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Abstract. The recent advances in remote sensing provide
opportunities for estimating the parameters of conceptual
hydrologic models more reliably. However, the question of
whether and to what extent the use of satellite data in model
calibration may assist in transferring model parameters to
ungauged catchments has not been fully resolved. The aim
of this study is to evaluate the efficiency of different meth-
ods for transferring model parameters obtained by multiple-
objective calibrations to ungauged sites and to assess the
model performance in terms of runoff, soil moisture, and
snow cover predictions relative to existing regionalization
approaches. The model parameters are calibrated to daily
runoff, satellite soil moisture (Advanced Scatterometer – AS-
CAT), and snow cover (Moderate Resolution Imaging Spec-
troradiometer – MODIS) data. The assessment is based on
213 catchments situated in different physiographic and cli-
mate zones of Austria. For the transfer of model parame-
ters, eight methods (global and local variants of arithmetic
mean, regression, spatial proximity, and similarity) are ex-
amined in two periods, i.e., the period in which the model
is calibrated (2000–2010) and an independent validation pe-
riod (2010–2014). The predictive accuracy is evaluated by
the leave-one-out cross-validation. The results show that the
method by which the model is calibrated in the gauged catch-
ment has a larger impact on runoff prediction accuracy in
the ungauged catchments than the choice of the parameter
transfer method. The best transfer methods are global and
local similarity and the kriging approach. The performance

of the transfer methods differs between lowland and alpine
catchments. While the soil moisture and snow cover predic-
tion efficiencies are higher in lowland catchments, the runoff
prediction efficiency is higher in alpine catchments. A com-
parison of the model transfer methods, based on parameters
calibrated to runoff, snow cover, and soil moisture with those
based on parameters calibrated to runoff, only indicates that
the former outperforms the latter in terms of simulating soil
moisture and snow cover. The performance of simulating
runoff is similar, and the accuracy depends mainly on the
weight given to the runoff objective in the multiple-objective
calibrations.

1 Introduction

The prediction of runoff hydrographs is one of the main sci-
entific and practical hydrological applications. Understand-
ing and representing the processes and their interactions dur-
ing runoff generation and their sensitivity to the controls are
some of the unsolved problems in hydrology (Blöschl et al.,
2019). It is also essential for many purposes of societal rele-
vance, such as engineering design, water resources manage-
ment, hydropower operation, or risk assessment (Sachs and
McArthur, 2005; Blöschl and Montanari, 2010; Kovacs et al.,
2012; Parajka et al., 2013). However, in most places of inter-
est, no runoff data are directly observed, so the runoff predic-
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tion needs to be based on additional information observed in
the region or transferred from other gauged catchments.

Numerous studies have explored and evaluated methods
for the prediction of runoff in ungauged sites (He et al.,
2011; Hrachowitz et al., 2013; Blöschl et al., 2013). The most
frequently used method consists of applying a hydrological
model driven by model parameters derived in catchments
with runoff observations. The review and synthesis of stud-
ies and applications of hydrological models in ungauged sites
presented in Parajka et al. (2013), and recently in Guo et al.
(2021), indicate that there is a variety of transfer approaches
tested in different parts of the world, covering different cli-
mates, altitudes, or landscape settings. The main outcome of
these studies is that the runoff predictions in ungauged catch-
ments tend to be more accurate in humid than in arid regions
and more accurate in large than in small catchments (Para-
jka et al., 2013). However, the selection and performance of
methods differ between studies, and there is no general rec-
ommendation for the choice of the approach. There seems
to be a consensus that the spatial proximity and similarity
methods perform better in humid regions (Guo et al., 2021).
In arid catchments, the similarity and parameter regression
methods tend to be applied more frequently and perform
slightly better (Parajka et al., 2013; Yang et al., 2017, 2020).

