retrieval
quality (MODIS15, 2020), namely the (1) FparLai quality
flag MODLAND_QC= 0 (good quality main algorithm with
or without saturation) and (2) SFC_QC flag 000 or 001, but
those only used the main (RT) algorithm. As cloud gaps often
lead to spatial discontinuities in MODIS-based LAI observa-
tions, an 8 d climatological data set is used for gap-filling in
such instances (Kandasamy et al., 2013). The climatological
data are generated using the entire record of LAI retrievals
during the period of July 2002–July 2020. The same qual-
ity control flags are also applied while generating this clima-
tological data set. Daily LAI observations are generated by
linearly interpolating between the 8 d values, and the assimi-
lation is then conducted at a daily time step.

2.3 Irrigation

In order to account for agricultural water use activities and
their impact on hydrological and carbon fluxes, we utilize a
demand-driven sprinkler irrigation scheme, which was intro-
duced into Noah-MP in Nie et al. (2018), building upon the
work of Ozdogan et al. (2010). The irrigation scheme works
according to three key rules, including (1) where to irrigate,
(2) when to irrigate, and (3) how much to irrigate.

The model’s irrigated areas are identified using a compos-
ite irrigation fraction map. This irrigation map was gener-
ated by combining the following three irrigation data sets:
Global Rain-Fed, Irrigated, and Paddy Croplands (GRIPC;
Salmon et al., 2015), Global Irrigated Areas (GIA; Meier
et al., 2018), and the International Water Management In-
stitute’s Global Irrigated Area Map (GIAM; Thenkabail et
al., 2009) product. The 500 m GRIPC, 1 km GIA, and the
250 m GIAM products were each aggregated and converted

into irrigated areal percentages at the 0.05◦ resolution grid of
the study domain, using the Land surface Data Toolkit (LDT;
Arsenault et al., 2018). For each 0.05◦ grid cell, the following
irrigation criteria were applied, where at least two of the irri-
gation products had at least 1 % minimum irrigated areal per-
centage present prior to being averaged into the composited
irrigation map. The final composite irrigation fraction map
was verified against other imagery (such as Google Earth)
and published Morocco irrigation maps (Molle and Sanchis-
Ibor, 2019), and it is shown in Fig. 1b. Note that, to avoid a
potential mismatch between the land cover type and irriga-
tion fraction, an initial check has been implemented in both
LDT and LIS to constrain irrigation within certain land cover
types, i.e., mainly the cropland and grassland classes.

The timing of irrigation – the growing season – is deter-
mined as the time period when GVF is greater than a certain
threshold. In the original Ozdogan et al. (2010) implemen-
tation, the irrigation onset is specified based on a prescribed
GVF monthly climatology data set. However, using a pre-
scribed GVF profile is no longer suitable when the prognostic
phenology module is enabled, as this may introduce incon-
sistency between the prescribed GVF data set and the prog-
nostic phenology-informed GVF. In this study, we modified
the modeling system by passing the prognostic phenology
module simulated GVF to the irrigation scheme so that the
growing season (during which irrigation occurs) is informed
by the prognostic vegetation conditions, which could be im-
pacted by both soil moisture and LAI data assimilation. This
is critical for places with intensely irrigated agriculture as the
interaction between the irrigation scheme and the prognostic
phenology scheme, and data assimilation enables the model
to simulate the interannual variability in irrigation water use,
which can directly affect the soil moisture and indirectly af-
fect vegetation growth through the water stress factor. Once
the irrigation is triggered, the irrigation water amount is cal-
culated as the volume required to bring the root zone soil
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Figure 1. Map of (a) the major land cover types based on MODIS International Geosphere Biosphere Programme (IGBP) data set and (b) the
composite irrigation fraction intensity for Morocco.

moisture deficit up to field capacity, allowing the vegeta-
tion to operate without transpiration stress. The depth of the
effective root zone used for calculating irrigation water re-
quirements varies with time, which is a function of GVF and
a crop-type-dependent parameter, i.e., maximum root depth.
Note that such assumptions for irrigation scheduling may be
subject to uncertainties, as it is generally based on farmers’
decision-making processes instead of the soil moisture deficit
approach, but these are generally unknown for data-limited
regions at such large scales. Moreover, this study does not
account for irrigation source water partitioning, due to lim-
ited in situ observational data for model calibration. This
might affect the simulation of surface and groundwater stor-
age variations and deep soil–groundwater interaction, such
as capturing groundwater depletion in major aquifers due to
excessive groundwater use (Hssaisoune et al., 2020). The in-
fluence and impact on the deeper groundwater components
are ignored here, as the current study is focused on improv-
ing soil-moisture-based drought estimation.

2.4 Experiment design

In order to study the impacts of SSM-DA and LAI-DA in
simulating the modeled water, energy, and carbon fluxes
and the impacts of irrigation on the data assimilation per-
formance, two sets of experiments, each including an open
loop (OL) run and two data assimilation runs (with and with-
out irrigation), are performed over northern part of Morocco
(Fig. 1a). The model runs are conducted at 0.05◦ spatial res-
olution, with a 15 min time step, and the duration of the in-
tegrations varies depending on the availability of the obser-
vations to be assimilated. A 57-year spin-up simulation was
performed (three times over the period of 2000–2019) to pro-
vide the initial conditions for the two sets of experiments. A
summary of the simulations is shown in Table 2.

Table 2. Summary of the simulations.

Simulations Time period Irrigation Data assimilation

OL
2002–2019

Off
n/a

OLirr On

SSM-DA
2015–2019

Off SMAP_L3_E
SSM-DAirr On Soil moisture

LAI-DA
2002–2019

Off MODIS MCD15A2H
LAI-DAirr On Leaf area index

n/a stands for not applicable.

Open loop experiments (OL and OLirr). The model is run
for the period 2000–2019 without assimilating any observa-
tions. Irrigation is turned off for OL and on for OLirr, with
the prognostic GVF simulated by the prognostic phenology
module informing the timing for irrigation in OLirr. Several
sensitivity tests are performed to determine the best set of ir-
rigation parameters to capture the general growing season for
Morocco according to the report of Global Information and
Early Warning System on Food and Agriculture (GIEWS)
from the Food and Agricultural Organization of the United
Nations (FAO). The OL represents the baseline of the model
skill customized for the study domain against any poten-
tial skill improvements from assimilating either SMAP soil
moisture estimates or MODIS LAI retrievals. Comparison
between OL and OLirr enables us to investigate the impact
of irrigation when interacting with the prognostic phenology
module.

