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Abstract. Stochastic rainfall generators are probabilistic
models of rainfall space–time behavior. During parameteri-
zation and calibration, they allow the identification and quan-
tification of the main modes of rainfall variability. Hence,
stochastic rainfall models can be regarded as probabilistic
conceptual models of rainfall dynamics.

As with most conceptual models in earth sciences, the per-
formance of stochastic rainfall models strongly relies on their
adequacy in representing the rain process at hand. On trop-
ical islands with high elevation topography, orographic rain
enhancement challenges most existing stochastic models be-
cause it creates localized precipitations with strong spatial
gradients, which break down the stationarity of rain statis-
tics.

To allow for stochastic rainfall modeling on tropical is-
lands, despite non-stationarity of rain statistics, we propose
a new stochastic daily multi-site rainfall generator specifi-
cally for areas with significant orographic effects. Our model
relies on a preliminary classification of daily rain patterns
into rain types based on rainfall space and intensity statistics,
and sheds new light on rainfall variability at the island scale.
Within each rain type, the distribution of rainfall through the
island is modeled by combining a non-parametric resampling
of past analogs of a latent field describing the spatial distribu-
tion of rainfall, and a parametric gamma transform function
describing rain intensity.

When applied to the stochastic simulation of rainfall on
the islands of O‘ahu (Hawai‘i, United States of America) and

Tahiti (French Polynesia) in the tropical Pacific, the proposed
model demonstrates good skills in jointly simulating site-
specific and island-scale rain statistics. Hence, it provides a
new tool for stochastic impact studies in tropical islands, in
particular for watershed water resource management.

1 Introduction

Stochastic rainfall generators are probabilistic tools aimed at
simulating synthetic rainfall that mimic as closely as pos-
sible the statistical signature of rain observations (Richard-
son, 1981; Wilks and Wilby, 1999; Ailliot et al., 2015). More
specifically, stochastic rainfall modeling consists of statisti-
cal learning (i.e., inference) of the joint space–time proba-
bility density function (pdf) of rainfall at all sites and times
of interest, and sampling this pdf to efficiently generate syn-
thetic rainfall. The ability of stochastic rainfall generators to
emulate long and realistic rainfall sequences makes them an
appropriate tool for the simulation of design storms (Niemi
et al., 2016). Simulated rainfall can then be used as inputs
for impact models assessing the effects of rainfall on differ-
ent environmental processes including hydrology (Paschalis
et al., 2014), water resources (Cappelaere et al., 2020), geo-
morphology (Peleg et al., 2020), and agronomy (Mavromatis
and Hansen, 2001). The probabilistic approach followed by
stochastic rainfall generators enables a comprehensive study
of rainfall variability and, in turn, assessment of uncertainty
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propagation along the whole modeling chain (Gabellani et
al., 2007). This makes stochastic rainfall generation a key
tool for management of rain-induced risk, in particular for
flood (Caseri et al., 2016) and drought risks (Supit et al.,
2012). In addition, the focus of stochastic rainfall models
on the statistical signature of rainfall creates new ways to
characterize rainfall space–time behavior (Marra and Morin,
2018), and assess the impact of rainfall variability on the hy-
drosphere (Morin et al., 2019). Finally, when conditioned
to climate model outputs, stochastic rainfall generation can
be used for the downscaling of future precipitation projec-
tions (Maraun et al., 2010), resulting in local-scale and high-
resolution scenarios of the possible evolution of rainfall in
the context of climate change (Jha et al., 2014; Volosciuk et
al., 2017).

To enable fast and computationally efficient simulations
and thereby allow for investigation of rainfall variability and
associated uncertainty through the simulation of large en-
sembles, stochastic rainfall generators adopt an empirical ap-
proach that bypasses the detailed physical modeling of rain-
generation processes (Bauer et al., 2015). To avoid the pit-
fall of physically unrealistic simulations, stochastic rainfall
models embed a significant part of our conceptual knowl-
edge about rainfall behavior in their parameterization (i.e.,
they implement statistical relationships that reflect as closely
as possible the physical processes at work). However, rainfall
properties (Krajewski et al., 2003) and, in turn, the perfor-
mance of stochastic rainfall generators (Breinl et al., 2017;
Vu et al., 2018) strongly depend on the climate of the area of
interest. Hence, different models have been proposed for dif-
ferent climates, with each model focusing on a specific aspect
of rainfall, for instance, rainfall seasonality in monsoonal cli-
mates (Greene et al., 2011), rainfall spatial–temporal correla-
tion in temperate climates (Paschalis et al., 2013), or rainfall
occurrence and extreme intensities in arid regions (Wilcox et
al., 2021).

On high tropical islands or islands with high elevations and
significant topography, rainfall is strongly location depen-
dent due to complex interactions between atmospheric circu-
lation and island topography, which trigger different mech-
anisms of orographic rain enhancement (Foresti and Pozd-
noukhov, 2012; Houze, 2012). On monthly to annual scales,
the effect of orographic lifting of relatively steady trade
winds generates well-defined rain patterns (Lyons, 1982). In
these patterns, highlands are usually wetter than lowlands,
windward slopes wetter than leeward sides, and in case of
successive mountain ridges, the first to be reached by the
wet air masses is the wettest (Giambelluca et al., 2013; Lau-
rent et al., 2019). To this first-order quasi-static picture is
added the important variability of daily rainfall patterns as-
sociated with processes ranging from synoptic-scale distur-
bances (Hopuare et al., 2018; Longman et al., 2021) to large-
scale atmospheric circulations (Hopuare et al., 2015; Frazier
et al., 2018; Brown et al., 2020). Large deviations from the
long-term rainfall patterns are thus observed, and usually dry

leeward slopes can become the wettest part of the island,
for example during Kona storms (seasonal cyclones) in the
Hawai‘i archipelago (Caruso and Businger, 2006).

Orographic effects lead to non-stationary (i.e., non-
homogeneous) rain statistics in both space and time, which
challenges most existing stochastic rainfall models (Nerini et
al., 2017). In the context of high tropical islands, the first dif-
ficulty arises from the long-term patterns of orographic rain
enhancement that create non-stationarities in space. Rainfall
generators must therefore account not only for the correla-
tion between locations (Leblois and Creutin, 2013; Paschalis
et al., 2013), but also for the location of the rain within the is-
land. When orographic effects are directly related to topogra-
phy, generalized linear models (GLMs) have been leveraged
to account for spatial rain patterns by linking model parame-
ters to local topographic information such as altitude or slope
aspect (Ambrosino et al., 2014; Chandler, 2020). On tropical
islands, however, the complexity of the rain–topography re-
lationships (e.g., successive mountain ridges becoming drier
at similar altitude) hinders the direct regression of model pa-
rameters on topographic data. An interesting option to over-
come the non-uniqueness of topography–rainfall relation-
ships is to interpolate the parameters of the rainfall model
in space, in order to let data inform non-stationarity (Kleiber
et al., 2012; Bennett et al., 2018). This, however, increases
model complexity, and therefore requires training datasets
with high spatial resolution, which are not yet available for
most target areas (Benoit et al., 2021). Finally, the difficulty
of accounting for orographic effects in the context of high
tropical islands is further increased by the temporal variabil-
ity of rainfall patterns (e.g., wet leeward slopes during Kona
storms), which calls for the development of models able to
identify and capture the main modes of variability of oro-
graphic effects over time.

A rainfall generator compatible with marine tropical cli-
mates and complex rain–topography interactions encoun-
tered on tropical islands is, to the best of our knowledge, still
lacking in the toolbox of stochastic rainfall generators. To fill
this gap, the present paper proposes a new rainfall model ded-
icated to high tropical islands with significant and complex
topography, which aims to account for both the long-term
quasi-static patterns of rain accumulation and the day-to-day
fluctuations of the rainfall spatial distribution. Specifically,
the goal is to develop a daily resolution multi-site stochastic
rainfall generator able to simulate (1) site-specific rain oc-
currence, persistence, intensity, and seasonality; (2) spatial
patterns of daily rain accumulation; and (3) areal rain statis-
tics at the island scale.

To achieve these objectives, the remainder of the article is
structured as follows: Section 2 briefly reviews the main fea-
tures of tropical island rainfall and describes our stochastic
rainfall model. Section 3 illustrates the performance of the
model for the island of O‘ahu (Hawai‘i, USA) in the tropical
Pacific, and a similar test study is repeated in the Supplement
for the island of Tahiti (French Polynesia) to demonstrate the

Hydrol. Earth Syst. Sci., 26, 2113–2129, 2022 https://doi.org/10.5194/hess-26-2113-2022



L. Benoit et al.: Stochastic daily rainfall generation on tropical islands with complex topography 2115

Figure 1. Main features of rainfall observed over the island of O‘ahu. (a) Mean annual rainfall (central panel) and seasonality of rain
accumulation for four specific rain gauges (outer panels). (b) Cumulative distribution function (cdf) of the proportion of gauges measuring
no rain for a given day. (c) Cdf of the mean and maximum daily rain accumulation computed over the whole observation network (abscissa
is in log scale). (d) Cdf of the coefficient of variation (i.e., standard deviation/mean) of daily rain accumulation throughout the rain gauge
network.

versatility of the model. Finally, Sect. 4 discusses how the
focus on orographic rain enhancement has influenced the de-
sign of the model and provides concluding remarks.

