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Abstract. In many regions of the world, frequent and con-
tinual dry spells are exacerbating drought conditions, which
have severe impacts on vegetation biomes. Vegetation in
southern Africa is among the most affected by drought.
Here, we assessed the spatiotemporal characteristics of me-
teorological drought in southern Africa using the standard-
ized precipitation evapotranspiration index (SPEI) over a 30-
year period (1982–2011). The severity and the effects of
droughts on vegetation productiveness were examined at dif-
ferent drought timescales (1- to 24-month timescales). In
this study, we characterized vegetation using the leaf area
index (LAI) after evaluating its relationship with the nor-
malized difference vegetation index (NDVI). Correlating the
LAI with the SPEI, we found that the LAI responds strongly
(r = 0.6) to drought over the central and southeastern parts
of the region, with weaker impacts (r < 0.4) over parts of
Madagascar, Angola, and the western parts of South Africa.
Furthermore, the latitudinal distribution of LAI responses
to drought indicates a similar temporal pattern but different
magnitudes across timescales. The results of the study also
showed that the seasonal response across different south-
ern African biomes varies in magnitude and occurs mostly
at shorter to intermediate timescales. The semi-desert biome
strongly correlates (r = 0.95) to drought as characterized by
the SPEI at a 6-month timescale in the MAM (March–May;

summer) season, while the tropical forest biome shows the
weakest response (r = 0.35) at a 6-month timescale in the
DJF (December–February; hot and rainy) season. In addition,
we found that the spatial pattern of change of LAI and SPEI
are mostly similar during extremely dry and wet years, with
the highest anomaly observed in the dry year of 1991, and we
found different temporal variability in global and regional re-
sponses across different biomes.

We also examined how well an ensemble of state-of-the-
art dynamic global vegetation models (DGVMs) simulate
the LAI and its response to drought. The spatial and sea-
sonal response of the LAI to drought is mostly overesti-
mated in the DGVM multimodel ensemble compared to the
response calculated for the observation-based data. The cor-
relation coefficient values for the multimodel ensemble are
as high as 0.76 (annual) over South Africa and 0.98 in the
MAM season over the temperate grassland biome. Further-
more, the DGVM model ensemble shows positive biases
(3 months or longer) in the simulation of spatial distribution
of drought timescales and overestimates the seasonal distri-
bution timescales. The results of this study highlight the areas
to target for further development of DGVMs and can be used
to improve the models’ capability in simulating the drought–
vegetation relationship.

Published by Copernicus Publications on behalf of the European Geosciences Union.



2046 S. Lawal et al.: Investigating the response of LAI to droughts in southern African vegetation

1 Introduction

Drought can be described as a natural occurrence whereby
the natural accessibility of water for a region is beneath the
normal state over a long period of time (Xu et al., 2015).
Globally, it is considered one of the world’s most important
climate risks, with significant environmental, social, and eco-
logical impacts on different sectors (e.g. agriculture, forestry,
and hydrology) and human lives (Naumann et al., 2018). In-
creasing trends in the occurrence and severity of drought in
West Africa and the Mediterranean have huge impacts on wa-
ter resources and agriculture (Sultan and Gaetani, 2016). In
southern Africa, a region regarded as a climate hotspot be-
cause of the projected impacts of climate change on its nu-
merous endemic vegetation, an understanding of these im-
pacts is important for mitigation options in managing future
drought events. Therefore, it is important to examine drought
impacts on vegetation and evaluate how this is simulated in
models.

Drought is a frequent occurrence in southern Africa and
has enormous impacts on vegetation in the region. For in-
stance, drought has resulted in a significant loss of biomes
and the death of plants (Masih et al., 2014; Hoffman et al.,
2009). It is reported that there has been a significant loss of
vegetation cover over the region over the last 30 years (Driver
et al., 2012; DEA, 2015). Drought has also impacted the spe-
ciation of vegetation thereby causing significant changes to
the region’s rich biomes through the lack of formation of new
species or even the growth of species with underdeveloped
morphological and physiological characteristics (Hoffman et
al., 2009). Drought-induced vegetation loss has both ecolog-
ical and socioeconomic consequences for human lives. For
instance, studies have shown that food security in the re-
gion is threatened due to the continual mortality of vegetation
(FAO, 2000; Müller et al., 2011). Other studies (e.g. Wang,
2010; Khosravi et al., 2017) have also reported that south-
ern Africa could lose more than USD 200 billion of its GDP
(gross domestic product) from the effects of drought on veg-
etation. The enormous impacts on vegetation have thus made
it imperative to investigate how vegetation might respond to
different drought intensities at varying timescales.

In order to monitor and quantify drought characteristics,
drought indices are used (Wilhite and Glantz, 1985). Drought
indices, including the SPI (i.e. the Standardized Precipita-
tion Index), standardized water-level index, and standardized
anomaly index, are derived from a single hydrological vari-
able, which is rainfall (Kwon et al., 2019). Other indices such
as the Palmer drought severity index, multivariate standard-
ized drought index, and standardized precipitation evapotran-
spiration index (SPEI) combine two or more variables related
to other atmospheric or soil and environmental conditions
that may predispose a plant to water stress (Palmer, 1965;
Vicente-Serrano et al., 2010; Hao and AghaKouchak, 2013).
Among the drought indices, the SPI is the most widely used
because of the adjustable timescale and its relatively simple

calculation (McKee et al., 1993). It is also recognized as ap-
propriate for use in southern Africa (Hoffman et al., 2009).
However, the SPI has a significant shortcoming, which is
that its computation uses only rainfall without considering
the effect of other meteorological variables in the develop-
ment of drought occurrence (Teuling et al., 2013). In or-
der to address this shortcoming, the SPEI was developed for
drought monitoring, and it is regarded as being a more suit-
able drought index in the region to investigate the spatiotem-
poral scale of drought (Ujeneza and Abiodun, 2014). SPEI is
computed from the difference between potential evapotran-
spiration (PET) and rainfall (Vicente-Serrano et al., 2010).
PET can be computed using different methods such as the
Hargreaves (HG) and Penman–Monteith (PM) methods. Al-
though studies (e.g. Vicente-Serrano et al., 2010) have found
that the PM method captures drought better than HG, other
studies (e.g. Lawal et al., 2019a) showed that this difference
is negligible over southern Africa.

Many studies have used different indices to quantify ob-
served drought, characterize vegetation, and study drought
effects on the productiveness of vegetation across differ-
ent timescales. Several studies (e.g. Vicente-Serrano and
National Center for Atmospheric Research Staff, 2015;
Zhang et al., 2012; Lawal et al., 2019a, b) have shown
that the satellite-derived normalized difference vegetation in-
dex (NDVI) is one the most important indicators of vegeta-
tion health and greenness. These studies applied NDVI in ex-
amining drought impacts on global vegetation biomes. How-
ever, other studies (Gitelson, 2004; Santin-Janin et al., 2009)
have argued that, while the NDVI is a true proxy for vegeta-
tion trends, its potential saturation makes it difficult to fully
estimate biomass. In addition, because the NDVI parameters
are not well calibrated and often missing from the models,
simulated NDVI can be biased. Due to its high correlation
with NDVI, the leaf area index (LAI) is instead used to char-
acterize vegetation conditions (Fan et al., 2008; Zhao et al.,
2013). Although the LAI is an important vegetation proxy,
it is rarely considered in the estimation of drought impacts
on vegetation. Thus, quantifying the response of the LAI to
drought over southern Africa is important for understand-
ing the processes that modulate ecosystem services produced
by vegetation which are crucial for human survival (Melillo,
2015).

Previous studies have also evaluated the performance of
coupled climate models in simulating the response of veg-
etation to drought. For instance, Lawal et al. (2019a) re-
ported that an ensemble of the Community Earth System
Model (CESM) showed biases in response simulation of veg-
etation to drought. This was attributed to the parameteriza-
tions of the land component (i.e. community land model –
CLM) which poorly simulated observed NDVI. Given the
poor replication of the vegetation response to drought by a
coupled climate model, there is a need to examine land-only
models and whether they might better capture the drought–
vegetation relationship when the atmospheric forcings are
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derived from observations. The present study used dynamic
global vegetation models (DGVMs) to study the vegetation
response to drought, as little is known about how the LAI
response to drought is simulated by DGVMs. The choice of
DGVMs is because of their capability to simulate a mostly
accurate carbon exchange between the atmosphere and veg-
etation ecosystems (Lu et al., 2011).

The aim of this study is to investigate the response of LAI
to droughts in southern African vegetation using observa-
tions. We also examined how well the responses are repre-
sented in model simulations. We used satellite-derived and
simulated LAI to quantify vegetation responses to drought.
We characterized the spatiotemporal extent of drought and
its severity using the SPEI and then assessed the influence of
drought using the LAI from satellite data and model simula-
tions.