SMAP-based soil moisture assimilation (SSM-DA and
SSM-DAirr). In the SSM-DA and SSM-DAirr experiment,
SMAP L3_E soil moisture estimates are rescaled based
on the climatology of OL and OLirr, respectively, and
are then assimilated into Noah-MP for the time period of
March 2015–December 2019. Irrigation is turned off for
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SMAP-DA and on for SMAP-DAirr. Assimilating soil mois-
ture may affect the irrigation frequency and amount by al-
tering the surface and root zone soil moisture condition, as
it may change the timing when the threshold of root zone
soil moisture condition is reached, which serves as a check
to determine whether this area is dry enough to be irrigated.

MODIS-based LAI assimilation (LAI-DA and LAI-DAirr).
In the LAI-DA and LAI-DAirr experiments, the gap-filled
and interpolated LAI retrievals are assimilated into Noah-MP
during the time period of 2002–2019. Irrigation is turned off
for LAI-DA and on for LAI-DAirr. LAI-DAirr may affect ir-
rigation in a different way as compared to SSM-DAirr, as the
observed LAI may alter the magnitude and phase of the vege-
tation conditions. The changes in LAI affect the evolution of
GVF, which serves to determine the growing season during
which irrigation occurs. It may also indirectly affect the irri-
gation frequency and magnitude by influencing the root zone
soil moisture, which in turn alters the level of transpiration
under different vegetation growth conditions.

All simulations are forced by the combination of two sur-
face meteorology data sets, with the Integrated Muti-satellitE
Retrievals for Global Precipitation Measurement (IMERG;
Huffman et al., 2015) near-real-time early run providing the
precipitation data and the National Oceanic and Atmospheric
Administration (NOAA)’s Global Data Assimilation System
(GDAS; Derber et al., 1991) providing the remaining data set
of meteorological fields, including 2 m air temperature, 2 m
specific humidity, 10 m wind speed, surface pressure, and in-
coming shortwave and longwave radiation. Both lapse rate
and slope-/aspect-based topographical corrections are ap-
plied to the input meteorology to represent topographic influ-
ences on temperature, humidity, pressure, and radiation. The
model parameters include the Moderate Resolution Imaging
Spectroradiometer International Geosphere Biosphere Pro-
gram (MODIS-IGBP; Friedl et al., 2010) land cover data set
(1 km), the machine-learning-based 250 m soil property and
class data set generated at the International Soil Reference
and Information Centre (ISRIC; Hengl et al., 2017), and the
Shuttle Radar Topography Mission elevation at 30 m (Farr et
al., 2007). All parameter data sets are resampled to the model
resolution of 0.05◦, using LDT, as noted above.

The assessment for these experiments is organized as fol-
lows to serve the scientific objectives for this study: (1) we
compare the differences in modeling skill among OL, SSM-
DA, and LAI-DA by evaluating the fluxes with the avail-
able reference data sets within the overlapping period (2015–
2019), (2) we then exclude SSM-DA and extend the evalua-
tion for OL and LAI-DA for a longer time span (2003–2019),
(3) we investigate the irrigation impact and its interaction
with the prognostic phenology informed by data assimila-
tion by comparing OL, OLirr, SSM-DAirr, and LAI-DAirr,
and (4) we quantify the differences in categorizing drought
among OL, SSM-DA, and LAI-DA.

2.5 Evaluation data and metrics

Multi-source remote-sensing-based observations covering
different periods of time are used to assess the overall model
performance, including ET and its components of NPP, GPP,
and Sun-induced chlorophyll fluorescence (SIF).

2.5.1 FAO WaPOR data sets

The FAO portal to monitor Water Productivity through Open
access of Remotely sensed derived data (WaPOR) provides
estimates of evapotranspiration (ET) and its components, in-
cluding bare soil evaporation (E), transpiration (T ), and in-
terception for Africa and the Middle East from 2009 on-
wards at dekadal time steps at three different spatial res-
olutions (250, 100, and 30 m) with different spatial cover-
age. It also provides yield-related variables, such as net pri-
mary production and total biomass production. WaPOR esti-
mates E and T , using a modified version of the Penman–
Monteith equation (FAO, 2020), with input from weather,
land cover, normalized difference vegetation index (NDVI),
and soil moisture stress from other sources. The weather
data are obtained from the Modern-Era Retrospective anal-
ysis for Research and Applications (MERRA) up to the start
of 21 February 2014 and the Goddard Earth Observing Sys-
tem (GEOS-5) after 21 February 2014 (Rienecker et al.,
2011) in combination with the Climate Hazards Group In-
fraRed Precipitation with Station data (CHIRPS; Funk et al.,
2015). Unlike the original ETLook model (Bastiaanssen et
al., 2012), in which soil moisture stress is derived from pas-
sive microwave data, WaPOR advances the estimation of soil
moisture stress by using MODIS-based land surface temper-
ature. For the NPP estimation, besides the input for ET, the
fraction of photosynthetically absorbed radiation by green
vegetation (fAPAR) is also needed, which is obtained from
MODIS. Note that effects, such as nutrient deficiencies, pests
and plant diseases are not considered in the calculation of
the WaPOR NPP, which is also true for Noah-MP-simulated
NPP. Among many ET products with global coverage and
different levels of uncertainties, WaPOR data sets are re-
ported to have low biases and good spatial variability across
Africa (Blatchford et al., 2020; Weerasinghe et al., 2020).

