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Abstract. The increasing air temperature in a changing cli-
mate will impact actual evaporation and have consequences
for water resource management in energy-limited regions.
In many hydrological models, evaporation is assessed us-
ing a preliminary computation of potential evaporation (PE),
which represents the evaporative demand of the atmosphere.
Therefore, in impact studies, the quantification of uncertain-
ties related to PE estimation, which can arise from different
sources, is crucial. Indeed, a myriad of PE formulations ex-
ist, and the uncertainties related to climate variables cascade
into PE computation. To date, no consensus has emerged on
the main source of uncertainty in the PE modeling chain for
hydrological studies. In this study, we address this issue by
setting up a multi-model and multi-scenario approach. We
used seven different PE formulations and a set of 30 cli-
mate projections to calculate changes in PE. To estimate the
uncertainties related to each step of the PE calculation pro-
cess, namely Representative Concentration Pathway (RCP)
scenarios, general circulation models (GCMs), regional cli-
mate models (RCMs) and PE formulations, an analysis of
variance (ANOVA) decomposition was used. Results show
that mean annual PE will increase across France by the end
of the century (from+40 to+130 mm y−1). In ascending or-
der, uncertainty contributions by the end of the century are
explained by PE formulations (below 10 %), RCPs (above
20 %), RCMs (30 %–40 %) and GCMs (30 %–40 %). How-
ever, under a single scenario, the contribution of the PE for-
mulation is much higher and can reach up to 50 % of the total
variance. All PE formulations show similar future trends, as
climatic variables are co-dependent with respect to temper-
ature. While no PE formulation stands out from the others,

the Penman–Monteith formulation may be preferred in hy-
drological impact studies, as it is representative of the PE
formulations’ ensemble mean and allows one to account for
the coevolution of climate and environmental drivers.

1 Introduction

Ongoing climate change results in regional changes in pre-
cipitation regimes and a global increase in air temperature
(Intergovernmental Panel on Climate Change, 2014a). As
a consequence, an increase in evaporation has been high-
lighted as a potential key risk that may decrease streamflow
and water resources, particularly in Europe and arid environ-
ments (Intergovernmental Panel on Climate Change, 2014b).
However, the relationship between air temperature and evap-
oration increase is not straightforward. This relationship is
highly dependent on water availability and atmospheric feed-
backs (Boé and Terray, 2008). Indeed, some studies have
pointed out a decreasing trend in evaporation in the observed
records, despite an increasing trend in air temperature, due
to soil moisture limitation (Jung et al., 2010) or atmospheric
feedbacks such as increasing air moisture (Allen et al., 1998).

In many crop water requirement and hydrological mod-
els, evaporation is assessed by a preliminary computation of
potential evaporation (PE), which represents the evaporative
demand of the atmosphere and is used as input in the mod-
els. A large panel of formulations exist for PE estimation,
from empirical temperature-based methods to more integra-
tive techniques based on the energy budget. In impact studies,
the choice of an empirical temperature-based method is of-
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ten motivated by the limited confidence in climate variables
other than air temperature (Wilby and Dessai, 2010; Dallaire
et al., 2021), while the choice of more physically based for-
mulations is guided by the will to explicitly account for in-
teractions between radiative and aerodynamic variables that
may coevolve under climate change (McKenney and Rosen-
berg, 1993; Donohue et al., 2010). Frameworks to assess PE
formulation validity in climate change impact studies have
concentrated on the ability to reproduce past and sometimes
extreme events (Prudhomme and Williamson, 2013), but as-
suming that models may represent past and future climates
equally well is difficult to verify. Here, we aim to assess the
contribution of PE formulations to the overall uncertainty of
projections by testing several formulations under several cli-
mate projections. As PE formulations are not the only source
of uncertainty in impact modeling chains and because PE
uncertainties also stem from the uncertainty conveyed by
general circulation models (GCMs), regional climate models
(RCMs) and/or downscaling methods, quantifying the con-
tribution of PE formulations to the total uncertainty of PE
estimates is deemed crucial.

Previous studies that have examined the contribution of
PE formulations to the total uncertainty of PE projections
have shown rather divergent results. Hosseinzadehtalaei et al.
(2016) considered seven alternative PE formulations to the
Penman–Monteith method under a large set of 44 GCM–
RCP couples over Belgium. They found that RCPs, GCMs
and PE formulations show balanced contributions to the total
PE uncertainty. McAfee (2013) compared three different PE
formulations for the North American Great Plains region and
showed that the Hamon formulation presented a higher in-
crease in PE than the Penman and Priestley–Taylor formula-
tions. Wang et al. (2015) showed that the Penman–Monteith
formulation leads to a higher increase in PE than the Harg-
reaves formulation in China.