Recent studies have explored the role and impact of the
gauge density on the efficiency of the methods (Parajka et
al., 2015; Lebecherel et al., 2016; Neri et al., 2020), as well
as the advanced definition of similarity measures based on
spatial patterns (Li and Zhang, 2017; Beck et al., 2020; Nar-
bondo et al., 2020) or catchment response characteristics
(Tegegne and Kim, 2018). Along with these investigations,
one of the recent focuses in hydrological modeling evalu-
ates the use of observations in addition to runoff (Bouaziz et
al., 2021). Multiple-objective calibrations can help constrain
hydrological models, reduce uncertainty, and improve hy-
drological predictions (Efstratiadis and Koutsoyiannis, 2010;
Rakovec et al., 2016; Dembélé et al., 2020). Most of the pre-
vious studies investigated the potential of calibrating hydro-
logical model parameters by using different runoff signatures
or using some additional hydrological characteristics such
as snow cover, cover, soil moisture, evaporation, groundwa-
ter level, or combinations thereof (please see the review in
Tong et al., 2021). However, only a few studies have in-
vestigated the application of multiple-objective approaches
for evaluating the transfer of model parameters to ungauged
sites. Parajka et al. (2005, 2006) examined the value of snow
depth observation and scatterometer soil moisture measure-
ments for improving the hydrological simulations in un-
gauged catchments and showed that the use of the scatterom-
eter resulted in more consistent patterns of soil moisture es-
timates, but it did not improve the runoff model efficiencies
in ungauged catchments. Zhang et al. (2020) recently used
remotely sensed evapotranspiration to calibrate the hydro-
logical model parameters without streamflow observations
and found that the streamflow-free calibration could be sat-

isfactory for monthly and mean annual runoff simulation in
the humid catchments. Huang et al. (2020) verified the ef-
fectiveness of this approach for the regionalization with spa-
tial proximity method in ungauged basins. They reported that
using the bias-corrected remotely sensed evapotranspiration
has great potential in estimating daily and monthly runoff.
However, the role and impact of using additional data for the
prediction of daily hydrographs in ungauged sites are still not
well understood. Such an assessment is essential, particularly
for projecting the impacts of changing climate or land use
conditions on the hydrological cycle, in general, and, specif-
ically, on runoff generation. The aim of this study is to in-
vestigate the value of using model parameters obtained by
multiple-objective calibrations for daily hydrological predic-
tions in ungauged sites. Specifically, we test the efficiency
of different methods for the transfer of such model parame-
ters to ungauged sites and evaluate the model performance to
observations of runoff and remotely sensed estimates of soil
moisture and snow cover. We extend the results of Tong et
al. (2021), who assessed the value of Metop ASCAT (Ad-
vanced Scatterometer) and MODIS (Moderate Resolution
Imaging Spectroradiometer) satellites for the calibration of
conceptual hydrological models and to test to what extent
it improves the performance of existing regionalization ap-
proaches. The analysis and comparison of model simulations
of runoff, soil moisture, and snow cover are performed for
a large sample of catchments situated in different physio-
graphic and climate zones of Austria, so this allows the eval-
uation of the potential of the application of remotely sensed
data at the regional scale. The effect of multi-objective cali-
bration with the use of satellite soil moisture and snow cover
data on model parameter transferability is hence assessed.

2 Method

2.1 Hydrological model

The transfer of the model parameters is evaluated for a con-
ceptual hydrological model (TUWmodel; Viglione and Para-
jka, 2020). The TUWmodel is a variant of the HBV model
(Bergström, 1992; Parajka et al., 2007) implemented in the
R environment (Astagneau et al., 2021). This study uses a
semi-distributed version in which the inputs and outputs of
the model are processed for elevation zones of 200 m but
model parameters are assumed to be lumped in each catch-
ment. Such a setting allows one to effectively account for
the spatial variability in rainfall and melt processes, particu-
larly in alpine regions, and to keep the number of parameters
small, which simplifies their transfer to ungauged sites. For
comparison with soil moisture satellite data, we used a sin-
gle soil (root zone) layer version of TUWmodel. It simulates
changes in snow, root zone, and groundwater storages in each
elevation zone. The model runs on a daily time step and com-
bines the following three routines: snow routine, soil mois-
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ture routine, and river flow routing routine. The snow routine
uses a degree–day concept to reflect snow accumulation and
melt with a degree–day factor and a threshold melt temper-
ature. The snowfall part of the precipitation and snow accu-
mulation is calculated by using snow and rain threshold tem-
peratures. The soil moisture routine represents the changes
in the soil moisture state of the root zone due to evapotran-
spiration and runoff generation.