In this study, we compare the model-simulated ET, E,
T and NPP to the corresponding level 1 (250 m) WaPOR
data sets (https://wapor.apps.fao.org/home/WAPOR_2/1, last
access: 3 July 2020), for the northern part of Morocco. The
availability of E and T provides an opportunity to explore
the contribution of data assimilation on different components
of ET, as the updated fields by SSM-DA and LAI-DA may
affect E and T in different ways. All the fields are spatially
and temporally aggregated to 0.05◦ and a monthly scale, re-
spectively, for analysis between WaPOR data sets and the
simulations.
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2.5.2 FLUXCOM and FLUXSAT GPP

The impact of LAI-DA on carbon fluxes is also evaluated by
comparing the simulated GPP against the GPP product from
the FLUXCOM (Tramontana et al., 2016) and FLUXSAT
(Joiner et al., 2018) projects. The FLUXCOM project uses
machine-learning-based regression tools to upscale daily car-
bon flux estimates from flux tower sites into global gridded
GPP estimates covering the period of 2003–2015. The pre-
dictor variables required by the machine learning algorithms
are based exclusively on high-resolution remote sensing data,
including MODIS-based land cover and vegetation informa-
tion and ERA-Interim meteorological forcing variables. As
there is no flux tower site over the study domain and FLUX-
COM products do not cover the SMAP period, we also utilize
the recently developed FLUXSAT GPP estimates, which are
available from 2000–2020. Unlike many light-use-efficiency
(LUE)-based models, the FLUXSAT GPP estimates do not
use an explicit parameterization of LUE that reduces its
value from the potential maximum under limiting conditions
such as temperature and water stress. Although the algorithm
is relatively simple, FLUXSAT took advantage of satellite-
based SIF data to identify areas of high productivity and has
been shown to perform comparatively well compared to the
FLUXCOM product. Similar to the comparison against Wa-
POR data, we aggregate both products to monthly means at
0.05◦ spatial resolution for evaluation.

2.5.3 GOME MetOp-A SIF

Satellite-based Sun-induced chlorophyll fluorescence pro-
vides a new opportunity to monitor GPP for terrestrial
ecosystems. As part of the vegetation photosynthesis pro-
cess, the variation in SIF emitted by plants can be used to
infer the actual functional state of the photosynthetic appa-
ratus, since photosynthetic efficiency affects the efficiency of
the fluorescence emission (Rossini et al., 2015). In this study,
the latest version (v28) of the monthly SIF product from the
Global Ozone Monitoring Experiment-2 (GOME-2) aboard
the MetOp-A satellite (Guanter et al., 2014; Joiner et al.,
2013), from the period of February 2007 to February 2019, is
used to investigate its correlation with simulated GPP. Simu-
lations are aggregated to 0.5◦ spatial resolution and averaged
to monthly means for comparison.

2.5.4 Evaluation metrics

Statistical skill metrics include the Pearson’s correlation (R)
and anomaly correlation (anomaly R) coefficients, based
on a monthly time series with 95 % significance tested us-
ing Fisher’s z transform test (Fisher, 1921), the root mean
square difference (RMSD), and bias (bias) with 95 % sig-
nificance tested by the paired-sample t test with the tempo-
ral correlation being accounted (Entekhabi et al., 2010). The
anomaly R is calculated by removing the seasonal cycle from

the time series, where the seasonal cycle is calculated as the
multiyear average of each calendar month. R and anomaly R

are used to examine the overall mismatch between the obser-
vations and simulations in terms of seasonality and interan-
nual variability, respectively, while RMSD and bias provide
information on how the simulations capture the magnitude of
the fluxes. For the evaluations conducted without SSM-DA
involved, the longer time window (i.e., 2003–2019) allows
us to further investigate how the simulations capture the in-
terannual variability for each specific month. In these cases,
R and RMSD are calculated for each month, separately, for a
given time period, depending on the observation-based data
set (e.g., 2009–2019 for WaPOR ET, E, T , and NPP data
sets). Correlation coefficients (R and anomaly R) are not ad-
ditive measures and, thus, cannot be simply averaged; thus
the median was computed as an evaluation score to represent
the averaged performance for the full domain or for the ac-
tively irrigated area. In addition, these analyses are stratified
by major land cover types and different levels of irrigation in-
tensity in order to quantify the impact of land cover types and
irrigation intensity on the performance of data assimilation.

3 Results and discussion

3.1 SMAP period evaluations

3.1.1 For the full domain

The four metrics (R, anomaly R, RMSD, and bias) were
computed between the simulated monthly fluxes and the cor-
responding reference data sets for the period 2015–2019, as
the SMAP soil moisture retrievals are available starting from
March 2015. Simulated E, T , ET, and NPP are compared
against FAO WaPOR data sets, while simulated GPP is com-
pared against FLUXSAT GPP estimates.

Table 3 shows the overall performance for the OL, LAI-
DA, and SSM-DA simulations (no irrigation applied), and
Fig. 2 demonstrates the differences between the DA simula-
tions and OL masked using the applied significance test. For
evaporation, assimilating soil moisture and LAI led to op-
posing impacts in terms of R. Slight degradations are found
in LAI-DA (0.37), as compared to OL (0.38), while there is
small improvement from SSM-DA (0.46). Nonetheless, the
differences are only significant for a few grid cells in terms
of both R and anomaly R, suggesting that both forms of data
assimilation have limited impacts on the temporal variabil-
ity in evaporation (Fig. 2a, f, k and p). Over this region, all
simulations produce much larger evaporation than the FAO
WaPOR estimation, and the differences among the simula-
tions are relatively small in terms of both RMSD and bias.

The simulated temporal variation for transpiration agrees
better with the WaPOR estimates than that for evaporation,
as the overall R and anomaly R for T are much higher than
that for E in the OL simulation. For transpiration, assimilat-
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Figure 2. The difference in correlation (R), computed as DA minus OL for the period of 2015–2019, for (a–e) LAI-DA and (f–j) SSM-
DA simulations in terms of evaporation (E), transpiration (T ), evapotranspiration (ET), net primary production (NPP), and gross primary
production (GPP). Panels (k)–(t) are the same but for the difference in anomaly correlation (anomaly R). Red colors indicate that the
assimilation improves R or anomaly R, with respect to the OL, and blue colors indicate a degradation at 95 % significance level using
Fisher’s z transform test.

ing LAI greatly improved both R and anomaly R (Fig. 2b
and l) and reduced RMSD with a relative improvement of
over 20 % as compared to OL (Table 3). These positive im-
pacts are mainly located in the vegetated northwestern part
of Morocco. However, SSM-DA failed to provide any skill in
simulating transpiration, as it led to degradation in terms of
both R and anomaly R. LAI-DA tends to reduce the magni-
tude of transpiration, leading to larger negative bias, possibly

contributed to by the smaller LAI magnitude in the observa-
tions as compared to that simulated by OL.