Regarding hydrological projections, Bae et al. (2011),
Seiller and Anctil (2016), Williamson et al. (2016), and
Milly and Dunne (2016, 2017) showed how future stream-
flow anomalies can be dependent on the choice of PE formu-
lation. Conversely, Koedyk and Kingston (2016) and Thomp-
son et al. (2014) found that PE formulation adds a minor con-
tribution to the total uncertainty of streamflow anomalies in
the Mekong River and over New Zealand. Kay and Davies
(2008) found that climate models introduce the most uncer-
tainty but pointed out that hydrological impacts can be quite
different depending on the PE formulation used across Great
Britain. Vidal et al. (2013) studied the differences between
two PE formulations over the French Alps and found a very
significant contribution of the PE formulations to the total
uncertainty of the projections.

These rather mixed results may originate from several
choices made by the authors. First, the studies did not use the
same ensemble of PE formulations. For example, Kay and
Davies (2008) used two PE formulations, whereas Koedyk
and Kingston (2016) and Milly and Dunne (2017) used up

to eight different formulations including both empirical and
physically based formulations derived from an energy bal-
ance. Second, not all studies used the same radiative forcing
scenarios and were often limited to a single scenario. For ex-
ample, Koedyk and Kingston (2016) limited their study to
a warming of 2 ◦C. However, other studies have focused on
the most pessimistic greenhouse gas emission scenario asso-
ciated with the greatest global warming. For instance, Milly
and Dunne (2017) only explored the Coupled Model Inter-
comparison Project – Phase 5 (CMIP5) RCP8.5 scenario, and
Kay and Davies (2008) only used Special Report on Emis-
sions Scenarios (SRES) A2 narrative. Third, results appear
to be linked to the study spatial scale, depending on whether
the authors are interested in climate impact at the global scale
(e.g., Milly and Dunne, 2016, 2017), the regional scale (e.g.,
Kay and Davies, 2008) or the local scale (e.g., Koedyk and
Kingston, 2016). Vidal et al. (2013) only focused on moun-
tainous areas, where all PE formulations are questionable be-
cause all physical processes involved with cold and moun-
tainous regions are not represented (part of the snow cover
disappears by sublimation without melting). Finally, studies
differ with respect to the variable of interest on which the
total uncertainty is computed: it can be either the PE esti-
mate itself or streamflow simulated by a hydrological model.
Assessing the PE uncertainty with respect to the resulting
streamflow simulations is legitimate for case studies where
water resources are assessed, but it largely complicates the
analysis because the sensitivity of streamflow simulations to
PE inputs is conditioned by both the hydrological model pa-
rameterization and the climatic settings of the studied area
(Koedyk and Kingston, 2016).

In this study, we use a comprehensive framework, includ-
ing a large variety of seven PE formulations under several
scenarios and using a large set of 30 CMIP5 GCM–RCM
outputs. The sensitivity of impact models to PE is not ad-
dressed in this study; instead, we focus our analysis on PE
and assess the contribution of the formulations to the total
PE uncertainty over a large domain (France). First, the anal-
ysis will focus on the future change in potential evaporation
under climate change. Second, the total uncertainty with re-
spect to the projected PE will be partitioned and quantified
among all uncertainty sources (RCPs, GCMs, RCMs and PE
formulations), and the uncertainty for RCP8.5 alone will be
examined.

2 Material and method

2.1 Climate projections

Three different RCPs (RCP2.6, RCP4.5 and RCP8.5) were
used to account for the uncertainty in future greenhouse gas
emission trajectories and climate variables from 30 GCM–
RCM couples (Table 1) from EURO-CORDEX (Jacob et al.,
2014). The use of several models at each step allowed for
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Table 1. The available climate projection data. The numbers (2.6, 4.5 and 8.5) refer to the RCPs used by the GCM–RCM pairs (GCMs shown
in the rows, and RCMs shown in the columns). Empty boxes or missing RCPs show an absence of data.

GCM/RCM Aladin63 Racmo22E WRF381P RCA4 RegCM4 CCLM4-8-17 REMO2009 HIRHAM5 REMO2015

IPSL-CM5A 4.5, 8.5 4.5, 8.5
CNRM-CM5 2.6, 4.5, 8.5 2.6, 4.5, 8.5
EC-Earth 2.6, 4.5, 8.5 2.6, 4.5, 8.5
HadGEM2-ES 2.6, 8.5 4.5, 8.5
MPI-ESM-LR 2.6, 4.5, 8.5 2.6, 4.5, 8.5
NorESM1-M 4.5, 8.5 2.6, 8.5

Figure 1. Diagram representing the modeling chain for the study of
the impact of climate change on potential evaporation.

a more robust quantification of the uncertainties stemming
from each step. The modeling chain describes a pathway
from different RCPs to an impact model (here PE formula-
tions), using a succession of models whose simulation out-
puts feed the next model. Figure 1 represents the model-
ing chain used for this study, showing each modeling step,
namely RCPs, GCMs, RCMs and PE formulations. The ref-
erence period used for climate projections to compute PE
anomalies is 1976–2005, and projections were analyzed over
1976–2099. In practice, 30-year periods are used for climate
impact studies, and the EURO-CORDEX simulations using
the climate change scenarios cover the 2006–2100 time pe-
riod. For all RCP–GCM–RCMs combinations, only a real-
ization is available. This hinders the quantification of the
internal variability as an uncertainty source. However, as
anomalies are computed over long time slices, we can as-
sume that natural climate variability has a limited impact.
All data were available at the daily time step.