2 Data and methodology

2.1 Data

In this study, we used satellite-calculated (hereafter, ob-
served LAI/observation-based LAI) and simulated LAI and
satellite-derived NDVI, with gridded observation and re-
analysis climate data sets. The gridded observation cli-
mate data sets include precipitation and maximum, mean,
and minimum temperature. These data were obtained from
CRU (i.e. the Climate Research Unit; Mitchell and Jones,
2005; Harris et al., 2014). These are global monthly data
which have 0.5◦× 0.5◦ as spatial resolution and span the
1901–2019 period. Here, we used the CRU data for the
period 1982–2011 to compute observed drought indices
(i.e. SPEI) to characterize the spatiotemporal severity of
drought. CRU is a gridded observed data set, which was used
because of its suitable spatial and temporal resolutions. Pre-
vious studies (e.g. New et al., 2000; Otto et al., 2018; Harris
et al., 2020) have shown that there is a good and robust agree-
ment between the observation network and CRU over most
parts of southern Africa. We should note that sparseness and
missing data generally affect the correlation between CRU
and station data in the region. Furthermore, with respect to
the interannual variability, CRU robustly captures the climate
factors in southern Africa. The major exception is with the
long-term trend of precipitation, particularly over the West-
ern Cape province of South Africa and wetter than normal
conditions over the same province. These limitations do not
affect the validity of our results because we are looking at
below-normal precipitation and temperature.

The reanalysis climate data we used are the CRUJRA,
which is a combination of CRU and the Japanese Reanaly-
sis data (JRA) (University of East Anglia Climatic Research
Unit; Harris et al., 2020). It is a 6 h land surface, gridded data
with a spatial resolution 0.5◦× 0.5◦. CRUJRA was used to
compute reanalysis drought indices and used for model sim-

ulations. Here we aggregated CRUJRA to monthly samples
and used the data at the same spatial and temporal resolution
as CRU.

For the satellite vegetation indices, first, we used the third
generation of NDVI (hereafter, NDVI3g) from the Global In-
ventory Modelling and Mapping Studies (GIMMS), span-
ning the period from 1981–2015, with a biweekly tempo-
ral resolution and a spatial resolution of about 8 km (Pinzon
and Tucker, 2014; National Center for Atmospheric Research
Climate Data Guide, accessed 2019). Here, we used the data
for the period 1982–2011. Furthermore, we used the third
generation of the GIMMS LAI (LAI3g), which also spans
the period 1981–2015 and has a biweekly temporal resolu-
tion and the same spatial resolution as GIMMS3g. The LAI
data had been processed (at source) using a set of neural net-
works which were first trained on the highest quality and
post-processed MODIS LAI and fraction of photosynthet-
ically active radiation (FPAR) products and advanced very
high resolution radiometer (AVHRR) GIMMS NDVI3g data
for the overlapping period (2000 to 2009). The trained neural
networks were then used to produce the LAI3g and FPAR3g
data sets (Mao and Yan, 2019). For the study, LAI3g was also
used for the period 1982–2011. We note that GIMMS LAI
and the NDVI, used in this study, are two different indices.
The LAI was post-processed using different data (MODIS
LAI, FPAR, and AVHRR NDVI) for the period of 2000–
2009. The GIMMS LAI product is superior here over the
GIMMS NDVI, which is due to the information derived from
the MODIS LAI. The additional properties on GIMMS LAI
by MODIS differentiate the index from the NDVI. Thus, it
was necessary to investigate how the two indices differ. In
addition, other studies (Forkel et al., 2013; Schaefer et al.,
2012; Rezaei et al., 2016; Lawal et al., 2019a) have inves-
tigated how well satellite-derived LAI estimates actual and
ground-measured LAI.

The simulated monthly LAI data were obtained from 11
DGVMs which are part of the TRENDY version 7 model
(Sitch et al., 2008; Le Quéré et al., 2014). These DGVMs
are CABLE-POP (Haverd et al., 2018), CLM (Oleson et al.,
2013), CLASS-CTEM (Melton and Arora, 2016), DLEM
(Tian et al., 2015), JSBACH (Mauritsen et al., 2018), LPX
(Lienert and Joos, 2018), OCN (Zaehle et al., 2011), OR-
CHIDEE (Goll et al., 2017), SURFEX (Joetzjer et al., 2015),
JULES (Clark et al., 2011), and VISIT (Kato et al., 2013).
LAI from the models have a monthly temporal resolution
spanning the period from 1901–2017. We selected these
DGVMs because they have been run with a similar protocol
(S3 simulations) and forcing data sets (i.e. CRUJRA).
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2.2 Methods overview

2.2.1 Evaluation of DGVMs and the relationship
between NDVI and LAI

The relationship between the NDVI and LAI was evaluated
by computing the grid cell spatiotemporal correlation be-
tween GIMMS NDVI and GIMMS LAI. The spatiotemporal
correlation between GIMMS LAI and simulated LAI from
individual DGVMs was also calculated. This was necessary
to show whether LAI is an appropriate estimator of NDVI
and how well the models simulate the LAI in the region. Fur-
thermore, we made comparisons of the seasonal values of
observed and modelled LAI. We note that the lack of avail-
able of data makes it difficult to compare GIMMS LAI and
actual LAI. Nevertheless, the GIMMS LAI has been evalu-
ated and agrees well with observations in other regions (Fan
et al., 2019).

The climatology of observed and simulated climatic vari-
ables, as well as LAI over six major biomes in southern
Africa for the period 1982–2011, were computed. These
biomes are semi-desert, Mediterranean, dry savanna, moist
savanna, temperate grassland, and tropical forest (Fig. 1; Sin-
clair and Beyers, 2015; Lawal et al., 2019a, b).

2.2.2 Description of drought

For the present study, we adopted the definition of meteoro-
logical drought, “which is described as a period (e.g. a sea-
son) during which there is a deficit in the magnitude of pre-
cipitation in a particular area compared to the long-term nor-
mal” (Palmer, 1965; Wilhite and Glantz, 1985). The deficit
in magnitude of precipitation compared to the long-term nor-
mal is mostly accounted for by temperature and less by hu-
midity, wind, or other variables. Here, we used meteoro-
logical drought because it does not make any presumptions
about soil characteristics or runoff. In addition, it is acknowl-
edged to be a primary component in the depletion of vege-
tation productiveness and the reduction in biomass (Vicente-
Serrano et al., 2010). Previous studies (Vicente-Serrano et al.,
2006; Vicente-Serrano, 2013) have also used meteorological
drought in the investigation of drought impacts on biomass
and vegetation productiveness.

2.2.3 Drought computation and correlation with LAI

The analyses include calculating drought (i.e. SPEI) using
CRU data over a 30-year period (1982–2011) for differ-
ent drought timescales. The drought timescale can be de-
scribed as the aggregation of the temporal duration (Vicente-
Serrano et al., 2010). SPEI is an index that is used to quan-
tify drought (see Table 1). Therefore, the quantified values of
the index give the state of drought in a space. Our definition
and approaches follow numerous previous studies (Vicente-
Serrano, 2013 Vicente-Serrano, 2013; Khosravi et al., 2017;
Zhao et al., 2013; Hao and AghaKouchak, 2013).

Table 1. Definition of drought thresholds based on the SPEI scale.

SPEI Drought thresholds

2 or more Extremely wet
1.5 to 1.99 Severely wet
1 to 1.49 Moderately wet
0 to 0.99 Mildly wet
0 to −0.99 Mild drought
−1 to −1.49 Moderate drought
−1.5 to −1.99 Severe drought
−2 or less Extreme drought

Sources: Wang et al. (2014) and modified as shown
in Lawal (2018).

A time series of the evolution of drought for the 30-
year period was plotted. The present study extends the time
frame for understanding drought impacts from 1982 to 2011,
mainly because there were frequent droughts in the 2005–
2011 window (Masih et al., 2014). The time frame was then
extended back to cover a 30-year period to be long enough
to cover the impacts of climate change, which is particu-
larly important considering that southern Africa experiences
more frequent droughts with impacts exacerbated by cli-
mate change. This information is important for considering
adaptation measures and understanding the role of climate
change.

The drought index, SPEI, is calculated from the deduc-
tion between precipitation (P ) and potential evapotranspira-
tion (PET) as follows:

D = P −PET, (1)

where D values represent a measurement of water deficit or
surplus aggregated at different timescales. D values are ob-
tained through aggregation over individual timescales which
span 1 to 24 months (i.e. 1, 3, 6, 9, 12, 15, 18, 21, and
24 months). The timescales were calculated by including
the past values of the variable. For example, a timescale of
15 months suggests that input from the preceding 15 months,
which includes the present month, was used for calculating
SPEI (Beguería et al., 2014). “For the 1-month timescale,
only the current month data [are] used for the calculation.
The D values were standardized by assuming a suitable
statistical distribution (e.g. gamma, log-logistic). The log-
logistic distribution was used to standardize the D values in
this study” (see also Lawal et al., 2019a). For more details
on the timescale computation, please see Vicente-Serrano
et al. (2010; https://rdrr.io/cran/SPEI/man/spei.html, last ac-
cess: January 2010). PET is computed from maximum tem-
perature, minimum temperature, and mean temperature, us-
ing the HG technique (e.g. Vicente-Serrano et al., 2012; Be-
guería et al., 2014; Stagge et al., 2014).