2 Data and methods

2.1 Rainfall features of interest

Because stochastic rainfall models are data driven, their
structure depends on the rain features one wants to repro-
duce in simulations. Hence, identification of the main fea-
tures of daily rainfall on high tropical islands is a prerequisite
for the design of the present model. For illustration purposes,
we focus throughout the main text on the island of O‘ahu,
Hawai‘i (lon= 158◦W, lat= 21.5◦ N, area= 1545 km2, max
altitude= 1220 m). The available rain gauge observation
dataset consists of daily records from a network of 86 rain
gauges spread over the island (Fig. 1a), and covers a 20-
year period 1991–2011. It corresponds to a compilation of
quality-controlled and gap-filled daily observations (Long-
man et al., 2018). Gap filling was performed using the nor-
mal ratio method (Paulhus and Kohler, 1952), and only sta-
tions with less than 5 % gap-filled data are kept for this study

in order to minimize the impact of gap filling on our re-
sults. To contextualize the observed rain patterns, several me-
teorological covariates (e.g., pressure, temperature, humid-
ity, and wind) are investigated at the island scale. We use
the ECMWF Reanalysis v5 (ERA5) dataset (Hersach et al.,
2018) at 00:00 HST to inform these covariates and average
the values of the 12-grid cells (pixel size= 0.25◦× 0.25◦)
encompassing the island of O‘ahu.

Figure 1 displays the main features of rainfall over the
island of O‘ahu. It shows the strong impact of trade wind-
induced orographic rain enhancement on the spatial dis-
tribution of annual precipitation (Fig. 1a), with windward
(northeast) sides significantly wetter than leeward (south-
west) ones, and highlands generally wetter than lowlands.
Note some important details of this annual rainfall pattern,
for example that the rain maximum is observed leeward of
the main crest of the Ko‘olau range, and that the Ko‘olau
mountains are significantly wetter than the Wai‘anae range,
despite higher elevation. In addition to prevailing orographic
rainfall triggered by the interactions of trade winds with is-
land topography (east-northeasterly trade winds blow more
than 280 d per year over the Hawaiian archipelago; Long-
man et al., 2015), the island of O‘ahu also experiences spa-
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Figure 2. Overview of the structure of the stochastic rainfall model. (a) Meteorological covariates (here geopotential at 950 hPa and tem-
perature difference between 950 and 700 hPa) driving the occurrence of rain types, which summarize daily rain statistics. (b) Latent field
modeling of the spatial distribution of rainfall across the island. (c) Transform function linking latent values with actual rain accumulations.
(d) Back-transform combining (b) and (c) to obtain daily rain simulations.

tially widespread rain events, mostly triggered by regional at-
mospheric disturbances such as cold fronts originating from
mid-latitudes and Kona storms (Longman et al., 2021). These
atmospheric disturbances mostly occur during (boreal) win-
ter, which corresponds to the local rainy season (spanning
October–March). They represent the main source of pre-
cipitation for dry leeward locations and are responsible for
the enhanced seasonality of rain accumulation in these areas
(Fig. 1a).

The diversity of rain-generation mechanisms (e.g., oro-
graphic lifting, cold fronts, or Kona lows) coupled with the
steep island topography of volcanic origin result in a com-
plex distribution of rainfall in space and time, which pro-
duces highly variable island-scale rain statistics (i.e., statis-
tics summarizing rain behavior throughout the island for a
given day). Figure 1b–d shows that at the scale of the is-
land of O‘ahu, daily rainfall is strongly intermittent in space
(only 3 % of the days record rain at all gauge locations,
and half of the time at least 20 % of the gauges measure no
rain, Fig. 1b), highly skewed (island-scale rain accumulation
average< 2.25 mm d−1 50 % of the time, but island-scale
maximum accumulation> 15 mm d−1 50 % of the time and
reaches 500 mm d−1, Fig. 1c), and strongly variable in space

(coefficient of variation> 1.3 50 % of the time and > 2.9
10 % of the time).

2.2 Model description

2.2.1 Model overview

To model the statistical features of daily rainfall in tropi-
cal islands while accounting for the main mechanisms of
orographic rain enhancement, in particular the variability
of rainfall–topography relationships under the influence of
changing atmospheric conditions, the proposed model splits
rainfall behavior into three components, i.e., temporal vari-
ability, intensity (i.e., marginal distribution), and spatial dis-
tribution. Figure 2 summarizes the structure of the model,
which is briefly introduced in the later part of this subsec-
tion, and will be discussed in detail in Sects. 2.2.2 to 2.2.4.

The temporal variability of rain statistics and its relation-
ships with the state of the atmosphere are modeled follow-
ing a rain-typing approach (Fig. 2a; Ailliot et al., 2015;
Benoit et al., 2018b). In this framework, days with similar
rain statistics are first pooled together in a finite number of
rain types, which represent summaries of island-scale daily
rain statistics. Next, rain type occurrence is modeled by a
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Markov chain describing how rain types transition to each
other (Bárdossy and Plate, 1991; Wilby, 1994). To preserve
climatological consistency and model the influence of at-
mospheric circulation on orographic rain enhancement, rain
type occurrence is conditioned to local meteorological co-
variates (Benoit et al., 2020), making the Markov chain non-
homogeneous (Hughes and Guttorp, 1999; Vrac et al., 2007).
It is important to note here that we do not use the widespread
hidden Markov model (HMM) approach (Ailliot et al., 2009;
Greene et al., 2011) to introduce rain types in our stochas-
tic rainfall model, but rather resort to a two-step approach in
which rain types are first determined by a direct classification
of rain gauge observations and a statistical rainfall model is
subsequently built for each rain type. This choice was mo-
tivated by the use of non-parametric methods to model the
distribution of rainfall conditional to rain types, which pre-
vents the formulation of the likelihood of the full statistical
model and in turn the use of HMM to model rain types.

Conditional to each rain type, the distribution of rain
across the island is modeled following a meta-Gaussian
approach (also referred to as trans-Gaussian or trans-
formed Gaussian; Allard and Bourotte, 2015; Baxevani
and Lennartsson, 2015; Papalexiou and Serinaldi, 2020). In
this framework, a latent field with standardized Gaussian
marginal distribution is non-linearly transformed to match
the marginal distribution of daily rainfall across the island,
and the spatial dependencies of the latent field are used to
encode the spatial distribution of rainfall (Fig. 2b and c). The
latent field is often assumed to follow a multivariate Gaus-
sian distribution, which allows for a parsimonious modeling
of the spatial dependencies using geostatistics (Lantuéjoul,
2002) and, in turn, spatial interpolation of rain gauge obser-
vations (Benoit et al., 2018a). In this study, however, a careful
investigation of inter-gauge spatial dependencies (Sect. S1
in the Supplement) shows the inadequacy of the multivari-
ate Gaussian distribution to model the latent field. Instead, a
non-parametric resampling of past analogs (Gangopadhyay
and Clark, 2005; Yiou, 2014) of the daily latent field is used
to model spatial dependencies. Aside from the choice of the
marginal distribution of the latent field (Gaussian vs. uni-
form), this model is comparable to the use of empirical spa-
tial copulas (Bárdossy and Pegram, 2009) coupled with a
parametric marginal distribution of non-zero rain accumu-
lation. This approach has the advantage of faithfully repro-
ducing the complex spatial distribution of rainfall due to oro-
graphic effects, but at the expense of the ability for spatial in-
terpolation. The present model should therefore be regarded
as a multi-site stochastic rainfall generator (and not a rain
field generator), and the spatial interpolation of the simulated
multi-site rainfall is outside the scope of this paper.

2.2.2 Meta-Gaussian representation of island-scale
daily rainfall

Rain intensity and spatial distribution are modeled jointly
following a meta-Gaussian approach (Fig. 2b and c). For a
given day, the observed rain accumulations Ri=1 ... NT across
a network of NT gauges are linked to their latent counter-
partsZi (which follow a standardized Gaussian marginal dis-
tribution, i.e., Z ∼N(0,1)) through a non-linear transform
function ψ . This transformation is performed by first assum-
ing that non-zero rain accumulations observed throughout
the island in a given day follow a Gamma distribution:

Zi =ψ (Ri)=8
−1
(
Nd

NT
+
Nw

NT
×0(Ri;k,θ)

)
if Ri > 0 , (1)

where Nd and Nw are the number of dry and wet gauges,
respectively,8−1 is the inverse cumulative distribution func-
tion (cdf) of the univariate standardized Gaussian distribu-
tion, and 0(Ri;k,θ) is the cdf of the gamma distribution with
shape parameter k > 0 and scale parameter θ > 0.