2.2 PE formulations

Seven PE formulations were selected in this study (see Ta-
ble 2). This selection was made to represent diverse ways of
estimating PE, including physically based methods derived
from the energy balance and empirical methods. In this study,
all formulations were applied at a daily time step.

The Penman and Penman–Monteith formulations are of-
ten referred to as combinational methods, as they are de-

rived from the energy budget coupled with aerodynamic con-
siderations. While the Penman formulation is recommended
for open water evaporation estimation, the Penman–Monteith
formulation was proposed to estimate the potential evapo-
ration from a reference crop. These two formulations are
widely used in crop water requirement and hydrological
models, as they make full use of currently measurable cli-
mate variables, under a physically derived framework. For
climate change impact studies, these formulations allow one
to account for possible interactions and feedbacks between
climate variables. The Priestley–Taylor formulation is a sim-
plification of the Penman equation that allows for the estima-
tion of PE with only radiative climate variables. This formu-
lation does not make use of aerodynamic climate variables,
which are highly uncertain in climate change impact stud-
ies. The Morton formulation was recommended by McMa-
hon et al. (2013) for hydrological modeling. Based on the
Priestley–Taylor formulation, it includes an iterative estima-
tion of a so-called equilibrium temperature, which better rep-
resents the surface temperature. The Oudin, Hamon and Har-
greaves formulations use air temperature only. Proxies of so-
lar radiation are implicitly included in these formulations, ei-
ther via extraterrestrial radiation estimation or by using em-
pirically derived equations that relate radiation to the mean
or amplitude of daily air temperature. For climate change
impact studies, these formulations are interesting, as air tem-
perature is probably the least uncertain variable in climate
projections. However, the absence of other climate variables
is questionable under climate change because feedbacks be-
tween climate variables exist, such as the dimming effect
causing radiation to decrease while the air temperature in-
creases. Shaw and Riha (2011) pointed out higher future PE
amounts with the temperature-based formulations, compared
with other formulations, over five predominantly hardwood
forest sites at differing latitudes in the eastern United States.

2.3 Quantifying and partitioning projected PE
uncertainties

A Bayesian data augmentation technique, the QUALYPSO
(Quasi-ergodic AnaLYsis of climate ProjectionS using data
augmentatiOn) method (Evin et al., 2019; Evin, 2020), was
applied to deal with the lack of balance in terms of represen-
tation within the combinations of climate models (GCMs–
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Table 2. The seven formulations used to compute PE. The “Climate variables” column refers to the input data required in each PE formulation.
Rn is net radiation, RH is relative humidity, u2 is 2 m wind speed and Ta is 2 m air temperature. Full equations are available in the provided R
code (see the “Code availability” section). The Penman–Monteith method is from FAO 56. The Hamon formulation uses theoretical sunshine
hours (Oudin et al., 2005; Almorox et al., 2015). RRM refers to rainfall–runoff modeling.

Name and notation Sources Type of application Climate
variables

Penman Penman (1948) and Allen et al. (1998) RRM/open water surface Rn, Ta, u2,
RH

Penman–Monteith Monteith (1965) and Allen et al. (1998) RRM/crop evapotranspiration Rn, Ta, u2,
RH

Priestley–Taylor Priestley and Taylor (1972) RRM Rn, Ta

Morton Morton (1983) and McMahon et al. (2013) RRM and catchment water bal-
ance

Rn, Ta, RH

Oudin Oudin et al. (2005) RRM Ta

Hamon Hamon (1963) and Oudin et al. (2005) RRM Ta

Hargreaves Hargreaves and Samani (1985) and
Allen et al. (1998)