We note that the PET in the SPEI was computed us-
ing the Hargreaves (HG) method rather than Penman–
Monteith (PM) because the data (e.g. vapour pressure and
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maximum and minimum humidity) required for comput-
ing PM over southern Africa are sometimes missing or not
available at the needed gridded spatial resolutions and time
span. Although PM is considered better in most regions,
Lawal et al. (2019a) showed that the variation between the
PM and HG is negligible for the southern African region.
The study only considered observed SPEI_PM, which was
obtained from https://spei.csic.es/database.html (last access:
January 2010), and not modelled SPEI_PM, due to the un-
availability of simulated data required for its computation.
Other studies (e.g. Beguería et al., 2014) have also found that
there is an insignificant contrast in the strength of PM and
HG for reproducing their divergence on measured variables
such as vegetation indices. We should also note that the SPEI
(unlike SPI or the Palmer drought severity index – PDSI) is
the most appropriate index for measuring drought in southern
Africa, as it accounts for the effect of the evaporative demand
from the atmosphere in drought monitoring (Vicente-Serrano
et al., 2010; Ujeneza, 2014). In addition, the SPEI is reported
to be able to identify the geographical and temporal coverage
of droughts (Vicente-Serrano et al., 2010; Ujeneza, 2014).

We deseasonalized GIMMS LAI by transforming the
monthly LAI series per pixel to symbolize the standardized
deviations from the extended mean. This was to make the
sequence of LAI commensurate to SPEI (Vicente-Serrano,
2013) and eliminate the impact of periodicity on vegetation
response. We note that the SPEI is intrinsically deseasonal-
ized.

In order to reconcile the difference in the spatial resolu-
tions of CRU and GIMMS, we regridded the data to the same
spatial resolution using the bilinear interpolation method. We
then computed the correlation per grid cell between SPEI
(based on CRU) and deseasonalized LAI over the 30-year
period at the different drought timescales using Pearson cor-
relations. We then compared the spatial distribution of max-
imum (peak) correlation and the comparable timescales of
drought for observed SPEI. Our analyses consider the pe-
riods at which LAI responds to the presence/absence and
the severity of drought. This is referred to as the drought
timescale in the study.

Next, we investigated correlations at each grid cell be-
tween the drought (from reanalysis – CRUJRA) and an en-
semble median of deseasonalized modelled LAI from in-
dividual DGVMs. The peak (maximum) correlations and
equivalent timescales from the complete 1- to 24-month
timescales were mapped for the ensemble median over the
30-year period. We used the ensemble median because of its
lower sensitivity to independent outliers (Reuter et al., 2013).
In summary, we calculated the model ensemble drought from
the median from individual members’ drought indices. The
interannual variation in drought impacts on LAI by individ-
ual DGVMs was also calculated for different timescales. We
also examined the observed and ensemble mean of the simu-
lated LAI response to drought across latitudes.

In summary, CRU was used to compute observed drought
while CRUJRA was used to calculate modelled drought be-
cause it is what was used to force the models. This will allow
for easy observation and model comparisons.

Similar to Lawal et al. (2019a), we calculated the seasonal
mean for four seasons, i.e. (a) December, January, and Febru-
ary (DJF), (b) March, April, and May (MAM), (c) June, July,
and August (JJA), and (d) September, October, and Novem-
ber (SON), from the correlations of monthly series of drought
and LAI. These were computed from correlating the monthly
series (12 series per year) per pixel of GIMMS LAI and each
monthly series of a 1- to 24-month drought (SPEI) series
over the 30-year period with the Pearson correlation. The
same technique was used for the model ensemble. In simpler
terms, we calculated the correlations (12 sequences in a year)
of monthly LAI to the monthly sequences of a 1- to 24-month
SPEI using 30 years of data. Subsequently, the seasonal mean
of these correlations was calculated. The peak correlations
and drought timescales of the models were calculated over
six major biomes in southern Africa, namely (Fig. 1) tem-
perate grassland, tropical forest, moist savanna, dry savanna,
semi-desert, and Mediterranean vegetation. These regions
were selected because of their relative importance and are
most affected by drought.

Finally, the impacts of extreme events (wet and dry years)
at different time periods were compared, and the comparison
of global and regional responses to drought across biomes for
the period 1982–2011 was investigated.

3 Results

3.1 Grid cell correlations between NDVI and LAI

Figure 2 illustrates the relationships between the NDVI and
LAI for observations, as well as the comparison between ob-
served and modelled LAI. There is a strong linear relation-
ship between observed NDVI and LAI (Fig. 2a). The cor-
relation (0.94) is high between both variables, and the stan-
dard deviation is low (0.005). The standard deviation being
referred to is for GIMMS LAI and individual DGVMs, as
well as GIMMS LAI and GIMMS NDVI. From the figure, a
log-like shape can be seen, where NDVI grows faster when
LAI is low (< 0.2) and becomes saturated when LAI goes
higher (> 0.3). A linear regression of the data shows a slope
of 2.15. The low standard deviation indicates that the val-
ues from the two indices are close. Although there is a good
agreement between observed NDVI and LAI, the 1 : 1 line
shows that the data sets are not exactly equal.

Furthermore, there is good agreement between the ob-
served and the simulated LAI (Fig. 2). JULES has the highest
correlation (0.97) with observation (Fig. 2l). CLM has the
weakest (0.73) correlation with the observations (Fig. 2c).
DLEM and LPX have the same correlation coefficient value
of 0.87 with the observation (Fig. 2e and g). The positive

https://doi.org/10.5194/hess-26-2045-2022 Hydrol. Earth Syst. Sci., 26, 2045–2071, 2022

https://spei.csic.es/database.html


2050 S. Lawal et al.: Investigating the response of LAI to droughts in southern African vegetation

Figure 1. Major vegetation biomes in southern Africa (adapted from UNEP, 2008, Sinclair and Beyers, 2015, and Lawal et al., 2019a, b).
The black lines indicate political boundaries.

relationships between simulated and observed LAI indicate
a general applicability in investigating the model’s perfor-
mance of vegetation response to drought. It also shows that
the correlation is strong enough to compare how the LAI re-
acts to drought in the ensemble. An aggregation of the obser-
vation along the gradient of simulated LAI shows that most
of the models have similar slopes to the observation.

3.2 Seasonal and interannual variations in observed
and modelled LAI

The comparison of seasonal and interannual variation of the
observed and modelled LAI is given in Fig. 3. The model
shows a stronger positive bias in JJA and SON in comparison
to the summer and winter months and a negative bias over the
tropical forest region of Madagascar (Fig. 3a–d). In addition,
the models mostly overestimate the seasonal patterns of LAI
in some regions during DJF and JJA and underestimate LAI
in MAM and SON (Fig. 3e–l). Over most parts of the region,
there is a strong correlation and good agreement between the
observed and modelled LAI in DJF, MAM, and JJA, although
it is weaker in SON (Fig. 3m–t). The strong correlation is
more prevalent in JJA than other seasons (Fig. 3s), while it
is weakest in the southern parts of the region. However, the
correlation is largely negative over Angola in DJF and SON
(Fig. 3q and t). Furthermore, the correlations between the
model and observed LAI is weaker in deseasonalized data
(hereafter deseas. correlation; Fig. 3m–p) than in original
data (hereafter orig. correlation; Fig. 3q–t), thereby showing
the effects of seasonal patterns on time series data. With re-
spect to the period, 1982–2011 (hereafter annual), the corre-
lation between the modelled and observed LAI are different
for deseasonalized and original data (Fig. 3u and v). For the

former (Fig. 3u), there is a gradient in the correlation across
the region, with higher values in central and southern parts
than in Angola and Madagascar. However, with the original
LAI data (Fig. 3v), the correlation is very high (about 0.85)
and more prevalent, except in eastern Madagascar and the
Western Cape province of South Africa.