As LAI-DA and SSM-DA differ in altering the tempo-
ral variation and the magnitude of evaporation and transpi-
ration, the impact on total ET is quite mixed. In general,
for LAI-DA, improvements were found along the western
coastal area, and degradations were found along the north-
eastern coastal area in terms of R, while there is no signifi-
cant impact in terms of anomaly R (Fig. 2c and m). For SSM-
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Table 3. Median evaluation metrics of monthly correlation (R),
anomaly correlation (anomaly R), RMSD, and bias for the OL,
LAI-DA, and SSM-DA simulations against FAO WaPOR data sets
for evaporation (E), transpiration (T ), evapotranspiration (ET), net
primary production (NPP), and against the FLUXSAT data set for
gross primary production (GPP) for the period of 2015–2019 over
the Morocco domain.

Morocco domain

OL LAI-DA SSM-DA

E R 0.38 0.37 0.46
(mm per Anomaly R 0.34 0.35 0.36
month) RMSD 13.22 14.95 12.15

Bias 10.31 13.87 11.9

T R 0.61 0.77 0.54
(mm per Anomaly R 0.44 0.66 0.28
month) RMSD 12.32 7.16 12.74

Bias −0.01 −8.41 0.71

ET R 0.51 0.49 0.53
(mm per Anomaly R 0.39 0.37 0.34
month) RMSD 16.73 16.58 15.93

Bias 11.07 10.15 12.88

NPP R 0.68 0.78 0.63
(g m2 Anomaly R 0.48 0.64 0.31
per RMSD 27.64 11.58 26.6
month) Bias 17.01 –3.73 18.46

GPP R 0.57 0.69 0.58
(g m2 Anomaly R 0.51 0.8 0.37
per RMSD 38.33 19.91 36.19
month) Bias 12.26 −16.02 14.94

Bold font indicates a median improvement over 20 %.

DA, the degradation in the seasonality of ET is limited to the
northwestern coastal area, while the degradation in interan-
nual variability expands almost over half of the study domain
(Fig. 2h and r) and is mainly contributed by the degradation
in transpiration. The mixed impact of LAI-DA and SSM-DA
on ET is also affected by the ratio of E /T . For instance, re-
gions with ET dominated by T , such as croplands, can better
benefit from LAI-DA for ET as it has a strong positive impact
on T by correcting for the magnitude and phase of vegetation
conditions.

The impact of LAI-DA and SSM-DA on NPP and GPP is
similar to their respective impacts on transpiration. LAI-DA
led to significant improvements on the two carbon fluxes in
terms of R, anomaly R, and RMSD, while SSM-DA resulted
in overall degradation. Consistent with its impact on T , LAI-
DA tends to reduce the magnitude of both NPP and GPP as
compared to OL, but the absolute bias is reduced for NPP as
compared to FAO WaPOR, while bias is increased for GPP as
compared to FLUXSAT. We note that both FAO WaPOR and
FLUXSAT data sets are remote-sensing-model-data-driven

Figure 3. Box plots of the correlation for (a) evaporation (E),
(b) transpiration (T ), (c) evapotranspiration (ET), (d) net primary
production (NPP), and (e) gross primary production (GPP) strati-
fied by the major land cover classifications for the OL, LAI-DA,
and SSM-DA simulations for the period of 2015–2019. White lines
represent the median, boxes represent the upper and lower quantiles,
black whiskers represent the 5th and 95th percentiles, and black dots
represent the mean values.

products and are thus subject to uncertainties. However, the
consistent results obtained by comparing the carbon fluxes
against the two independent data sources highlight the bene-
fit of assimilating LAI into the system.

3.1.2 Stratified by land cover types

For semi-arid and arid environments such as Morocco, land
cover can be quite heterogeneous with interspersed agricul-
tural and natural vegetated areas. Therefore, land cover may
play a large role in affecting the quality of the satellite-
derived soil moisture and LAI estimates, thus affecting the
data assimilation results. In this section, we analyze the im-
pact of land cover on the performance of data assimilation
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in depth. In total, three major land cover types are selected
for the analyses, which are open shrublands, croplands, and
grasslands and cover almost all the vegetated areas of Mo-
rocco (Fig. 1a).

As shown in Fig. 3, the model demonstrates better skill in
simulating evaporation for open shrublands and grasslands
than for croplands. However, the situation is the opposite
when it comes to carbon fluxes. OL produces a much higher
correlation for both NPP and GPP for croplands. The rela-
tive performance for the OL, LAI-DA, and SSM-DA sim-
ulations is similar across the three major land cover types.
LAI-DA led to slight improvements in T and NPP and slight
degradations in E, whereas SSM-DA does the opposite. The
overall correlation of ET is increased over croplands with
LAI-DA, partly because the magnitude of T (17.8 mm per
month) is comparable to E (17.4 mm per month) so that the
degradation on evaporation has limited impact on its skill in
improving ET. Conversely, for open shrublands and grass-
lands, the benefits of LAI assimilation for transpiration are
much weaker than that for croplands, as the magnitude of
the T /E ratio is lower than 30 % for both land cover types.
Therefore, LAI-DA does not provide comparable skill in im-
proving ET. The impact of SSM-DA on the ET components
is limited. On the one hand, this may result from the coarse
spatial resolution of the SMAP data set, as it cannot provide
information for finer-scale soil moisture variability. On the
other hand, it could also be possible that the improved soil
moisture condition in SSM-DA is not effectively converted to
improved ET because of the weakness in model representa-
tion of ET and soil moisture coupling. This is an known issue
for many land surface models (Crow et al., 2020). Moreover,
the impact of soil moisture assimilation on ET can also heav-
ily depend on region and climate (Kumar et al., 2020).

The improvement in the simulation of transpiration and
carbon fluxes by LAI-DA is largely due to the adjustment
of the amplitude and phase of vegetation growth. Figure 4
shows the average monthly time series of LAI from the sim-
ulations, along with the distribution of the months when LAI
reaches its peak for all the grid cells per year stratified by
land cover types. The time series indicates that OL signif-
icantly overestimates LAI, which is corrected by LAI-DA.
In addition, LAI-DA leads to significantly different interan-
nual variability. Comparatively, SSM-DA has a limited im-
pact on the evolution of LAI as compared to the OL run.
The mismatch in terms of the interannual variations is even
more obvious under drought conditions. For instance, both
OL and SSM-DA are not able to reflect the change in vegeta-
tion conditions in response to the 2015–2016 drought event
for croplands, while LAI-DA shows a clear reduction in the
evolution of LAI during the 2015–2016 growing season as
compared to the adjacent years (Fig. 4c). Furthermore, as-
similating LAI also leads to changes to the phase of the LAI
seasonality. In general, LAI-DA yields a peak in the LAI sea-
sonality 1–2 months earlier than the OL and SSM-DA for all
three land cover types (Fig. 4b, d, and f).

