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Abstract. Collecting water quality data across large lakes is
often done under regulatory mandate; however, it is difficult
to connect nutrient concentration observations to sources of
those nutrients and to quantify this relationship. This dif-
ficulty arises from the spatial and temporal separation be-
tween observations, the impact of hydrodynamic forces, and
the cost involved in discrete samples collected aboard ves-
sels. These challenges are typified in Lake Erie, where bi-
national agreements regulate riverine loads of total phos-
phorus (TP) to address the impacts from annual harmful al-
gal blooms (HABs). While it is known that the Maumee
River supplies 50 % of the nutrient load to Lake Erie, the
details of how the Maumee River TP load changes Lake
Erie TP concentration have not been demonstrated. We de-
veloped a hierarchical spatially referenced Bayesian state-
space model with an adjacency matrix defined by surface
currents. This was applied to a 2 km-by-2 km grid of nodes,
to which observed lake and river TP concentrations were
joined. The model generated posterior samples describing
the unobserved nodes and observed nodes on unobserved
days. We quantified the impact plume of the Maumee River
by experimentally changing concentration data and tracking
the change in in-lake predictions. Our impact plume repre-
sents the spatial and temporal variation of how river con-
centrations correlate with lake concentrations. We used the
impact plume to scale the Maumee River spring TP load to
an effective Maumee River TP spring load for each node
in the lake. By assigning an effective load to each node,
the relationship between load and concentration is consis-
tent throughout our sampling locations. A linear model of an-
nual lake node mean TP concentration and effective Maumee

River load estimated that, in the absence of the Maumee
River load, lake concentrations at the sampled nodes would
be 23.1 µg L−1 (±1.75, 95 % CI, credible interval) and that
for each 100 t of spring TP effective load delivered to Lake
Erie, mean TP concentrations increase by 11 µg L−1 (±1,
95 % CI). Our proposed modeling technique allowed us to
establish these quantitative connections between Maumee
TP load and Lake Erie TP concentrations which otherwise
would be masked by the movement of water through space
and time.

1 Introduction

In a collective response to the economic, human health, and
environmental damage caused by pollution, assessing water
quality is a regulatory mandate across many water bodies. In
many aquatic ecosystems nutrient concentrations are a pri-
mary water quality analyte collected. Observed concentra-
tions are driven by both point and non-point sources. For ex-
ample, wastewater effluent and excessive nutrient export, pri-
marily from agricultural watersheds, may lead to eutrophica-
tion and harmful algal blooms (HABs) and threatens drink-
ing water contamination (Brooks et al., 2016; Mellios et al.,
2020; Schneider and Bláha, 2020). Individual water bodies
present data collection challenges, particularly large lakes.
Even for those locations with well-funded sample collection
schema, trying to describe the spatiotemporal heterogeneity
in nutrients is difficult. Discernible trends are difficult to as-
sess as samples represent discrete spatial data within a sys-
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tem of constantly moving water and asymmetrical spatial ex-
tents of riverine nutrient plumes.

Lake Erie is an example of a water body that is challenging
to model (Ho and Michalak, 2017; Steffen et al., 2017; Stow
et al., 2015). While Lake Erie is large (25 700 km2), its west-
ern basin is relatively shallow (mean depth 6 m) (Bolsenga
and Herdendorf, 1993), and intense nutrient export from
the agriculturally dominated Maumee River watershed leads
to episodic HABs (Watson et al., 2016). Commercial fish-
eries, drinking water, and human health within Lake Erie are
all impacted because of the combination of nutrient addi-
tion, HABs, and physical lake properties (Wituszynski et al.,
2017). Because of these intersecting concerns, a binational
effort to regulate phosphorus entering Lake Erie has been ac-
tive since 1978 (GLWQA, 2012). Nutrient concentration and
physical lake data are pivotal in understanding the causes of
western basin Lake Erie water quality issues and have been
collected by a broad range of federal, state/province, and lo-
cal agencies throughout western Lake Erie (Fig. 1). The goal
has been to collect these data at a spatial and temporal scale,
which should lead to a defined relationship of how river nu-
trient load affects lake nutrient concentration, understanding
of the influence of riverine load through time and space, and
ultimately the ability to predict how river load reductions
would manifest as altered lake concentrations.

However, while western Lake Erie is routinely monitored
and the nutrient concentration and flow are estimated daily
in rivers, a generalizable connection between Maumee River
phosphorus load and Lake Erie phosphorus concentrations
remains undefined (i.e., if phosphorus load increases by
100 t, what is the response in lake concentration?) (Rowland
et al., 2019). Spring Maumee River soluble reactive phos-
phorus export correlates with western Lake Erie HAB ex-
tent; this pattern has been observed since the soluble reactive
phosphorus loads started to increase in the 1990s (Ho and
Michalak, 2017; Michalak et al., 2013; Stow et al., 2015).
The challenge is that nutrients in the lake move with the wa-
ter currents, resulting in a complex relationship of upstream
and downstream current dependence. Moreover, within-lake
phosphorus cycling is dynamic and impacted by biological
and physical processes (Li et al., 2021; Matisoff et al., 2016).
Additionally, the time between sampling events within this
time series and the size of the lake–river system where mod-
els need to be applied inherently adds uncertainty and re-
duces the predictive efficacy of transport models linked with
hydrodynamic models (Schwab et al., 2009).