RRM/crop evapotranspiration Ta

RCMs) and RCPs (see gaps in Table 1). The data set available
for this study is composed of 30 RCP–GCM–RCM chains
multiplied by seven PE formulations. The Bayesian data aug-
mentation process of the QUALYPSO framework fills a com-
plete and balanced matrix of climate projections composed
of 162 members (3 RCPs× 6 GCMs× 9 RCMs) multiplied
by 7 PE formulations. This process results in a balanced data
set, which is essential to correctly assess the contribution of
each modeling step and to avoid inducing a biased estima-
tion of the variance explained by a specific modeling step
being over- or underrepresented. This framework was suc-
cessfully applied by Lemaitre-Basset et al. (2021) to analyze
projected hydrological uncertainties with an incomplete en-
semble of projections. Analysis of variance (ANOVA) meth-
ods are frequently used to quantify the contribution of dif-
ferent models to total uncertainty. They rely on the respec-
tive variance contributions of the different modeling chain
steps to the total variance. An ANOVA can be performed
with a time series approach, as mentioned by Hingray and
Saïd (2014), which considers the quasi-ergodicity of climate
variables for the long term. This approach was also used by
Lafaysse et al. (2014) and Vidal et al. (2016), who added the
downscaling and hydrological modeling steps to the model-
ing chain in the evaluation of uncertainties. In the present
study, to quantify and partition the total uncertainty with re-
spect to the projected changes among the different modeling
steps, the quasi-ergodic analysis of variance (QE-ANOVA)
framework was chosen (Hingray and Saïd, 2014; Hingray
et al., 2019). The QE-ANOVA method allows for the de-
composition of the total variance of the projected potential
evaporation estimates. The total uncertainty partitioning is
composed of the sum of the specific variance of each mod-

eling chain step (namely RCPs, GCMs, RCMs and the PE
formulations) as well as a residual term, representing the in-
teraction between models. Moreover, a 30-year rolling mean
is applied on projected variables that are available from 1976
to 2099 in order to reduce the impact of internal variability.
Within the QE-ANOVA analysis, the trend signal analyzed
by a variance decomposition is a trend model fitted to rolling
mean projections. This statistical analysis allows for the as-
sessment of the importance of the choice of PE formulation,
according to the timescale and geographical-area targets. Fi-
nally, a signal-to-noise ratio is used to determine the strength
of PE changes over France. The ensemble mean PE expected
changes represents the signal, and the noise is represented by
the standard deviation between simulations.

3 Results

3.1 Trends in potential evaporation according to the
different RCPs

Figure 2a shows the mean annual PE, from a multi-scenario
and multi-model average, over the reference period from
1976 to 2005 based on climate projection data. Across
France, a north–south gradient is visible, with the highest val-
ues obtained over the Mediterranean region, and the lowest
values obtained over the northern part of the country and the
mountainous areas (the Alps and Pyrenees).

Annual PE is shown to increase over the 1976–2005 period
(Fig. 2b). A mean increase from about 730 mm y−1 at the be-
ginning of the century to about 840 mm y−1 by the end of the
century is simulated for all RCPs on average (Fig. 2b). How-
ever, this PE increase highly depends on RCPs, as PE reaches
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around 775, 820 and 920 mm y−1 for RCP2.6, RCP4.5 and
RCP8.5, respectively. This means that, for the majority of
climate models and PE formulations, the projected increase
in greenhouse gas concentrations clearly leads to an increase
in PE estimates, and the trend in PE is closely related to
the RCP considered: an exponential increase for RCP8.5, a
rather linear increase for RCP4.5 and a plateau reached by
2040 for RCP2.6.

3.2 Behavioral differences between PE formulations
and links to climate variables

The PE formulations show large differences in terms of mag-
nitude, regardless of the time period considered (Fig. 3a).
This is in line with previous studies that compared PE
amounts depending on the PE formulation (Federer et al.,
1996; Kingston et al., 2009). The differences between formu-
lations reach about 400 mm y−1, which is much higher than
the expected PE changes over the 1976–2099 period for a
given formulation.

Figure 3b shows gradual positive anomalies for each for-
mulation. By the end of the century, the annual PE changes
over the 1976–2099 period are between+30 mm y−1 (on av-
erage over 30-year periods) with the Morton formulation and
+130 mm y−1 with the Hamon formulation, whose relatively
high sensitivity to air temperature increase has already been
demonstrated for other locations (Duan et al., 2017). How-
ever, interestingly, the growth rate does not necessarily de-
pend on the selected forcing variables nor on the type of
equation, as Penman, Penman–Monteith and Oudin present
similar trend slopes while probably being most different in
terms of formulation and the selected forcing variables.

To better understand this point, we analyzed the link be-
tween the PE and climate variables anomalies, regardless of
their use in PE formulations. We show that, irrespective of
the PE formulation, an increase in air temperature or radia-
tion or a decrease in relative humidity leads to an increase in
PE (Fig. 4). The relationships exhibit rather linear behaviors,
with higher slopes obtained for the Hamon PE formulation.
This suggests that the covariance between climate variables
from GCM–RCM couples of models allows for PE formu-
lations that do not make use of all available climate vari-
ables to still show consistent evolutions of annual PE. Sur-
prisingly, no clear relationship is observed between the PE
and wind speed anomalies. A large discrepancy exists be-
tween the GCM–RCM climate models regarding the sign of
the evolution of wind speed, suggesting large uncertainties
for this variable.

