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Abstract. Commercial microwave links (CMLs) can be used
as opportunistic and unconventional rainfall sensors by con-
verting the received signal level into path-averaged rainfall
intensity. As the reliable reconstruction of the spatial distri-
bution of rainfall is still a challenging issue in meteorology
and hydrology, there is a widespread interest in integrating
the precipitation estimates gathered by the ubiquitous CMLs
with the conventional rainfall sensors, i.e. rain gauges (RGs)
and weather radars. Here, we investigate the potential of a
dense CML network for the estimation of river discharges via
a semi-distributed hydrological model. The analysis is con-
ducted in a peri-urban catchment, Lambro, located in north-
ern Italy and covered by 50 links. A two-level comparison is
made between CML- and RG-based outcomes, relying on 12
storm/flood events. First, rainfall data are spatially interpo-
lated and assessed in a set of significant points of the catch-
ment area. Rainfall depth values obtained from CMLs are
definitively comparable with direct RG measurements, ex-
cept for the spells of persistent light rain, probably due to
the limited sensitivity of CMLs caused by the coarse quan-
tization step of raw power data. Moreover, it is shown that,
when changing the type of rainfall input, a new calibration
of model parameters is required. In fact, after the recalibra-
tion of model parameters, CML-driven model performance
is comparable with RG-driven performance, confirming that
the exploitation of a CML network may be a great support to
hydrological modelling in areas lacking a well-designed and
dense traditional monitoring system.

1 Introduction

Precipitation is the main downward forcing of the water cy-
cle (Kidd and Huffman, 2011) and, consequently, one of the
most relevant inputs in hydrological models, which are key
tools in early-warning systems for flood risk forecasting and
mitigation (EU Water Directors, 2003). However, precipita-
tion exhibits a significant temporal and spatial variation over
a catchment area or region (Dawdy and Bergmann, 1969;
Bengtsson, 2011; Parkes et al., 2013), and this is a critical
aspect leading to difficulties in reconstructing a reliable rain-
fall field. In the past, several studies have investigated the
effects of spatio-temporal variability in rainfall on the hydro-
logical model outputs (e.g. Obled et al., 1994; Bardossy and
Das, 2008; Younger et al., 2009; Arnaud et al., 2011), prov-
ing that precipitation inputs have a marked influence on the
simulated outflow hydrographs. It is also known that the re-
construction of rainfall input is more accurate as the number
of rainfall measurements increases over a study area (Chen
et al., 2010; Xu et al., 2013). However, because of economic
or geographical factors, an adequate density of rainfall sen-
sors is often not available.

Currently, the most common ground-based technology for
rainfall measurement is the rain gauge (RG), which provides
single-point measurements (New et al., 2001). In addition,
high-precision ground sensors, namely disdrometers, provide
the size and velocity of hydrometeors (Jaffrain et al., 2011;
Cugerone and De Michele, 2015). One of the major prob-
lems encountered when dealing with single-point measure-
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ments is the transfer of information to ungauged sites or the
reconstruction of the rainfall field over the catchment of in-
terest. Such estimates can be performed by the use of spa-
tial interpolation techniques. Several methods are now avail-
able, with different degrees of complexity. They can be either
deterministic, such as the inverse distance weighting (IDW)
method (Shepard, 1968) and the Thiessen polygon method
(Thiessen, 1911), or stochastic, such as the Kriging technique
(Delhomme, 1978) and co-Kriging (Myers, 1984). However,
the outcome of these techniques has been proven to be highly
sensitive to the gauge density (Xie et al., 1996), depending
on the temporal resolution. Specifically, the shorter the ag-
gregation time, the more critical the rain gauge density. Al-
ternatively, the rainfall field at ground level can be indirectly
obtained by weather radars, when available. The radar re-
trieves the average rainfall intensity across a volume from
measurements of reflectivity through power-law formulas,
such as the one proposed by Marshall and Palmer (1948).
A recent survey of reflectivity-rainfall intensity formulas is
given in Raghavan (2013). Ignaccolo and De Michele (2020)
and Jameson and Kostinski (2002) have argued about the
purely statistical nature of the reflectivity-rainfall intensity
formulas, with important consequences regarding their use
where calibration with local data is missing. There are also
other drawbacks associated with the use of radar reflectivity,
including the problem of spurious echoes, such as ground
clutter (Alberoni et al., 2001; Rauber and Nesbitt, 2018),
which restrict the use of radars to plain areas, and the fact
that the radar reflectivity provides only information about
precipitable water. Recently, the dual-polarization upgrade
of radars (Zhang et al., 2019; Chen et al., 2021) has added
information about the shape, composition, and phase of the
hydrometeors. Hence, quantitative precipitation estimation
(QPE) has greatly benefited from such advancements.

For all of these reasons, measuring the spatial distribu-
tion of rainfall is still an open issue, which may be tackled
through the integration of conventional sensors and/or the
implementation of new instruments to complement existing
measurements. In this context, the use of opportunistic rain-
fall sensors, such as commercial microwave links (CMLs),
has raised considerable interest. CMLs are the point-to-point
radio links connecting the base stations of a mobile network
to the core infrastructure. The use of microwave links as
opportunistic rainfall detectors was firstly proposed by At-
las and Ulbrich (1977). The method exploits the relation-
ship between the rainfall intensity and the attenuation (i.e.
the loss of signal power) experienced by the electromag-
netic wave along the propagation path from the transmit-
ter to the receiver. Later, Giuli et al. (1991) made use of a
mesh of microwave links for the 2D reconstruction of the
rainfall field, through simulation. A pioneering experimen-
tal campaign was carried out during the Mantissa project
(Rahimi et al., 2003). However, at that time, the need to in-
stall ad hoc microwave links made the technique impractical.
A few years later, the scenario changed following the dra-
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matic expansion of cellular telephony. The use of the ubiqui-
tous CMLs connecting the base stations of cellular networks
was first proposed by Messer et al. (2006). Their paper trig-
gered many studies that were conducted worldwide to in-
vestigate the potential of CMLs for meteorological and hy-
drological applications. From a hydrological point of view,
CML-based rainfall products were first exploited by Fencl
et al. (2013) to improve urban drainage modelling in a small-
scale (2.33 km2) impervious catchment in Prague, Czech Re-
public. Later, Brauer et al. (2016) investigated the effects of
the use of CML data in discharge simulations, for a natu-
ral lowland catchment in the Netherlands, at a small scale
(6.5 kmz). A further study by Smiatek et al. (2017) used
microwave-link-derived precipitation estimates as rainfall in-
put in a distributed hydrological model applied to the Ammer
Basin (Germany), with an area of 609 km?. In that work, the
authors employed the IDW method for the interpolation of
RG and CML rainfall data on a 100m x 100 m grid. Another
case study to check the potential of a dense CML network for
urban drainage management was carried out on an agglom-
eration of cities (16km?) in the Czech Republic by Stransky
et al. (2018). Pastorek et al. (2019) assessed the impact of
CML quantitative precipitation estimates (QPEs) on urban
drainage modelling. The authors found that the sensitivity of
CMLs is the factor that mostly affects the QPEs and that the
bias on QPEs propagates throughout rainfall-runoff simula-
tions. Moreover, they showed that the position of CMLs over
the drainage area impacts the reconstruction of the runoff
dynamic. In Italy, Roversi et al. (2020) conducted a valida-
tion of the CML rainfall estimates in the Po Valley (northern
Italy) by comparing them with different data sources (RGs,
the ERGS5 meteorological data set, and radar products). How-
ever, to our knowledge, a hydrological application of CML-
based rainfall estimates does not currently exist.