Bayesian state-space models have been used in ecology to
incorporate temporal and spatial autocorrelation and quan-
tify observation error separate from the error attributable to
the modeled ecological process (Auger-Méthé et al., 2021;
Durbin and Koopman, 2012; Shumway and Stoffer, 2019).
State-space models are widely used in ecology to model an-
imal populations (Buckland et al., 2004), movement (Royer
et al., 2005), and fishery stocks (Meyer and Millar, 1999).
Bayesian inference can quantify uncertainty in the effect of

nutrient load on nutrient distribution within a dynamic sys-
tem such as Lake Erie. Non-stationary time-series models
have been used in the Great Lakes to model water levels (La-
mon and Stow, 2010; Sellinger et al., 2008) and to predict
polychlorinated biphenyl concentration in trout (Stow et al.,
2004). The goal of this study was to use a spatially depen-
dent time-series state-space model approach to define con-
centrations at unobserved locations and quantify the impact
of river nutrient delivery across western Lake Erie. While
spatial models have been used in the Great Lakes for predict-
ing HAB biomass, HAB extent, and nutrient transport (Fang
et al., 2019; Schwab et al., 2009), we proposed a Bayesian
framework for similar spatial data. We showed that phospho-
rus concentration, along with an informed uncertainty, can
be estimated by state-space models that incorporate concen-
tration data from within the lake, the rivers, and lake surface
currents. Although this approach is informed by the currents,
it is does not include all the explicit biogeochemical and
physical processes that are part of mechanistic models (Rowe
et al., 2019). Our contribution to the ecological state-space
model methodology is the incorporation of a surface-current-
derived adjacency matrix, combined disparate agency field
data, and inclusion of data from rivers as sources of infor-
mation in fitting estimated values within a system dominated
by missing values. Together our contribution will fit values
in the absence of observations and allow experimentation
in archival data previously not possible. Here, we quanti-
fied how well our model fits the data and generated predic-
tions of total phosphorus (TP) concentrations across western
Lake Erie. TP includes the dissolved and particulate forms
of phosphorus. Additionally, we experimentally manipulated
observed concentrations to estimate the spatial and tempo-
ral impact from the Maumee River plume. Using this delin-
eated Maumee River impact in time and space, we tested the
hypothesis that when water movement is incorporated, there
is a linear relationship between river load and western Lake
Erie water TP concentrations.

1.1 Study area and data curation

We limited the model spatial window to western Lake Erie
(bounded by the portion of the lake west of −83.1◦W,
Fig. 1), which left∼ 600 km2 to be defined. We gathered sur-
face concentrations of TP (µg L−1) from publicly available
databases through Environment Climate Change Canada’s
Offshore Water Quality Survey, the US Environmental Pro-
tection Agency’s Great Lakes National Program Office, the
Canadian Ministry of the Environment, the Conservation
and Parks Great Lakes Intake program, the US National
Oceanographic and Atmospheric Administration (NOAA)
Great Lakes Environmental Research Laboratory (GLERL)
Ecosystem Dynamics Long-Term Research program, and
NOAA GLERL Western Lake Erie (WLE) Sampling (Ta-
ble A1). The data used here extended from 2008 to 2018.
For riverine TP concentrations from the Maumee River
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Figure 1. Map showing the location of the study region in western Lake Erie. The inset map shows the tributaries and lake nodes that were
included in the model. Our site boundary was defined by the western portions of Lake Erie. A grid of 2 km-by-2 km nodes was used to snap
existing concentration data and define an adjacency matrix based on surface currents.

and Raisin River across the 2008–2018 interval, we down-
loaded data from the National Center for Water Quality
Research (NCWQR) at Heidelberg University (Table A1).
When multiple samples were collected from a node on a sin-
gle day, the sample average was used.

1.2 Model description

We created a model where day t TP concentrations are pre-
dicted based on the concentrations “upstream” at day t − 1.
The spatial adjacency of “upstream” relationships was de-
fined by the direction and magnitude of surface currents.

To build our adjacency matrix, we first defined a hy-
pothetical distance and direction that surface water moved
based on surface currents. We used surface current data re-
trieved from the NOAA Great Lakes Coastal Forecasting
System (GLCFS, Table A1) database. These data are defined
by hourly eastward and northward water velocity (m s−1)
predicted across Lake Erie on a 2 km-by-2 km grid (Fig. 1).
Hourly northward and eastward velocity (m d−1) for each

node for the years 2008 to 2018 defined surface current direc-
tion in radians (dLat and dLon) using the node latitude (Lat0)
and longitude (Lon0), the Earth’s radius (R, 6 378 137 m), the
northward velocity offset in meters (dN), and the eastward
offset in meters (dE) (Eqs. 1 and 2). The direction the sur-
face water travelled in radians was used to determine the lat-
itude (Lat1) and longitude (Lon1) represented by each hourly
movement (Eqs. 3 and 4) and was repeated for 24 h until the
final position of the surface water movement from each node
was determined (Fig. B1).

dLat =
dN
R

(1)

dLon =
dE

R · cos
(
π ·

Lat0
180

) (2)

Latt+1 = Latt + dLatt ·

(
180
π

)
(3)
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Lont+1 = Lont + dLont ·

(
180
π

)
(4)

The limited model spatial window of western Lake Erie was
represented by 254 nodes (Fig. 1). The Lake Erie surface
water TP concentrations were associated with their closest
nodes of the same 2 km-by-2 km grid nodes used in the sur-
face current data sets. NCWQR concentration data were col-
lected for the Maumee River (41.5◦ N, −83.712778◦W) and
the Raisin River (41.960556◦ N, −83.531111◦W) locations
∼ 30 and∼ 18 km, respectively, inland from Lake Erie. River
concentrations were assigned to the node closest to the river
mouth. The assumption that these concentrations represent
the conditions at the terminus of the rivers adds uncertainty
to our modeling; however, the spatial extent of this extra un-
certainty should end where the Lake Erie TP concentration
data begin to inform the model posterior samples.