3.2 Evaluating beyond the SMAP time
period (2003–2019)

As the overall impact of LAI-DA is much greater than SSM-
DA, especially for transpiration and carbon fluxes, we further
extend the evaluation period beyond 2015–2019 for LAI-DA
to investigate its impact on a long-term basis and to quantify
its contribution across seasons. The interannual correlation
and RMSD of ET components are calculated for each month,
and Fig. 5 shows the median of each metric stratified per land
use type.

The model in general provides much higher correlations
for transpiration than for evaporation in winter and spring,
overlapping with the growing seasons, regardless of data as-
similation and land use types. However, it generally overesti-
mates transpiration during summertime, especially for crop-
lands, likely due to the misrepresentation of vegetation sea-
sonality. Assimilating LAI into the model improves the inter-
annual correlations for transpiration across all land use types
and all seasons and generally reduces RMSD for croplands.
In the case of evaporation, LAI-DA has a marginal impact on
correlation but leads to larger RMSD, indicating less agree-
ment in representing the magnitude of E. This may stem
from different ET partitioning algorithm between Noah-MP
and WaPOR and their associated uncertainties. The differ-
ent impact on E and T due to LAI assimilation results in an
overall small difference in terms of correlation while general
improvements in terms of RMSD for ET.

Besides the ET components, we evaluate the impact of
LAI assimilation on carbon fluxes by comparing the NPP
and GPP estimates against the reference data sets. Similar to
Fig. 5, Fig. 6 shows the interannual correlation and RMSD
for NPP evaluating against the WaPOR data set (Fig. 6a
and e) and for GPP evaluating against the FLUXSAT (Fig. 6b
and f) and the FLUXCOM (Fig. 6c and g) GPP estimates
and the GOME-2 SIF estimates (Fig. 6d). As the impact of
LAI-DA on carbon fluxes is similar among the three land
use types (not shown), the medians of the metrics for the
sum of these major land use types are shown to represent
the overall performance. In general, the highest correlation
for NPP is found in summer- and wintertime, while the high-
est correlation for GPP aligns with the peak growing sea-
son of December–April. However, the largest RMSD values
for both NPP and GPP also occur within the growing season
(February–April). The results suggest that assimilating LAI
consistently improves the interannual variability in both NPP
and GPP for all months, and the greatest improvements are
found within the growing seasons. Moreover, LAI-DA is able
to reduce approximately half of the RMSD for both carbon
fluxes.

Evaluating against multiple independent data sets provides
different insights on the impact of data assimilation on the
performance of both energy and carbon fluxes. The overall
accuracy of estimated ET components, NPP, and GPP, both
within and beyond the SMAP time period, suggests that LAI-
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Figure 4. Monthly time series of LAI estimated from OL, LAI-DA, SSM-DA, and the corresponding distribution of peak LAI month for
(a, b) open shrublands, (c, d) croplands, and (e, f) grasslands.

Figure 5. Median of the interannual (a–c) correlation and (d–f) RMSD of evaporation (E), transpiration (T ), and evapotranspiration (ET)
averaged over the major land cover classifications for the OL and LAI-DA simulations for the period of 2009–2019.
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Figure 6. Metrics for the OL and LAI-DA simulated net primary production (NPP) and gross primary production (GPP) against reference
data sets averaged over the sum of open shrublands, croplands, and grasslands. Shown are the (a) correlation and (e) RMSD for NPP evaluated
against FAO WaPOR NPP data set for the period of 2009–2019, the correlation (b, c) and (f, g) RMSD for GPP evaluating against FLUXSAT
GPP product for the period of 2003–2019 and FLUXCOM GPP product for the period of 2003–2015, and the (d) correlation between the
simulated GPP and GOME-2 Sun-induced chlorophyll fluorescence (SIF) for the period February 2007 to February 2019.

DA has a greater beneficial impact than SSM-DA. This is
consistent with the Kumar et al. (2020) study, which demon-
strated that updating vegetation phenology is more effective
for generating improvements in evaporative fluxes.

3.3 The impact of irrigation

Although precipitation serves as a primary source for plant
transpiration and soil evaporation, irrigation can also play
a role in supplying water for agricultural productivity, and
it has a significant contribution to enhance ET and carbon
fluxes. To quantify the impact of irrigation on fluxes, we in-
vestigate the performance of the second set of experiments
(i.e., OLirr, LAI-DAirr, and SSM-DAirr), with a special fo-
cus on grid cells that are actively irrigated. Comparing OLirr,
LAI-DAirr, and SSM-DAirr with the OL simulation enables
us to examine how irrigation affects the simulated fluxes un-
der the original, the LAI, or the soil moisture assimilation
configuration. Note that, according to the irrigation rules ap-
plied in the model, the growing season time window defined
by GVF threshold and the root zone soil moisture can both
alter the irrigation timing and amount, thus affecting the as-
sociated fluxes. Similar to the analyses in previous sections,
we first evaluate the irrigation impact within the SMAP time
period (Table 4) and then we exclude the SSM-DA simula-
tion and evaluate the impact beyond the SMAP time period
(Fig. 7).

Table 4 shows the overall performance for the OL, OLirr,
LAI-DAirr, and SSM-DAirr simulations for actively irrigated
areas. Interestingly, OLirr dramatically improves the cor-
relation for evaporation, bringing the median correlation

Table 4. Median evaluation metrics of monthly correlation (R),
anomaly correlation (anomaly R), RMSD, and bias for the OL,
OLirr, LAI-DAirr and SSM-DAirr simulations against FAO WaPOR
data sets for evaporation (E), transpiration (T ), evapotranspira-
tion (ET), net primary production (NPP), and against the FLUXSAT
data set for gross primary production (GPP) for the period of 2015–
2019 over the actively irrigated area.