Herein, the analysis aims at investigating and validating
the potential of a CML network, located in Lombardy (north-
ern Italy), exploited for hydrological purposes. Specifically,
relying on a semi-distributed hydrological model, we as-
sessed whether rainfall data collected by a large CML net-
work of 50 links may be used to provide a reliable reconstruc-
tion of the hydrological process in a medium-sized basin and
if the reconstruction is comparable with those achieved with
a well-designed RG network. We investigated a set of sum-
mer and autumn precipitation events, both convective and
stratiform, that occurred over the Lambro Catchment dur-
ing the years 2019 and 2020. The analysis of events taking
place in different seasons allowed us to point out some lim-
itations of CMLs with respect to detecting specific types of
precipitation. In this work we firstly focused on the spatial
interpolation of rainfall observations, comparing results from
conventional (RGs) and unconventional (CMLs) instruments
and their combined use. In fact, the issue of spatial inter-
polation is crucial when dealing with point (RG) or linear
(CML) measurements used as input for a semi-distributed
hydrological model, especially when the study area is quite
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large (in the order of 100 km? or even larger). We relied on
the traditional IDW method to spatially interpolate precipita-
tion measurements/estimates from RGs/CMLs. Secondly, we
implemented a semi-distributed rainfall-runoff model using
three types of input: (1) RG measurements, (2) CML esti-
mates, and (3) a combination of RG and CML data. Given
the different nature of rainfall input, we also assessed three
calibrations of model parameters. We then compared results
in terms of river discharge.

The remainder of this paper is structured as follows. In
Sect. 2, we present the case study, the experimental set-up,
and the features of the networks of conventional and un-
conventional sensors. Section 3 includes a description of all
methods implemented for the analysis, and Sect. 4 reports the
results, including a comparison of rainfall spatial interpola-
tion carried out with the different data types and of stream-
flow simulations against hydrometric measurements. Discus-
sion and conclusions are given in Sects. 5 and 6 respectively.

2 Case study and experimental set-up

The case study was carried out in the Lambro Catchment, a
peri-urban catchment that is a northern tributary of the Po
River, as shown in Fig. la. It is located north of the Mi-
lan metropolitan area and covers three different provinces:
Como, Lecco, and Monza and Brianza. The Lambro River, at
the Lesmo River section (shown in purple in Fig. 1a), drains
an area of 260 km? that can be mainly divided in two zones
based on different morphology and land use. The northern
zone is the pre-Alpine region, where the Lambro River orig-
inates, at 944 ma.s.1. In contrast, the southern zone, between
Pusiano Lake (in sub-basin 6 in Fig. 1) and the outlet sec-
tion, at 178 ma.s.l., is a flat area subjected to massive ur-
banization, which results in large impervious surfaces and,
consequently, fast runoff processes with a lag time of few
hours. The catchment includes the presence of two lakes:
Pusiano Lake (which is the biggest one) and Alserio Lake
(in sub-basin 8 in Fig. 1), both located in the middle part
of the catchment. According to the Koppen (1925) climate
classification, the northern inland portion of Italy belongs to
the humid subtropical climate (Cfa) zone. Heavy convective
precipitation cells characterize the basin, while the highest
monthly rainfall accumulation occurs in spring and autumn.
The local meteorological drivers, along with urban sprawl,
lead to the hydrological vulnerability of the region. In or-
der to mitigate hydrological risk in the Monza and Milan
urban areas (downstream of our case study region), struc-
tural works have been carried out along the Lambro River
in past years. Moreover, great efforts have been made in the
implementation and development of non-structural measures
(e.g. Ravazzani et al., 2016; Masseroni et al., 2017; Lom-
bardi et al., 2018), including a dense monitoring system man-
aged by ARPA Lombardia (the regional agency for environ-
mental protection). From this, we exploited 10 min resolu-
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tion rainfall depths and temperatures from 13 tipping-bucket
RGs and eight thermometers (THs) respectively, for the years
2018 and 2019 as well as for the first 6 months of the year
2020. In addition, we used 10 min resolution water level mea-
surements of a flow gauge (FG), located at the outlet section
of the Lambro Basin in the municipality of Lesmo. All of
these meteorological and hydrological data are available at
https://www.arpalombardia.it (last access: 10 March 2022).
A rather dense CML network, owned by Vodafone Italia
S.p.A., covers the central and southern catchment area and
its surroundings. In contrast, the northernmost portion of the
Lambro Basin is covered by few and unevenly distributed
CMLs, given that it is thinly populated and characterized by
higher altitudes. A total of 50 CMLs are available over the
above-mentioned area. The key features of CMLs as rainfall
sensors are the operation frequency and the path length. Re-
grouping the available CMLs according to the frequency:

1. 5links are in the frequency range [11.4,13.1] GHz, with
a path length between 3.5 and 8 km;

2. 37 links are in the frequency range [18.8,23.0] GHz,
with a path length between 1 and 8.5 km;

3. 8links are in the frequency range [38.5,42.6] GHz, with
a path length between 1.4 and 2.2 km.

We investigated 12 storm events and the associated floods,
in the period from June 2019 to June 2020. The RG- and
CML-based precipitation data sets, aggregated at an hourly
timescale, cover a wide range of rainy events, from summer
thunderstorms to low-intensity autumn events. In Table 1, we
reported some features characterizing the 12 selected events,
namely the initial date, the final date, and time; the accu-
mulated precipitation averaged over 13 RG measurements;
the total volume of precipitation that fell on the basin area;
the 1 h maximum rain rate; the observed total flow volume;
and the peak flow. We defined a storm event as the time lapse
where at least one RG, available in the area, detected precipi-
tation with possible dry intervals no longer than 5h. An hour
is considered dry when the detected rainfall depth is lower
than 1 mm and wet otherwise. The beginning of the flood
event is conventionally set at the hour in which the flow rate
experienced a sudden deviation from the average. The end
is instead set when the flow rate reverts to the initial con-
dition, at the end of the depletion curve. According to the
maximum observed rain rates, we classified events as low-
rain-rate and high-rain-rate events, adapting the classification
reported in Met Office (2007) to our specific case study. The
former group includes storm events 5, 6, 7, and 12, for which
the maximum rain rate was lower than 15 mmh~!, whereas
the latter covers the remaining events, for which the maxi-
mum rain rate was higher than 15 mmh~".

In order to implement the hydrological model (see
Sect. 3.2), the catchment area is divided into 15 sub-basins
(as shown in Fig. la), with areas ranging from 1.15km?

Hydrol. Earth Syst. Sci., 26, 2093-2111, 2022
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Figure 1. Case study area: panel (a) shows the Lambro Catchment, the partitioning into 15 sub-basins (HRUs), and the position of the
sensors; panel (b) reports the scheme of HRU interaction in the network. Please note that FG is the flow gauge located at the outlet section.
The digital terrain model (DTM) is freely available at https://www.geoportale.regione.lombardia.it (last access: 10 March 2022).