3.3 Quantifying and partitioning the total uncertainty
in PE projections

In the previous section, we showed that differences between
PE evolutions are large in the future. In this section, we aim
to decipher the real contribution of PE formulations to the

total uncertainty, relative to other uncertainty contributors
(RCPs, GCMs and RCMs). Figure 5 shows the contribution
of each modeling step (RCPs, GCMs, RCMs and PE formu-
lations) to the total uncertainty of the future PE changes, i.e.,
the proportion of the variance explained by each step in the
modeling chain for three different 30-year periods centered
around 2030, 2050 and 2085, over the entire study domain
(France), obtained by applying the QUALYPSO method.

By 2030, GCMs are the main source of uncertainty, with
a contribution ranging from 30 % (over the southeastern part
of the domain) to 50 % (over the northwest part of the do-
main). RCMs are the second largest source of uncertainty,
with a contribution ranging from 20 % to 30 %. The other
steps in the modeling chain exhibit a much lower contribu-
tion: PE formulations account for less than 5 % to the total
uncertainty, except over the southeastern part of the domain
where it reaches 10 %; the RCPs represent less than 10 % of
the total uncertainty; and the residual is quite low, with a pro-
portion below 10 %.

By 2050, GCMs are still the largest source of uncertainty
over a large part of the territory, with a contribution of about
40 % to the total uncertainty. However, in the southern part
of the territory, this contribution is still lower (30 %). The
lower contribution of GCMs in this part of the territory can be
explained by the increase in the contribution of RCPs to the
total uncertainty, by up to 10 % on average. The contributions
of RCMs show a small increase in the center of the French
territory, from 30 % to 40 % on average. The contributions of
other steps remain similar to those for 2030.

By 2085, GCMs and RCMs provide the major sources of
uncertainty in the modeling chain, with a respective contri-
bution of 30 %. The contribution of RCPs to the total uncer-
tainty is notably higher than for other periods (especially in
the southern part of the domain); thus, in 2085, the diver-
gence between RCP scenarios explains 20 % of the variance
in PE estimates. Finally, differences between PE formula-
tions, although they lead to largely different PE changes, re-
main a minor source of uncertainty compared with other fac-
tors, with a contribution to the total uncertainty below 10 %.

The total variance of PE change is the total uncertainty
of the PE response to climate change. Interestingly, the total
uncertainty increases with time, especially for the southern
regions, where the contribution of RCPs is relatively high.

3.4 Analyzing the uncertainty in PE projections from a
single scenario: RCP8.5

The contribution of PE formulations to the PE projection un-
certainty might be underestimated due to the combination of
RCPs in the previous analysis. As a consequence, the contri-
bution of PE formulations to the PE projection uncertainty is
assessed here for RCP8.5 only. Figure 6 presents the results
of the uncertainty analysis for a single scenario: RCP8.5 by
2085. According to the results presented in Fig. 5, the con-
tribution of RCPs becomes higher for the end of the century
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Figure 2. (a) Mean annual PE (mm y−1) computed with climate projections from 1976 to 2005 plotted over France, and (b) mean annual
time series of PE averaged over the whole study area computed with the three RCPs (1976–2099). Multiyear (a) and annual (b) mean PE
values were calculated by averaging the seven PE formulations and also the different GCM–RCM couples. As mentioned in Table 1, the
RCP2.6 time series is obtained by averaging 8× 7 time series (8 GCM–RCM couples and 7 PE formulations), the RCP4.5 time series is
obtained by averaging 10× 7 time series (10 GCM/RCM couples and 7 PE formulations) and the RCP8.5 time series is obtained by averaging
12× 7 time series (12 GCM–RCM couples and 7 PE formulations).

compared with earlier periods, i.e., when RCPs convey more
divergent climate signals with respect to RCP8.5, the total
variance (Fig. 6) is moderately smaller than in the multi-
scenario analysis (Fig. 5). Therefore, considering multiple
RCPs introduces more variability in the long term. Figure 6
shows that the relative contribution of the PE formulations
is higher for the analysis considering only RCP8.5 than for
the multi-scenario analysis. This is especially the case for the
southern locations, where the PE contribution reaches almost
50 % of the variance. GCM and RCM contributions remain
stable between the single- and multi-scenario analyses. The
results of the uncertainty analysis for a single scenario high-
light the important contribution of the PE formulations over
the total uncertainty (RCPs excluded), and they even rank
the PE formulations as the first uncertainty contributor for
the south of France.

The top row of Fig. 7 shows the mean yearly PE increase
(mm y−1) for RCP8.5 computed with the complete matrix of
data, i.e., completed with the QUALYPSO framework, for
three different 30-year periods centered around 2030, 2050
and 2085. The PE increase for future lead times, computed
from the inferred complete matrix with the augmentation
process, does not modify the spatial distribution of the origi-
nal data as shown in Fig. 2. The south–north gradient is still
well represented for PE anomalies, although mountainous ar-
eas no longer stand out.