In many instances, gauges measuring no rain (i.e., Ri =0)
represent a significant part of the network, which creates a
concentration of zero values in rain accumulation distribution
and prevents a correct Gaussian transform using the func-
tion of Eq. (1). To circumvent this problem, the latent val-
ues corresponding to dry gauges are assigned based on the
distance of the dry gauges to the closest wet gauge, such as
the marginal distribution of the latent values matches the left
portion of a standardized normal distribution. The idea be-
hind this application-specific solution to deal with the spa-
tial intermittence of rainfall is that a location far from any
wet gauge should remain dry even after combining the as-
sociated latent field with slightly different parameters of the
transform function (Eqs. 1 and 2) during the simulation step
(Sect. 2.3.3). In case of a gauge measuring no rain (Ri = 0),
the corresponding latent value is given by

Zi = ψ (Ri)=8
−1

((
1−

Dwi
maxj=1:Nd

(
Dwj

))× Nd

NT

)
if Ri = 0 , (2)

where Dwi is the distance of the gauge i observing no rain
to the closest gauge measuring non-zero rain. This transfor-
mation has the advantage of creating spatial patterns of cen-
sored latent values (i.e., corresponding to dry gauges) that
are coherent with the ones of non-censored latent values (i.e.,
corresponding to wet gauges), and the transformation creates
smooth transitions between wet and dry domains.

Once latent values (Zi) are derived from rain observa-
tions (Ri), the spatial distribution of rain across the island
is defined by the spatial distribution of the latent field (Bár-
dossy and Pegram, 2009), i.e., the joint cdf of Zi . As men-
tioned in Sect. 2.1, the spatial distribution of daily rainfall on
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high tropical islands is complex and strongly non-stationary
due to orographic effects, which prevents the use of a sim-
ple parametric form (such as the multivariate Gaussian dis-
tribution used in most meta-Gaussian models of precipitation
(Benoit et al., 2018a; Papalexiou and Serinaldi, 2020) for the
spatial dependencies. Hence, in the present case, the non-
parametric resampling of past latent fields is used to simulate
the spatial distribution of rainfall (Rüschendorf, 2009).

2.2.3 Rain typing

Based on the above meta-Gaussian representation of daily
rain fields, days with similar rain statistics are pooled into
rain types (Fig. 2a) using a non-supervised clustering applied
on the six-dimensional feature space defined by the follow-
ing:

1. The three parameters of the transform function (ψ ; i.e.,
p0 =

Nd
NT

, k, θ ), which inform the marginal distribution
of daily rainfall over the island.

2. The first three components of the Karhunen–Loève ex-
pansion (Huang et al., 2001) of the latent field Z (PC1,
PC2, PC3), which inform the spatial distribution of rain-
fall across the island.

Based on this feature space Y = (p0,k,θ,PC1,PC2,PC3)
T ,

the clustering is performed using a Gaussian mixture model
(GMM; Fraley and Raftery, 2002), which approximates the
pdf of Y as a weighted sum of multivariate normal distribu-
tions:

pY (Y = y)=
∑
l=1:NC

bl ×N
(
y|µl,6l

)
, (3)

where pY is the joint pdf of the random vector Y , NC is
number of components in the GMM, bl is a weight assigned
to the lth component, and µl and 6l are the mean vector
and covariance matrix of the multivariate normal distribu-
tion of the lth component. Here, the parameters embedded
in the vector Y are assumed to be only slightly correlated,
and the covariance matrices (6l) are therefore assumed to be
diagonal. The number of components of the GMM (NC) is
selected by minimization of the Bayesian information crite-
rion (BIC; Schwartz, 1978) estimated for different numbers
of components in order to select a parsimonious classifica-
tion (i.e., with as few rain types as possible) while properly
fitting the pdf of Y (i.e., pY ). Once the pdf pY is known,
the probability that an observed vector yobs belongs to the
lth component Cl is given by

p
(
yobs ∈ Cl

)
=

bl ×N
(
yobs|µl,6l

)
NC∑
k=1

bk ×N
(
yobs|µk,6k

) , (4)

and the classification is obtained by assigning each day (di)
with a rain type (RT) that corresponds to the most probable
mixture component:

RT(di)=maxl∈1 ... NC

(
p
(
yi ∈ Cl

))
. (5)

2.2.4 Rain type occurrence

Once rain types have been defined based on rainfall statistical
properties, their occurrence is conditioned to the vectorMCd
of meteorological covariates observed at day d (Fig. 2a),
and rain type occurrence is modeled by a non-homogeneous
Markov chain of order 1 (Hughes and Guttorp, 1999; Vrac et
al., 2007):

p(RTd = j |RTd−1 = i,MCd)∝ γij

exp
(
−

1
2

(
MCd −µij

)
6−1
ij

(
MCd −µij

)T)
, (6)

where RTd is the state of the Markov chain (i.e., the rain type)
at day d, p(RTd = j |RTd−1 = i,MCd) is the probability to
transition from rain type i to rain type j , 6ij and µij are the
covariance matrix and the mean vector of the meteorological
covariates when the transition from type i to type j occurs,
respectively, and γij is the baseline (i.e., long-term average)
probability of transition from type i to type j . This model al-
lows the transition probability p(RTd = j |RTd−1 = i,MCd)

to vary proportionally to the conditional density of MCd
given the transition, and conditions the occurrence of rain
types to the state of the atmosphere characterized by the co-
variates.

2.3 Model implementation

2.3.1 Selection of meteorological covariates

The set of meteorological covariates used for conditioning of
the non-homogeneous Markov chain must be chosen so that
(i) the covariates are only weakly correlated to each other,
which ensures model parsimony (i.e., minimal redundancy
between covariates); and (ii) the temporal variations of the
covariates are correlated with variations in rain type occur-
rence (Sect. S2), which indirectly informs the seasonality and
interannual variability of rainfall patterns. Note that in the
present framework, the conditioning to covariates (i.e., the
non-homogeneous part of the Markov chain) is used to in-
form the low-frequency fluctuations of rain type occurrence
(seasonal to interannual time scales), with higher frequencies
(weekly to daily time scales) being informed by the base-
line transition probabilities (γij ). Hence, meteorological co-
variates are aggregated at the monthly scale prior to use for
conditioning of the non-homogeneous Markov chain. The
monthly aggregated covariates inform monthly anomalies in
atmospheric conditions and, in turn, the likelihood of rain
types occurring during a given month.

In the present case, we selected the meteorological covari-
ates according to our initial knowledge about rain-generation
mechanisms on high tropical islands, and their links to the
state of the atmosphere (Elison Timm et al., 2014; Réchou
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et al., 2019; Sanfilippo, 2020); this led to the following five
covariates:

1. Geopotential height at 700 hPa (m2 s−2). This covari-
ate is correlated with the presence of synoptic-scale
weather systems in the vicinity of the island and identi-
fies regional atmospheric disturbances.

2. Temperature difference between 950 and 700 hPa (K).
This covariate is correlated with the lower atmospheric
instability and identifies days prone to shallow convec-
tion.

3. Specific humidity at 700 hPa (kg kg−1). This covariate
informs the presence of humidity above the height of the
trade wind inversion and is negatively correlated with
the strength of the inversion and positively correlated
with the potential for deep convection and cold rain.

4. Meridional and

5. longitudinal humidity fluxes at 950 hPa (i.e., specific
humidity multiplied by the u (east–west) or v (north–
south) components of the wind field, m s−1 kg kg−1).
These covariates provide the amount of moisture cross-
ing over the mountain barrier available for precipitation
and are a proxy for orographic precipitation.

2.3.2 Model calibration

The model is calibrated from a training dataset made of
N days of rain accumulation recorded by a network of
NT rain gauges (Fig. 1a). Data must be available for all sta-
tions and all days of the calibration period, and a prelimi-
nary gap-filling step is required in case of incomplete data
(Longman et al., 2018; Oriani et al., 2020). Once a com-
plete training dataset is available, the first step of model cal-
ibration consists of inferring the parameters of the transform
function (ψ) for each day of the training period. This is per-
formed by calculating the proportion of dry gauges and then
estimating the parameters of the gamma distribution of the
wet gauges using a maximum likelihood approach. Once the
three parameters of ψ are known, this function can be in-
verted to derive the latent values at each gauge location.

After calibration of the transform function and deriva-
tion of the latent values for each day of the calibration
dataset, days with similar rain statistics are pooled together
by rain typing. The first three principal components of the
latent field are preliminarily derived from the Karhunen–
Loève transform of all latent values. Next, the parameters
of the GMM are inferred using an expectation-minimization
approach (Fraley and Raftery, 2002). Finally, rain typing
(i.e., clustering) is performed by assigning to each day the
type that corresponds to the most probable component of
the GMM.

After rain typing, the time series of observed rain types
is analyzed in relation to observations of the meteorolog-
ical covariates to calibrate the non-homogeneous Markov

chain. The baseline transition matrix (γij ) is first estimated
by counting the transitions between each pair of rain types
occurring during the calibration period and normalizing the
result by the total number of transitions. Next, the parameters
of the mean vector (µij ) and the covariance matrix (6ij ) used
to make the Markov chain non-homogeneous are estimated
by the method of moments applied to covariate observations.

Conditional to each rain type, the joint distribution of the
parameters of ψ is inferred by multivariate kernel density
estimation using a trivariate Gaussian kernel. The bandwidth
of the kernel is selected following Scott’s rule (Scott, 1979,
2010), i.e., in the present case√

Hii =N
−

1
7 × σi , (7)

where H is the bandwidth matrix of the kernel,N the number
of days in the calibration dataset, and σi the standard devia-
tion of the ith parameter (here i = 1 . . .3).

Finally, because the latent field is simulated using an ana-
log approach (see Sect. 2.3.3 for details), this part of the
model does not require formal inference.