(HRU 7) to 42.6km? (HRU 10). Hereinafter, the sub-basins
will be referred to as hydrological response units (HRUs). In
particular, the semi-distributed model adopted here requires,
as input data, rainfall depths estimated in the HRU centroids.
The estimates were gathered using the IDW technique (see
Sect. 3.3), and a different number of sensors was exploited
for each HRU, according to a defined maximum distance of
10 km from the HRU centroid. Figure 2 shows some features
of the rainfall sensors used for spatial interpolation in each
HRU: the number of exploited RGs, CMLs, and their sum;
the ratio between the number of CMLs and RGs; the mean
distance between rainfall sensors and HRU centroids; and
the mean length of CMLs. Please, note that the CML-HRU
centroid distance is calculated considering the CML middle
point. It is also worth mentioning that the number of available
CMLs was less than 50 for some events due to instrument
maintenance or malfunction. Hence, the numbers in Fig. 2
are averaged over all of the events. Figure 2a highlights a
significant increase in the exploited CMLs from HRU 1 to
6. This could be a potential problem and could lead to more
inaccurate estimates, at the stage of spatial interpolation, for
the northern HRUs with respect to the southern ones. On the
other hand, the number of RGs undergoes minor variation
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from one HRU to another. In Fig. 2b, we can see that the
lowest ratios between CMLs and RGs correspond to HRU 1
to 5 and HRU 10. Moreover, Fig. 2c shows that, considering
HRUs 1 to 9, the mean distance between sensors and HRU
centroids is always higher when CMLs are considered. The
opposite trend, with a single exception for HRU 12, occurs
for HRUs located further downstream. Lastly, the mean CML
length, in Fig. 2d, has a decreasing trend from upstream to
downstream.

3 Methods

In this section we firstly describe the data processing algo-
rithms. While the procedure is simple for conventional sen-
sors (RGs, THs, and the FG), it is not straightforward to ex-
tract quantitative rainfall information from CML raw data,
which are generated for network monitoring purposes. Sec-
ond, we discuss the semi-distributed hydrological model and
its calibration/validation procedures. Finally, we illustrate the
methods for the spatial interpolation of RG- and CML-based
rainfall data.

https://doi.org/10.5194/hess-26-2093-2022
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Table 1. Details of the 12 events considered. The date, time, cuamulative precipitation, precipitation volume, and 1 h maximum rain rate for
the 12 storm events are shown on the left, and the date, time, flow volume, and peak flow of the corresponding flood events are shown on the

right. Here, LT stands for local time.

Storm event

‘ Flood event

ID Date and time Cumulative Volume Max rain rate | Date and time Volume  Peak flow
event (LT) precipitation (mm) (X 1012 m3) (mmh_l) (LT) (x 100 m3) (m3 s_l)
' B, 1500 0505 6] 5 s 09 63
2 2019, 030 @6 163 99 | 162019, 2300 24 a2
’ ggzggg}g: 1000 087 179 366 ?1S§Ep28(1)?§,2;:3?80 19 297
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5 16 May 200,070 w2 a7 mo| eSS s s
;e
A 21y 2 | § jun 2020, 19:0 4 e
g 2000, 19:0 22wy s | 56T
200, 0700 1654 4| 11 Jun 2020 1500 13 s

3.1 Data processing

Conventional sensors (rain gauges, thermometers, and
the flow gauge)

Raw data from RGs, THs and the FG were firstly processed
to correct invalid measurements (missing data and outliers),
which account for less than 1 % in the period from January
2018 to June 2020. The process is different depending on the
type of measurement. Invalid RG data were replaced by in-
terpolating valid observations from the nearby sensors using
the IDW algorithm. Invalid TH data as well as invalid FG
measurements were instead replaced by linear interpolation.
After data correction, the 10 min raw data were resampled
to an hourly timescale. Lastly, water level observations were
converted into river discharge measurements by using the rat-
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ing curves validated by the Hydrographic Office of ARPA
Lombardia.

Commercial microwave links

CML raw data are minimum and maximum values of the
transmitted and received power levels (TSL and RSL respec-
tively) every 15 min. Microwave links of mobile networks
are usually two-way links and provide dual-frequency oper-
ation. The CML data set used here has two to four channels
available for every link, which allows us to deal with missing
or invalid data that sometimes appear over a certain channel.
Procedures for the conversion of RSL into rainfall rate have
been detailed by several authors (e.g. Schleiss and Berne,
2010; Fenicia et al., 2012; Overeem et al., 2016). As the for-
mat of the available CML data is the same as in Overeem
et al. (2016), we based our conversion on the procedure out-
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Figure 2. Panels (a) to (d) show the number of rainfall sensors used
for spatial interpolation in each HRU centroid, the ratio between the
number of RGs and CMLs, the mean distance between rainfall sen-
sors and HRU centroids, and the CML mean lengths respectively.

lined there. Specifically, data processing went through the
following steps: (1) identification and removal of outliers
and artefacts (i.e. occasional spikes, which are not caused by
rain); (2) classification of each 15 min time slot into dry or
wet (i.e. rainy) by thresholding the difference between max-
imum and minimum RSL values; (3) estimation of the base-
line (i.e. RSL in the absence of rain); (4) calculation of to-
tal signal attenuation as the difference between the baseline
and the actual RSL; (5) identification and subtraction of the
components of total attenuation not due to rainfall (e.g. wet
antenna attenuation); and (6) conversion of rain attenuation
into rainfall intensity. Details of the major processing steps
are discussed in the following.

Dry/wet classification at step (2) is required by the subse-
quent steps, steps (3) and (5). First, RSL fades are identified
by a robust method based on a lower and an upper thresh-
old: all RSL samples below the upper threshold with at least
one point below the lower threshold are retained. Each CML
is then given a score equal to the product of the binary out-
come (0/1) of thresholding by the inverse of its sensitivity
to rainfall, with the latter depending on the CML frequency
and length. Finally, a CML is flagged as wet if the aggre-
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gate score of the CML itself and of all its neighbours ex-
ceeds 0.5, otherwise it is dry. Two CMLs are neighbours if
they fulfil any of the following conditions: (1) they have a
terminal in common, (2) their paths intersect, and (3) their
distance is less than a defined maximum value. The baseline
on step (3) is obtained through a windowing algorithm. An
N-sample window is centred around each sample of the RSL
time series. If enough samples in the window are dry, the
baseline value in the centre of the window is the average of
the minimum and maximum RSL. Once the entire time se-
ries has been processed, the baseline missing points are ob-
tained by linear interpolation. In step (5), it is assumed that
wet antenna attenuation is the only relevant component of to-
tal path attenuation not due to rain. This contribution is sub-
tracted from total attenuation using the model proposed by
Schleiss et al. (2013), which predicts an exponential increase
in attenuation during the wetting transient, a constant value
while raining, and an exponential decrease during the dry-
ing transient. The input parameters of the model, which are
the duration of the initial transient and the maximum value
of wet antenna attenuation, are 900 s and 2 dB respectively.
They were determined by analysing a set of RSL and TSL
time series sampled every 10s, which were made available
for a few CMLs. The relationship between rain attenuation
per unit path length yg (dB km~!) and rainfall intensity R
(mmh~1) is usually modelled by the following power-law
function:

YR = KR ey

The coefficients ¥ and o have been tabulated by the Interna-
tional Telecommunication Union as a function of signal fre-
quency and polarization (ITU-R P.838-3, 2005). In principle,
the yg — R relationship is also dependent on the microphysics
of rain; hence, ¥ and « should be calibrated, provided that
the characteristics of precipitation are known in the climatic
area where the CMLs are deployed. In this work, raindrop
size distribution data gathered from disdrometers were used
to calculate the optimum value of the k and « coefficients
following the procedure outlined in Luini et al. (2020). In
the available CML data format, only the two extreme val-
ues of TSL and RSL are saved in every 15min window.
Therefore, if the average rainfall rate has to be estimated,
for instance to calculate hourly accumulations, it is neces-
sary to derive it from the extremes. To this end, TSL and
RSL time series sampled each 10s were made available for
a subset of CMLs during some of the events considered here
and were processed as shown in Nebuloni et al. (2020). The
average, minimum, and maximum rainfall rate within 15 min
windows were calculated from the 10s time series, and the
following unbiased estimator of the average rainfall rate was
derived:

I RmiN + Rmax
RvMiNMAX = —F ———————.