1.2.1 State-space models

We constructed hierarchical, spatially referenced Bayesian
state-space models (SSM) for each year to estimate TP con-
centrations for each node on each day. The data were logged
prior to fitting the model, and MCMC samples remained
in log space until exponentiated for plotting. The temporal
range annually was 20 May to 2 October to coincide with
the majority of the WLE sampling. The distance between
each daily offset surface current location (Lat1, Lon1) and
each 2 km-by-2 km concentration node was measured, and
the node n with the shortest distance defined the adjacency
matrix to associate each node n on day t with the node k on
day t − 1. The state-space model consists of two models, an
observation model of data (y) and a latent state (x) process
model.

yn,t,y ∼N
(
xn,t,y,σ

2
)

(5)

Log-transformed TP concentration observations (y) at the
nth node on the t th day of the yth year were estimated with a
normal data model sampled from the unobserved latent state
variable (x) at the nth node on the t th day of the yth year
with standard deviation σ (Eq. 5). The process model is a
first-order Markov, only depending on the value of the node
at time t − 1 which transported TP to node n at time t ; that
source node is denoted k. For nodes in the river, k = n, and
for nodes in the lake, k is determined from the time t adja-
cency matrix.

xn,t,y ∼ truncated N
(
f
(
xn,t−1,y

)
, τ 2

)
I
(
a ≤ xn,t,y ≤ b

)
, (6)

where

f
(
xn,t−1,y

)
=


xk,t−1,y ·βmau if n=Maumee River node,
xk,t−1,y ·βrai if n= River Raisin node,
xk,t−1,y ·βself if n= same lake node,
xk,t−1,y ·βlake if n= different lake node.

(7)

The latent state (xn,t,y , Eq. 6) is sampled from a normal
distribution of a predicted latent state (f (xn,t,−1,y), Eq. 7)
and standard deviation τ . xn,t,y was truncated by the de-
tection limit of TP laboratory analysis (5 µg L−1, a, Eq. 6)
and the maximum value observed in each year (y) within the
Maumee River (b, Eq. 6). The maximum observed Maumee
River concentration was used as the upper truncating value
because no observation in the lake will exceed this value.
Priors were uninformative and defined as

σ,τ
iid
∼ Gamma (0.001, 0.001),

βself,βlake
iid
∼ Normal (0, 10000),

β ′ ∼ Normal (0, 10000),

τ ′mau,τ
′

rai
iid
∼ Gamma (0.001, 0.001),

βmau ∼ Normal
(
β ′, τ ′

2
mau

)
,

βrai ∼ Normal
(
β ′, τ ′

2
rai

)
.

River model coefficients (βmau and βrai) were fit hierarchi-
cally (N(β ′,τ ′2)) because the ecological and anthropogenic
processes enacted on these watersheds are similar, if at dif-
ferent scales. The two lake models were fit with two inde-
pendent β coefficients depending on whether the nearest ad-
jacent node k is the same as the estimated node n (βself) or
whether a different node k is nearest (βlake). Separate inde-
pendent in-lake models were used to capture different po-
tential drivers of TP concentration through time depending
on whether each node was subject to little surface water
movement (βself) or active surface water movement (βlake).
In 2012 there were no Raisin River observations, and so the
model in 2012 treats the Raisin River node as a lake node.
The model was run in R (version 4.0.2) and JAGS (ver-
sion 4.3.0) (Eddelbuettel, 2017; Microsoft Corporation and
Weston, 2020; Plummer, 2019). Each year’s model iteration
count was 50 000 with a thin of 10, representing 5000 ef-
fective samples along three independent Markov chains. The
chain convergence was monitored by Gelman and Rubin’s
convergence diagnostic. Scale factors less than 1.1 were
used to define when chains had converged (Plummer, 2019).
Initial conditions for the latent state xn,t=1,y were defined
as the mean and variance of the previous year’s first 20 d.
The first year’s (year 2008) initial conditions were estimated
asN(12,5) (Rockwell et al., 2005). The goodness of fit of the
models was described via posterior predictive p values (Gel-
man, 2013) and Bayesian R2 (Gelman et al., 2019), while the
performance between years and across nodes was assessed
with K-fold cross-validation (CV) utility (Geisser and Eddy,
1979; Piironen and Vehtari, 2017) (Eq. 8).

1.2.2 Fitting the SSM and diagnostics

Posterior predictive p values were calculated by model year
with test statistic mean TP concentration to compare means

Hydrol. Earth Syst. Sci., 26, 1993–2017, 2022 https://doi.org/10.5194/hess-26-1993-2022



T. J. Maguire et al.: Spatially referenced Bayesian state-space model of total phosphorus in western Lake Erie 1997

of observations to the means of the model outputs. For
each year, a posterior p-value distribution was described by
15 000 bootstraps of 100 resamples from the observed node
posteriors. Bayesian R2 defined as the fitted variance (varfit)
divided by the sum of varfit and the residual variance (varres)
was calculated for each model year. Model varfit was the vari-
ance of the modeled predictive mean, while varres is esti-
mated by squared standard deviation of the errors (Gelman
et al., 2019).
K-fold CV utility compared model predictive performance

across years and across nodes. The cross-validation via leave
one node out was used to evaluate model predictions where
observations are not available. This estimate of model per-
formance is needed as our data set has far fewer observa-
tions than the product of nodes and time points, and esti-
mates of R2 report how well the model does while given
all the available data. Additionally, the cross-validation es-
timates aggregated by unobserved node (space) or by year
(time) define how well the model estimates TP values irre-
spective of the node’s proximity to the TP river sources or
the number and location of annual in-lake observations. The
cross-validated utility was applied by removing all d obser-
vations from a randomly selected node k with at least 10 ob-
servations collected during the model year. K-fold CV was
calculated three times per year; for years that had fewer than
three nodes with at least 10 observations, all nodes that sat-
isfied the 10-observation cut-off were used. K-fold CV, the
mean leave-one-node-out log-predictive density from poste-
rior samples of the omitted d observation ŷk,t,y at node k,
day t , and year y, were compared to observed concentrations
at yk,t,y (Piironen and Vehtari, 2017) (Eq. 8).