Actively irrigated area

OL OLirr LAI-DAirr SSM-DAirr

E R −0.01 0.68 0.07 0.71
(mm per Anomaly R 0.17 0.13 0.17 0.12
month) RMSD 11.14 8.05 12.47 8.76

Bias 7.18 14.52 11.49 17.27

T R 0.62 0.5 0.78 0.49
(mm per Anomaly R 0.4 0.33 0.55 0.3
month) RMSD 15.21 19.33 10.45 18.71

Bias −8.05 8.86 −12.79 8.74

ET R 0.53 0.6 0.53 0.58
(mm per Anomaly R 0.32 0.23 0.23 0.19
month) RMSD 20.89 23.47 18.45 24.56

Bias 0.9 26.85 0.41 31.97

NPP R 0.75 0.65 0.84 0.62
(g m2 Anomaly R 0.46 0.42 0.59 0.38
per RMSD 36.78 35.9 19.53 34.32
month) Bias 16.93 60.14 −0.62 63.29

GPP R 0.72 0.6 0.83 0.58
(g m2 Anomaly R 0.52 0.38 0.79 0.31
per RMSD 48.01 47.63 25.42 45.95
month) Bias 9.64 64.88 −12.51 67.11
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Figure 7. Interannual correlation of evaporation (E) and transpiration (T ), net primary production (NPP), and gross primary produc-
tion (GPP) averaged over actively irrigated areas with low (a, d, g, j, m), moderate (b, e, h, k, n), and high (c, f, i, l, o) irrigation fraction
intensities for the OL, OLirr, and LAI-DAirr simulations.

from −0.01 in OL to 0.68, and SSM-DAirr further improves
the correlation to 0.71. They together indicate that the inclu-
sion of irrigation is the major factor contributing to the im-
provement in the seasonal variation in evaporation and that
assimilating surface soil moisture leads to further improve-
ments. The two simulations slightly degrade anomaly R,

while LAI-DAirr has almost no impact on either. Compared
to OL, including irrigation with or without data assimilation
increases the positive bias for evaporation. Conversely, OLirr
and SSM-DAirr degrade R and anomaly R for transpiration,
NPP, and GPP, while LAI-DAirr leads to significant improve-
ments. Note that the improvement in T , NPP, and GPP is
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mainly attributed to assimilating LAI. The inclusion of irri-
gation provides further improvements but is relatively small
when comparing LAI-DA with LAI-DAirr for the actively ir-
rigated areas (not shown). The overall bias of total ET and
NPP is the smallest in LAI-DAirr, while both OLirr and SSM-
DAirr largely increase the bias for these two terms and that of
GPP. It is also interesting to note that the sign of bias for
transpiration is different among the simulations. OL under-
estimates transpiration, and LAI-DAirr further increases this
dry bias as compared to WaPOR, whereas both OLirr and
SSM-DAirr lead to increased transpiration, resulting in posi-
tive transpiration BIAS.

The reason that both OLirr and SSM-DAirr lead to the im-
proved seasonal evolution of evaporation compared to OL is
that irrigation is erroneously triggered during the summer-
time, as the period is identified as within the growing season
according to the prognostic phenology module. To bring the
dry root zone soil moisture to field capacity, a large amount
of water is therefore applied into the effective root zone soil
layers, producing a large peak of evaporation, which is also
represented in the WaPOR data sets. OL failed to simulate the
summer peak of evaporation, which is likely due to the lim-
ited water availability for deep soil evaporation, as the soil
thickness for Noah-MP is only 2 m and/or the underestima-
tion of the root water uptake and groundwater capillary rise.
LAI-DAirr does not provide improvements because irrigation
is not triggered during summertime, which falls outside of
the growing season indicated by the assimilated LAI obser-
vations with an early peak LAI seasonality. In cases like this,
the improvement in evaporation in OLirr and SSM-DAirr is
related to the fact that the erroneously applied irrigation com-
pensates for the model structural error. It does improve cor-
relation for E, but it also leads to degradation in bias for ET
and carbon fluxes.

For the evaluation beyond the SMAP time period (span-
ning portions of 2003–2019), we further stratify the actively
irrigated areas into the following three classes based on the
irrigation fraction intensity (IRfrac): (i) the lightly irrigated
area, where the irrigation fraction is lower than 25 %, (ii) the
moderately irrigated area, where the irrigation fraction is be-
tween 25 % and 50 %, and (iii) the heavily irrigated area,
where the irrigation fraction is higher than 50 % (Fig. 1b).

Medians of the interannual correlations for E, T , NPP, and
GPP for the three classes are shown in Fig. 7. It is interest-
ing to note that, when compared with OL, OLirr degrades
the correlation for E, T , and GPP for almost all months,
and the degradation becomes larger as the irrigation fraction
intensity increases. Interacting with the original prognostic
phenology module, applying irrigation does not provide any
skill in improving the interannual variability for each specific
month but rather makes it worse. Previous studies (Liu et al.,
2016; Niu et al., 2020) have demonstrated that the prognos-
tic phenology module in Noah-MP produces large errors in
the seasonal evolution of vegetation phenology, possibly due
to the overly simplified parameterization of growth charac-

teristics and the stomatal response to stresses. In addition,
many of the parameters and scaling factors determining wa-
ter availability are derived and calibrated within the continen-
tal U.S. (CONUS) and may not be optimal for application to
the MENA region. The misrepresentation of the vegetation
condition may introduce erroneous information to trigger ir-
rigation, and irrigation further affects the vegetation growth
and the associated carbon fluxes by altering the soil moisture
condition and the associated water stress controlling factor.
Therefore, errors accumulate and drive the simulated fluxes
further away from the reference data sets.

In this context, assimilating LAI can correct for the sea-
sonal evolution of vegetation conditions, thus constraining
the time window to trigger irrigation, leading to improved
correlations for transpiration, NPP, and GPP. However, its
impact on evaporation is very limited. Temporally, its con-
tribution would be centered within the growing season, so
it is not likely to compensate for model weakness in simu-
lating the summertime evaporation; spatially, significant dif-
ferences occur mostly in the intensely irrigated areas, where
transpiration is the dominant component in ET.

3.4 Implications for drought categorization

3.4.1 Applications for root-zone-soil-moisture-based
drought

Limited by the availability of in situ soil moisture observa-
tions, it is challenging to directly evaluate the data assimi-
lation impact on soil moisture. Nevertheless, we can quan-
tify how data assimilation differentiates the categorization of
drought and reproduces the evolution, duration, and intensity
of past drought events as an indirect way to evaluate its im-
pact on root zone soil moisture.