3.3 Climatology of observed and simulated climate
variables and LAI

This section compares the seasonal cycle of observa-
tional (CRU and CRUJRA) climate variables and observed
and simulated LAI from GIMMS LAI and TRENDY mod-
els, respectively. Precipitation and temperature are season-
ally variable, and their climatologies are mostly similar. For
example, precipitation is higher in MAM and DJF over many
of the biomes, except in Mediterranean vegetation, where
precipitation is higher in JJA (Fig. 4a, d, g, m, and p). The
wettest month occurs over the TF (i.e. tropical forest biome)
where the precipitation is about 350 mm. Conversely, during
the dry season (JJA), there is little rainfall in the biome, al-
though it experiences some precipitation June and July. Over
the Mediterranean vegetation (Fig. 4j), a winter (JJA) rain-
fall region, rainfall variability is lower and is mostly dry in
DJF and SON. Similarly, the highest minimum and maxi-
mum temperature in the region is observed in the DJF season,
where the highest temperature value exceeds 30 ◦C. Over the
tropical forest biome, although the distribution pattern of pre-
cipitation and temperature are similar for most months, they
differ during June and July. The pattern of precipitation and
temperature distribution generally differs over the Mediter-
ranean vegetation. The pattern of temperature and precipi-
tation from CRUJRA follows CRU, although the ensemble
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Figure 2. Scatterplots of correlations between vegetation indices (observation and model) for the period 1982–2011 over southern Africa.
Inset values indicate the correlation coefficient (r) and standard deviation (SD) between GIMMS LAI and GIMMS NDVI, as well as GIMMS
LAI and modelled LAI. The colour represents each grid cell. The pink solid line is the linear regression, while the dashed black line shows
the 1 : 1 line. The unequal x axes are to visualize the detailed data for the models.
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Figure 3. Spatial seasonal distribution and interannual variability (IAV) of satellite-calculated and modelled LAI (multimodel mean) over
southern Africa. Panels (a–d) show the difference (bias). Panels (e–h) and (i–l) show their standard deviation (SD). Panels (m–p) show the
correlations between deseasonalized GIMMS LAI and modelled LAI. Panels (q–t) show their correlations for original GIMMS LAI and
modelled LAI. Panels (u) and (v) show correlations between GIMMS LAI and modelled LAI but for the period 1982–2011. The interannual
variability for observed and modelled LAI for the period 1982–2011 is shown in Fig. S8.

spread is much narrower (Fig. 4c, f, i, l, o, and r). The spa-
tial patterns of the climate variables from CRU and CRUJRA
are shown in Fig. 5. CRUJRA simulates the pattern of pre-
cipitation over southern Africa well (Fig. 5a and b) as CRU,

although it shows some biases in magnitudes and for mini-
mum temperature (Fig. 5g and h).

There is not a strong seasonality for LAI, with maximum
observed LAI values being less than 4 in all biomes. The
models reproduce the climatology of LAI over the southern
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Figure 4. Annual cycle of observed climate variables (precipitation in millimetres per month; maximum, minimum, and mean temperature
in degrees Celsius) and LAI for observation and multimodel mean (TRENDY) across six southern African biomes for the period 1982–2011.
The annual cycle of the LAI for individual models is shown in Fig. S5.
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Figure 5. Spatial distribution of precipitation, mean temperature, maximum temperature, and minimum temperature over southern Africa in
CRU and CRUJRA for the period 1982–2011.

African biomes well, with a few exceptions (Fig. 4b, e, h, k, n
and q). For instance, the models simulate the drop in LAI
over the semi-desert, temperate grassland, tropical forest, dry
savanna, and moist savanna biomes in JJA. The highest in-
crease in observed LAI occurs over the tropical forest in
April, although the models simulate a decrease in LAI over
tropical forest during this time. On the other hand, the lowest
amount (less than 0.1) of LAI is observed in September, and
this occurs over the semi-desert biome. Observations typi-
cally fall within the range of the model ensemble. In addition,
the distribution pattern of the simulated LAI is similar to the
observation in most biomes except in the Mediterranean and
tropical forest biomes. The LAI pattern also follows that of
the climatic variables, although the former lag. The lag effect
is accounted for in this study and is known as the drought
timescale.

3.4 The evolution of drought in southern Africa

Figure 6 shows the evolution of observed SPEI in southern
Africa between 1982 and 2011. Here, drought indices from
CRUJRA are not included because a preliminary investiga-
tion showed close magnitudes for drought indices computed
from CRU and CRUJRA. We note that CRU was used to cal-
culate SPEI for the observation, while simulated SPEI was
computed with CRUJRA.

There is interannual, seasonal, and decadal variability in
the drought indices during dry and wet conditions over south-
ern Africa. Although 1-, 3-, and 6-month SPEI indicate no
trend in wet or dry spells, they show the intensity of drought
events for the 30-year period (Fig. 6a–c). The highest mag-
nitude of the drought is captured by a 1-month SPEI while
the lowest is shown in a 21-month SPEI. The severity of the
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Figure 6. Evolution of SPEI in southern Africa for the period 1982–2011. The trend is significant at the 90 % confidence interval for all
timescales.

drought intensity is similar for all SPEI (i.e. 1- to 24-month
SPEI). The magnitude of the severity is on the y axis of the
1- to 24-month SPEI.

We note an increasing trend in SPEI (9 to 24 months). Ta-
bles 2 and 3 illustrate when droughts occurred and the sever-
ity of the droughts within the 30-year period. They also show,
however, that droughts were most frequent and intense in the
second decade, thus, indicating how climate change is ex-
pected to increase the frequency and severity of droughts.

3.5 Spatial distribution of LAI response to drought and
the timescales

Figure 7 presents the spatial distribution of the peak corre-
lation between the SPEI and the LAI and the timescales at
which the correlation occurs. This is to show the magnitude
of response of LAI to drought in southern Africa and the
length of the period for the response.

Observations show that southern African LAI can respond
fairly strongly to droughts (peak correlation magnitudes of
between 0.4 and 0.6), though the response is much weaker
(r < 0.4) in eastern Madagascar, Angola, and parts of South
Africa (Fig. 7a). The TRENDY multimodel median generally
overestimates the observed magnitude of the LAI to drought
response (Fig. 7c). Peak correlations for the models seem to

be much stronger, i.e. in the 0.6–0.8 range for most of the
regions. In addition, over the arid areas of Namibia, mod-
els simulate a LAI, while observations depict no measurable
LAI, indicating that models simulate the LAI in areas where
observations show no measurable LAI.

The multimodel median has a drought timescale that is
mostly longer than the observations (Fig. 7b and d). For in-
stance, the drought response of simulated LAI occurs mostly
over a longer time period (6- and 9-month timescale) than
in the observation over eastern Madagascar. Over the south-
ern areas of Madagascar and central Zambia, the multimodel
median overestimates the drought timescale. Over the cen-
tral areas of South Africa and Mozambique, simulated LAI
responds at intermediate (9-month) timescales. In compari-
son, similar drought timescales for the observation and the
model ensemble median are shown in parts of Angola.

3.6 Latitudinal distributions of LAI response to
drought and the timescales

The present study investigated and discussed the implications
of drought on different vegetation/biome types across lati-
tudes in the region. Here, we stratified the LAI response to
drought based on latitude because we intend to investigate
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Table 2. Characteristics of drought occurrence for a 1- to 24-month drought timescale for the first decade (1982–1991), second decade (1992–
2001), and third decade (2002–2011).

Drought Number of drought events Year of moderate drought events

timescale First Second Third First Second Third
decade decade decade decade decade decade

1 month 53 62 53 1987 1992, 1990 2004, 2007, 2008, 2011
3 months 55 64 58 1988 1991, 1992 2004, 2008, 2011
6 months 44 62 60 1982 1992, 1993 2004
9 months 55 66 62 – 1992, 1994 –
12 months 53 68 56 – 1992, 1995 –
15 months 58 63 56 – 1992 –
18 months 54 69 51 – 1992, 1994 –
21 months 51 69 56 – 1992, 1995 –
24 months 41 71 54 – 1992, 1994 –

Table 3. Statistics of the severity of drought for 1- to 24-month drought timescale for first decade (1982–1991), second decade (1992–2001),
and third decade (2002–2011). SD is the standard deviation, and max is the highest magnitude of drought occurrence.

Drought Mean SD Max

timescale First Second Third First Second Third First Second Third
decade decade decade decade decade decade decade decade decade

1 month 0.30 0.39 0.31 0.26 0.26 0.27 1.1 1.02 1.15
3 months 0.32 0.36 0.29 0.24 0.25 0.25 1.02 1.01 1.12
6 months 0.38 0.38 0.26 0.31 0.28 0.24 1.04 1.3 1.33
9 months 0.31 0.41 0.21 0.26 0.35 0.18 0.86 1.32 0.83
12 months 0.30 0.43 0.21 0.21 0.35 0.18 0.81 1.27 0.7
15 months 0.28 0.47 0.20 0.21 0.31 0.18 0.77 1.13 0.7
18 months 0.27 0.48 0.20 0.17 0.28 0.12 1.02 1.02 0.77
21 months 0.18 0.50 0.17 0.2 0.28 0.14 0.62 1.00 0.61
24 months 0.28 0.51 0.15 0.19 0.24 0.11 0.55 0.93 0.46

and identify the shift in the response based on the vegetation
types across the latitudinal belt.

While the pattern of the latitudinal distribution of the LAI
response to drought is identical across different timescales,
the magnitudes generally differ (Fig. 8). The response is
much weaker (less than 0.15) for the 1-month timescale
than for other timescales. The strongest response is observed
at a 6-month timescale between latitudes of 25 and 30◦.
The model ensemble mean generally agrees with the pat-
tern of the observed LAI–SPEI correlations across all the
timescales. However, the magnitudes differ from the ob-
servation. The modelled correlation is stronger than ob-
servations for the longer (6 months or more) timescales.
This means that the models are oversimplifying how the
LAI responds to drought by neglecting other climate fac-
tors, such that, in models, LAI only correlates to the water
deficit (SPEI). Furthermore, there is an offset between the
observation and model mean, which is consistent across most
of the timescales, perhaps due to the strong memory of the
some of the models.