K-fold CVn,y =
1
d

d∑
d=1

logp
(
yk,t,y |ŷk,t,y

)
(8)

Using a model that describes posterior predictive distribu-
tions of mean K-fold CV across years and nodes, we ex-
amined whether our state-space approach preferentially gen-
erated predictions for certain years or certain nodes that
contain the observed values (Eqs. 9 and 10); 95 % credi-
ble differences between group means (for nodes µn or for
years µy) that do not contain 0 were used to determine
whether groups were different (e.g., if the 95 % credible dif-
ference from µ2018 to µ2017 contains 0, these means are not
considered different).

K-fold CVn ∼N

(
µon+

1∑
n

µn,σ
2
n

)
(9)

K-fold CVy ∼N

(
µoy +

1∑
y

µy,σ
2
y

)
(10)

µon and µoy were fit with normal priors (N(K-fold CV,5 ·
σ 2

KFCV)), and σKFCV was defined as the standard deviation of
the K-fold CVs. The µn and µy were given normal priors

(N(0.1,σ 2
µ)) and σµ, which functions as the within-group

variance has a gamma prior with rate and shape estimated
from the mode and standard deviation of theK-fold CVs (Kr-
uschke, 2015, p. 560). Finally, σn and σy , which represent
the between-group variance, were fit with a uniform prior
(uniform(100−1

·σKFCV,10 ·σKFCV)).
∑
µn and

∑
µy were

constrained to 0 when fitting µon and µoy .

1.3 Model experimentation

Our state-space models were used to test the hypothesis that
western Lake Erie TP concentrations are a linear function of
Maumee River TP load when surface water movement is in-
corporated. We incorporate water movement into our linear
model by first estimating the spatial impact of the Maumee
River. The Maumee River impact plume was estimated by
artificially reducing the Maumee River TP concentrations by
50 % (ẏMaumee,t,y); each year’s model was then refit (Eqs. 5–
7). The model output for each node was examined, and the
position of each node’s concentration (ẏn,t,y) 95 % PI (pre-
dictive interval) was compared to the original model (yn,t,y).
The change from the original 95 % PI of yn,t,y , which we call
the deflection, was interpreted as evidence that the Maumee
River node was, at some time step, influencing node n. The
annual mean root-squared sum of the ẏn,t,y 95 % PI change
compared to the yn,t,y 95 % PI was then normalized by the
largest value for that model year (y); this normalized esti-
mate of PI change (dn,y) across the 254 nodes within our
spatial window was used to define effective Maumee River
spring TP impact within Lake Erie. We estimated Maumee
River spring load estimates (ly , tons TP) by multiplying
NCWQR daily flow and TP concentration data (Table A1)
from 1 March to 31 July annually. Finally, we multiplied dn,y
and ly to represent a spatially explicit effective Maumee
River TP spring load at each node (l̇n,y).

A linear model of mean TP concentration (yn,y) per year
per node (n, where node n had at least one observation) as
a function of effective spring Maumee River TP load (l̇n,y)
was used to test for a linear relationship between Maumee
River load and Lake Erie surface water TP concentrations.
The model was fit in a Bayesian framework, which allowed
us to fit the heteroscedastic relationship of concentration and
effective load by fitting a positive linear relationship to model
variance and effective load (Eq. 11). β1,2 were given non-

informative normal priors
(
N
(

0, 1
0.0012

))
, while α1,2 were

given non-informative log-normal priors
(

logN
(

0, 1
0.0012

))
because they must be positive random variables.

yn,y ∼N
(
β1+β2 · l̇n,y,

(
α1+α2 · l̇n,y

)2) (11)

2 Results

The annual data sets defined by TP concentration obser-
vations and riverine TP data on our 2 km-by-2 km grid in
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Table 1. Bayesian model assessment via p value (posterior predic-
tive p values of 0.5 are indicative of a good fit and 95 % CI (credible
interval) of our yearly results, each containing 0.5), and R2 (each
year> 0.8) showed the model-generated posterior samples similar
in structure to the observations.

Year Posterior predictive
p values R2

95 % CI 95 % CI

2008 0.4 0.6 0.987 0.999
2009 0.49 0.68 0.965 0.978
2010 0.4 0.59 0.838 0.882
2011 0.37 0.56 0.995 1
2012 0.4 0.6 0.994 1
2013 0.32 0.51 0.914 0.974
2014 0.4 0.59 0.936 0.974
2015 0.37 0.57 0.931 0.969
2016 0.41 0.6 0.925 0.962
2017 0.41 0.61 0.993 1
2018 0.39 0.59 0.995 1

western Lake Erie contained an average of 99.1 % miss-
ing values. The number of nodes that contained observa-
tions ranged from 14 to 40 among years. The mean num-
ber of samples available at each observed lake node during
the model year ranged from 2 to 9. Within the 252 Lake
Erie nodes across the available 11 years, a total of 1218 ob-
servations were collected; our hierarchical spatially refer-
enced Bayesian state-space model was then able to pro-
vide estimates for the 375 774 unobserved TP concentra-
tions. Between the Maumee River and Raisin River, a total
of 2258 observations were available in the data set, and the
missing 734 values were also described by posterior distri-
butions. The mean values of the observed TP concentrations
within the Maumee River, Raisin River, and western Lake
Erie were 170 µg L−1 (95 % interval, 3.5 to 438 µg L−1),
80 µg L−1 (95 %, 40 to 215 µg L−1), and 38 µg L−1 (95 %,
10 to 203 µg L−1), respectively.