2.3.3 Stochastic rainfall generation

After model calibration, stochastic rainfall generation is per-
formed following the steps summarized in Fig. 2. Starting
from a time series of meteorological covariates, rain types
are first simulated using the non-homogeneous Markov chain
described in Eq. (6). Next, conditional to this simulated rain
type time series, the parameters of the transform function
are sampled from their joint distribution defined by Eq. (7).
Subsequently, one realization of the latent field is simu-
lated using an analog approach (Gangopadhyay and Clark,
2005; Mezghani and Hingray, 2009; Yiou, 2014), i.e., by
randomly picking the latent field of a day belonging to the
same rain type as the day to simulate from the calibration
dataset. Finally, the simulated rain field is obtained by back-
transformation of the simulated latent field (Eqs. 1 and 2)
using the simulated parameters of the transform function.

2.4 Model assessment

The ability of the model to identify climatologically relevant
rain types is assessed qualitatively by applying rain typing to
the full study dataset of Sect. 2.1 and scrutinizing the emer-
gent spatial–temporal rainfall patterns for each type. The re-
sulting classification is subsequently interpreted in terms of
rain generation processes by confronting rain types with co-
occurring meteorological covariates. However, in doing so,
one should keep in mind that the rain-typing procedure is
fully statistical and that the rain type description is based on
emerging statistical patterns, not on physical modeling (e.g.,
using a numerical weather model to reproduce the observed
patterns).

When discussing rain types and their link to rain-
generation processes, special attention is paid to
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1. the emergence of spatial patterns in relation to oro-
graphic effects,

2. the seasonality of rain type occurrence in relation to the
regional annual rain cycle, and

3. the relationship of rain types to the state of the atmo-
sphere quantified by the set of climate covariates de-
scribed in Sect. 2.4 and used here at a daily resolution
(i.e., not aggregated at the monthly scale as is the case
for the conditioning of the non-homogeneous Markov
chain).

After the assessment of the climatological realism of rain
types, the ability of the model to stochastically generate rain-
fall is assessed using a leave-one-year-out cross-validation
procedure. Data from one year are iteratively removed from
the study dataset of Sect. 2.1 and the stochastic model is cali-
brated using the remaining data (i.e., 19 years of data are used
for model calibration). The model is fully recalibrated, which
includes rain typing, inference of the transform function, and
creation of a training dataset of latent fields. After model cal-
ibration, daily rainfall is simulated for each day of the target
year, i.e., the year excluded from the calibration dataset. Fifty
simulations are generated to assess the uncertainty associated
with stochastic rainfall generation. The same procedure is re-
peated for each year of the study dataset, which leads to a
20-year long validation set made of 50 simulations for each
gauge of the O‘ahu rain monitoring network.

Simulated rainfall is compared to observations following
a multi-criteria approach. First, simulation results are evalu-
ated qualitatively by visual inspection of rainfall time series
for the four target stations of Fig. 1a. Next, a quantitative as-
sessment is performed using the following evaluation statis-
tics:

1. Site-specific rain statistics. The following statistics are
considered: quantiles 10 %, 50 %, and 90 % of monthly
rain accumulation to assess seasonality; annual rain ac-
cumulation to assess interannual variability; quantile–
quantile (q–q) plot of the percentiles of daily rain accu-
mulation to assess the probability distribution of daily
rainfall; and q–q plot of the percentiles of wet-spell du-
ration to assess rain persistence.

2. Spatial patterns of rain distribution across the island.
The following statistics are mapped to investigate the
spatial distribution of rainfall: quantiles 10 %, 30 %,
50%, 70 %, and 90 % of daily rain to assess how the
probability distribution of rainfall varies in space.

3. Areal rain statistics with q–q plots of the percentiles
of (i) the proportion of dry rain gauges, (ii) mean and
(iii) max of daily rain, and (iv) the coefficient of vari-
ation of rain accumulation across the island to assess
island-scale statistics.

3 Results

3.1 Rain types in O‘ahu

Figure 3 displays the 22 rain types identified for O‘ahu Island
during the period 1991–2011. Although this number may
seem high compared to the number of rain types inferred for
mid-latitude continental climates (usually less than 10 types,
see, e.g., Vrac et al., 2007; Benoit et al., 2018b), we believe
that it reflects the tremendous variability of rainfall observed
in the Hawai‘i archipelago (Giambelluca et al., 2013), which
led Hawaiians to use more than one hundred different words
to describe rainfall (Akana and Gonzalez, 2015). In addition
to the large number of rain types required to account for
rainfall variability on tropical islands, one key attribute of
the resulting classification is that although no information is
given to the classifier about geographical coordinates, time of
occurrence, or meteorological covariates, the identified rain
types display well-defined patterns of spatial rain distribution
(Fig. 3a), seasonality of occurrence (Fig. 3a), and correlation
with the regional state of the atmosphere (Sect. S2).

To better identify the main modes of rainfall variabil-
ity over O‘ahu, rain types are pooled into three hyper-
classes (H1–3) that can be linked to the three main rain-
generation processes in the area (Fig. 3):

– H1: almost dry days (Fig. 3, rain types a–g). During
these days, most rain gauges report no rain, and no
gauge reports more than 5 mm d−1 on average. These
types of weather conditions are associated with a stable
atmosphere and a low moisture flux (Fig. S2).

– H2: trade wind days (Fig. 3, rain types h–q). This cat-
egory displays well-defined spatial patterns of rain ac-
cumulation caused by orographic lifting, and are associ-
ated with a stable atmosphere, a well-defined trade wind
inversion, and an important influx of moisture below the
inversion layer under the influence of east-northeasterly
trade winds (Fig. S2). When scrutinizing inter-type vari-
ability within this category, note that the location of the
rain maximum shifts westward with increasing mois-
ture flux, likely due to stronger trade winds causing an
overshoot of orographic rain enhancement whereby rain
forms over the mountains but falls further downwind
on the leeward side (Daly et al., 2017). In addition, for
similar wind conditions and, therefore, spatial patterns
(compare for instance types j–l), rain intensity is corre-
lated to the instability of the atmosphere (Fig. S2).

– H3: regional atmospheric disturbance days (Fig. 3,
rain types r–v). These types display either unstructured
(types r–t) or relatively homogeneous (types u–v) spa-
tial patterns of rain accumulation and are associated
with low pressure, unstable atmosphere, and absent (or
weak) trade wind inversion. This allows high mois-
ture content at high altitude (Fig. S2). These rain types
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Figure 3. Rain types identified for the island of O‘ahu. (a) Spatial distribution of daily rain and frequency of occurrence of each rain type.
(b) Contribution of each rain type to the annual rain accumulation for a selection of 20 gauges spread throughout the island.

mostly occur during winter, i.e., the local rainy season.
When scrutinizing inter-type variability within this cate-
gory, note that rain intensity increases with atmospheric
instability and the presence of humidity at high alti-
tude, and that the spatial patterns tend to become more
structured when the low-level moisture influx increases
(probably due to stronger and more uniform winds).

Hence, rain typing provides new insights on island-scale rain
climatology (Fig. 3b). In particular, this step helps us gain
a better understanding of how different atmospheric condi-

tions lead to different rain-generation processes that, when
interacting with island topography, generate contrasting oro-
graphic effects. In the case of the island of O‘ahu, orographic
rain enhancement occurring during days influenced by trade
winds is the main explanation for the high annual rain accu-
mulations in the Ko‘olau mountains (up to 5000 mm annual
rainfall), while widespread rainfall linked to regional atmo-
spheric disturbances is the main source of rain at leeward
locations, despite their relative temporal scarcity.
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Figure 4. Ability of the model to simulate realistic rainfall time series on O‘ahu. (a) Target locations. (b) Observed rainfall time series for
the period 1991–2011. (c–e) Simulated time series. For readability, only the three first realizations of the 50-member ensemble are displayed.

3.2 Simulation of site-specific rainfall time series

Figure 4 displays stochastic rainfall generation outputs for
the four rain gauges of Fig. 1a which experience differ-
ent rainfall climatologies. Visual inspection of the simulated
time series shows that our stochastic rainfall generator is able
to simulate synthetic rainfall that is almost indistinguishable
from the observed rainfall. The dry–wet ratio as well as the
marginal distribution of daily rain accumulation seem prop-
erly replicated, except for the dry leeward gauge (first row
in Fig. 4), where the 20-year maximum tends to be overes-
timated (see also Fig. 5d). In terms of temporal variability,
the simulated time series properly capture the seasonal cycle
visible for the two leeward gauges (rows 1 and 2 in Fig. 4), as
well as the interannual variability visible for the two coastal
gauges (rows 1 and 4 in Fig. 4). Finally, the rainfall genera-
tor captures the relatively steady behavior of the wet gauge
located in the Ko‘olau range (row 3 in Fig. 4).

3.3 Simulation of site-specific rain statistics

To complement the qualitative assessment of site-specific
rainfall time series in Fig. 4, Fig. 5 investigates the statis-

tical features of the results of the cross-validation procedure
(50 realizations are drawn) for the same four rain gauges.

The results in Fig. 5 show that the proposed model cor-
rectly simulates rainfall seasonality (Fig. 5b) and interannual
variability (Fig. 5c). Note that simulations capture both the
stronger seasonality at leeward locations (compared to wind-
ward locations) as well as the near absence of seasonality at
the wettest gauge located in the Ko‘olau Mountains (Fig. 5,
third row). The interannual variability of rain accumulation
is also properly simulated, in particular at leeward locations,
where the impact of winter storms is the highest. These re-
sults suggest that the non-homogeneous Markov chain of or-
der 1 conditioned to monthly aggregated meteorological co-
variates adequately models the long-term variability of rain
accumulation, and that the selected covariates properly cap-
ture rain type occurrence in a tropical marine climate.