3.7 Response of LAI to droughts across seasons

Observations show similar correlations between LAI and
drought across all seasons in the biomes (Fig. 9). For the dry
savanna, which is one of the most climate-impacted biomes
in the region, LAI response to drought is strong, the correla-
tion is as high as 0.8 in MAM season, and it occurs at a 12-
month timescale. The correlations between drought and LAI
are also very strong in other seasons over the same biome
and occur at 6- and 12-month drought timescale, except over
the Mediterranean vegetation, where the response occurs at
18 months in the DJF season. Similarly, the peak correlations
between drought and LAI are strong across the other biomes.
With the exception of the tropical forest biome, the drought
timescale is at longer time periods (> 6 months).

The model ensemble generally overestimates correlations
across the biomes in different seasons. While the correlation
magnitude remains mostly larger than the observation, mod-
els nonetheless simulate a closer correlation with observa-
tion in some biomes and seasons. For instance, over Mediter-
ranean vegetation, models simulate a fairly good response
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Figure 7. Spatial distribution of peak correlation between
drought (SPEI) and LAI over the region of southern Africa in the
observation and in the model ensemble median for the period 1982–
2011. Panels (a) and (c) show the peak correlation per pixel, which
is independent of the timescale and the month of the year. Panels
(b) and (d) indicate the timescales at which the peak correlation be-
tween SPEI and LAI is found. Areas with no significant correlation
are white.

of LAI to drought in all seasons. Furthermore, in nearly
all other biomes, the ensemble spread overlaps with the ob-
servations. In addition, simulations mostly overestimate the
drought timescale, except over dry savanna. A possible rea-
son for why the difference in the timescale for dry savanna
was underestimated may be because phenological triggers
for dry savannah vegetation types respond differently to en-
vironmental variables, which the models do not capture. The
African dry savanna region is characterized by rapid vegeta-
tion changes due to fire, land use, among others, and senes-
cence for prolonged dry periods (Rahimzadeh-Bajgiran et
al., 2012; Zhu and Liu, 2015), which may have contributed
to the underestimation in the response of the models. Sim-
ilarly, models have different representations of fire, which
could also indirectly contribute to the underestimated model
responses to drought.

3.8 Interannual variation in the model simulation of
the drought impacts on LAI

Table 4 shows the correlations between observed mean SPEI
and LAI for the period 1982 and 2011 and simulations by
individual DGVMs across different timescales. Unlike Fig. 7,
which shows the peak correlations, the table shows the mean
correlation for the 30-year period.

There is variation in the interannual simulation of LAI
response to drought across different timescales by individ-
ual models. For instance, on the 1-month timescale, JULES
simulates the lowest correlation value while JSBACH shows

the highest correlation value. Furthermore, JSBACH simu-
lates the highest correlation value for most of the timescales,
while CLM simulates the lowest correlation values for most
(3, 9, 12, 15, and 18 months) of the timescales. A possible
reason for the weak performance of CLM may be its repre-
sentation of the canopy construction of the plant functional
types (PFTs) and of its foliage clumping representation. In
addition, CLM is limited in its simulations of vegetation with
regards to transpiration, due to the rooting depth, among oth-
ers (Dahlin et al., 2020). Furthermore, CLM does not simu-
late savanna ecosystems well but instead uses a combination
of grasses, shrubs, and trees. There are also some problems
(such as an unusual green-up in the dry season) identified
with deciduous stress responses (Dahlin et al., 2015).

3.9 Impacts of extreme events on LAI

The impacts of extreme events on LAI are shown in Fig. 10.
The objective was to discuss the impacts and compound in-
fluences of extreme events on LAI during extremely hot/dry
and wet years. Here, extreme events are the wet (2000, 2010,
and 2011) years, i.e. the periods with precipitation higher
than normal, and the dry (1983, 1984, and 1991) years, which
include the periods of very high dry spells. To achieve this,
we used the anomaly of precipitation, SPEI, and LAI rela-
tive to the long-term mean. The anomaly was computed as
a difference between a particular extremely dry or wet year
and 30-year mean representing dry and wet conditions. The
anomaly is the magnitude of impacts added by the extreme
event in a particular year. The spatial pattern of the changes in
LAI, SPEI, and precipitation were then plotted. Our analyses
follow Pan et al. (2015). Furthermore, we computed the pat-
tern correlation coefficients (r) between the LAI and climate
variables for each extremely dry and wet year. The statistical
significance of the coefficients was also calculated. The goal
of this is to ascertain whether the sign of the anomaly of the
variables correspond in the same locations on two different
maps. In order to determine the significance of correlation
coefficient, we performed the linear regression t test (i.e. Lin-
RegTTest). This finds the best line of fit among a set of data
points. It also checks the quality of the fit by carrying out a
t test on the slope, thus testing the null hypothesis that the
best fitted line is 0, suggesting that there is no correlation be-
tween two variables, since an association with a slope of zero
implies that one variable does not affect the other. Therefore,
if the p value is not sufficiently low, then we do not have suf-
ficient data to accept relationship between the variables. For
this study, we used a significance level of 5 % i.e. α = 0.05,
which is the most commonly used value in life and biolog-
ical sciences. We then tested the hypothesis on whether the
p value is less than the significance level (α = 0.05), which
is our null hypothesis. In cases where that is the case, we
rejected the null hypothesis and concluded that there is ad-
equate evidence that there is a significant linear relationship
between the variables i.e. LAI–SPEI and LAI–precipitation.
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Figure 8. Mean correlation (observed and multimodel ensemble) of annual LAI and SPEI for 1982–2011 across latitudes over southern
Africa for 1- to 24-month timescales.

Table 4. Model simulation of mean SPEI and LAI correlations between 1982 and 2011. The asterisk (∗) indicates the model with the lowest
mean correlation.

Correl. GIMMS CABLE- CLM CLASS- DLEM JSBACH LPX OCN ORCHIDEE SURFEX JULES VISIT
LAI POP CTEM

1 month 0.0066 0.1017 0.1188 0.1266 0.085 0.1388 0.0842 0.0579 0.0884 0.1094 0.027∗ 0.086
3 months 0.0775 0.3084 0.0187∗ 0.29 0.2499 0.4165 0.2403 0.1644 0.266 0.2791 0.1434 0.1108
6 months 0.091 0.3474 0.1806 0.3562 0.3305 0.5404 0.2386 0.3377 0.3733 0.3759 0.2429 0.1703∗

9 months 0.0832 0.333 0.2034∗ 0.3496 0.3437 0.5734 0.2505 0.4055 0.39 0.3994 0.3189 0.23
12 months 0.0813 0.3053 0.2155∗ 0.3231 0.3229 0.5398 0.304 0.4109 0.4054 0.3911 0.3663 0.2892
15 months 0.0642 0.2773 0.2161∗ 0.2912 0.2846 0.4925 0.3208 0.4106 0.4132 0.3547 0.3623 0.3198
18 months 0.0452 0.2534 0.2349∗ 0.276 0.2381 0.4599 0.2405 0.3998 0.4109 0.3289 0.3586 0.3472
21 months 0.0406 0.239 0.2402 0.27 0.2119 0.4334 0.1569∗ 0.3739 0.3962 0.2955 0.3621 0.3501
24 months 0.0409 0.2302 0.2355 0.2668 0.2186 0.4696 0.2064∗ 0.3528 0.3777 0.2682 0.3617 0.327

In cases where the p value is greater, we do not reject the null
hypothesis, since there is not enough evidence to conclude on
the significance of correlation coefficients.

Note that, although the SPEI is a drought index, it was also
considered in a wet year because the impact of drought usu-
ally lasts beyond a dry year, especially in semi-arid regions
of southern Africa. In addition, the hot temperature has an in-
fluence on the worsening of the drought by causing water to

evaporate from the soil. SPEI, as a drought index, considers
temperature effects on moisture availability.

We considered only observation, i.e. CRU (precipitation
and drought) and satellite-calculated LAI. The observed cli-
mate (CRU) data are not sub-monthly. Only the CRUJRA
(reanalysis), which was used for model correlation, is sub-
monthly. The model was not analysed in this section because
our goal was simply to examine the observed impacts (or in-
fluence) of an extreme event.
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Figure 9. Seasonal correlations of drought (SPEI) and LAI across six southern African biomes. The values on the left axis show the peak
correlation in observation and TRENDY models. The values on the right axis indicate the corresponding drought timescale.