SSM,i = SSM,i−1+ (PR+M −EA) ·1t, (1)

where SSM is the root zone soil moisture, which controls
runoff generation and actual evaporation EA, PR is rain, M
is snowmelt, and 1t is the time step (1 d). The contribution
1SUZ of rain and snowmelt to runoff is calculated by an ex-
plicit scheme, as a function of the SSM, using a nonlinear re-
lationship controlled by two model parameters, namely max-
imum soil storage FC and a nonlinearity parameter BETA
controlling characteristics of runoff generation, as follows:

1SUZ = (θ)
BETA(PR+M) ·1t (2)

θ =
SSM

FC
. (3)

Actual evapotranspiration is estimated from potential evap-
oration (model input) and a model parameter representing
the soil moisture state above which the actual equals poten-
tial evaporation. For a comparison with satellite soil mois-
ture estimates, simulated root zone soil moisture is scaled by
the maximum soil moisture storage FC model parameter and
hence represents the relative root zone soil moisture θ .

The runoff routing module represents routing on the hill-
slopes and river flow routing in the stream. The runoff re-
sponse function consists of two reservoirs representing the
upper and lower storage zones. The outflows from the reser-
voirs in each elevation zone are summed up and routed by a
triangular transfer function.

The model involves 15 model parameters. They are au-
tomatically calibrated using the multi-objective calibration
strategy of Tong et al. (2021). The joint objective function
OF consists of weighting three individual parts related to
runoff (OQ), soil moisture (OSM), and snow cover (OSC).

OF = wQ ·OQ+wSM ·OSM+wSC ·OSC, (4)

where wQ is the weight to the runoff objective function,
and wSM and wSC are the weights to the soil moisture and
snow cover objectives, respectively. Multiple-objective ap-
proaches for each regionalization method are examined for
11 runoff weights wQ (ranging from 0.0 to 1.0 with a step of
0.1). The combinations of the weights are taken from Tong
et al. (2021), where the weights of soil moisture and snow
are equal, and the total sum of all weights is 1.0. More de-
tails about the combinations of the objective functions are
presented in Tong et al. (2021).

The runoff objective function OQ emphasizes both high
and low flows (Parajka and Blöschl, 2008) and is described
by a compound objective function combining two variants
of Nash–Sutcliffe coefficients, i.e., it is estimated from ob-
served and logarithmic transformed river flow values, as fol-
lows (Nash and Sutcliffe, 1970):

OQ = 0.5 ·NSE+ 0.5 ·NSElog (5)

NSE= 1−

∑n
i=1
(
Qobs,i −Qsim,i

)2∑n
i=1
(
Qobs,i −Qobs

)2 (6)

NSElog = 1−

∑n
i=1
(
log(Qobs,i)− log(Qsim,i)

)2∑n
i=1
(
log(Qobs,i)− log(Qobs)

)2 , (7)

where Qobs,i and Qsim,i are the river flow observation and
simulation of day i.

The measure of soil moisture agreement (OSM) is deter-
mined by the Pearson correlation coefficient (OSM) between
the satellite soil water index (SWI), which estimates the satu-
ration degree of the root zone (Wagner et al., 1999b; Silvestro
et al., 2015), and the simulated relative soil moisture in each
elevation zone, as in the following:

OSM =

∑Ndays
i=1

∑Nzones
j=1

(
(θsim,i,j − θsim)(θobs,i,j − θobs)

)√∑Ndays
i=1

∑Nzones
j=1

(
(θsim,i,j − θsim)2(θobs,i,j − θobs)2

) , (8)