Estimates of droughts are generated through percentile-
based indices using root zone soil moisture outputs (top 1 m
depth) from OL, SSM-DA, and LAI-DA. The percentile-
based root zone soil moisture indicator is computed in a man-
ner similar to that used in the North American Land Data
Assimilation System (NLDAS) drought monitoring system
(Kumar et al., 2016; Sheffield et al., 2012). Daily outputs
from OL and LAI-DA for the period 2002–2019 are used to
generate the climatology, and the daily percentile values are
computed by ranking each day’s estimates against the cli-
matology for OL and LAI-DA, respectively. Since SSM-DA
involves a shorter time period (2015–2019), we use the cli-
matology generated by OL to rank the estimates from SSM-
DA without further scaling, as the SMAP observations are al-
ready scaled to OL before the assimilation is performed. The
drought percentage area values are then produced per land
cover type and are categorized into the following five drought
levels: D0 (abnormally dry; percentile≤ 30 %), D1 (mod-
erate drought; percentile≤ 20 %), D2 (severe drought; per-
centile≤ 10 %), D3 (extreme drought; percentile≤ 5 %), and
D4 (exceptional drought; percentile≤ 2 %).
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Figure 8. Time series of percentages of area under drought in OL, LAI-DA, and SSM-DA for each root zone soil moisture drought percentile
category and for each land use type.

Figure 9. The scatterplot for the percentage of area under drought between OL and LAI-DA/SSM-DA for the five drought categories stratified
by the three major land use types. The data for summertime (June–August) are excluded for this analysis.

Figure 8 presents the time series of the monthly drought
percentage area derived from OL, LAI-DA, and SSM-DA
for five drought percentile categories, stratified by the three
major land cover types over the SMAP period (2015–2019).
Overall, all simulations are able to capture major drought pe-
riods for Morocco, such as the 2015–2016 (Bijaber et al.,
2018) and 2018–2019 (Bhaga et al., 2020) events. However,
the categorized drought intensity and corresponding duration
vary. For example, for the December 2015–February 2016
drought event over open shrublands, LAI-DA estimates 28 %
less area experiencing extreme drought (D3) as compared
to the OL run. Moreover, LAI-DA also tends to estimate
a weaker drought evolution and faster recovery during the
post-drought period, while SSM-DA differs from OL and
LAI-DA more in terms of the drought intensity catego-
rization, as 14 % of area is detected as the exceptional
drought (D4) compared to zero in both OL and LAI-DA.
For the 2018–2019 event, under which cereal production is
reported to have decreased by 49 % compared to the 2017–

2018 season, LAI-DA tends to estimate more severe drought
intensity and longer duration for croplands but relatively
weaker and smaller expansion for open shrublands as com-
pared to both OL and SSM-DA. This may imply that the in-
corporation of the LAI observations helps to reflect differ-
ent drought representation across land cover types, as agri-
cultural lands seem to be more vulnerable and face a se-
vere drought, while natural vegetation types are less affected.
However, without LAI-DA, the model is not able to distin-
guish these drought sensitivities. Moreover, LAI estimated
in OL is much higher than that simulated in LAI-DA (Fig. 4),
especially for open shrublands and grasslands, leading to in-
creased transpiration through vegetation and drier root zone
soil moisture. Assimilating LAI helps to correct this overes-
timation of drought by improving the magnitude of LAI sim-
ulation. This is also consistent with the findings in Mocko et
al. (2021) for the CONUS region.

To further assess the impact of data assimilation on differ-
entiating the categorization of drought as compared to OL,
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Figure 10. LAI anomaly under a drought event (2016 February) with respect to climatology of February within a SMAP period (2015–2019)
for (a) a MODIS observation, (b) OL, (c) LAI-DA, and (d) SSM-DA.

Fig. 9 shows the percentage of area under each drought level
for LAI-DA and SSM-DA against OL stratified by the three
major land cover types. All three simulations are similar in
diagnosing the extent of the mild drought (D0), especially
for open shrubland and croplands. More differences are seen
in categorizing the moderate to extreme drought events (D1–
D3), and there is no clear pattern associated with the dif-
ferences. When it comes to the exceptional drought (D4),
LAI-DA and SSM-DA show the opposite tendency as com-
pared to OL for open shrublands and grasslands in that LAI-
DA tends to limit the spatial extent of the extreme and ex-
ceptional drought, while SSM-DA is more likely to expand
the impact of higher level of drought extremes. However,
their tendency is similar over croplands. It should be noted
that uncertainties exist in assigning the percentile for SSM-
DA based on the climatology of OL. Nevertheless, the re-
sult that LAI-DA tends to limit the estimates of the most se-
vere drought categories implies that assimilating vegetation
states may have a stronger impact on the simulation of ex-
treme moisture anomalies, information which might not be
carried by the soil moisture observations or represented by
the model.

3.4.2 Data assimilation impact on vegetation response
to drought

As demonstrated in the above section, vegetation may
contain critical information in altering the root-zone-soil-
moisture-based drought classifications; thus, we further in-
vestigate how the model simulates vegetation in response to
drought. Representing the vegetation response to drought is
often a challenge in land surface modeling as most of the
models use oversimplified parameterizations to downregu-
late stomatal conductance and photosynthesis under drought
stress (Eller et al., 2020; Liu et al., 2020; Niu et al., 2020).
In Fig. 10, we examine the spatial distribution of the LAI
anomaly under the 2015–2016 drought by comparing the dif-
ference between LAI in Feb 2016 and its climatology de-
rived within the SMAP period (2015–2019). The vegetation
response to drought in the OL estimates significantly differs

from the observation, as the OL underestimates the spatial
variability in the response, the pattern of which may relate to
land cover types. More specifically, OL tends to underesti-
mate the LAI anomaly over the northwestern region, includ-
ing most of the croplands, while overestimating the drought
effect for the northeastern region and along the southern
edge of the open shrublands. The spatial pattern of the LAI
anomaly in the SSM-DA is similar to that of the OL, ex-
cept for the southeastern area, where SSM-DA brings the
positive LAI anomaly into closer agreement with the ob-
servation. However, the increased small-scale variability in
the LAI anomaly in the SSM-DA likely reflects the fact that
assimilated surface soil moisture has degraded the model’s
ability to simulate vegetation conditions in terms of spatial
consistency. Although assimilating soil moisture inherits un-
certainties due to shallow vertical penetration depth and scale
mismatch, this does not necessarily mean that the observed
soil moisture condition provides limited or erroneous stress
information to the model. The fact that SMAP observation is
scaled to the model via CDF-matching also means that ob-
servational information is lost so that we are only incorporat-
ing the anomalies outside of what is captured by precipita-
tion (Nearing et al., 2018), limiting the possible added value
via SSM-DA. Besides, the simplified concepts and parame-
terization of stomatal conductance and prognostic phenology
schemes may also fail to reasonably digest and properly ap-
ply the stress information to represent vegetation response to
drought. In this case, LAI-DA, as expected, can reasonably
replicate the spatial distribution of vegetation in response to
drought by constraining the vegetation cycle, thus leading
to more accurate simulations of transpiration and associated
carbon fluxes.