2.1 State-space model fit

To assess the goodness of fit of the model, we deter-
mined annual Bayesian R2, posterior predictive p values,
and k-fold CV utility. The 11 years of models had mean
Bayesian R2 values from 0.84 to ∼ 1 and mean posterior
predictive p values from 0.42 to 0.59 (Table 1). Posterior
predictive p values of 0.5 indicate a good fit between model
output and observations, and the 95 % CI of all our yearly
posterior p-value distributions contains 0.5. Finally, the re-
sults of the k-fold cross-validation utility 95 % credible dif-
ference showed no difference across all pairwise compar-
isons of mean K-fold CV by year or node.

2.2 State-space model outputs

Posterior distributions for each node on each day provide es-
timates for TP concentrations where observations are present
and in the absence of observations (2018 in Fig. 2, 2008–
2017 in Appendix D). Mean and 95 % PI model posterior
samples of each node at every day defined our predicted
concentration. By example, the Maumee River node in 2018
shows the model following the data and widening PIs where
observations are missing (Fig. 2a). For Lake Erie nodes
that contained observations, the posterior samples follow the
broad trend in the observed data (Fig. 2b). Nodes without
any observations also follow the trend in downstream ob-
served nodes, and while the uncertainty is larger at unob-
served nodes, the PIs stay within expected values (Fig. 4c).

2.3 Model experimentation

After artificially reducing the Maumee River concentrations
by 50 %, the nodes where TP concentration PIs were al-
tered were defined as being within the Maumee River area
of impact. The mean square root of each node’s summed
squared deflection annually normalized by the largest mean
value (dn,y) in general was highest near the mouth of the
Maumee. The impacted area spread south and east along the
state of Ohio’s coast most years, but some years were sub-
ject to larger plumes distributed further north (Fig. 3, Video
Supplement 1).

The normalized annual mean Maumee impact esti-
mates (dn,y) generated per node were used to adjust spring
load to an effective spring load (l̇n,y) at each node where sam-
ples were collected. Lake Erie TP concentration was linearly
correlated with the effective Maumee River TP spring load
(mean node concentration= 23.1 (±1.75, 95 % CI)+ 0.11
(±0.01, 95 % CI)× effective spring load (tons TP); Fig. 4).
The heteroscedastic error in the mean concentration (yn,y)
and effective load (l̇n,y) relationship was defined by a linear
function (α1+α2 · l̇n,y). α1 was estimated to be 2.9 (±1.4,
95 % CI), and α2 was 0.04 (±0.008, 95 % CI).

3 Discussion

3.1 State-space model fit

By combining the western Lake Erie TP observations with
riverine data and surface currents within a Bayesian model
framework, we were able to generate estimates of TP across
time and space. The models consistently generated plausi-
ble posterior samples for mean TP concentration as each
95 % CI of annual posterior predictive p values included 0.5,
and annual Bayesian R2 95 % CI values ranged from 0.84
to 0.99 (Table 1). Annual posterior predictive p values indi-
cate that our model framework is preforming well in predict-
ing water quality within large water bodies, even with sparse
observations within the data. While our high Bayesian R2
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Figure 2. For 2018 the total phosphorus concentrations (µg L−1) at observed and unobserved nodes were estimated from the model posterior
samples. Mean (solid black line) and 95 % PI (dashed blue line) for the model posterior samples of each node at every day for (a) the Maumee
River, (b, c, e, f) western Lake Erie nodes, and (d) the Raisin River.
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Figure 3. Heatmap of the mean Maumee River impact plume from 2008 to 2018.

values appear to support the use of our model, it is likely
that they represent an inappropriate model metric. The state-
space framework forces the model to pass through the ob-
served data, and the daily observations in the river data sets
(Fig. 2a and d) are likely driving Bayesian R2 values higher
with their constrained predictive intervals. Because of these
elevated BayesianR2 estimates, the k-fold CVs are important
checks on the applicability of this state-space approach. The
k-fold CV results generated by removing all the observations
of a randomly selected lake node with at least 10 observa-
tions showed that model predictions were equally accurate
across years and by node. Predicting equally well across the
nodes and within any year provides strong support for this
framework as being a useful application of Bayesian meth-
ods in water quality modeling.

TP is a conservative water quality constituent. TP obser-
vations are insensitive to biogeochemical transformations of
phosphorus form because these data represent both the or-
ganic and inorganic forms of phosphorus occurring in the
water column. βmau, βras, βlake, and βself fit in our models
had 95 % predictive intervals encompassing a value of 1. Co-
efficients were close to 1 because, on our daily time step,

the TP concentrations do not widely vary (e.g., the concen-
tration today is similar to the concentration yesterday). The
uncertainty in the process and data models allows the model
predictions to trend toward the observations where available
and be constrained where previous time steps passed through
observations. Were these coefficients to exceed 1, this would
be evidence of other inputs of P or less that 1 would indicate
some internal loss such as settling or dilution. TP is conser-
vative to processes within the water column because it ac-
counts for the dissolved and particulate P ; if our model was
applied only to dissolved P , which is subject to strong as-
similation pressure by phytoplankton, the model coefficients
would likely be negative. While dilution, settling, and inter-
nal loading of TP are happening within our modeled extent in
western Lake Erie, our model lacks the specificity to capture
dilution, settling, and internal loading, and therefore their ef-
fect is being accumulated in our error terms. However, this
state-space framework could be defined with a mechanistic
process model that did capture these effects. Additionally,
while our framework could be implemented with the coef-
ficients (βMau, βRas, βLake, and βSelf) fit hierarchically by
year potentially defining the overall effect of dilution, set-
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Figure 4. Mean concentration at the observed nodes for each
year was modeled as a function of the relative Maumee River
spring TP load (mean concentration= 23.1 (±1.75, 95 % CI)+ 0.11
(±0.01, 95 % CI)× effective load), where variance in concentration
increased linearly with effective load. Effective load was defined by
multiplying the normalized river impact generated by experimen-
tally tracing the Maumee River’s impact on Lake Erie nodes annu-
ally; 95 % predictive intervals of the data (green dotted lines) and
95 % credible intervals of the linear relationship (blue solid lines)
were generated from the model output.

tling, and internal loading, current restrictions on computer
memory prevented that use here. However, for smaller spa-
tial and temporal models, it could be effective.