where θsim,i,j is the simulated relative soil moisture from the
hydrological model, and θobs,i,j is the averaged value of the
observed soil water index (SWI) from ASCAT pixels for the
day i and elevation zone j . θsim and θobs are the mean values
of the simulations and observations for the days and elevation
zones which are not masked in the ASCAT SWI product due
to presence of snow or frozen ground. The rationale behind
selecting the Pearson correlation as a measure of agreement
is that it assesses the spatial and temporal correspondence of
the satellite soil moisture (assumed to be the ground truth)
and simulated root zone soil moisture time series. At the spa-
tial resolution of the original ASCAT dataset (ca. 12.5 km),
the satellite estimates of root zone soil moisture reflect the re-
gional rainfall and melt processes patterns more and are thus
more closely related to altitudinal zonality than to morpho-
metric characteristics of terrain that operate at smaller scales.
The calculation of OSM from soil moisture averages for ele-
vation zones thus allows the representation of the agreement
in regional and seasonal soil moisture patterns. The choice of
a correlation coefficient has the advantage of not being sensi-
tive to the units. In a preliminary analysis, we tested different
ways for calculation of the OSM as combining soil moisture
estimated from different elevation zones better describes the
agreement than the correlation between soil moisture esti-
mates averaged at the catchments scale (see Fig. S3 in the
Supplement). Particularly in the alpine regions, the correla-
tion calculated from the catchment averages masks the spa-
tial variability in the agreement between ASCAT and hydro-
logic root zone soil moisture estimates. A similar approach
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has also been used in previous studies (e.g., Parajka et al.,
2006; Gruber et al., 2020; Beck et al., 2021). A more detailed
description of the calculation of the soil moisture agreement
is presented in the Supplement.

The snow cover objective functionOSC minimizes the sum
of the snow overestimation SO and underestimation SU errors
as follows (Parajka and Blöschl, 2008):

OSC = 1− (SO+ SU). (9)

The snow overestimation error shows the percentage of the
condition if the snow is simulated from the model, but the
snow cover is not retrieved by the satellite (MODIS).

SO =
1∑Ndays

i=1
∑Nzones
j=1 Ai,j

×

Ndays∑
i=1

Nzones∑
j=1

Ai,j ∩ (SWEi,j > ξSWE)∩ (SCAi,j = 0), (10)

where Ai,j is the area of zone j that is cloud free, accord-
ing to the MODIS observation on day i. SWEi,j is the simu-
lated snow water equivalent in elevation zone j greater than
a threshold (ξSWE) 10 mm, SCAi,j is the MODIS snow cov-
ered area within this zone, and Ndays is the number of days
with cloud cover that is less than a threshold (ξC) 50 %.

The snow underestimation error indicates the percentage
of the condition if no snow is simulated, but snow cover re-
trieved by MODIS is over a threshold (ξSCA) of 25 % in the
zone, as in the following:

SU =
1∑Ndays

i=1
∑Nzones
j=1 Ai,j

×

Ndays∑
i=1

Nzones∑
j=1

Ai,j ∩ (SWEi,j = 0)∩ (SCAi,j > ξSCA). (11)

The thresholds of ξSWE, ξC, and ξSCA were determined by the
sensitivity analysis of Parajka and Blöschl (2008).

2.2 Transfer of model parameters to ungauged sites

The hydrological predictions at the ungauged sites are, in this
study, based on model simulations driven by model parame-
ters transferred from the gauged locations where the model
has been calibrated, i.e., the sites with runoff observations.
The model performances in terms of runoff, soil moisture,
and snow with the calibrated parameters in the catchments
assumed to be gauged can refer to Tong et al. (2021). For
the transfer (i.e., regionalization), four groups of methods are
evaluated (Table 1). The first group estimates the model pa-
rameters as the arithmetic mean of all calibrated values in
the study region (termed the global mean) or, alternatively,
as the arithmetic mean of the model parameters within a ra-
dius of 50 km from the catchment of interest (termed the lo-
cal mean). This arithmetic mean regionalization approach as-

Table 1. The list of model parameter transfer methods tested in the
study.

Group Transfer method Abbr.

Arithmetic mean Global mean GM
Local mean LM

Regression Global regression GR
Local regression LR

Spatial proximity Inverse distance weighting ID
Kriging KR

Similarity Global combination of
physiographic attributes GS
Local combination of
physiographic attributes LS

sumes the similarity of all catchments within a specified ra-
dius, where differences in the parameter values are caused
only by random factors.