However, rain persistence is slightly underestimated at
some locations, especially for the high percentiles, i.e., long-
lasting wet spells (Fig. 5e). This result exposes limitations in
the use of the non-homogeneous Markov chain of order 1 for
modeling weekly scale temporal variability of rainfall. This
may be explained by the fact that daily scale and seasonal-
scale rainfall fluctuations are informed, respectively, by the
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Figure 5. Ability of the model to simulate site-specific rain statistics on O‘ahu. (a) Target locations. (b) Observed (red) and simulated (black)
monthly rain accumulation. Dashed lines denote quantiles 10 and 90 %, and solid lines denote the quantile 50 %. In the case of simulations
(black), for readability, we report in the figure only the median of each quantile (10, 50, 90 %) instead of 50 simulated quantiles. The grey
band between the dashed black lines denotes the interval Q10 %–Q90 % derived from simulations. (c) Observed (red) and simulated (black)
annual rain accumulation. In the case of simulations (black), for readability, we report in the figure only the median of the 50 simulations.
(d) The q–q plot of daily rain percentiles. (e) The q–q plot of wet-spell duration percentiles. In panels (d, e), we display q–q plots between
one observation time series (abscissa) and 50 simulations (ordinates). Hence, black dots line up vertically in the q–q plots because for each
percentile, 50 simulations are compared to a single observation.

Markov chain of order 1 and conditioning to monthly aggre-
gated meteorological covariates, but that the weekly scale is
not explicitly included in the model. Although the resulting
errors are of low magnitude, they should be kept in mind
in case of applications requiring a precise estimation of rain
persistence, e.g., crop models in semi-arid environments that
can be found in some leeward areas of the target islands.

The simulations properly reproduce site-specific marginal
distributions of daily rain accumulation (Fig. 5d), except for
the driest gauge (top row in Fig. 5), where the 20-year max-
imum tends to be overestimated. The satisfactory simula-
tion of rainfall distribution at several sites suggests that a
type-dependent gamma distribution is an adequate model for

the non-zero daily rain accumulations across the island. It is
noteworthy that all percentiles of the marginal distribution
of rain accumulation are properly reproduced in simulations,
which suggests that our model is able to simulate the whole
spectrum of daily precipitation – from dry days to intense
rainfall.

3.4 Simulation of island-scale rain fields

Figure 6 displays the results of the cross-validation proce-
dure focusing on island-scale features. Figure 6a compares
observed and simulated spatial patterns for five quantiles of
daily rain accumulation across the island of O‘ahu. Results
show very good model performance in reproducing the spa-
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Figure 6. Assessment of island-scale statistics simulation in O‘ahu. (a) Spatial patterns of observed (upper row) and simulated (lower row)
percentiles of daily rain accumulation. From left to right: 10, 30, 50, 70, and 90 % percentiles. (b–d) The q–q plots of key rain statistics
aggregated over the whole rain gauge network: (b) proportion of dry gauges; (c, d) mean and max daily rain; (e) coefficient of variation.
Corresponding pdfs are displayed in Sect. S3. In panels (b–e) we display q–q plots between one observation time series (abscissa) and
50 simulations (ordinates). Hence, black dots line up vertically in the q–q plots because for each percentile, 50 simulations are compared to
a single observation. To distinguish between simulations, quantiles related to the same simulation are connected by a solid black line.

tial patterns of daily rainfall. This result was expected be-
cause the use of empirical copulas combined with rain typ-
ing is almost equivalent to resampling the observed spatial
patterns conditional to meteorological covariates. However,
satisfactory simulation results ensure that the rain type-based
resampling of latent fields is unbiased and that the choice and
calibration of the meta-Gaussian model are relevant for the
study island.

Figure 6b–e assesses the ability of the model to simulate
four key rain statistics – the proportion of dry gauges, mean
and max of daily rain accumulation, and coefficient of vari-
ation of daily rain across the island – aggregated over all
rain gauges of the rain monitoring network of O‘ahu. Re-
sults show a slight underestimation of the low percentiles of
the proportion of dry gauges (Fig. 6b), which corresponds
to a slight overestimation of the frequency of proportions of
dry rain gauges below 5 % (i.e., 4 gauges out of 86 in the
present setting). Thus, our model tends to simulate rain at all
86 gauges when a very small number of gauges (less than 4)
actually record no rain, leading to a slight drizzle effect in
space. Careful examination of the spatial patterns of daily
rain percentiles (Fig. 6a) shows that the patterns of spatial
intermittency are properly simulated, which suggests that the

drizzle effect is randomly distributed amongst locations, thus
reducing its potential impact for applications. This level of
accuracy in the simulation of the rain fraction shows that a
truncated Gaussian latent field is an appropriate model for
rain intermittency. In addition, the correct simulation of the
spatial patterns of dry locations in Fig. 6a suggests that the
distance-based modeling of the censored latent values (Eq. 2)
coupled with empirical copulas is a proper model for the spa-
tial distribution of dry locations. Similarly, the good agree-
ment between observed and simulated coefficients of varia-
tion (Fig. 6e) coupled with the correct simulation of spatial
patterns of non-zero daily rain accumulation in Fig. 6a sug-
gest that the selected meta-Gaussian framework captures the
spatial distribution of non-zero rain accumulations.

Finally, Fig. 6c and d shows that island-scale daily mean
and maximum rain accumulations are properly simulated,
despite an overestimation of the last percentile of the max-
imum, i.e., the 20-year maximum observed over the whole
island. This result suggests that the meta-Gaussian frame-
work coupled with the kernel estimation of the transform
function parameters performs reasonably well to reproduce
the marginal distribution of island-scale rain accumulation.
However, the attempt to reproduce both island-scale statis-
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Figure 7. Overview of stochastic daily rainfall simulation for the island of Tahiti, French Polynesia. (a–e) Site-specific statistics: (a) Target
locations. (b) Observed (red) and simulated (black) monthly rain accumulation. (c) Observed (red) and simulated (black) annual rain accu-
mulation. (d) Q–q plot of daily rain percentiles. (e) Q–q plot of wet-spell duration percentiles. (f-i) Island-scale statistics: (f) proportion of
dry gauges; (g, h) mean and max daily rain; (i) coefficient of variation.

tics and site-specific marginal distributions (from dry days
to heavy rainfall) results in an inaccurate simulation of the
island-scale 20-year extreme precipitation. This limitation
calls for additional developments before the proposed model
can be used for simulating extremes in a spatial context
(Opitz et al., 2021).

3.5 Model versatility

To investigate the versatility of our stochastic daily rainfall
model, the case study performed in Sects. 3.1–3.3 for the is-
land of O‘ahu (Hawai‘i, USA) located in the North Pacific
was repeated in Sect. S4 (in the Supplement) for the island
of Tahiti (French Polynesia) located in the South Pacific. Fig-
ure 7 provides a brief overview of the results. This addi-
tional cross-validation shows that our model also performs
very well for Tahiti, despite a wetter (annual rain reaches
10 000 mm in Tahiti) and more seasonal climate than the
O‘ahu case study. In addition, the model adapts automati-
cally to different dataset sizes (86 rain gauges× 21 years for
O‘ahu, 26 gauges× 11 years for Tahiti) and rain climatolo-
gies due to the selection of different numbers of rain types.
These results suggest that our model may be adapted to most
high tropical islands across the globe.

4 Discussion and conclusion

4.1 Stochastic modeling of orographic rainfall patterns

Validation results in Sect. 3 show that the proposed model is
able to simulate realistic multi-site rainfall time series, which
accurately reproduce site-specific and island-scale daily rain
statistics for two different tropical islands. This has been
made possible by a two-step modeling approach (rain typ-
ing and meta-Gaussian representation of island-scale daily
rainfall), which takes into account our conceptual knowledge
about orographic rain enhancement in tropical islands.

The first component consists of rain types, which sum-
marize island-scale rain statistics. Unlike weather type-based
approaches (Ailliot et al., 2015; Réchou et al., 2019), we de-
fine rain types based on rain features only, i.e., no informa-
tion about meteorological covariates or large-scale circula-
tion are included during the classification step. This leads to
a classification centered on rainfall intensity and spatial dis-
tribution, which allows us to explore how island-scale rainfall
variability is impacted by orographic effects (Sect. 3.1). The
links between rain types and local climate are established in
a second step by conditioning the non-homogeneous Markov
model of rain type occurrence to meteorological covariates.
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We conceptualize rain types as the main modes of island-
scale daily rainfall variability, which is assumed to be primar-
ily influenced by orographic effects caused by interactions
between changing atmospheric conditions and fixed island
topography. In this context, one interesting contribution of
this study is the refinement of the meteorological predictors
proposed by Sanfilippo (2020) for rain type occurrence in a
tropical marine climate, in particular to distinguish between
shallow convection occurring during typical trade wind situ-
ations and deeper convection in the vicinity of atmospheric
disturbances.