Finally, the signal-to-noise ratio due to climate change,
based on the method of Hawkins and Sutton (2012), is pre-
sented in Fig. 7 (bottom row). This indicator allows one to
assess if the change signal is more important than the un-
certainty associated with the change trend (i.e., the noise of
the ensemble). When the signal-to-noise ratio is above 1, the
change is more important than the uncertainty, and an emer-
gence time can be associated with the change trend. The ex-

pected increase in PE becomes greater than the variability for
the southern areas of the domain, indicating a signal emer-
gence. For northern locations, a large uncertainty is associ-
ated with the estimation of future PE.

4 Discussion

4.1 Investigating the role of the
uncertainty-partitioning approach on results

We performed a descriptive analysis to evaluate the distribu-
tion of PE changes, more specifically the distributions of PE
anomalies averaged over the entire domain (France) accord-
ing to each scenario and model. Figure 8 shows the variabil-
ity of the mean PE anomaly projected over France for each
model and scenario used in the study, namely RCPs, GCMs,
RCMs and PE formulations, for three different 30-year pe-
riods centered around 2030, 2050 and 2085. The figure al-
lows one to identify which scenario or model in the ensem-
ble is likely to convey more uncertainty to the projections.
For example, a model showing greater variability than other
models or a significantly different projection can be identi-
fied as contributing a significant amount to the ensemble un-
certainty range. At first glance, Fig. 8 shows an increase in
the variability of the projections with time, i.e., a growing
uncertainty associated with the PE projections from horizon
2030 to horizon 2085. This increase is relevant to previously
shown results, such as the divergence between RCPs (Fig. 2),
the divergence between PE formulations (Fig. 3) or the in-
crease in total uncertainty (Fig. 5).

Regarding the RCPs, the divergence between the three
pathways increases with time. At the 2085 horizon, PE pro-
jections clearly differ according to the emission scenario,
which explains the results observed in Fig. 5 (increased pro-
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Figure 3. Projected mean annual PE (a) and expected increase (b) for each formulation. The time series are obtained by averaging the 30
RCP–GCM–RCM time series for each PE formulation. A 30-year rolling mean is applied so that, for instance, the value for the first year in
the plotted time series (at year 1990) corresponds to the PE averaged over the 1976–2005 period.

Figure 4. Mean anomalies of annual PE compared to the average anomalies of the climate variables by the end of the century (2070–2099)
for air temperature (Ta, a), net radiation (Rn, b), relative humidity (RH, c) and wind speed (u2, d). Each symbol represents one combination
of RCP–GCM–RCM–PE formulation. Full symbols are used when the climate variable is used in the PE formulation, and blank symbols are
used when the climate variable is not used in the PE formulation.
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Figure 5. Uncertainty contribution of each impact modeling chain step to changes in PE across France for three different 30-year periods
centered around 2030, 2050 and 2085. The contribution to the total uncertainty is presented in percent and is calculated with the QUALYPSO
method.

Figure 6. Uncertainty contribution of each impact modeling chain step to changes in PE across France for a 30-year period centered around
2085 for RCP8.5. The contribution to the total uncertainty is presented in percent and is calculated with the QUALYPSO method.

portion of uncertainty due to RCPs). As expected, RCP8.5
shows the largest uncertainty range and mean value increase,
followed by RCP4.5 and RCP2.6. Given that the signal-to-
noise ratio (in Fig. 7) is calculated from the mean of the total
set of projections, we can assume that if only RCP8.5 were
considered to estimate future PE, the signal-to-noise ratio
would be greater and would be more likely to be above unity
for some areas and under some horizons (as shown in Fig. 6),
whereas the signal-to-noise ratio would be lower when con-
sidering RCP2.6 only.

Regarding the GCMs, the divergence of PE projections be-
tween each model increases over time in terms of the median
change and distributions of change. Moreover, the uncer-
tainty spread also increases with time, which adds up to the
total uncertainty, despite the fact that the relative contribu-
tion of this factor to the total uncertainty decreases with time
(see Fig. 5). Two GCMs stand out from the rest: ICHEC-EC-
EARTH projects notably higher PE than the others, whereas
MPI-ESM-LR shows significantly lower PE values.

The divergence between RCMs increases over time as
well. It must be highlighted that not all RCMs are used with

the same GCMs. For example, CLMcom-CCLM4-8-17 ap-
pears in Fig. 8 as the RCM with the most variability; how-
ever, this RCM only uses the outputs of two different GCMs,
the MPI-ESM-LR model that projects the lowest PE increase
and the MOHC-HadGEM2-ES model that projects one of the
highest PE increases. Thus, the projected higher uncertainty
derived from this RCM can be explained by significantly di-
vergent GCM inputs to this model compared with the other
RCMs.