In the second group, the model parameters for ungauged
sites are independently estimated from linear regressions be-
tween calibrated model parameters and catchment attributes.
Similarly, as in the first group, two approaches are tested. The
global multiple linear regression uses attributes and model
parameters from all gauged catchments. The local multiple
linear regression is applied within a 50 km search radius from
an ungauged site. In all cases, the regression coefficients are
estimated by the ordinary least squares method. For con-
sistency with previous studies, a set of three catchment at-
tributes associated with the largest multiple correlation coef-
ficient for each ungauged site and each model parameter is
used. To avoid multicollinearity, the variance inflation factor
(Hirsch et al., 1992) is examined. For the transfer of model
parameters, such a regression model is used, which has the
largest correlation coefficient for the inflation factor less than
10.

The third group of transfer methods is based on the spa-
tial proximity (or spatial distance) between the ungauged
and the gauged catchments. The spatial distance between the
two catchments is characterized by the distance between the
respective catchment centroids. We test the following two
methods of this group: the inverse distance weighting and
the ordinary kriging. In both methods, individual parame-
ters from several donor catchments are independently inter-
polated to a centroid of the ungauged catchment and then
combined and used in the hydrological model. The power
parameter in inverse distance interpolation is set to two. The
ordinary kriging method is based on a fixed exponential var-
iogram with a nugget of 10 % of the observed variance, a sill
equal to the variance, and a range of 60 km. The test calcu-
lations in previous studies (Merz and Blöschl, 2004; Parajka
et al., 2005) showed that this setting is consistent with the
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empirical variograms of most of the calibrated model param-
eters.

The fourth group of methods is based on the similarity
between catchments with runoff observations and ungauged
sites. The main idea of the similarity group of methods is to
find, for an ungauged site, a donor catchment that is most
similar in terms of certain catchment attributes. The entire
collection of model parameters calibrated for a donor catch-
ment is then transferred to the ungauged site. The similarity
is defined by a similarity index8 as follows (Burn and Boor-
man, 1993; Merz and Blöschl, 2004):

8=

k∑
i=1

∣∣XG
i −X

U
i

∣∣
1Xi

, (12)

where XG represents a vector of the normalized catchment
attributes of the gauged (donor) catchments, XU are the nor-
malized attributes of the ungauged catchment, and 1X is
the normalized range of attributes. In previous studies (e.g.,
Parajka et al., 2005) a large number of catchment attributes,
and their combinations, have been tested in the study region.
Based on the results and preliminary analyses (not shown
here) for this study, we selected the approach with the best
results. This variant is based on an a priori defined combina-
tion of the following catchment attributes: mean catchment
elevation, stream network density, lake attenuation index and
areal proportion of porous aquifers, land use, soils, and geo-
logic units. Similar to other approaches, in this approach, we
also examine two variants. While the global similarity com-
bination uses all study catchments for the estimation of the
similarity, the local similarity combination estimates the sim-
ilarity only within a 50 km radius around the ungauged site.

2.3 Evaluation of the prediction accuracy

The performance and efficiency of parameter transfer meth-
ods are evaluated by the leave-one-out cross-validation. Each
catchment with observed runoff is considered, in turn, as un-
gauged, and the transfer methods are used to estimate the
parameter sets from other gauged catchments. The hydrolog-
ical model is applied to simulate daily runoff, soil moisture,
and snow cover in the ungauged catchment. These simula-
tions are then compared with the observations. The accuracy
is quantified by three objectives OQ, OSM, and OSC in two
periods, i.e., in the period used for model calibration (2000–
2010 and 2007–2010 forOSM) and in an independent valida-
tion period (2010–2014). The efficiencies of the transferred
model parameters are estimated for 11 different calibration
variants (i.e., the weight given to runoff) and compared to
the efficiency obtained by a transfer of model parameters cal-
ibrated to runoff only.

3 Data

3.1 Study region

The study region is Austria, which represents a wide range
of physiographic conditions. The topography varies from flat
land in the east and north to alpine terrain in the west and
south. Mean annual precipitation is less than 400 mmyr−1 in
the east and more than 2500 mmyr−1 in the west. Land use is
mainly agricultural in the lowlands and forest in the medium
elevation ranges. Alpine vegetation and rocks prevail in the
highest alpine regions.