The second component of the model consists of a meta-
Gaussian representation of island-scale daily rainfall. By ex-
plicitly separating rain intensity and spatial distribution, this
representation contributed to the performance of the rain-
typing procedure detailed above and in the identification
of rain types with well-defined spatial patterns. When used
for stochastic rainfall generation, the adopted meta-Gaussian
representation performed well in simulating site-specific rain
statistics as well as island-scale spatial patterns of daily
rain accumulation. This good performance can be explained
by two factors. First, the determination of the censored la-
tent values based on the distance to the closest wet gauge
(Eq. 2) generates realistic spatial patterns of dry areas and
dry–wet transition (Schleiss et al., 2014). This contributes
to the proper modeling of the spatial intermittency of daily
rain fields in tropical islands, which is caused by the drying
effect of sinking air masses after crossing mountains. The
second innovation of the model is the joint use of empiri-
cal copulas and a parametric transform function to model the
spatial patterns of non-zero rain. It has the advantage of faith-
fully preserving the spatial rainfall patterns while generating
unobserved values through the kernel density estimation of
the transform function parameters distribution. The choice of
mimicking the observed spatial rainfall patterns as closely as
possible is justified by the complexity of orographic effects
and associated rain gradients on tropical islands (Giambel-
luca et al., 2013; Laurent et al., 2019; Benoit et al., 2021).

4.2 Concluding remarks

In this paper we present a new stochastic daily rainfall gen-
erator dedicated to high tropical islands. The combination
of (i) rain types, (ii) a non-homogeneous Markov model of
rain type occurrence conditioned to meteorological covari-
ates, and (iii) a meta-Gaussian representation of the spatial
distribution of daily rainfall allowed us to generate realistic
daily rain fields honoring both site-specific and island-scale
rain statistics. The performance of the model was carefully
tested and illustrated for the islands of O‘ahu (Hawai‘i, USA)
and Tahiti (French Polynesia), both located in the tropical Pa-
cific. Cross-validation results prove the ability of the model
to capture and simulate the main features of daily rainfall
over these two high tropical islands.

The main strength of our model is its ability to simulate
diverse patterns of multi-site daily rainfall, as well as their
linkage to regional atmospheric conditions. It represents a
new tool for stochastic investigation and modeling of oro-
graphic rain enhancement on tropical islands with complex
topography. The main limitations, however, are (i) the inac-
curate simulation of extreme rainfalls, which calls for caution
when using our model for flood risk assessment, and (ii) the
restriction to multi-site simulation, which calls for an addi-
tional step of stochastic interpolation of the multi-site pat-
terns when gridded outputs are required.

Because of the above-mentioned strengths and limitations,
the main envisioned applications relate to impact studies that
require detailed knowledge of daily precipitation in tropical
islands, in particular when the spatial pattern of rainfall plays
an important role. This includes watershed water resource
management and eco-hydrological studies.

Our model can also be used for stochastic downscaling of
future precipitation projections and thereby contribute to the
current efforts to better understand, manage, and secure trop-
ical island water resources in a changing climate. An essen-
tial future investigation in this direction will be to assess how
well GCMs simulate the set of meteorological covariates we
selected to drive our stochastic rainfall generator, in particu-
lar the vertical temperature gradient used to inform shallow
convection.

Code and data availability. The implementation of the pro-
posed stochastic rainfall model is open source (MATLAB
implementation) and freely available in the following reposi-
tory (https://doi.org/10.5281/zenodo.6462982; Benoit, 2022).
The dataset of daily rainfall observations on O‘ahu is open
data and freely available on the Hawai‘i Climate Data Portal
(https://www.hawaii.edu/climate-data-portal/; HCDP, 2022). An
extract of this dataset is available in MATLAB format as a code
demo in the same repository as the source code of the model. The
dataset of daily rainfall observations on Tahiti is available upon
request from Météo France (contact.polynesie-francaise@meteo.fr)
and Groupement d’Etudes et de Gestion du Domaine Public de
Polynésie Française (secretariat@equipement.gov.pf).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-26-2113-2022-supplement.

Author contributions. LB, LS, and TWG designed the experi-
ment. MPL and LS compiled the daily rainfall datasets of O‘ahu
and Tahiti, respectively. LB and ADN selected the meteorologi-
cal covariates and designed the non-homogeneous Markov chain.
LB and MPL designed the meta-Gaussian model and the rain-typing
method. LB implemented the model and performed the numerical
experiments. LB wrote the paper with input and corrections from
all co-authors.

Hydrol. Earth Syst. Sci., 26, 2113–2129, 2022 https://doi.org/10.5194/hess-26-2113-2022

https://doi.org/10.5281/zenodo.6462982
https://www.hawaii.edu/climate-data-portal/
https://doi.org/10.5194/hess-26-2113-2022-supplement


L. Benoit et al.: Stochastic daily rainfall generation on tropical islands with complex topography 2127

Competing interests. The contact author has declared that neither
they nor their co-authors have any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. The authors are grateful to the Hawai‘i Cli-
mate Data Portal for providing the daily rainfall dataset of the is-
land of O‘ahu, and to the French Weather Agency (Direction Inter-
régionale en Polynésie française – Météo France) and the Polyne-
sian public service named Direction de l’Equipement (Groupement
d’Etudes et de Gestion du Domaine Public de Polynésie Française
– GEGDP) for providing the daily rainfall dataset of the island of
Tahiti. The authors are grateful to May Izumi from the Publication
services of the School of Ocean and Earth Science and Technology,
University of Hawai‘i, for proofreading this manuscript.

Financial support. This research has been supported by
the Schweizerischer Nationalfonds zur Förderung der Wis-
senschaftlichen Forschung (grant no. P2LAP2_191395). The work
of Lydie Sichoix is supported by the Government of French Poly-
nesia – Ministère de la Recherche through the project E-CRQEST,
grant number 05832 MED 08/26/2019.

Review statement. This paper was edited by Lelys Bravo de Guenni
and reviewed by Geoff Pegram and one anonymous referee.

References

Ailliot, P., Thompson, C., and Thomson, P.: Space–time mod-
elling of precipitation by using a hidden Markov model and
censored Gaussian distributions, Appl. Stat., 58, 405–426,
https://doi.org/10.1111/j.1467-9876.2008.00654.x, 2009.

Ailliot, P., Allard, D., Monbet, V., and Naveau, P.: Stochastic
weather generators: an overview of weather type models, Jour-
nal de la Société Française de Statistiques, 156, 101–113, 2015.

Akana, C. L. and Gonzalez, K.: Hanau ka Ua Hawai-
ian Rain Names, Kamehameha Publishing, 327 pp.,
ISBN 13:9780873362467, 2015.

Allard, D. and Bourotte, M.: Disaggregating daily precipitations
into hourly values with a transformed censored latent Gaus-
sian process, Stoch. Environ. Res. Risk A., 29, 453–462,
https://doi.org/10.1007/s00477-014-0913-4, 2015.

Ambrosino, C., Chandler, R. E., and Todd, M. C.: Rainfall-derived
growing season characteristics for agricultural impact assess-
ments in South Africa, Theor. Appl. Climatol., 115, 411–426,
https://doi.org/10.1007/s00704-013-0896-y, 2014.

Bárdossy, A. and Plate, E. J.: Modelling daily rainfall using a semi-
Markov representation of circulation pattern occurence, J. Hy-
drol., 122, 33–47, https://doi.org/10.1016/0022-1694(91)90170-
M, 1991.

Bárdossy, A. and Pegram, G. G. S.: Copula based multisite model
for daily precipitation simulation, Hydrol. Earth Syst. Sci., 13,
2299–2314, https://doi.org/10.5194/hess-13-2299-2009, 2009.

Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolu-
tion of numerical weather prediction, Nature, 525, 47–55,
https://doi.org/10.1038/nature14956, 2015.

Baxevani, A. and Lennartsson, J.: A spatiotemporal
precipitation generator based on a censored latent
Gaussian field, Water Resour. Res., 51, 4338–4358,
https://doi.org/10.1002/2014WR016455, 2015.

Bennett, B., Thyer, M., Leonard, M., Lambert, M., and Bates, B.
C.: A comprehensive and systematic evaluation framework for a
parsimonious daily rainfall field model, J. Hydrol., 556, 1123–
1138, https://doi.org/10.1016/j.jhydrol.2016.12.043, 2018.

Benoit, L.: StochasticRainfallGenerator_TropicalIslands:
Release v1 (Version v1), Zenodo [code],
https://doi.org/10.5281/zenodo.6462982, 2022.

Benoit, L., Allard, D., and Mariethoz, G.: Stochastic Rainfall Mod-
eling at Sub-kilometer Scale, Water Resour. Res., 54, 4108–
4130, https://doi.org/10.1029/2018WR022817, 2018a.

Benoit, L., Vrac, M., and Mariethoz, G.: Dealing with non-
stationarity in sub-daily stochastic rainfall models, Hydrol. Earth
Syst. Sci., 22, 5919–5933, https://doi.org/10.5194/hess-22-5919-
2018, 2018b.

Benoit, L., Vrac, M., and Mariethoz, G.: Nonstationary stochas-
tic rain type generation: accounting for climate drivers, Hydrol.
Earth Syst. Sci., 24, 2841–2854, https://doi.org/10.5194/hess-24-
2841-2020, 2020.