No identifiability issues were found: this was assessed
by visually determining whether priors dominated the fit of
coefficients (Auger-Méthé et al., 2021) (Fig. C1a and b).
The lack of σ and τ correlation was also visually assessed
(Fig. C1c). Fit process model or data model uncertainty was
well identified (Fig. C1d). The apportionment of uncertainty
between the process model and the data model varied from
year to year (Table C1). This was driven by annual variation
in the data model uncertainty. The 2012 Raisin River coef-
ficient (βras) predictive interval was larger than other years
because of a lack of data in that year. The proportion of un-
certainty between process and data model also varied only
slightly (Table C1), possibly because of the number of or spa-
tial positions of observations. We propose that these annual
differences were due to the combination of the number of
samples collected and their relative positions to the surface
currents. However, the uncertainty within our models did not
prevent accurate outputs estimating TP concentrations at ob-
served and unobserved nodes.

3.2 State-space model output

An important property of this modeling approach is that
the surface-current-derived adjacency matrix we used to de-
fine our predicted spatially explicit latent state concentra-
tion (xn,t,y) also produced estimates of TP concentration at
nodes where no observations were available. This approach

takes discrete measurements in western Lake Erie and estab-
lishes connections across the lake surface and through the
model year. The model does this across 136 d and 254 2 km
by 2 km nodes, yet model uncertainties are within the range
of TP concentrations expected for western Lake Erie. Nodes
along the eastern perimeter of the spatial window of our
model have additional uncertainty inherent in their position.
Occasionally, they will not be associated with the proper
“down-gradient” node because the extent removes those
nodes. Within our system there is little practical effect as
these nodes are far from the Maumee River and are domi-
nated by low concentrations. This is a potential problem in
other systems and may necessitate wider spatial windows to
eliminate.

Our model framework allows information from discrete
grab samples to be shared across any water body where the
movement pattern of water is available. Additionally, this
model can generate estimates at unobserved nodes or at un-
observed time steps of observed nodes without requiring de-
fined biogeochemical processes of a mechanistic model. For
our application, the 2 km-by-2 km grid was chosen to match
the surface current data set. While we did not experiment
with other discrete grid distances, any applicable configu-
ration will work. Defining a reasonable grid distance could
be based on the spatial distribution of the available data and
the user’s willingness to extrapolate or average surface cur-
rent direction and magnitude. Similarly, our temporal time
step was daily, but this could also be applied to monthly
data in data-sparse systems or hourly data in data-rich ap-
plications. This spatial and temporal flexibility or using state-
space frameworks gives users the capacity to tune the compu-
tational runtime and resolution of models to fit the hypothesis
tested.

Within Lake Erie, having estimates for unobserved nodes
and nodes that are infrequently sampled allows a connection
between discrete point data collected by boat and data lay-
ers which cover large sections of a lake surface. The spatial
distance and temporal disconnect between the data generated
by multiple actors on the same water body often preclude the
combined use of data from multiple projects. However, state-
space models which explicitly incorporate time as well as
space via water movement could harness more of the avail-
able data to make predictions beyond the spatial bounds of
the original projects. For example, remotely sensed data lay-
ers would be especially useful in this model structure, both as
predictor variables and as the response variables. Connecting
estimates of TP concentrations to chlorophyll-a concentra-
tions would enhance existing predictive models of cyanobac-
teria distribution and biomass (Fang et al., 2019).

The agencies and organizations collecting grab samples
within Lake Erie would also be able to use the state-space
model output to select sample locations specific to hypothe-
ses. The model can be used to predict the movement of high
nutrient water masses which investigators could target. Addi-
tionally, projects examining the impact of the Maumee River
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could sample in and out of the Maumee River impact plume.
Beyond the impact on fieldwork, this modeling approach can
also be used in model selection. Since this modeling ap-
proach is based entirely on observations in the absence of
independent explanatory variables, it should be used as a
benchmark model for future mechanistic or more complex
models to be tested against.

3.3 Model experimentation

Having demonstrated the functional capacity of our hierar-
chical spatially referenced Bayesian state-space model pre-
dicting TP concentrations, our hypothesis was that a linear
relationship exists between spring Maumee River load and
observed Lake Erie concentrations. By experimentally reduc-
ing the concentrations for the Maumee River and rerunning
the model, we were able to track the “downstream” reper-
cussions for the lake-node-predicted values and to infer the
Maumee River impact plume. Tracking a plume of TP im-
pact using the grab samples was not previously possible be-
cause of the distances between sampling locations and the
fact that the number of unobserved days outnumbers the ob-
served days. Distance and direction across our model extent
are wrapped up in the change observed in predictive inter-
vals through time. In our framework distance and whether
the water mass from the Maumee River physically moves to-
ward a node combine. There are several days in which even
the nodes closest to the Maumee River are bypassed because
the currents take Maumee River water in a different direc-
tion. The dual complications of distance and movement have
complicated previous attempts at defining a single relation-
ship between Maumee River load and observed in-lake con-
centrations, which we overcome here.