The spatial pattern of change of LAI and SPEI are mostly
similar during extreme dry and wet years (Fig. 10). For ex-
ample, in 1983 (a dry year), the negative anomaly of LAI
in some parts of the region largely follows the negative
anomaly of the SPEI, except in the western and central parts
(Fig. 10a and b). In 1984, both variables show a strong posi-
tive anomaly over Madagascar, Eswatini, and the KwaZulu-
Natal province of South Africa (Fig. 10d and e). The pat-
tern of change of both SPEI and LAI are also comparable
during the extremely wet year. In the wet year of 2000, the
positive anomaly of SPEI that is observed in Namibia and
South Africa is also evident for the LAI (Fig. 10j and k). In
a like manner, both variables show a negative anomaly over
Malawi and Zambia. The strongest pattern (magnitudes) of

change of the SPEI in the region is observed in the dry year
of 1991 (Fig. 10h). However, the pattern of change of the
LAI and SPEI are not similar over some regions in some pe-
riods. For instance, in 1991, while a negative anomaly of the
SPEI is observed in northern Madagascar and central parts
of southern Africa, LAI shows a positive anomaly (Fig. 10g
and h). The opposite and decreasing relationship between the
two variables in 1991 is also evident in the pattern correla-
tion coefficient value of −0.16 (Fig. 10h). The variation in
anomaly in these parts and period may be due to the exertion
of a stronger influence by other factors such as residual soil
moisture and precipitation (see Fig. 10i), with temperature
having negligible impacts.
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Figure 10. Spatial pattern changes in satellite-calculated LAI, observed SPEI, and precipitation during extremely dry (1983, 1984, and 1991)
and wet (2000, 2010, and 2011) years. For panels (a–i), the changes in LAI, SPEI, and precipitation were calculated as a difference between
the dry year and the 30-year mean. For panels (j–r), changes in LAI, SPEI, and precipitation were calculated as the difference between the
wet year and the 30-year mean. White areas indicate no correlation. The pattern correlation coefficients and the statistical significance of the
coefficients between the variables are given in Table 5.

The influence of precipitation (as a standalone meteoro-
logical factor) on LAI during extreme events is limited. This
is observed from the disparity in the spatial pattern of the LAI
and precipitation over some regions and periods. For exam-
ple, in 1984, the wide negative anomaly of precipitation that
is shown over Zimbabwe, Mozambique, and southern Mada-
gascar is opposite to the LAI, which shows positive anomaly
(Fig. 10d and f). The LAI anomaly is more similar to that of
the SPEI (Fig. 10e). Also, in wet year of 2000, while precip-
itation shows a preponderant increase over the northeastern

parts of southern Africa, there is a decrease in the LAI, as is
the case with SPEI (Fig. 10j–l). Nevertheless, precipitation
plays a primary/major role in the pattern of change of LAI,
as is observed over the most parts of the region during the
years considered.

Generally, the pattern correlation coefficient values be-
tween the LAI and SPEI are higher than those between
the LAI and precipitation in extremely dry and wet years
(Table 5). Although the coefficients are small, they are
mostly significant across the different extreme periods, ex-
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cept for 1983, an extremely dry year, where the p value
is 0.58 for LAI–SPEI (Table 5). The extremely low statistical
significance indicate low standard errors and a large number
of grid sizes for the region.

3.10 Comparison of global and regional distribution of
LAI response to droughts (1982–2011)

There is variability in the global and regional temporal dis-
tribution of the LAI response to drought (at a 12-month
timescale) when global vegetation biomes are split into re-
gional biomes (Fig. 11). The map of the global biomes is
shown in Fig. S1 in the Supplement. The observed global
response indicates a decreasing trend of the LAI response to
drought, while the model mean shows an increasing estimate.

The semi-desert biome dominates the LAI response
as higher drought–vegetation correlations are observed
(Fig. 11g–i). Over the biome, there is a more marked interan-
nual variability, which makes the biome an important player
in the global carbon cycling (Poulter et al., 2014). The re-
sponse over the semi-desert in southern Africa is, however,
weaker in comparison to the other semi-desert biomes.

The response over the Mediterranean vegetation in Aus-
tralia is stronger than the Mediterranean vegetation over the
rest of inland southern Africa. Over the biome, the model
simulates closer magnitudes in the latter than over Australia
(Figs. 11b and 9c).

Over the tropical forest biomes, there is a weaker response
in central Africa compared to southern Africa and South
America; the model simulates the closest response in mag-
nitude in South America (Fig. 11d and f).

4 Discussion

4.1 Relationship of LAI to phenological changes

LAI is a variable that is needed for the global modelling of
biogeochemistry, climate, ecology and hydrology, and differ-
ent primary production models (e.g. Running and Coughlan,
1988; Sellers et al., 1996; Bonan et al., 2002). In view of the
need to run biogeochemical models at regional and global
scales, accurate LAI data at moderate to high resolutions are
crucial (Wang et al., 2004). The relationship between NDVI
and LAI is applied as a support algorithm in MODIS LAI.
Thus, from the viewpoint of the availability of data, retriev-
ing LAI from analysing the NDVI–LAI relationship remains
the main perspective for high temporal resolution in regional
and global studies (Wang et al., 2004).

LAI showed a linear relationship with NDVI. This sug-
gests that the NDVI is associated with the phenological
changes in plants, the parts of the surface cover class which
contribute to the general reflectance, and the variations in the
angle of solar zenith (Wang et al., 2004). Studies (e.g. My-
oung et al., 2013) have, however, found that the relationship
between NDVI and LAI varies intra- and interannually, and

both vegetation indices differ temporally and seasonally over
deciduous forests, which are sometimes not accounted for in
models that test their relationship (Wang et al., 2004). For in-
stance, while the relationship is strong during periods of leaf
production and senescence, no relationship is observed dur-
ing the period of leaf constant due to NDVI saturation above
certain LAI values (Xue and Su, 2017).

Although the present study found a strong linear relation-
ship between the NDVI and LAI in southern Africa, other
studies (Potithep et al., 2010; Towers et al., 2019) have shown
that the two indices are not always directly proportional. For
example, both indices do not exhibit the same relationships
over different ecoregions such as the evergreen broadleaf for-
est or deciduous needleleaf forest. Furthermore, other studies
(Fan et al., 2008; Tian et al., 2017) found that the LAI may
be a better indicator of plant biomass and health because of
the saturation associated with the NDVI, particularly in the
drylands. This makes the LAI more applicable in monitoring
the vegetation response to drought. Evaluating how the LAI
differs from the NDVI over different biomes (such as dry sa-
vanna, tropical forest, etc.), with regards to temporal differ-
ence, is shown in Fig. S7. Both the LAI and NDVI show simi-
lar annual cycles over southern Africa, except for the tropical
forest and Mediterranean vegetation.

4.2 The importance of sub-monthly data in drought
computation and monitoring

The data used to evaluate drought indices are CRUJRA. JRA
is a reanalysis data set and has a 6 h temporal resolution. Ad-
ditionally, CRUJRA have the data used to force the DGVMs,
so the drought indices are being calculated based on the same
data the models use for their simulations. JRA is a reanal-
ysis data set, but the combined CRUJRA product uses the
sub-monthly information from JRA and is constrained to the
monthly CRU observations. The comparisons of the data are
shown in Figs. 5 and S6. It is useful to use data with shorter
times because the study focuses on an evaluation of drought
impact, which is sensitive to the timescale. In the drylands,
for instance, the uncertainties associated with monthly data
in drought monitoring are reduced when sub-monthly data
are used (Mukherjee et al., 20117). With regards to the pre-
cipitation and temperature fields, the difference is negligible.

We note that, over different parts of the world, CRU
has been widely validated against station data (Harris et
al., 2020), and there is a high accuracy of the valida-
tion. Therefore, observed SPEI gives a high accuracy of
measured drought. Another major advantage of using the
observational-based CRU data is its spatial and temporal cov-
erage. Station data are available for very few points and for
limited times in the region of interest. The few data that are
available are fraught with missing data, rendering them an
unreliable data source (Harris et al., 2020).
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Figure 11. Correlations between SPEI (12-month timescale) and the ensemble mean of LAI from TRENDY (blue line) and GIMMS LAI
(black line) for (a) global vegetation, (b) Mediterranean vegetation over Australia, (c) Mediterranean vegetation over southern Africa, (d) a
tropical forest over southern Africa, (e) a tropical forest over central Africa, (f) a tropical forest over South America, (g) a semi-desert biome
over southern Africa, (h) a semi-desert over Asia, and (i) a semi-desert over South America.

Table 5. Pattern correlation coefficients (r values) and significance
of the coefficients calculated at a significance level of 5 % (α =
0.05) between the LAI and SPEI for extremely dry and wet years,
as well as between the LAI and precipitation during extremely dry
and wet years. The correlation coefficients are significant when the
p value is less than 0.05.