Finally, Fig. 8 also shows changes in the PE projection un-
certainty level and spread derived from the PE formulations.
For each time horizon, the uncertainty level and spread show
similar values across the seven PE models. However, for each
formula, the variability and, hence, the uncertainty to PE pro-
jections increases over time. In addition, it is clear that, ex-
cept for the Hamon formulation, all PE projection anoma-
lies remain within similar value ranges. This important result
confirms that PE formulations are not the main factor of un-
certainty in PE projections, compared with RCPs, GCMs and
RCMs.
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Figure 7. The top row shows the mean change in annual PE (mm y−1) computed with the QUALYPSO framework, the bottom row presents
the signal-to-noise ratio. Results are shown for three different 30-year periods centered around 2030, 2050 and 2085. Gray areas indicate a
signal-to-noise ratio below 1 at the 90 % confidence bounds, whereas red areas show ratios above 1.

Figure 8. Distribution of annual PE changes across France for three different 30-year periods centered around 2030, 2050 and 2085 for each
modeling step: RCPs (a), GCMs (b), RCMs (c) and PE formulations (d). The boxplots represent the 5, 25, 50, 75 and 95 quantiles of the
distributions. A boxplot provides information on the variability in the PE anomaly for a given modeling step, whereas the other modeling
steps vary across their PE anomaly range.
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4.2 Guidelines for selecting PE formulations in impact
studies

Two related questions arise when using PE data as input for
climate change impact models:

1. Do we need to consider multiple PE formulations or
does a single PE formulation suffice?

2. Which formulation(s) are preferable?

As for the first question, our results suggest that PE for-
mulations may have different future trends and that assessing
these differences using a multi-formulation approach is un-
doubtedly a relevant practice. The PE anomalies obtained in
this study are of the same order of magnitude as those of pre-
vious studies, and they rank PE formulations in a similar way
(Milly and Dunne, 2016, 2017). However, uncertainty anal-
ysis results depend on the framework of the climate impact
study: combining multiple scenarios or treating each scenario
independently. For the multi-scenario analysis, considering
the other sources of uncertainty conveyed by RCPs, GCMs
and RCMs, we found that PE formulations account for only
around 10 % of the total uncertainty in PE projections. This
result contrasts with previous studies that have highlighted
the relatively important role of PE formulation in the impact
modeling chain (Vidal et al., 2013; Seiller and Anctil, 2016;
Williamson et al., 2016). However, we must note that many
of these studies focused on the RCP8.5 scenario, which is
associated with the highest greenhouse gas emissions and,
therefore, the highest radiative forcing. The results of the un-
certainty analysis performed for RCP8.5 are more consistent
with other studies. This leads to greater divergence between
the formulations than in the multi-scenario approach, due to
the higher future air temperature gradient. We attribute the
differences between our results and those from previous stud-
ies to the inclusion of several climate model simulations un-
der a large range of emission scenarios and to the approach
used to partition uncertainty (relying on a Bayesian method
to complete our unbalanced set of projections). However, an-
other hypothesis that could explain the discrepancy between
our results and those from other studies is the use (or not)
of bias-corrected data. Using bias-corrected data reduces the
contribution of GCMs/RCMs to total uncertainty (as their
distributions are forced to match an observed data set), in
contrast to using raw data. In this study, we prefer not to in-
clude bias-corrected data, as most bias-corrected climate pro-
jections with statistical methods perform poorly with respect
to retaining the properties of the covarying variables needed
for the PE calculation (Vrac and Friederichs, 2015). In ad-
dition, in contrast to these studies, we did not use an impact
model (such as a hydrological model or a crop water require-
ment model), as we aimed to make this study as general as
possible. Due to the minor contribution of PE formulations
to the total uncertainty in PE projections, when multiple sce-
narios are considered, it does not seem necessary to consider

several formulations in multi-scenario climate impact stud-
ies. However, for a single-scenario analysis (treating each
scenario independently), the contribution of the PE formula-
tion becomes higher, and it seems necessary to quantify this
source of uncertainty as well as the GCM and RCM contri-
butions. Furthermore, if several impact models are used, due
to the differences in the magnitude of PE and its changes
between formulations, the same formulation should be con-
served for all modeling chains. These recommendations do
not apply if only one climate projection is used, which should
be avoided anyway.

As for the second question, it is difficult to provide clear
guidelines. In theory, the choice of a PE formulation for an
impact study needs to consider both the uncertainties with
respect to the projected climate variables used by the formu-
lations and the physical consistency handled by these for-
mulations. In practice, as the choice of a PE formulation
is often driven by the personal experience of the modeler,
the relatively low contribution of PE formulations in multi-
scenario analysis, relative to other sources of uncertainty,
tends to confirm this practice. We showed that the behav-
iors of the PE formulations along projected climatic gradi-
ents are generally consistent (Fig. 4), even for very differ-
ent formulations in terms of the climate variables used and
physical consistency. This results from the fact that other cli-
mate variables covary with temperature, and these relation-
ships are maintained in climate projections. If one wants to
take other aspects into account, such as CO2, we would rec-
ommend choosing a Penman–Monteith-type formula that ex-
plicitly allows for this. We found that Penman–Monteith PE
trends are close to the average of the PE formulations tested.
Moreover, the physical soundness of this method allows one
to more explicitly account for interactions between climate
drivers than other formulations (even though we showed that
those interactions tend to be implicitly taken into account in
all formulations). In addition, its structure theoretically al-
lows one to consider other environmental changes, such as
land use or plant behavior under elevated atmospheric CO2,
in a more explicit way (Schwingshackl et al., 2019; Yang
et al., 2019). Accounting for these changes probably repre-
sents a greater challenge than identifying the “best” PE for-
mulation with fixed vegetation parameters.