Benoit, L., Lucas, M. P., Tseng, H., Huang, Y.-F., Tsang, Y.-P., Nu-
gent, A. D., Giambelluca, T. W., and Mariethoz, G.: High Space-
Time Resolution Observation of Extreme Orographic Rain Gra-
dients in a Pacific Island Catchment, Front. Earth Sci., 8, 546246,
https://doi.org/10.3389/feart.2020.546246, 2021.

Breinl, K., Di Baldassarre, G., Girons Lopez, M., Hagenlocher,
M., Vico, G., and Rutgersson, A.: Can weather generation
capture precipitation patterns across different climates, spa-
tial scales and under data scarcity?, Scient. Rep., 7, 5449,
https://doi.org/10.1038/s41598-017-05822-y, 2017.

Brown, J. R., Lengaigne, M., Lintner, B. R., Widlansky, M. J., van
der Wiel, K., Dutheil, C., Linsley, B. K., Matthew, A. J., and Ren-
wick, J.: South Pacific Convergence Zone dynamics, variability
and impacts in a changing climate, Nat. Rev. Earth Environ., 1,
530–543, https://doi.org/10.1038/s43017-020-0078-2, 2020.

Cappelaere, B., Feurer, D., Vischel, T., Ottlé, C., Issoufou, H. B.-
A., Saux-Picart, S., Maïnassara, I., Oï, M., Chazarin, J.-P., Bar-
ral, H., Coudert, B., and Demarty, J.: Modeling Land Surface
Fluxes from Uncertain Rainfall: A Case Study in the Sahel
with Field-Driven Stochastic Rainfields, Atmosphere, 11, 465,
https://doi.org/10.3390/atmos11050465, 2020.

Caruso, S. J. and Businger, S.: Subtropical Cyclogenesis over
the Central North Pacific, Weather Forecast., 21, 193–205,
https://doi.org/10.1175/WAF914.1, 2006.

Caseri, A., Javelle, P., Ramos, M. H., and Leblois, E.:
Generating precipitation ensembles for flood alert and
risk management, J. Flood Risk Manage., 9, 402–415,
https://doi.org/10.1111/jfr3.12203, 2016.

Chandler, R. E.: Multisite, multivariate weather generation based on
generalized linear models, Environ. Model. Softw., 134, 104867,
https://doi.org/10.1016/j.envsoft.2020.104867, 2020.

https://doi.org/10.5194/hess-26-2113-2022 Hydrol. Earth Syst. Sci., 26, 2113–2129, 2022

https://doi.org/10.1111/j.1467-9876.2008.00654.x
https://doi.org/10.1007/s00477-014-0913-4
https://doi.org/10.1007/s00704-013-0896-y
https://doi.org/10.1016/0022-1694(91)90170-M
https://doi.org/10.1016/0022-1694(91)90170-M
https://doi.org/10.5194/hess-13-2299-2009
https://doi.org/10.1038/nature14956
https://doi.org/10.1002/2014WR016455
https://doi.org/10.1016/j.jhydrol.2016.12.043
https://doi.org/10.5281/zenodo.6462982
https://doi.org/10.1029/2018WR022817
https://doi.org/10.5194/hess-22-5919-2018
https://doi.org/10.5194/hess-22-5919-2018
https://doi.org/10.5194/hess-24-2841-2020
https://doi.org/10.5194/hess-24-2841-2020
https://doi.org/10.3389/feart.2020.546246
https://doi.org/10.1038/s41598-017-05822-y
https://doi.org/10.1038/s43017-020-0078-2
https://doi.org/10.3390/atmos11050465
https://doi.org/10.1175/WAF914.1
https://doi.org/10.1111/jfr3.12203
https://doi.org/10.1016/j.envsoft.2020.104867


2128 L. Benoit et al.: Stochastic daily rainfall generation on tropical islands with complex topography

Daly, C., Slater, M. E., Roberti, J. A., Laseter, S. H., and Swift
L. W.: High-resolution precipitation mapping in a mountain-
ous watershed: ground truth for evaluating uncertainty in a
national precipitation dataset, Int. J. Climatol., 37, 124–137,
https://doi.org/10.1002/joc.4986, 2017.

Elison Timm, O., Giambelluca, T. W., and Diaz, H. F.: Statistical
downscaling of rainfall changes in Hawai‘i based on the CMIP5
global model projections, J. Geophys. Res.-Atmos., 120, 92–112,
https://doi.org/10.1002/2014JD022059, 2014.

Foresti, L. and Pozdnoukhov, A.: Exploration of alpine oro-
graphic precipitation patterns with radar image processing
and clustering techniques, Meteorol. Appl., 19, 407–419,
https://doi.org/10.1002/met.272, 2012.

Fraley, C. and Raftery, A. E.: Model-Based Clustering, Discrimi-
nant Analysis, and Density Estimation, J. Am. Stat. Assoc., 97,
611–631, https://doi.org/10.1198/016214502760047131, 2002.

Frazier, A. G., Elison Timm, O., Giambelluca, T. W., and Diaz,
H. F.: The influence of ENSO, PDO and PNA on secular
rainfall variations in Hawai‘i, Clim. Dynam., 51, 2127–2140,
https://doi.org/10.1007/s00382-017-4003-4, 2018.

Gabellani, S., Boni, G., Ferraris, L., Von Hardenberg, J.,
and Provenzale, A.: Propagation of uncertainty from
rainfall to runoff: A case study with a stochastic rain-
fall generator, Adv. Water Resour., 30, 2061–2071,
https://doi.org/10.1016/j.advwatres.2006.11.015, 2007.

Gangopadhyay, S. and Clark, M.: Statistical downscaling us-
ing K-nearest neighbors, Water Resour. Res., 41, W02024,
https://doi.org/10.1029/2004WR003444, 2005.

Giambelluca, T. W., Chen, Q., Frazier, A. G., Price, J. P., Chen,
Y.-L., Chu, P.-S., Eischeid, J. K., and Delparte, D. M.: Online
Rainfall Atlas of Hawai‘i, B. Am. Meteorol. Soc., 94, 313–316,
https://doi.org/10.1175/BAMS-D-11-00228.1, 2013.

Greene, A. M., Robertson, A. W., Smyth, P., and Triglia, S.: Down-
scaling projections of Indian monsoon rainfall using a non-
homogeneous hidden Markov model, Q. J. Roy. Meteorol. Soc.,
137, 347–359, https://doi.org/10.1002/qj.788, 2011.

HCDP – Hawai‘i Climate Data Portal: https://www.hawaii.edu/
climate-data-portal/, last access: 15 April 2022.

Hersbach, H., de Rosnay, P., Bell, B., Schepers, D., Simmons,
A., Soci, C., Abdalla, S., Alonso-Balmaseda, M., Balsamo, G.,
Bechtold, P., Berrisford, P., Bidlot, J.-R., de Boisséson, E.,
Bonavita, M., Browne, P., Buizza, R., Dahlgren, P., Dee, D., Dra-
gani, R., Diamantakis, M., Flemming, J., Forbes, R., Geer, A.
J., Haiden, T., Hólm, E., Haimberger, L., Hogan, R., Horányi,
A., Janiskova, M., Laloyaux, P., Lopez, P., Munoz-Sabater, J.,
Peubey, C., Radu, R., Richardson, D., Thépaut, J.-N., Vitart, F.,
Yang, X., Zsótér, E., and Zuo, H.: Operational global reanalysis:
progress, future directions and synergies with NWP, ERA Rep.
Ser. 27, ECMWF, 1–63, https://doi.org/10.21957/tkic6g3wm,
2018.

Hopuare, M., Pontaud, M., Céron, J.-P., Ortega, P., and Laurent, V.:
Climate change, Pacific climate drivers and observed precipita-
tion variability in Tahiti, French Polynesia, Clim. Res., 63, 157–
170, https://doi.org/10.3354/cr01288, 2015.

Hopuare, M., Guglielmino, M., and Ortega, P.: Interactions be-
tween intraseasonal and diurnal variability of precipitation
in the South Central Pacific: The case of a small high is-
land, Tahiti, French Polynesia, Int. J. Climatol., 39, 670–686,
https://doi.org/10.1002/joc.5834, 2018.

Houze, R. A.: Orographic effects on precipitating clouds, Rev. Geo-
phys., 50, RG000365, https://doi.org/10.1029/2011RG000365,
2012.

Huang, S. P., Quek, S. T., and Phoon, K. K.: Convergence study
of the truncated Karhunen–Loeve expansion for simulation of
stochastic processes, Int. J. Numer. Meth. Eng., 52, 1029–1043,
https://doi.org/10.1002/nme.255, 2001.

Hughes, J. P. and Guttorp, P.: A non-homogeneous hidden Markov
model for precipitation occurence, Appl. Stat., 48, 15–30, 1999.

Jha, S. K., Mariethoz, G., Evans, J., McCabe, M. F., and
Sharma, A.: A space and time scale-dependent nonlin-
ear geostatistical approach for downscaling daily precipita-
tion and temperature, Water Resour. Res., 51, 6244–6261,
https://doi.org/10.1002/2014WR016729, 2014.

Kleiber, W., Katz, R. W., and Rajagopalan, B.: Daily spa-
tiotemporal precipitation simulation using latent and trans-
formed Gaussian processes, Water Resour. Res., 48, W01523,
https://doi.org/10.1029/2011WR011105, 2012.