1.14 2 @
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Figure 3. Minimum detectable rainfall intensity as a function of
path length for link frequencies of 10, 20, and 40 GHz, assuming a
1 dB quantization step on RSL. Squares represent the frequency and
length of the 50 available CMLs in the study area.

Two aspects of the above procedure deserve more discus-
sion. First, the available RSL sequences have a coarse 1 dB
quantization step, which produces a zero-mean random er-
ror with a rectangular distribution and limiting values equal
to £0.5dB (£12 % when the power is measured on a lin-
ear scale). It turns out that it is impossible to distinguish be-
tween rain and quantization-induced noise below a certain
rainfall intensity threshold. Figure 3 shows the minimum de-
tectable rainfall intensity without ambiguity as a function of
the CML path length with the CML frequency as a param-
eter. The square markers correspond to the 50 CMLs in the
study area divided into three groups according to their fre-
quency band. Continuous lines are drawn at three reference
frequencies as well. Moreover, quantization affects the accu-
racy of rainfall intensity estimates. The accuracy of instanta-
neous measurements (at the 95 % confidence level) is within
20 % if the rainfall intensity exceeds 3mmh~! for the link
with the most favourable combination between length and
frequency. However, in the worst case, the above accuracy
is achieved only if the rainfall intensity is above 10 mmh~!.
The only way to mitigate quantization effects is to average in
time. Second, it is assumed that the rain attenuation measured
over a CML of length L is L times the attenuation per unit
path length in Eq. (1), which implies that rain is considered
uniform along the path. The effect of the inhomogeneity of
precipitation can be relevant, as CML paths range from about
1 to nearly 9km (Fig. 3). Some authors have proposed that
the spatial distribution of the rainfall field should be retrieved
across the measurement area by processing all of the CML
data together, for instance through tomographic techniques.
In this work, a simpler approach is used. Each CML is con-
sidered independently of the others, and the corresponding
rainfall measurement is given a weighting coefficient depen-
dent on the distance between its midpoint and the point where
rainfall has to be estimated, as discussed in Sect. 3.3.
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In order to validate the rainfall estimates provided by
CMLs, we compared the accumulated rainfall during each
of the events in Table 1 with direct RG measurements. In
this respect, we highlight that CMLs carry out path-averaged
rainfall measurements. Hence, it is not straightforward to
validate CML-based outcomes with measurements from rain
gauges, which are single-point sensors, unless ad hoc deploy-
ments are used, which is not the case of this study. Here,
CMLs and RGs are associated according to their mutual dis-
tance. Each RG is given a different weight depending on its
position with respect to an associated CML. This is done
as follows: the CML path is divided into short segments,
the distance between the RG and each CML segment (ap-
proximated by its midway point) is calculated, and all of the
above distances are averaged. The number coming out of this
calculation accounts for the relative positions of the CML
and the RG as well as the CML length. Finally, the rain-
fall accumulated from the set of RGs associated with a given
CML is calculated with the IDW method using the average
CML-RG distance. The scatter plot between CML- and RG-
based accumulated rainfall is plotted in Fig. 4 for the eight
high-intensity (panel a) and the four low-intensity (panel b)
events. Only RGs within 5 km (average distance) of a CML
are considered. During high-intensity events, there is a good
match between CML and RG estimates, whereas CMLs ex-
hibit an evident underestimation (more than 30 % on the av-
erage) in the case of low-intensity events. This pattern can
be explained by the lack of sensitivity of CMLs to low rain-
fall intensities due to signal quantization. In Appendix A, we
present a further local comparison of rainfall time series, be-
tween CMLs and nearby RGs.

3.2 Hydrological model

We used a semi-distributed rainfall-runoff model, at an
hourly timescale. As shown in Fig. 1, the catchment area is
divided into 15 HRUs, which are considered meteorologi-
cally, geologically, and hydrologically homogeneous. Hence,
the model parameters are set at the HRU scale.

The river discharge at time ¢, Q(¢), in HRU’s outlets is
calculated as the sum of two main components:

Q(1) = Qs(1) + Qg (1), 3)

where Qg is the contribution given by the surface runoff R*,
(i.e. the portion of rainfall not infiltrated into the soil), and
O, is the groundwater discharge.

The computation of R* (in mm) relies on the Soil Con-
servation Service curve number (SCS-CN) method (Natural
Resources Conservation Service, 1985):

o (P— a)2

Rf=—— 2%
P—I,+S

“)

where P > [, (in mm) is the rainfall depth, S (in mm) is the
maximum soil potential retention, and /, (in mm) is the initial

Hydrol. Earth Syst. Sci., 26, 2093-2111, 2022



2100

a
240 @ T
o /
3 /
E /o
= o , -
‘€ 1607 ob p
g Yy - R
g . s
o) Y. ua’ P
B +Lgmy L -
S X
2 + et A
a3 80t A
o o Xak 4
©
s 0
(&)
o 1 L
0 80 160 240
RG accumulated rainfall (mm)
o 1 A8 e y=1.099x
2 9 — — —y=1.3x
3 + 10 —-—-= y=0.7x
o 4 o 11 y=x

G. Cazzaniga et al.: Hydrological response from unconventional rainfall observations

(b)

60

401

40 60

RG accumulated rainfall (mm)
[ ) 5 e y=0.666x
» 6 — — —y=1.3x
7T === y=0.7x
O 12 y=x

Figure 4. Accumulated rainfall during (a) high-rain-rate events and (b) low-rain-rate events: CMLs against nearby RGs. The best fit of data,
the £30 % bounds, and the 45° line are shown as well. In the legend, numbers refer to the storm events, and markers are the selected CMLs.

abstraction (calculated as a percentage, 20 %, of S). Accord-
ing to the United States Department of Agriculture (USDA)
SCS guidelines, the soil moisture condition antecedent to a
storm event is classified depending on the value of the 5-
day antecedent rainfall. Here, we account for the actual soil
moisture in a dynamical way, as proposed in the AnnAGNPS
model (Bingner and Theurer, 2005) and also implemented in
Ravazzani et al. (2007). In particular, the value of S(r) is up-
dated as a continuous function of the degree of soil saturation

€() (-):

S =5 {1 L(t)+exp(W1—WH'E(f)):|}. ©

Here, the respective weights Wy (-) and Wiy (-) are defined as
follows:

1
Wi=In| — —1 Wi; 6
I H|:1_SIH/SI ]-i— i (6)
0.05 1
WH:2-[ln(——O.S)—ln(——l)]
1—8u/S1 1 — Sm/St
@)

In the above equations, Sy, Sy, and Sy are the retention pa-
rameters associated with the curve numbers CNj, CNyr, and
CNiq respectively. Finally, €(¢) is calculated as

_ 9(1‘) - eres
esat - Gres

() , ®)

where gy (-) is the soil moisture at saturation conditions, and
Ores (-) is the residual soil moisture.
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To calculate Qg at time ¢, the runoff is routed to the HRU’s
outlet, representing each HRU as a linear reservoir model
(Dooge, 1973):

t

Qs<r>=/a.r*(r>~A'Tlag‘~exp(—t_’)dr, ©)

Tia
g
0

where @ = 1073 mmm~™! is a conversion factor, r* is the sur-

face runoff rate (in mms—1), A (in m?) is the HRU area, and
Tiag (in s) is the lag time calculated as 0.6 times the con-
centration time (7;) for average natural watershed conditions
and an approximately uniform distribution of runoff accord-
ing to Mockus (1957) and de Simas (1996). The calculation
of T¢, in each HRU, relies on the formula proposed by Ferro
(2006).