Year LAI–SPEI LAI–precipitation

r values p values r values p values
(0.05) (0.05)

1983 0.1 0.58 −0.02 2.43× 10−6

1984 0.17 7.09× 10−64 0.04 8.33× 10−5

1991 −0.16 1.1× 10−41 0.16 9.83× 10−60

2000 0.23 1.5× 10−121 0.14 2.81× 10−27

2010 0.14 6.3× 10−17 0.1 0.008
2010 0.14 2.2× 10−48 0.1 1.47× 10−6

4.3 Annual cycle of climate and vegetation in southern
Africa

Climatologies of meteorological variables show that precipi-
tation drops in JJA and SON seasons over the biomes, except
over the Mediterranean vegetation. The dry condition that is
experienced during these seasons could be attributed to the
subtropical high pressure system which suppresses rainfall
by shifting the ITCZ (Intertropical Convergence Zone) away
from these regions (Naik and Abiodun, 2016).

Observations also show low LAI over some parts of south-
ern Africa (please see Fig. S2). The weak gradient in some
parts of the region may be due to low winter rains produced
by the frontal system, which is not sufficient for growth of ex-
panse vegetation (Lange et al., 1999). The aridification of the
western part of southern Africa may be attributed to the influ-
ence of cold sea surface temperatures (SSTs) of the Namib-
ian upwelling system along the Namibian coasts (Ward et
al., 1983). The aridification does not only result in the ces-
sation of river discharge but also sediments that would have
favoured the growth of drier vegetation (Dupont, 2006).
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For Fig. S5, some of the models do not capture this
peak around September over the Mediterranean and tropi-
cal biomes. One possible explanation is that the models do
not reproduce the changes in the biomass and leaf area cover
around that period well (due to phenological responses to
environmental variables). For both biomes, spring rainfall
contributes to vegetation growth in the region, which may
not be reproduced well by the models. For Fig. 4, the mag-
nitudes (< 0.5) of the observation-based LAI over (south-
ern Africa) semi-desert biome is quite high because the re-
gion is a pseudo-desert, which experiences very high summer
temperatures but does receives some rainfall, and the Oka-
vango River is flowing through it permanently. This region
is rich in biodiversity such as Acacia spp. (trees) and Aris-
tida and Schmidtia spp. (savanna; see WWF, 2001; Street and
Prinsloo, 2013; Lawal, 2018) Thus, a 0.5 LAI in the biome,
which may be higher than other desert biomes, is reasonable
in this region.

4.4 LAI response to drought in observation

Drought is becoming frequent and more intense in south-
ern Africa (Masih et al., 2014). The frequent and stronger
dry spells are observed in Fig. 6. Climate change is ex-
pected to increase the frequency and severity of droughts (Ta-
bles 2 and 3). The severity and longer durations of drought
have enormous impacts on the already endangered vegetation
biomes in the region (Hoffman et al., 2009). The results show
that drought impacts on vegetation occur across the different
seasons in the region. The seasonal difference in the response
of vegetation to drought across biomes is influenced by nu-
merous factors, such as vegetation adaptive capacity and re-
silience, reproduction process, and growth stage, among oth-
ers (Zeppel et al., 2014; Corlett, 2016). For instance, over the
tropical forest biome, drought has the least impact on veg-
etation in the region, which could be because of the deeper
rooting system of the vegetation which allows access to soil
at the deeper water table (El-Vilaly et al., 2017). It is reported
that major drivers of vegetation resilience and productivity
are precipitation and temperature which control the evapo-
transpiration rate (Allen et al., 2010). It is worth noting that
vegetation in southern Africa will be severely impacted if the
trends continue in the same trajectory. For instance, the re-
gions where there is a strong vegetation response to drought
are experiencing wood encroachment and, thus, will likely
worsen based on the current trajectory of drought occurrence.

We note that the performance of drought indices is not
only limited by the variables used in their computation but
also by biomes and locations where they are used (Xu et al.,
2015). For example, SPI, which is calculated using simple
methods and has adaptable timescales, performs better than
SPEI in arid regions (Beguería et al., 2014). However, SPEI,
which requires more variables for its computation, captures
drought better in relatively humid zones (Beguería et al.,
2014). SPEI is, however, limited by the potential evapotran-

spiration (PET) because of its sensitivity to the variable (Xu
et al., 2015).

The vegetation situated at the borders of Botswana–
Namibia and Mozambique–Zambia respond to droughts at
an intermediate timescale (i.e. 9 months). The types of veg-
etation inhabiting these regions, which are well adapted to
water shortages because of their physiological and morpho-
logical characteristics, take a prolonged period to respond to
drought and, thus, do not easily shows symptoms of water
strain (Vicente-Serrano, 2013). The activities through which
the vegetation minimize water loss include a reduction in
photosynthesis and reduced canopy cover (Schwinning et al.,
2005). The capacity for vegetation to store water is one adap-
tation for low water ecosystems, as is reduced daytime stom-
atal conductance and crassulacean acid metabolism (CAM)
photosynthesis. The disparity in the timescale’s spatial distri-
bution in models from observation might be because the pa-
rameters are represented and estimated in the models (Mur-
ray et al., 2011). In addition, the models are not similar in
their drought timescale simulations.

The varying response of the tropical forests in different re-
gions may be because of the interplay of precipitation and
temperature at different longitudes. Ahlström et al. (2015)
showed that temperature is a particularly a strong factor in
the response of this vegetation. Wang et al. (2008) also re-
ported that soil moisture variations play a key role in the
magnitude of vegetation response. The weak response of LAI
to drought over Madagascar and Angola may be attributed to
the fact that the vegetation in these regions is able to store
water for a long time which it uses during deficit periods
(Chapotin et al., 2006). It may also be because rainfall is not
the main regulatory component in the growth of vegetation
in these regions (Fuller and Prince, 1996). In regions such as
Botswana and Namibia, the vegetation is highly dependent
on water availability for its ecosystem functions (Anyamba
et al., 2003). Please see Fig. S3 for the observed correlations
at different timescales.

The seasonal response of LAI to drought varies, and this
could be attributed to many factors. For instance, the sensi-
tivity of the semi-desert to water shortage makes them show
a quick response to drought (New, 2015). The response of
vegetation to drought is particularly stronger in the MAM
season because it is during this period that fruit, leaves, and
biomass are produced by vegetation (Zeppel et al., 2014).
The critical water requirement by vegetation for these devel-
opmental activities in the MAM season is the reason for the
vegetation’s response to droughts at a short timescale (Zeppel
et al., 2014). The strongest vegetation response (a correlation
of about 0.92) is observed over the semi-desert biome (which
is in the semi-arid environment) in the JJA season. This is a
region with vegetation which is heavily dependent on water
for all the ecosystems’ functioning and without which they
would not survive (New, 2015). The drought response of the
tropical forest is weaker compared to all other biomes. Over
the tropical forest biome, the fairly subtle drought response
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may be because the biome can be tolerant to drought, have
a stronger, robust capacity, and is, therefore, not extremely
impacted by droughts as the other biomes are (Gielen et al.,
2005; Corlett, 2016).

The different responses by the global biomes in different
geographical locations may be because of climate variations
and the sensitivity of LAI to climate variations (Ahlström et
al., 2015). The dominance of the LAI response to drought
over the semi-desert biome could be attributed to the global
bush encroachment and is in consonance with the increas-
ing greenness (Donohue et al., 2009; Fensholt et al., 2012;
Andela et al., 2013). Studies (Cai et al., 2014; Trenberth
et al., 2014; Dai, 2013; Wang et al., 2014; Ahlström et al.,
2015) have also found that increased and frequent El Niño–
Southern Oscillation (ENSO) events due to climate change
have not only led to the expansion of LAI but could increase
the water demand by semi-desert vegetation. This compar-
ison is particularly important because, until now, there has
been little or no study on this.

4.5 How well the seasonal and interannual variations
of LAI are captured in DGVM simulations

The models exhibit biases in the simulation of seasonal and
interannual variations of LAI over southern Africa. There are
two major factors that may be given for the performance
of the models. First, the influence of precipitation forcing
data largely affect the seasonal cycle of LAI and the inter-
annual variability (see Figs. 3 and S8). Although the differ-
ence between the forcing data for observed and modelled
LAI (i.e. CRU and CRUJRA, respectively) is small, it still
influences the simulations by the DGVMs. The precipita-
tion uncertainty has a larger influence in some regions and
biomes than others. For instance, the overestimation of LAI
by models in the arid biome of Namibia and the Mediter-
ranean vegetation of South Africa may be due to the irregu-
larity in precipitation, whereby the precipitation changes are
too small to be identified (in CRUJRA), and due the large
spatial variability (Fekete et al., 2004; Greve et al., 2014).
On the other hand, over the savanna biome of Angola, the
underestimation is likely because of the sparse distribution
of precipitation data, which permeates to CRUJRA (Fekete et
al., 2004). Second, the differences in observed and simulated
LAI may be due to the impacts of land use and land cover
change (LULCC) on the latter in the simulation through soil
moisture and evapotranspiration (Piao et al., 2007). LULCC
exerts a strong influence on water consumption, nutrient cy-
cling, and root depth (Piao et al., 2007; Mango et al., 2011),
and the extent of the influence also varies across biomes. For
example, in MAM, over the temperate grassland biome of
South Africa, where the model underestimates LAI, the bias
is likely because the models fail to simulate the frequency of
evapotranspiration, which is about 5 times less than the forest
biome (Yang et al., 2015).