The plume extent in general follows the southern coast
(Fig. 3), which would be expected because of the movement
associated with the Coriolis effect. Importantly, this is not a
plume that displays a high concentration of TP; rather, this is
the impact plume of the Maumee River. Concentrations out-
side the impact plume are not influenced, or are weakly influ-
enced, by the Maumee River, and thus load reductions within
the Maumee River would not impact lake concentrations in
those areas. Our linear model (Eq. 11) estimated that when
the effective load of the Maumee River was 0, the mean an-
nual concentration in the area where samples were collected
would be 23.1 µg L−1

±1.75, 95 % CI.
Each year the Maumee River TP impact plume dimen-

sion and intensity changed. Rowland et al. (2019) demon-
strated how a linear model of Lake Erie TP observations
as a function of Maumee River spring loads defined posi-
tive relationships at the closest nodes. Here, we were able
to fit parameters that define the load-to-concentration rela-
tionship across all of western Lake Erie. Much of the regu-
latory attention in addressing Lake Erie HABs has focused
on Maumee River spring export, and providing this quanti-
tative connection is important in furthering watershed TP re-

duction efforts. Our model estimated that for each 100 t of
spring TP effective load delivered to Lake Erie, TP concen-
trations in the lake increase by 11 µg L−1 (±1, 95 % CI). We
could use our defined linear relationship for hindcasting ex-
pected concentration reductions in western Lake Erie based
on Maumee spring TP loads which were reduced by 40 %
for all our model years. Additionally, given a mean concen-
tration maximum, we could predict the load reductions re-
quired in previous years to meet that target. Using our linear
relationship between lake concentration and spring load to
make forecasts for future years is harder. The size and shape
of the Maumee River impact (dn,y) change each year (Video
Supplement 1), and our method defines the river impact from
observations. Without being provided an estimate of dn,y , a
forecast of mean western Lake Erie TP concentrations based
on a proposed spring TP load is not achievable. An achiev-
able next step for this modeling framework could be to link
the size of the Maumee River plume and Lake Erie TP con-
centrations to HABs biomass and toxin production; the spa-
tial aspect of such a model could explain why the relationship
between bloom biomass and Maumee TP export is not linear
(Obenour et al., 2014).

4 Conclusions

Our state-space model framework was shown to fit the data
well, generated reasonable estimates of concentration at ob-
served and unobserved locations, was modified experimen-
tally to estimate a river impact plume, and used the experi-
mentally derived plume to test a regulatory relevant hypothe-
sis. Adequately characterizing water quality in a large wa-
ter body is difficult. Sampling and laboratory analysis are
expensive and excessively time-consuming for feasibly cov-
ering even a portion of Lake Erie with high temporal and
spatial resolution. However, we demonstrate that a Bayesian
state-space framework informed by an adjacency matrix de-
fined by surface currents can generate daily TP concentra-
tions which are constrained by uncertainties appropriate for
lake conditions. By combining the data from two rivers en-
tering the lake, our model (Eqs. 5–7) enables the rivers to
inform the observed and unobserved lake nodes, the ob-
served lake nodes inform the unobserved lake nodes, and un-
observed lake nodes also inform unobserved and observed
nodes. This information sharing across time and space em-
powers this model to connect sparse data across large dis-
tances. By experimenting with the model, we were able to
estimate a plume of impact from the Maumee River and
to apply the experimental results to hypothesis testing. The
model is amenable to using remote sensing data and can ef-
fectively connect lake-wide data sets with discrete grab sam-
ples. The application here used TP, but any analyte could be
modeled in this same structure to generate estimates through
time and space, test hypotheses, or build baseline models to
test process-based models against.
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Appendix A

Table A1. The data sources for total phosphorus concentrations and surface currents were all retrieved from publicly available online repos-
itories.

Agency Link Data type n (2008
to 2018)

Environment Digital object identifier: Total phosphorus 121
Climate https://doi.org/10.18164/495eb10d-d423-432a-980f-264ef287d45b concentration (µg L−1)
Change
Canada’s
Offshore
Water quality
Survey

US https://cdx.epa.gov/ Total phosphorus 149
Environmental (last access: June 2021) concentration (µg L−1)
Protection
Agency’s
Great Lakes
National
Program
Office

Ministry of the http://files.ontario.ca/moe_mapping/downloads/2Water/GLIP/All_Lakes_GLIP.csv Total Phosphorus 637
Environment, (last access: June 2021) concentration (µg L−1)
Conservation
and Parks
Great Lakes
Intake
Program

National Digital object identifier: Total Phosphorus 111
Oceanographic https://doi.org/10.25921/11da-3x54 concentration (µg L−1)
and
Atmospheric
Administration
(NOAA) Great
Lakes
Environmental
Research
Laboratory
(GLERL)
Ecosystem
Dynamics
Long-Term
Research
program

NOAA Digital object identifier: Total Phosphorus 1145
GLERL https://doi.org/10.25921/11da-3x54 concentration (µg L−1)
Western Lake
Erie Sampling

National https://ncwqr-data.org/ Total phosphorus 2258
Center for (last access: June 2021) concentration (µg L−1)
Water Quality
Research at
Heidelberg
University

NOAA Great https://www.glerl.noaa.gov/res/glcfs/ Surface currents 1 020 318
Lakes Coastal (last access: June 2021) (meters north, meters east)
Forecasting
System
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Appendix B

Figure B1. Surface current data were available hourly within west-
ern Lake Erie. These 24 h data were used to track the daily move-
ment of water from each node.

Appendix C

Figure C1. Non-informative priors were used to fit the state-space coefficients of the Maumee River (βmau, a all values represented as red
polygons), Raisin River (βras), the western Lake Erie nodes subject to movement (βlake, b red polygons), and those Lake Erie nodes which
did not encounter sufficient water movement to associate with an “upstream” node (βself). The fitted values for every year (a and b, all
values represented as black polygons) do not appear to be overly influenced by the uninformed priors. The log data model and process model
uncertainty (c) for every year were also well identified (the uncertainty σ was logged to aid in visually comparing prior and fitted values).
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Table C1. State-space models in western Lake Erie fit coefficients predicting TP concentrations from the previous time step within the
Maumee River, the Raisin River, Lake Erie, and lake locations where the current time step is informed by the same location, βmau, βrai,
βlake, and βself, respectively. The 95 % PI (predictive interval) for each year and coefficient was examined. The same models fit the annual
process model and data model precision.