The portion I (in mm) of total rainfall that infiltrates in
the shallower layer of soil can either be lost by evapotranspi-
ration, ET (in mm), or by percolation, D (in mm). Potential
evapotranspiration (PET) is calculated here using the Harg-
reaves and Samani (1985) equation, which requires temper-
ature data. The actual evapotranspiration (ET) is computed
as a fraction of PET following Ravazzani et al. (2015). The
water balance equation, referred to the shallower layer of soil
with depth z (in mm) at time ¢, is formulated as

I(t—1)—D(@—1)—ET( -1
+(t ) (tZ) (1)

0@)=06@0—1) , (10
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where 6 (-) is the actual soil moisture. D(¢) is the drainage
flux calculated as

243B
D) =c-Kg-€() B, (11)

where ¢ = 3.6 x 10° (in (mms)m™") is a conversion factor,
K (in ms™1) is the hydraulic conductivity at saturation,
and B is the Brooks—Corey index (Brooks and Corey, 1964).
Finally, Qg (?) = a-AT~'-D(1)-A, where AT =3600s. The
interaction among HRUs is presented in series or in parallel
reservoirs, according to the development of the river network,
as exhibited in Fig. 1b. CN values were taken from https:
/lwww.isprambiente.gov.it (last access: 10 March 2022), and
the Oreg, Osar, and B parameters were taken from Maidment
(1993). Kt and z are instead calibrated, as reported below.

Calibration and validation of the hydrological model

The hydrological model was calibrated using, as input, the
hourly rainfall depths from the RG network in Fig. 1a. The
chosen period for calibration is from 1 January to 31 Decem-
ber 2019. We tested different combinations of the two pa-
rameters, Kq,t and z, and we selected the combination max-
imizing the Nash—Sutcliffe efficiency (NSE; Nash and Sut-
cliffe, 1970). Concerning Ky, we tested the values reported
in Maidment (1993) multiplied by several different powers
of 10, (1072,107",10°, 10", 10%). The values of K taken
from the literature are different depending on the type of
soil characterizing each HRU. With regard to z, we tested
all of the values inside the [10 cm, 3 m] range, with a 10cm
step. The parameter validation was carried out over two non-
consecutive 6-month periods: from 1 July to 31 December
2018 and from 1 January to 30 June 2020. The NSE value is
0.69 for the calibration and 0.56 for the validation. Please
note that the calibrated parameters provide an NSE larger
than 0.5 for the overall 1-year validation period, which is
the minimum value recommended by Moriasi et al. (2007)
to consider a simulation reliable.

It is also worth noting that the calibration and validation
steps were particularly troublesome due to the presence of
the Cavo Diotti Dam, which artificially regulates the outflow
of Pusiano Lake during flood events.

3.3 Spatial interpolation of rainfall data

Several methodologies have been proposed and applied for
the spatial interpolation of rainfall measurements retrieved
from CMLs (e.g. Fencl et al., 2013; Overeem et al., 2013;
D’Amico et al., 2016; Haese et al., 2017; Chwala and Kun-
stmann, 2019; Graf et al., 2020; Eshel et al., 2021). Here,
we exploited the simple and robust IDW method (Shepard,
1968) for both RG and CML measurements. According to
the IDW method, given n measurements {u(X1),...,u(X,)}
at given points x;, with i = 1...n, the interpolated value u, in
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Figure 5. IDW calibration based on RGs: the RMSE between ob-
served and simulated rainfall depths, for different values of y and
dmax, from Eq. (13).

X, is calculated as

2 wiux) . ‘ ;.
4 = =S if d(x;,x) #~ 0 for all i; (12)

u(x;) if d (x;,x) = 0 for some i,

with

, 1

W= T (13)

where d(x;,x) is the distance between the measuring point
x; and the coordinates of the HRU’s centroid x, and y > 0.
The number of contributing measurements » is the number
of contributing measurements within a distance dp,x from
the query point. We identified the appropriate value for y
and dnmax by leave-one-out cross validation. We estimated the
precipitation, at each RG point, from the remainder of RGs
at a distance smaller than dp,x, and we calculated the root-
mean-square error (RMSE) between observations and esti-
mates. The process was repeated for several values of y and
dmax. We set a minimum dpax value equal to 10 km, to have
at least one neighbour available for every considered RG. To
this end, we exploited a larger set of 38 RGs (including the
13 RGs in Fig. 1a) located over a wider area compared with
the Lambro Catchment, and we used data from January 2018
to June 2020. The resulting RMSE distribution as a func-
tion of dpax and y is reported in Fig. 5. We observe that the
choice of dpax has a rather marginal effect on the estimates if
y > 2. The minimum RMSE is achieved when y is slightly
above 3. Therefore, we chose y = 3. Moreover, we selected
dmax = 10km, which provides the best RMSE when y = 3.
To spatially interpolate CML rain rates, we handled them
as “virtual” RGs, assuming that the rainfall measurement is
collapsed into the midpoint of the CML path. Again, we
used the IDW method as well as the same values of y and
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dmax as above. In addition to considering only RGs (or only
CMLs), we accounted for the integration of RG and CML
measurements. In the following, we will refer to this option
as CML+RG.

4 Results

The results are presented in the following two subsections.
Section 4.1 provides a comparison of rainfall depths inter-
polated at the HRU centroids, by using data either from con-
ventional or opportunistic sensors. Both accumulated rainfall
values and hourly rainfall depths are considered at the basin
and sub-basin scale, for the 12 events. Therefore, we investi-
gate whether there are some critical issues that might help to
explain differences in the rainfall-runoff model outputs. Sec-
tion 4.2 analyses discharge performance by comparing RG-,
CML-, and RG+CML-driven simulations with the observed
flow rates.

4.1 Comparison between RG and CML rainfall data in
each HRU

Figure 6 shows the scatter plot of the rainfall accumu-
lated at the end of each of the 12 storm events and av-
eraged over the entire catchment area. Yellow markers are
CML against RG rainfall depths, and orange markers are
CML+RG against RG rainfall depths. On the one hand,
for all of the low-rain-rate events (squares), estimates from
CMLs and from CMLs+RGs are lower than those from RGs.
On the other hand, CML (and CML+RG) estimates of high-
rain-rate events are in agreement (with either lower or higher
values) with the RG-based estimates, with the only excep-
tion being event 3. From a more general perspective, the two
regression lines indicate a good agreement between the two
sets of sensors.