4 Conclusions

Morocco is known to have experienced intensified drought
events during recent decades, and this increasing trend, as-
sociated with global climate change, will likely be more ev-
ident in the future (Verner et al., 2018). In fact, many coun-
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tries in the MENA region are vulnerable to drought due to
underlying aridity and limits to current water and agricul-
tural management practices, as well as the limited informa-
tion available to aid decision-making for drought prepared-
ness. A robust drought monitoring and early warning system
would be beneficial to mitigate the drought effects and fa-
cilitate timely and effective responses from government and
private sector stakeholders (Fragaszy et al., 2020). However,
challenges exist as modeling efforts in the MENA region are
severely limited by the lack of in situ observations to support
an optimal set of parameterizations. Remotely sensed obser-
vations of soil moisture and vegetation conditions contain in-
formation from both anthropogenic and natural changes in
response to climate variability and extremes, and data assim-
ilation provides a way to incorporate such information into
land surface modeling, extending the potential of benefiting
drought monitoring and forecasting efforts.

In this study, we look at Morocco as an example to demon-
strate the capabilities of remotely sensed soil moisture and
leaf area index (LAI) to improve the simulation of water–
energy–carbon fluxes and the representation of drought con-
ditions over the MENA region. The combination of GDAS
and IMERG meteorological forcing fields is selected to drive
the modeling system, and the EnKF algorithm is used to
separately assimilate the SMAP-based surface soil moisture
retrievals and MODIS-based LAI retrievals into Noah-MP
during the 2015–2019 and 2002–2019 time periods, respec-
tively. We conducted two sets of simulations (with or with-
out irrigation) to investigate the influence of data assimilation
and its interaction with irrigation via informing the prognos-
tic phenology on the estimation of ET components and car-
bon fluxes by comparing against multi-source satellite obser-
vations.

Results show that assimilating soil moisture does not
meaningfully improve the model representation of hydrolog-
ical processes for the study region but rather leads to degrada-
tion in the simulation of the interannual variations in T , NPP,
and GPP. Relatively coarse spatial resolution of SMAP soil
moisture retrievals, uncertainties inherited in the irrigation
scheduling assumptions, and the CDF-matching approach
used to scale SMAP data to the model prior data assimilation
may all limit the value of integrating model and SMAP soil
moisture observations for this case. Although SMAP prod-
ucts are reported to show capability in detecting irrigation
signal for places such as the California Central Valley and
High Plains (Felfelani et al., 2018; Kumar et al., 2018; Law-
ston et al., 2017), this capability is likely to be limited within
the intensively irrigated hot spots that have limited spatial ex-
tents. To capture the irrigation signal for smaller or sparsely
distributed irrigation areas, soil moisture products at higher
resolution have greater potential to provide benefits such as
the SMAP/Sentinel1 data sets (Das et al., 2019; Jalilvand et
al., 2021; Lievens et al., 2017). In contrast, assimilating LAI
leads to substantial improvements in the simulation of these
fluxes in terms of both temporal variation and RMSE, which

are primarily due to the correction of the phase and mag-
nitude of LAI. Both SSM-DA and LAI-DA have a limited
impact on evaporation in terms of the seasonal and interan-
nual variability, but they differ from OL in the partitioning
of E and T . SSM-DA tends to increase both E and T , while
LAI-DA leads to increase E but decrease T , likely due to
the reduced magnitude of LAI. The fact that the two data as-
similation experiments affect E and T differently results in
mixed skill on the estimation of ET. For open shrubland and
grassland, where the ratio of E /T is high, both SSM-DA
and LAI-DA have limited impact on ET, while ET is im-
proved for croplands by LAI-DA as the magnitude of T is
comparable to E.

In the presence of irrigation, significant improvements in
the seasonal cycle of evaporation are observed in both OLirr
and SSM-DAirr. This is, however, a result of the irrigation
water supply erroneously capturing the peak during the sum-
mertime. The failure to capture the summertime E peak
in OL is attributed to model limitations in describing the
water availability and underestimation of the groundwater
capillary rise. Therefore, the erroneously applied irrigation
compensates for the model structural error. Though it im-
proves the correlation for E, the magnitude of E is greatly
overestimated. In addition, the irrigation simulation is also
found to degrade the temporal variability in carbon fluxes. In
this case, LAI-DAirr provides comparable skill to LAI-DA by
constraining the timing of irrigation within the MODIS LAI
observation informed growing season. The inclusion of irri-
gation provides marginal improvements in LAI-DAirr com-
pared to LAI-DA, specifically in the correlation for T , NPP,
and GPP compared to LAI-DA (not shown).

LAI-DAirr outperforms other simulations by correcting
vegetation phenology processes, whereas SSM-DAirr pro-
vides no measurable skill in avoiding the erroneous trig-
gering of summertime irrigation, introducing greater bias to
other variables. This result underscores the fact that data as-
similation helps to diagnose model weakness, and that it may
amplify model errors by translating the change of one vari-
able into changes of other variables without proper support
from model physics, similar to the findings of other data as-
similation applications (Girotto et al., 2017; Kolassa et al.,
2017).

The influence of SSM-DA and LAI-DA on categoriz-
ing drought is examined by generating percentile-based root
zone soil moisture drought indicators. The percentage of the
area under drought for five drought severity categories is
quantified for three major land cover types. Results suggest
that both SSM-DA and LAI-DA do not differ much from OL
for mild drought events, but the differences become greater
as the drought severity category increases. For example, as-
similating LAI tends to reduce the estimated area under the
D4 category for open shrubland and grassland, implying al-
leviated moisture anomalies under extreme conditions in re-
sponse to vegetation states which might not be captured by
either OL or SSM-DA. This study has focused on the dif-
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ferences between simulations with respect to drought indica-
tors. Further assessment against independent data is needed
to assess whether the differences introduced by data assim-
ilation improve the accuracy of drought categorizations, or
whether these changes offer a benefit for drought monitoring
and management in MENA countries.
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