Krajewski, W. F., Ciach, G., and Habib, E.: An anal-
ysis of small-scale rainfall variability in different
climatic regimes, Hydrolog. Sci. J., 48, 151–162,
https://doi.org/10.1623/hysj.48.2.151.44694, 2003.

Lantuéjoul, C.: Geostatistical Simulation: Models and Algorithms,
Springer Science & Business Media, ISBN 978-3-662-04808-5,
2002.

Laurent, V., Maamaatuaiahutapu, K., Brodien, I., Lombardo, S.,
Tardy, M., and Varney, P. : Atlas climatologique de la Polynésie
française, Délégation Interrégionale de Polynésie Française,
Météo France, ISBN 9782111551916, 232 pp., 2019.

Leblois, E. and Creutin, J. D.: Space-time simulation of inter-
mittent rainfall with prescribed advection field: Adaptation of
the turning band method, Water Resour. Res., 49, 3375–3387,
https://doi.org/10.1002/wrcr.20190, 2013.

Longman, R. J., Diaz, H. F., and Giambelluca, T. W.: Sus-
tained Increases in Lower-Tropospheric Subsidence over the
Central Tropical North Pacific Drive a Decline in High-
Elevation Rainfall in Hawaii, J. Climate, 28, 8743–8759,
https://doi.org/10.1175/JCLI-D-15-0006.1, 2015.

Longman, R. J., Giambelluca, T. W., Nullet, M. A., Frazier,
A. G., Kodoma, K., Crausbay, S. D., Krushelnycky, P. D.,
Cordell, S., Clark, M. P., Newman, A. J., and Jeffrey, R.
A.: Compilation of climate data from heterogeneous net-
works across the Hawaiian Islands, Scient. Data, 5, 180012,
https://doi.org/10.1038/sdata.2018.12, 2018.

Longman, R. J., Elison Timm, O., Giambelluca, T. W., and
Kaiser, L.: A 20-Year Analysis of Disturbance-Driven Rain-
fall on O‘ahu, Hawai‘i, Mon. Weather Rev., 6, 1767–1783,
https://doi.org/10.1175/MWR-D-20-0287.1, 2021.

Lyons, S. W.: Empirical Orthogonal Function Anal-
ysis of Hawaiian Rainfall, J. Appl. Meteo-
rol., 21, 1713–1729, https://doi.org/10.1175/1520-
0450(1982)021<1713:EOFAOH>2.0.CO;2, 1982.

Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon,
E. J., Widmann, M., Brienen, S., Rust, H. W., Sauter, T., The-
meßl, M., Venema, V. K. C., Chun, K. P., Goodess, C. M.,
Jones, R. G., Onof, C., Vrac, M., and Thiele-Eich, I.: Precipita-
tion downscaling under climate change: Recent developments to
bridge the gap between dynamical models and the end user, Rev.

Hydrol. Earth Syst. Sci., 26, 2113–2129, 2022 https://doi.org/10.5194/hess-26-2113-2022

https://doi.org/10.1002/joc.4986
https://doi.org/10.1002/2014JD022059
https://doi.org/10.1002/met.272
https://doi.org/10.1198/016214502760047131
https://doi.org/10.1007/s00382-017-4003-4
https://doi.org/10.1016/j.advwatres.2006.11.015
https://doi.org/10.1029/2004WR003444
https://doi.org/10.1175/BAMS-D-11-00228.1
https://doi.org/10.1002/qj.788
https://www.hawaii.edu/climate-data-portal/
https://www.hawaii.edu/climate-data-portal/
https://doi.org/10.21957/tkic6g3wm
https://doi.org/10.3354/cr01288
https://doi.org/10.1002/joc.5834
https://doi.org/10.1029/2011RG000365
https://doi.org/10.1002/nme.255
https://doi.org/10.1002/2014WR016729
https://doi.org/10.1029/2011WR011105
https://doi.org/10.1623/hysj.48.2.151.44694
https://doi.org/10.1002/wrcr.20190
https://doi.org/10.1175/JCLI-D-15-0006.1
https://doi.org/10.1038/sdata.2018.12
https://doi.org/10.1175/MWR-D-20-0287.1
https://doi.org/10.1175/1520-0450(1982)021<1713:EOFAOH>2.0.CO;2
https://doi.org/10.1175/1520-0450(1982)021<1713:EOFAOH>2.0.CO;2


L. Benoit et al.: Stochastic daily rainfall generation on tropical islands with complex topography 2129

Geophys., 48, RG3003, https://doi.org/10.1029/2009RG000314,
2010.

Marra, F. and Morin, E.: Autocorrelation structure of con-
vective rainfall in semiarid-arid climate derived from high-
resolution X-Band radar estimates, Atmos. Res., 200, 126–138,
https://doi.org/10.1016/j.atmosres.2017.09.020, 2018.

Mavromatis, T. and Hansen, J. W.: Interannual variability char-
acteristics and simulated crop response of four stochastic
weather generators, Agr. Forest Meteorol., 109, 283–296,
https://doi.org/10.1016/S0168-1923(01)00272-6, 2001.

Mezghani, A. and Hingray, B.: A combined downscaling-
disaggregation weather generator for stochastic gener-
ation of multisite hourly weather variables over com-
plex terrain: Development and multi-scale validation for
the Upper Rhone River basin, J. Hydrol., 377, 245–260,
https://doi.org/10.1016/j.jhydrol.2009.08.033, 2009.

Morin, E., Ryb, T., Gavrieli, I., and Enzel, Y.: Mean, variance, and
trends of Levant precipitation over the past 4500 years from re-
constructed Dead Sea levels and stochastic modeling, Quatern.
Res., 91, 751–767, https://doi.org/10.1017/qua.2018.98, 2019.

Nerini, D., Besic, N., Sideris, I. V., Germann, U., and Foresti, L.:
A non-stationary stochastic ensemble generator for radar rain-
fall fields based on the short-space Fourier transform, Hydrol.
Earth Syst. Sci., 21, 2777—2797, https://doi.org/10.5194/hess-
21-2777-2017, 2017.

Niemi, T. J., Guillaume, J. H. A., Kokkonen, T., Hoang, T. M. T.,
and Seed, A. W.: Role of spatial anisotropy in design storm gen-
eration: Experiment and interpretation, Water Resour. Res., 52,
69–89, https://doi.org/10.1002/2015WR017521, 2016.

Opitz, T., Allard, D., and Mariethoz, G.: Semi-parametric
resampling with extremes, Spatial Stat., 42, 100445,
https://doi.org/10.1002/2015WR017521, 2021.

Oriani, F., Stisen, S., Demirel, M. C., and Mariethoz, G.: Missing
Data Imputation for Multisite Rainfall Networks: A Comparison
between Geostatistical Interpolation and Pattern-Based Estima-
tion on Different Terrain Types, J. Hydrometeorol., 21, 2325–
2341, https://doi.org/10.1175/JHM-D-19-0220.1, 2020.

Papalexiou, S. M. and Serinaldi, F.: Random Fields Sim-
plified: Preserving Marginal Distributions, Correlations,
and Intermittency, With Applications From Rainfall to
Humidity, Water Resour. Res., 56, e2019WR026331,
https://doi.org/10.1029/2019WR026331, 2020.

Paschalis, A., Molnar, P., Fatichi, S., and Burlando, P.:
A stochastic model for high-resolution space-time precip-
itation simulation, Water Resour. Res., 49, 8400–8417,
https://doi.org/10.1002/2013WR014437, 2013.

Paschalis, A., Fatichi, S., Molnar, P. M., Rimkus, S., and Bur-
lando, P.: On the effects of small scale space–time variability
of rainfall on basin flood response, J. Hydrol., 514, 313–327,
https://doi.org/10.1016/j.advwatres.2013.11.006, 2014.

Paulhus, J. L. and Kohler, M. A.: Interpolation
of missing precipitation records, Mon. Weather
Rev., 80, 129–133, https://doi.org/10.1175/1520-
0493(1952)080<0129:IOMPR>2.0.CO;2, 1952.

Peleg, N., Skinner, C., Fatichi, S., and Molnar, P.: Temperature ef-
fects on the spatial structure of heavy rainfall modify catchment
hydro-morphological response, Earth Surf. Dynam., 8, 17–36,
https://doi.org/10.5194/esurf-8-17-2020, 2020.

Réchou, A., Flores, O., Jumaux, G., Duflot, V., Bousquet, O., Poup-
peville, C., and Bonnardot, F.: Spatio-temporal variability of
rainfall in a high tropical island: Patterns and large-scale drivers
in Réunion Island, Q. J. Roy. Meteorol. Soc., 145, 893–909,
https://doi.org/10.1002/qj.3485, 2019.

Richardson, C. W.: Stochastic simulation of daily precipitation,
temperature, and solar radiation, Water Resour. Res., 17, 182–
190, https://doi.org/10.1029/WR017i001p00182, 1981.

Rüschendorf, L.: On the distributional transform, Sklar’s theorem,
and the empirical copula process, J. Stat. Plan. Infer., 139, 3921–
3927, https://doi.org/10.1016/j.jspi.2009.05.030, 2009.

Sanfilippo, K. M.: Predictor selection and model evaluation for
future rainfall projection in Hawai‘i, University of Hawai‘i
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