We further assessed CML and RG rainfall estimates on an
hourly timescale and at a sub-basin spatial scale by calculat-
ing the relative error of CML estimates with respect to RG
values, assuming the latter as a benchmark, for the hourly
rainfall depths inferred in the 15 HRU centroids. The relative
error AE is evaluated as follows:

_ Remi — Rrag
RrG

AE , (14)
where Rcmr and Rgrg are the 1h rainfall depths estimated
in each HRU centroid from CMLs and RGs respectively. For
the calculation, we only considered wet hours (Rrg > 1 mm
in HRU centroids), relying on a data set of 2061 values.
Hence, when the CML estimate yields O and the RG esti-
mate is greater than O (false negative), the relative error is
—1. Figure 7 shows a 2D histogram representing the count of
rain hours falling in a given range of RG-estimated rainfall
depths and in a given range of relative errors. The increas-
ing spread of AE values with respect to the decrease in the
RG-based rainfall depths is due to the greater uncertainty of
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Figure 6. Rainfall depths, averaged over the catchment area and
accumulated at the end of each of the 12 events. The numbers next
to the markers refer to the event ID, while the two different markers
represent high-rain-rate (circles) and low-rain-rate (squares) events.
The black line represents the 1: 1 line — a perfect match between
rainfall depth estimates from RGs and from CMLs (yellow) or from
the combination of RGs and CMLs (orange). Yellow and orange
lines are the corresponding regression lines.

CMLs regarding the detection of low rain rates. If the RG-
based rainfall depth is smaller than 3 mm, only 30 % of AE
values fall in the [—0.4, 0.4] range, whereas if it is larger than
3 mm, the percentage increases up to nearly 70 %. Moreover,
for the lowest rainfall depths, there are fewer negative values
of AE, as we set all of the CML rain rate estimates lower
than the sensitivity of the link itself to zero. The high count
related to AE = —1 and RG-based rainfall depths < 5 mm is
due to the occurrence of false negatives.

Therefore, we focused on the CML hourly wet—dry clas-
sification, inferred in HRU centroids, again considering RG
estimates as a benchmark. We recall that dry hours are those
in which the detected rainfall depth is lower than 1 mm and
vice versa for wet hours (see also Sect. 2). Figure 8 depicts
box plots of the percentage of false negatives and false pos-
itives for low-rain-rate and high-rain-rate events. In contrast
to a false negative, a false positive occurs when an hourly
slot is classified as wet by CMLs and dry by RGs. The two
box plots on the left (in Fig. 8) were obtained by relying on
120 values comprising the percentages of false positive and
false negative hours in each of the eight high-rain-rate events
and for each of the 15 HRUs, whereas the box plots on the
right were built from 60 values comprising the percentages
related to the four low-rain-rate events in each HRU. For ex-
ample, the maximum percentage of false negatives is 60 %,
which corresponds to HRU 2 during low-rain-rate event 7 in
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Figure 7. A 2D histogram of hourly rainfall depth from RGs and
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Figure 8. The percentage of hours subjected to incorrect wet—dry
classification (false negative or false positive), with respect to high-
rain-rate and low-rain-rate events. The box plots display the median,
the 0.25 (lower) and 0.75 (upper) quantiles, outliers (computed us-
ing the interquartile range), and the minimum and maximum values
excluding any outliers.

Table 1. From a general point of view, low-rain-rate events
exhibit a higher median and a larger dispersion of false neg-
atives than high-rain-rate events, whereas the occurrence of
a false positive is relatively rare in both cases. These results
confirm the inability of CMLs to detect low rain rates, which
depends on the quantization error issue discussed in Sect. 3.

Finally, in Fig. 9, we report box plots of AE values cal-
culated for rainfall accumulated by each HRU over each of
the 12 events. Again, the events are grouped in two classes
according to rainfall intensity. The contrasting behaviour be-
tween low-rain-rate and high-rain-rate events is evident. In
the former case, AE is mostly much lower than zero, and
it is much more scattered. Once again, this result confirms
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Figure 9. Box plots of AE in each HRU for the 12 storm events (di-

vided in two groups according to rainfall intensity). The box plots

display the median, the 0.25 (lower) and 0.75 (upper) quantiles, out-

liers (computed using the interquartile range), and the minimum and

maximum values excluding any outliers.

that CMLs are not able to properly detect the lowest rainfall
intensities during low-rain-rate events. Regarding high-rain-
rate events, there is not a clear trend. The median A E values
are always within the [—0.25, 0.25] range, and their disper-
sion is low as well.

4.2 Comparison between RG- and CML-driven
discharge simulations

In the following, discharge simulations obtained from three
different data inputs (RGs, CMLs, and CMLs+RGs) are as-
sessed and compared with hydrographic measurements at the
Lesmo River section.

The output performance was evaluated using three indices:
(1) the well-known Nash—Sutcliffe efficiency (NSE), (2) the
relative error on peak discharge (REP), and (3) the relative
error on flow volume (Dv). The last two indices are defined
as follows:

Qmax_ rr;)ax
REP = meax“ (15)
obs
Vsim — Vobs
Dv = mme obs. (16)
obs

In the above equations, Q &** is the simulated peak discharge,

ohetis the observed peak discharge, Viim is the simulated
total flow volume, and Vs is the observed total flow volume.

The performance of the 12 discharge simulations, grouped
by rainfall data input, is summarized in Fig. 10, using box
plots. The statistical dispersion (represented by the interquar-
tile range) of CML-based discharge simulations is larger
than that of RG-based simulations. The use of CML data

in the rainfall-runoff model seems to produce higher un-
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Figure 10. Panels (a) to (¢) show box plots of performance metrics,
namely the respective NSE, REP, and Dv, for the 12 selected flood
events. The optimum values correspond to the bold black lines. The
box plots display the median, the 0.25 (lower) and 0.75 (upper)
quantiles, outliers (computed using the interquartile range), and the
minimum and maximum values excluding any outliers.

certainty. The combined use of RGs and CMLs instead de-
creases the statistical dispersion of results and leads to per-
formance closer to that achieved with RGs. Generally, CMLs
exhibit worse performance than RGs in terms of the NSE and
Dv. As for REP, the two sets of sensors produce comparable
errors of opposite sign; hence, their combined use leads to an
optimum value of the median error (0.06).

To gain a deeper understanding of the model performance
with respect to flow peaks, we produced a scatter plot of ob-
served against simulated flow peaks (see Fig. 11). The scatter
plot firstly reveals that the best match between observations
and simulations is not always achieved by RG-based simula-
tions. In fact, for events 1, 3, 5, and 11 the optimum match is
given by CML- or CML+RG-based simulations. Moreover,
the low-rain-rate events typically result in underestimated
peak flow simulations with respect to the observations, con-
sidering either conventional or unconventional sensors, with
the exception of event 5.