The analysis is carried out for 213 catchments (Fig. 1).
These catchments have been selected following previous
studies (Viglione et al., 2013; Sleziak et al., 2020; Tong et
al., 2021) and represent catchments with no significant an-
thropogenic effects on the water balance. The size of the
catchments ranges from 13.7 to 6214 km2, and the averaged
slope varies from 1.74 % to 43.91 %. As previous studies
have shown that the performance of regionalization methods
differs between climatic zones (Parajka et al., 2013; Yang et
al., 2020), separation of the effect of elevation and climate on
the results was deemed important, and the catchments were
split into two groups representing drier lowland and hilly
regions (catchments with mean elevation below 900 m a.s.l.
– above sea level) and wetter alpine conditions (catchments
with mean elevation above 900 m a.s.l.). Out of the 213 catch-
ments, 94 are classified as lowland catchments and 119 as
alpine catchments (Fig. 1). The climatic statistics of the two
groups are presented in Table 2. The threshold of 900 m is
chosen as a compromise between balancing the number of
catchments in the groups and representing different physio-
graphic regions.

3.2 Hydrologic and climate data

The runoff data have been obtained from Central Hy-
drographical Bureau (HZB; https://ehyd.gv.at/, last access:
6 April 2022). The analysis period is from September 2000
to August 2014, which is split into the calibration (Septem-
ber 2000–August 2010) and validation periods (September
2010–August 2014).

Model inputs (i.e., the mean of daily climate characteris-
tics for elevation zones) are derived from the SPARTACUS
gridded dataset (Hiebl and Frei, 2016, 2018). This dataset
includes gridded maps of the maximum and minimum daily
air temperature and precipitation with a spatial resolution of
1 km. Daily mean air temperature is estimated as the mean
between minimum and maximum air temperature. Potential
evaporation model input is estimated by the Blaney–Criddle
approach (Parajka et al., 2003). This approach estimates the
potential evaporation from mean daily air temperature and a
potential sunshine duration index, which is calculated from a
1 km digital elevation model of Austria.

https://doi.org/10.5194/hess-26-1779-2022 Hydrol. Earth Syst. Sci., 26, 1779–1799, 2022
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Figure 1. Topography of the study region and location of 94 lowland (red symbols) and 119 alpine (blue symbols) catchments.

Table 2. Statistics of the climatic attributes of the 94 lowland catchments and 119 alpine catchments given with the abbreviation, unit,
minimum, maximum, and median. The standard deviations refer to the spatial variability within each catchment.

Attribute Abbr. Unit Lowland Alpine
(mean elevation under 900 m a.s.l.) (mean elevation over 900 m a.s.l.)

Min. Max. Median Min. Max. Median

Mean annual precipitation MAP mm 728.13 1828.40 999.46 913.66 2301.84 1476.64
Standard deviation of annual MAP SDAP mm 10.79 367.57 71.49 30.13 289.87 152.90
Mean air temperature MAT ◦C 7.26 10.30 8.98 −2.83 8.07 5.76
Standard deviation of MAT SDAT ◦C 0.06 1.71 0.57 0.40 3.55 1.64
Mean annual potential evaporation MEPI mm 618.36 740.45 690.08 233.49 657.01 563.00
Standard deviation of MEPI SDEPI mm 4.33 77.41 25.25 21.70 162.07 83.33
Catchment aridity index (MEPI/MAP) CAI – 0.36 0.98 0.66 0.18 0.69 0.37
Standard deviation of aridity index SDAI – 0.01 0.31 0.06 0.02 0.18 0.09

3.3 MODIS snow cover

The snow cover maps used in model calibration and regional-
ization validation are based on the combination of the daily,
500 m resolution, Terra (MOD10A1) and Aqua (MYD10A1)
MODIS datasets (Hall and Riggs, 2016). We use the lat-
est collection of six snow cover products, which includes
the Normalized Difference Snow Index (NDSI). Snow cover
mapping from MODIS products is performed in two steps. In
the first step, NDSI pixels are classified into snow and land
cover classes, based on seasonally varying NDSI thresholds
(Tong et al., 2020). In the second step, the resulting snow
cover maps from the Aqua and Terra products are combined
to reduce the impact of clouds (Parajka and Blöschl, 2008).
Finally, for each elevation zone of each catchment, the fre-
quency of pixels classified as clouds, snow, and land is cal-
culated. This allows for the estimation of the snow cover area
percentage for each catchment that is needed for the calcula-
tion of the snow cover model objective function.