Year βmau βrai βlake βself Process σ Data σ

95 % PI 95 % PI 95 % PI 95 % PI 95 % PI 95 % PI

2008 0.989 1.008 0.985 1.013 0.986 0.999 0.963 1.012 0.263 0.331 0.02 0.098
2009 0.993 1.005 0.992 1.007 0.991 1.000 0.984 1.002 0.168 0.193 0.125 0.165
2010 0.994 1.003 0.993 1.006 0.988 0.994 0.992 1.001 0.13 0.183 0.326 0.404
2011 0.993 1.006 0.99 1.008 0.991 1.006 0.985 1.007 0.174 0.209 0.017 0.061
2012 0.993 1.007 0.804 1.186 0.997 1.008 0.983 1.005 0.177 0.218 0.017 0.062
2013 0.993 1.007 0.992 1.008 0.992 1.003 0.978 1.008 0.181 0.277 0.135 0.25
2014 0.992 1.005 0.99 1.006 0.991 1.001 0.991 1.018 0.173 0.235 0.145 0.232
2015 0.992 1.006 0.989 1.007 0.992 1.003 0.982 1.003 0.212 0.264 0.156 0.238
2016 0.993 1.005 0.991 1.005 0.996 1.004 0.983 1.001 0.161 0.2 0.146 0.214
2017 0.993 1.006 0.991 1.008 0.995 1.003 0.978 0.998 0.197 0.24 0.019 0.079
2018 0.992 1.007 0.99 1.008 0.983 0.991 0.966 0.997 0.221 0.26 0.018 0.065
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Appendix D

Figure D1. For 2008 the total phosphorus concentrations (µg L−1) at observed and unobserved nodes were estimated from the model
posterior samples. Mean (solid black line) and 95 % PI (dashed blue line) for the model posterior samples of each node at every day for
(a) the Maumee River, (b, c, e, f) western Lake Erie nodes, and (d) the Raisin River.
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Figure D2. For 2009 the total phosphorus concentrations (µg L−1) at observed and unobserved nodes were estimated from the model
posterior samples. Mean (solid black line) and 95 % PI (dashed blue line) for the model posterior samples of each node at every day for
(a) the Maumee River, (b, c, e, f) western Lake Erie nodes, and (d) the Raisin River.
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Figure D3. For 2010 the total phosphorus concentrations (µg L−1) at observed and unobserved nodes were estimated from the model
posterior samples. Mean (solid black line) and 95 % PI (dashed blue line) for the model posterior samples of each node at every day for
(a) the Maumee River, (b, c, e, f) western Lake Erie nodes, and (d) the Raisin River.
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Figure D4. For 2011 the total phosphorus concentrations (µg L−1) at observed and unobserved nodes were estimated from the model
posterior samples. Mean (solid black line) and 95 % PI (dashed blue line) for the model posterior samples of each node at every day for
(a) the Maumee River, (b, c, e, f) western Lake Erie nodes, and (d) the Raisin River.
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Figure D5. For 2012 the total phosphorus concentrations (µg L−1) at observed and unobserved nodes were estimated from the model
posterior samples. Mean (solid black line) and 95 % PI (dashed blue line) for the model posterior samples of each node at every day for
(a) the Maumee River, (b, c, e, f) western Lake Erie nodes, and (d) the Raisin River.
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Figure D6. For 2013 the total phosphorus concentrations (µg L−1) at observed and unobserved nodes were estimated from the model
posterior samples. Mean (solid black line) and 95 % PI (dashed blue line) for the model posterior samples of each node at every day for
(a) the Maumee River, (b, c, e, f) western Lake Erie nodes, and (d) the Raisin River.
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Figure D7. For 2014 the total phosphorus concentrations (µg L−1) at observed and unobserved nodes were estimated from the model
posterior samples. Mean (solid black line) and 95 % PI (dashed blue line) for the model posterior samples of each node at every day for
(a) the Maumee River, (b, c, e, f) western Lake Erie nodes, and (d) the Raisin River.
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Figure D8. For 2015 the total phosphorus concentrations (µg L−1) at observed and unobserved nodes were estimated from the model
posterior samples. Mean (solid black line) and 95 % PI (dashed blue line) for the model posterior samples of each node at every day for
(a) the Maumee River, (b, c, e, f) western Lake Erie nodes, and (d) the Raisin River.
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Figure D9. For 2016 the total phosphorus concentrations (µg L−1) at observed and unobserved nodes were estimated from the model
posterior samples. Mean (solid black line) and 95 % PI (dashed blue line) for the model posterior samples of each node at every day for
(a) the Maumee River, (b, c, e, f) western Lake Erie nodes, and (d) the Raisin River.
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Figure D10. For 2017 the total phosphorus concentrations (µg L−1) at observed and unobserved nodes were estimated from the model
posterior samples. Mean (solid black line) and 95 % PI (dashed blue line) for the model posterior samples of each node at every day for
(a) the Maumee River, (b, c, e, f) western Lake Erie nodes, and (d) the Raisin River.
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Code and data availability. Template code for repro-
ducing our model is available publicly on Zenodo at
https://doi.org/10.5281/zenodo.5570508 (Maguire et al., 2021a).
All the data used here were from publicly available sources which
we provide in Appendix A. On the Zenodo site we made our
curated data for 2018 available.

Video supplement. A supplemental video of Maumee
River impact plume through time is available through
https://doi.org/10.5446/53429 (Maguire et al., 2021b).
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