Figure 12 reports model inputs and outputs for events 5
and 2. We selected these two examples as they are character-
ized by a different meteorological configuration and lead to
contrasting model performance. The first event is an autumn
stratiform occurrence, characterized by low rain intensity. In
Fig. 12a, we can see that CML-based estimates in HRUs 1,
2,5, 8, and 11 are quite low, with respect to RGs, due to the
difficulties of CMLs in detecting light rain. In contrast, in the
southern HRUs (HRU 10, 12, 13, 14, and 15), which have
much more influence on the generation of river discharge,
CML estimates are higher than RG values. Figure 12b shows
an example in which the CML-driven simulation better rep-
resents the observed outflow hydrograph, with respect to the
RG-driven simulation. In particular, the best performance is
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Figure 11. Observed peak flow against that simulated from RG
(blue), CML (yellow), and CML+RG (orange) data. The two dif-
ferent markers represent high-rain-rate (circles) and low-rain-rate
(squares) events. The inset presents a zoomed in view of events with
a low peak discharge.

gained when both types of rainfall sensors are used, and it
provides an excellent Dv (equal to 0.03). The highest discrep-
ancies between CML and RG estimates mostly involve the
northern portion of the basin and have less impact on generat-
ing discharge. Event 2 is instead a typical intense convective
summer occurrence, characterized by a single rainfall peak.
As rain rates are high throughout the basin, contrary to event
5, we observe (as seen from Fig. 12¢) a better agreement be-
tween CML and RG estimates. River discharge simulations,
reported in Fig. 12d, are satisfactory, considering all three
input data types. NSE values obtained from RG, CML, and
RG+CML data are 0.86, 0.77, and 0.80, respectively.

As the hydrological model has been calibrated with RG-
detected rainfall data, it can be assumed that the best model
performance is also mostly achieved with RG data as input.
Unfortunately, we did not have a database of CML events
at our disposal that was large enough to carry out a CML-
based calibration. Nevertheless, we tried to overcome this
problem, by recalibrating model parameters, with CML and
CML+RG rainfall estimates as input, relying on the 12 avail-
able flood events. Hence, the same event-based calibration
was conducted using RG data as rainfall inputs. In such a
way, the comparison on discharge simulations may be led in
a fair manner. We considered parameters providing the high-
est median NSE values as the optimum parameters. Perfor-
mance indices, subdivided by the type of rainfall data input
and the type of calibration, are summarized using box plots
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Figure 12. Panels (a) and (c¢) show the cumulative rainfall depth
estimates from RG, CML, and CML+RG for storm/flood events 5
and 2 respectively. Panels (b) and (d) present discharge observations
and simulations gathered using the three different input data types,
for the two same events.

in Fig. 13. Please note that CML- and CML+RG-based cal-
ibrations improve the performance of the model when fed
by unconventional input data. In particular, NSE values are
comparable with those achieved by the use of RG data with
an RG-based calibration. In fact, median NSE values for RG
inputs with RG-based calibration, CML inputs with CML-
based calibration, and CML+RG inputs with CML+RG-
based calibration are 0.37, 0.35, and 0.38 respectively. For
REP values, we generally observe underestimations of the
observed peak flow, considering CML- and CML+RG cali-
bration but a smaller interquartile range when compared with
RG-based calibration. Concerning Dv values, performance
for the CML- and CML+RG-based calibration is quite sat-
isfactory, despite the fact that the combination providing the
best performance is still RG inputs with RG-based calibra-
tion.

5 Discussion

The analysis of interpolated rainfall data carried out in
Sect. 4.1 reveals that CML and RG estimates of accumulated
areal-averaged rainfall depths are comparable. However, two
issues emerged.

First, CMLs exhibit a different behaviour depending on
the event intensity, as their sensitivity varies with length and
frequency. Specifically, they return lower values of rainfall
depth and rainfall accumulation in connection with low-rain-
rate events. This aspect becomes evident at either different
spatial scales (sub-basin and basin scales) or different tem-
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Figure 13. Box plots of the performance indices for the 12 flood
events obtained with three different calibration sets (drawn in as
many colours) and with three different input types (on the x axis).
The box plots display the median, the 0.25 (lower) and 0.75 (upper)
quantiles, outliers (computed using the interquartile range), and the
minimum and maximum values excluding any outliers.

poral scales (hourly and event-based timescales). In fact, due
to a coarse quantization of the raw data, CMLs are not sen-
sitive to low rain intensity; hence, when the rainfall depth
value over a certain lapse of time is required (in our case
1h), this limitation may lead to large errors, especially when
light rain goes on for a long time. Despite some discrepan-
cies in the behaviour of single CMLs with respect to their
nearby RGs, as highlighted in Appendix A, we observed a
good agreement between CML- and RG-based estimates in
HRU centroids for high rain rates due to spatial interpolation
which could mitigate such biases.

The second issue is the different CML density over the
HRUs. It is well known that spatial interpolation methods are
sensitive to sensor density (Xu et al., 2013); consequently,
the relatively large distance of the available CMLs from the
HRU centroids in the most scarcely populated areas (north-
ern HRUs) may lead to a loss of reliability in the estimated
rainfall depths. However, such an aspect appears to be less
relevant when compared with the first issue outlined above,
at least when dealing with quite large HRUs (dozens of
square kilometres). In fact, a careful comparison of Figs. 2
and 9 does not show an evident correlation between the mean
CML—centroid distances and A E values.

Last but not least, model performance is influenced by the
calibration process of model parameters. Similar model per-
formance, in terms of the NSE index, can be achieved with
all three types of input data (RGs, CMLs, and CMLs+RGs)
if the calibration is carried out with the respective data in-
puts. This means that, after a proper calibration, opportunis-
tic sensors could be exploited in semi-distributed hydrologi-
cal models, as well as RGs. In particular we found that, af-
ter calibration, the RGs+CMLs data set provides the highest
median NSE. However, it is worth highlighting that we cali-
brated the parameters on the basis of only 12 flood events. In
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order to assess a robust calibration and the associated valida-
tion, a larger data set of CML-based rainfall events should be
processed.

5.1 Limitations and improvements

One of the major difficulties encountered during analyses
was the small amount of CML data, as we relied on only
458 h of CML raw data grouped in 12 events. On the other
hand, the database of RG observations was much wider, and
we disposed of real-time data. An extension of the CML-
based data set of events or, better yet, access to real-time
CML raw data would definitely greatly benefit the present
work. Firstly, it would allow for the development of a more
robust statistical analysis of storm/flood events. Secondly, it
would enable a proper calibration and a validation of the hy-
drological model based on CML data as rainfall input.

To enhance this work, it would also be useful to resort
to the implementation of a CML-driven distributed model,
which is expected to provide a more accurate description
of the spatial variability in the precipitation field compared
with a semi-distributed model. In such a case, the CML mea-
surements would be better exploited by the use of advanced
methods for the spatial reconstruction of the rainfall field.
For instance, techniques such as the tomographic reconstruc-
tion algorithm (D’Amico et al., 2016) or the stochastic re-
construction based on copulas (Haese et al., 2017; Salvadori
et al., 2007) take advantage of the path-integrated nature of
CML measurements.

5.2 CML operational platforms

Although we showed that CML rainfall data can be success-
fully assimilated into hydrological models, their integration
into real-time operational platforms (e.g. early-warning sys-
tems) remains challenging. A number of aspects should be
still considered including the following:

— generation of CML raw data formats suitable for rainfall
estimation,;

— real-time collection of raw data, which should be trans-
parent to network operation;

— data transfer to a control centre;

— non-trivial data reduction process, especially if large
sets of CMLs are managed.

The above-mentioned issues suggest a systematic coopera-
tion with mobile operators, who are the owners of CML net-
work infrastructure.