However, over most parts of the region, the correlation be-
tween observed and modelled LAI is strong, except in the
JJA season. This means that the models generally simulate
the pattern of LAI distribution in southern Africa. We also
note that the lower correlations between observed and mod-
elled LAI, when the data were deseasonalized, is due to the
sensitivity of LAI to variability and seasonality. These differ-
ences between the observed and modelled system have im-
pacts on how the vegetation response to drought is captured,
which we discuss in Sect. 4.6.

4.6 How well drought and LAI response is represented
in DGVM simulations

The observed LAI is simulated within the models and cal-
culated by GIMMS, based on Mao and Yan (2019). Lu et
al. (2011) found that DGVMs perform better against obser-
vations than Earth system models (ESMs) because they use
observational-derived climate and can include more complex
representations of vegetation processes. The ESM is a cou-
pled model simulating its own climate, while the individual
DGVMs models used in the present study are standalone
models, i.e. are applied with observational-based meteoro-
logical forcing, and thus, we remove one uncertainty. Since
offline studies target the DGVM itself, removing one possi-
ble issue (incorrect climate drivers), it became imperative to
use DGVM to study drought impacts.

DGVMs simulate the vegetation characteristics and im-
pacts of climate on them. The validation of DGVM simu-
lations of variables such as LAI is quite difficult. This is
because of the unavailability of data on a large spatiotem-
poral scale for the different vegetation classes (Potter and
Klooster, 1998). Studies (e.g. Potter and Klooster, 1998) have
also shown that errors present in the prediction of plant func-
tional types (PFTs) tend to spread to biomass prediction in
the model, thus possibly biassing estimates of carbon stored
in terrestrial ecosystems. Nevertheless, the DGVMs used in
this study simulate the spatial patterns of vegetation distribu-
tion with a magnitude bias, as shown in Fig. S2.

TRENDY models mostly simulate the temporal patterns
in the global and regional distributions of LAI response to
drought. The biases shown by the models have been at-
tributed to the fact that the models do not factor in land use
changes (Ahlström et al., 2015). This is evident in the simu-
lation of LAI (please see Fig. S2).

The model’s weaker simulations might also be because
some of the DGVMs do not reproduce the LAI magnitude
well. The negligible difference in the spatial distributions of
the SPEI of the models could be due to fact that the model
PET does not play a strong role in drought occurring in
southern Africa and that precipitation is the main driver of
drought in the region. The variations in the characterization
of hydrological processes in the models are also a source of
uncertainty because they reinforce the bifurcation in runoff
outputs, which has cascading effects on biospheric changes
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and evapotranspiration (Murray et al., 2011; Stewart et al.,
2004). Also see Fig. S4 for the correlations of the model en-
semble median at different timescales. Another reason for
the biases in the simulations may due be to the design of the
DGVM experimental set up, which includes the flux devia-
tion between simulations (Murray et al., 2011).

4.7 Variations in observed and simulated vegetation
response to drought and implications on model
development

The biases shown by models could be attributed to the
different limitations of individual DGVMs, and addressing
these shortcomings would improve the model’s performance.
For example, the sub-optimal performance of CLM may be
partly due to the inability of the model to capture the fo-
liage production and root system of vegetation for transpira-
tion. The model is also unable to produce savanna ecosys-
tems, which it simulates by approximating the vegetation
of forest and grassland ecoregions (Dahlin et al., 2020). In
addition, the ineffective simulation of deciduousness would
have contributed to the model biases in response simula-
tions. Therefore, targeting these limitations is important for
improving the model’s performance in simulating morphol-
ogy and physiological functioning of vegetation biomes. Fur-
thermore, the DGVMs (e.g. JULES and DLEM) used in the
study poorly replicate important ecological and physiologi-
cal processes that are critical for capturing the dynamics of
savanna systems. Other DGVMs (e.g. JSBACH) poorly sim-
ulate significant environmental variables such as fire, which
is very crucial for the vegetation growth cycle, particularly
in the savanna biome (Thonicke et al., 2001; Romps et al.,
2014; Kim et al., 2018; D’Onofrio et al., 2020). Also, over
southern Africa, land use change (LUC) is a common and
frequent occurrence and is an important factor for vegetation
turnover. However, most models do not capture land man-
agement well, which is an important driver of land cover
change in the region. Thus, there is a need for future model
development to account for rapid LUC over different regions.
However, the disparity in the observed and simulated re-
sponse of vegetation to drought cannot be fully accounted
by the DGVMs alone. The reanalysis (CRUJRA) has also
shown some limitations in the simulation of climate vari-
ables. Compared to observation-based CRU, CRUJRA has
closer magnitudes of maximum and minimum temperature,
and addressing this would improve the simulated response.

5 Summary and conclusions

Southern African vegetation is continually affected by
drought. In this study, we estimated the spatiotemporal char-
acteristics of meteorological drought in southern Africa us-
ing the Standardized Precipitation Evapotranspiration In-
dex (SPEI) over a 30-year period (1982–2011). The sever-

ity of the drought and its impacts on vegetation produc-
tion were examined at various drought timescales (1- to 24-
month timescales) by correlating the drought index (SPEI)
with GIMMS LAI at different timescales. We found that
the LAI responds strongly (r = 0.6) to drought over the
central and southeastern parts of the region, with weaker
impacts (r < 0.4) over parts of Madagascar and Angola,
mostly at a shorter time period (3- and 6-month timescale).
We note that comparing CRU to flux tower precipitation in
Skukuza (KwaZulu-Natal region) illustrates that CRU cap-
tures the timing of precipitation relatively well, though it
underestimates the magnitude of dry season precipitation
(Fig. S9). For seasonal responses, the semi-desert biome
showed the strongest response (r = 0.95) to drought at a 6-
month timescale in the autumn season, while the tropical
forest biome shows the weakest response (r = 0.35) at a 6-
month timescale in the DJF season.

We assessed the relationship between the NDVI and LAI
by computing a grid cell correlation of NDVI and LAI and
examined how well state-of-the-art dynamic global vege-
tation models (DGVMs) simulate LAI and its response to
drought. The DGVM multimodel ensemble mostly overesti-
mated the spatial and seasonal distribution of LAI response
to drought in most parts of the region. The results also show
the following:

– The relationship between the NDVI and LAI is linear,
implying that the vegetation index is connected to the
changes in the phenology of the plant, reflectance, and
the angle of zenith variations from the surface cover
class.

– The model ensemble simulates the correlation and
timescale of LAI response to drought with biases.

– The model ensemble overestimates observed responses
on the seasonal distribution of vegetation–drought cor-
relations across different biomes.

– The spatial pattern of change of the LAI and SPEI are
mostly similar during extremely dry and wet years, with
the highest magnitudes of anomaly observed in the dry
year of 1991. During this period, both variables also
show an opposite and decreasing relationship, which
is evident in their pattern correlation coefficient value
of −0.16.

The present study has shown how the LAI responds to
drought across the different southern African biomes. Given
the present spatial coverage of space monitoring of the veg-
etation in the region, the methods used in the study may be
extended towards monitoring and characterizing the impacts
of droughts on land cover change, as this may permit real-
time monitoring of extreme events on terrestrial vegetation
(Yin et al., 2020; Moore et al., 2018). The findings of this
study (e.g. timescales of the LAI response to drought) could
also be used for the development of drought early warning
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systems in agriculture and forestry sectors. This could assist
in the mitigation of direct and indirect costs associated with
vegetation production.

Furthermore, this study has applied 11 DGVMs to study
how well DGVMs can reproduce the response of LAI in
southern African vegetation to drought. While this study may
have provided an insight into the capability of DGVMs to
simulate vegetation response to drought, the results of the
study can, however, be improved in some ways. For ex-
ample, we applied 11 models from the TRENDY DGVMs.
For future studies, the number of models should be in-
creased, perhaps from other model intercomparison experi-
ments, because, by using more models and better quantifi-
cation, this might capture uncertainty better in their simula-
tion of the drought response by vegetation. The limitation of
the DGVMs can be addressed by optimizing the models so
that their capability for reproducing vegetation indices is en-
hanced and better quantified. In addition, there is a need to
improve the mechanistic relationships in the models, which
could be achieved by enhancing the model approximations,
which had been done to achieve computational efficiencies
(Transtrum and Qiu, 2016). Furthermore, the simple phe-
nomenological model could be developed from the complex
model. These simple models would use correlations among
observations, unlike mechanistic relationships, which exploit
causative individual constituent and suffer from over-fitting
problems (Transtrum and Qiu, 2016). Last, there may be the
need for hybridizing machine learning and mechanistic mod-
els (Fayyad et al., 1996; Mitchell, 1997) to simulate vege-
tation parameters. This is because machine learning models
have shown a certain advantage in the prediction of outcomes
of complex mechanisms by using databases of inputs and
outputs for a given task (Fayyad et al., 1996; Mitchell, 1997).

Code and data availability. The sources of data used in this work
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