4.3 Implications of evaporation uncertainties in impact
studies

This paper has tackled the issue of uncertainty in PE pro-
jections, but PE is only a modeling result. Here, we discuss
how PE uncertainty is transferred to actual evaporation (AE)
uncertainty. Generally, AE is computed as a fraction of PE,
typically constrained by soil moisture. How uncertainty in
PE propagates to AE depends on the region. In water-limited
regions (such as in the Mediterranean region in our study),
the impact of PE uncertainty on the AE estimate is negligi-
ble. However, the precipitation projections have a large un-
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certainty, which affects the estimated AE in such regions.
Indeed, an increasing (decreasing) trend of precipitation re-
sults in increased (decreased) soil moisture and, thus, AE.
In energy-limited regions, the uncertainty of PE is more im-
portant than the uncertainty of precipitation to estimate long-
term AE.

This leads one to question the sensitivity of impact mod-
els to PE variability. Numerous rainfall–runoff models em-
ployed for impact studies use PE as input. The representa-
tion of the evaporation process in the model may have con-
sequences for the transfer of uncertainties. For example, the
HBV (Hydrologiska Byråns Vattenbalansavdelning) model
considers AE to be equal to PE if soil moisture is sufficient;
if not, AE is reduced to satisfy the previous condition, which
could reduce the PE uncertainty (Seibert and Vis, 2012). Cal-
ibrated hydrological models can accommodate errors in PE
estimates (Oudin et al., 2006) but are much more sensitive
if the errors are not constant over time (Nandakumar and
Mein, 1997). The optimization of any hydrological model
parameters with observed streamflow data might compen-
sate for errors and uncertainty with respect to PE. This be-
comes an issue for the extrapolation period, where the risk
is to project excessive dry or wet future conditions under
climate change. While the equations described in this paper
are used for rainfall–runoff models and, thus, for hydrolog-
ical climate impact studies, they are not necessarily appro-
priate for crop water requirements, as crop-specific parame-
ters might be considered. For such a purpose, the set of PE
formulations should represent vegetation parameters, which
could lead to different evolutions than the set of formulations
chosen in this study. Crop-specific parameters are indeed sus-
ceptible to be sensitive to aspects other than the climatic vari-
ables tested in our study, which might modify the uncertainty
contribution.

5 Conclusions

Potential evaporation (PE) is a necessary proxy for the es-
timation of actual evaporation in impact models, such as
hydrological and crop water requirement models. However,
many formulations exist, and the role of these formulations
in projections remains largely unclear. In this study, we in-
vestigated the uncertainty sources of PE projections using 30
RCP–GCM–RCM combinations and seven PE formulations
over the 21st century. Using an ANOVA-based method, we
assessed the contribution of each step of the PE modeling
chain to the PE uncertainty.

Our work shows that, regardless the PE formulation used,
the mean PE will increase across France (from +40 to
130 mm y−1 on average over 30-year periods), with higher
increases associated with a higher greenhouse gas emission
scenario. The PE increase is higher in the southern part of
France and lower in the northern part. Moreover, uncertain-
ties are large, leading to a signal-to-noise ratio that is higher

than 1 for southern locations and below 1 for northern loca-
tions. This results in issues with determining an emergence
time in terms of signal change for the entire domain. The
contribution of the PE formulations to the overall uncer-
tainty in PE projections is much lower than the contribution
of the other uncertainty sources (namely RCPs, GCMs and
RCMs) in a multi-scenario approach. On the other hand, in
a single-scenario analysis, using RCP8.5, the contribution of
the evaporation formulations becomes higher and even dom-
inant for the southern part of France. However, this work
also highlighted differences, both in terms of absolute val-
ues and future changes, in PE among the different formu-
lations. The divergence between formulations was found to
be higher with higher air temperature increases. The Hamon
formulation leads to the highest increase, whereas the Mor-
ton formulation leads to the smallest increase.

Finally, the ranking of formulations (according to magni-
tude) does not change over time, and the quantification of the
PE uncertainty contribution should depend of the framework
single scenario or multiple scenarios. However, the bias in-
duced by the formulation could lead to a different estimation
depending on the impact modeling chain used. Further work
may consider testing these conclusions using a full climate
impact modeling chain, for example, including an integrated
hydrological model, which would have a different sensitivity
to PE.
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