5.3 New insights on the areal reduction factor

To this point, we have mainly investigated the exploitation
of CML-based rainfall estimates with the purpose of test-
ing their impact on the hydrological simulations of river dis-
charge, with respect to the use of RG data. However, other
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important hydrological issues could be addressed by dealing
with CML data. One such issue is definitely the modelling of
the areal reduction factor (ARF): the factor that transforms
a point rainfall for a given duration and return period into
the areal average value for the same duration and return pe-
riod (Natural Environmental Research Council, 1975). Over
the last few decades, great efforts have been devoted to mod-
elling the ARF (De Michele et al., 2001), which is useful
for the design of hydraulic and hydrological infrastructures,
for flood risk evaluations, and for rainfall threshold estima-
tions in early-warning systems (e.g. Kim et al., 2019; Biondi
et al., 2021). As we dealt with a semi-distributed hydrologi-
cal model, we needed to transform point (from RG) and lin-
ear (from CML) precipitation measurements into areal val-
ues, over the HRU areas. Therefore, from a different per-
spective, this work could also be seen as a first step in or-
der to test the modelling of the ARF using a combination of
conventional and unconventional sensors.

6 Conclusions

In this work, we assessed the use of commercial microwave
links (CMLs) as opportunistic rainfall sensors within hy-
drological modelling. We focused on Lambro, a peri-urban
catchment, 260 km? in area, located north of Milan (Italy)
and covered by 50 CMLs that are part of the network owned
by a major mobile operator. The Lambro Catchment area
is also covered by 13 rain gauges (RGs), which we used
both as an independent rainfall data set and in combination
with CMLs. We implemented a semi-distributed hydrologi-
cal model and carried out two types of comparison between
CML and RG data. First, we considered rainfall data (hourly
rainfall depths, the input of the hydrological model, and to-
tal accumulations at the storm end, for a sample of 12 storm
events) interpolated at the HRU centroids. We then compared
river discharge simulations (model output) from RGs, CMLs,
and RGs+CMLs against flow measurements.

Concerning the comparison of the two sources of rainfall
data, we found that high-intensity events detected by CMLs
are in accordance with RG measurements. On the other hand,
we came across a critical aspect with respect to the inabil-
ity of CMLs to detect low rain rates, due to the coarse 1 dB
quantization step of raw data (i.e. received power levels). The
minimum detectable rainfall intensity depends on the opera-
tion frequency of CMLs as well as on their length; for the
available set of CMLs, the minimum detectable rainfall in-
tensity ranges from 1 to 10 mmh~"'. Such a limitation results
in the underestimation of rainfall depths interpolated in the
HRU centroids for low-intensity storm events, when com-
pared with RG-based rainfall data.

The hydrographs simulated by the hydrological model per-
form better in terms of the Nash—Sutcliffe efficiency (NSE)
and relative error on flow volume (Dv) in the case of RGs
compared with CMLs. This result is not surprising, as the
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model was calibrated using RG data for 1 year. Nevertheless,
satisfactory values of relative error on peak discharge (REP)
are achieved through the use of CML and CML+RG data as
inputs to the RG-based calibrated model.

By calibrating the model with CML data and by us-
ing the same as input, it is possible to improve the model
performance, which becomes comparable with the case of
RG calibration and RG input. Even a slightly better perfor-
mance can be gathered with a CML+RG-based calibration
and CMLARG data as input.

Despite the lack of sensitivity of the CMLs that we re-
lied on, this analysis proves that rainfall estimates based on
CMLs could be exploited in hydrology, with a certain con-
fidence, for river discharge simulations. These results show
that the use of opportunistic sensors could support hydrolog-
ical modelling, especially in areas lacking traditional moni-
toring systems. Furthermore, in the regions already equipped
with traditional rainfall sensors, the integration of existing
instrumentation with CMLs could also provide advantages
for hydrological applications, as this increases the number of
reliable rainfall measurements.

Appendix A: Local comparison between CML and RG
rainfall time series

Here, rainfall amounts collected from CMLs and RGs are
compared via an analysis of the corresponding time series.
To this end, we selected four CMLs that had at least one RG
within 5km, as done for the scatter plots in Fig. 4, and we
plotted the CML and RG time series of rainfall intensity and
cumulative rainfall depth during storm events 7, 8, 9 and 10
in Table 1. Please note that rainfall intensity is obtained from
slightly different time resolutions (i.e. 15 min for CMLs and
10 min for RGs). Figure Al shows the results. The differ-
ences between individual CMLs and nearby RGs are not sur-
prising and are due to three main factors: (1) the different
nature of the sensors; (2) the fact that CMLs were not cal-
ibrated using other rainfall sensors, such as weather radars;
and (3) the relative position between the CMLs and RGs.
What is mostly evident is the difference between the low-
(event 7) and high-intensity events (events 8, 9, and 10). In
the former case, the CMLs miss most of rainfall occurrences,
causing a large underestimation of the rainfall accumulated
at the end of the event. During event 7, RGs detected rain
intensities from 1 up to 6mmh~!. The last value is approx-
imately the minimum detectable rain intensity for the CML
with lowest frequencies (in Fig. Ala). However, it is worth
emphasizing that such underestimating behaviour is observ-
able not only for short and low-frequency CMLs but also for
the most sensitive ones. In fact, large underestimations are re-
ported in Fig. Alg, 1, and q, which are related to links with a
minimum detectable rain intensity of 1.6, 1.4, and 1 mm h!
respectively. This systematic underestimation also impacts
estimates of rainfall depths at the basin and sub-basin scale,
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as shown by the results in Sect. 4.1. The three high-rain-rate
events highlight different behaviours depending on the CML
considered and its relative location with respect to the RGs.
The short and low-frequency CML, given in Fig. Ala, shows
quite a large discrepancy with its nearby RG with respect to
either the peak’s timing or the total observed rainfall depth,
and it reveals both underestimating and overestimating be-
haviour (Fig. Alc, e). The performance of the two medium-
length and medium-frequency CMLs (Fig. Alh—j and m—o)
is in mutual agreement and is definitely better with respect
to the case shown in Fig. Alc—e. Specifically, it can be no-
ticed that, in most of the cases, these two CMLs success-
fully reproduce the highest peaks observed by the closest
RGs, which are also those located right next to their middle
point. However, they show some discrepancies (lower val-
ues with respect to RGs) as the rain rate decreases. This be-
haviour is particularly evident in Fig. Ali and n for event
9. Finally, the highest-frequency CML exhibits different per-
formance during the three high-rain-rate events (Fig. Alr-t).
For example, at odds with the previous cases, in event 10,
the CML tends to overestimate the lowest rain rates, leading
to a large overestimation (up to 60 %) of the cumulated rain-
fall depth. In this case, the differences between the CMLs
and RGs could also be due to the non-optimal relative lo-
cation between the CMLs and RGs. The results reported in
Sect. 4.1 show that interpolating several CML data at HRU
centroids mitigates the inaccuracy of individual CMLs and
leads to acceptable estimates of the flow except in the case of
low-intensity events due to their limited sensitivity.
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(a) CML: 3.59 km; 11.54 GHz (b) Event 7: 18-20 Nov 2019 (c) Event 8: 16-14 May 2020 (d) Event 9: 3-5 Jun 2020 (e) Event 10: 7-8 Jun 2020
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Figure Al. Comparison between single CMLs and their nearby RGs. Each row shows (1) the location of the selected CML in the Lambro
Basin and its nearby RGs, (2) the CML-RGs comparison with respect to the rain rate time series, and (3) the CML-RGs comparison with
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