3.4 ASCAT soil moisture

The satellite soil moisture data used in this study is the
soil water index (SWI) derived from an experimental ver-
sion of the upcoming disaggregated Metop ASCAT surface
Soil Moisture v2 product (H28) provided by the EUMET-
SAT Satellite Application Facility on Support to Operational
Hydrology and Water Management (H-SAF). The original
ASCAT surface soil moisture dataset at 12.5 km (before dis-
aggregation) is based on a new parameterization for the veg-
etation correction (Hahn et al., 2021), which has shown im-
proved performance over Austria (Pfeil et al., 2018). The
disaggregation process consists of a directional resampling
method utilizing the connection between regional- (12.5 km)
and local-scale (0.5 km) Sentinel-1 backscatter observations
describing temporally stable soil moisture patterns also re-
flected in the radar backscatter measurements (Wagner et
al., 2008). Surface and root zone soil moisture are avail-
able, where the root zone soil moisture is represented by
the SWI, which is determined by an exponential filter, in-
troduced by Wagner et al. (1999a, b) and Albergel et al.
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Figure 2. Median and regional scatter of the leave-one-out runoff model efficiency (Eq. 5) obtained by eight groups of parameter transfer
methods and 11 calibration weights for lowland (94) and alpine (119) catchments in the calibration (2000–2010; blue symbols) period. Blue
circles represent the median and whiskers the 25 % and 75 % quantiles of the leave-one-out efficiency. Red symbols show the median of the
at-site runoff model efficiency.

(2008), with a characteristic time lag (T ). The T value repre-
sents the smoothing of soil moisture dynamics by infiltration,
with higher T values corresponding to a higher degree of
smoothing. In order not to lose information on the short-term
soil moisture dynamics still present in deeper soil layers, T
should be carefully chosen. Paulik et al. (2014) compared the
ASCAT SWI dataset to in situ soil moisture and found that
the SWI agrees better with in situ soil moisture from deeper
layers than the original surface soil moisture dataset. More-

over, they related the T value with soil depth layers and found
that the T values of 10 and 20 led to the highest correlations
in the shallow subsurface (around 0–20 cm). To prevent the
loss of short-term soil moisture dynamics, T -value= 10 d
was selected in this study. Besides, to exclude invalid AS-
CAT measurements affected by snow and frozen ground, soil
moisture is masked as no data when soil temperatures at a
soil depth of 0–7 cm are below 1 ◦C or snow cover exceeds
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30 % of the pixel with the information from the ECMWF
Copernicus Climate Service (C3S) ERA5-Land.

4 Results

4.1 Efficiency of transfer methods for simulating
runoff

Figures 2 and 3 show the median and scatter (i.e., 25 % and
75 % quantiles) of the leave-one-out runoff cross-validation
efficiency for eight parameter transfer methods (panels) and
11 calibration variants (i.e., different runoff weight wQ used
in model calibration) in the calibration (Fig. 2) and validation
(Fig. 3) periods. The red symbols indicate the at-site runoff
efficiency, estimated in Tong et al. (2021), in the calibration
and validation periods. Panels on the left and right show the
results for the lowland and alpine group of catchments, re-
spectively. The results for the runoff weight wQ = 1.0 rep-
resent the case when the model is calibrated to runoff only.
The case wQ = 0.0 represents the case when the model is
calibrated to satellite soil moisture and snow cover without
using observed runoff.

The results show that the differences between the transfer
methods are smaller than those between the different cali-
bration variants, i.e., the different methods of calibrating the
model in gauged catchments, for weights below 0.4. The im-
pact of the choice of calibration variant (weight on runoff
wQ) is smaller if thewQ is larger than 0.4. ForwQ larger than
0.4, the differences between the transfer methods are larger,
and the choice of transfer method is more important than that
of the calibration variant. The worst parameter transfer (i.e.,
regionalization) methods are the global mean and the local
regression approach. The median of runoff efficiency is par-
ticularly low, i.e., between 0.24 and 0.41, for calibration vari-
ants using wQ < 0.3 in the calibration period. If wQ is larger
than 0.7, the median of the runoff efficiency of global mean
and local regression is between 0.42 and 0.5 for the lowland
and between 0.61 and 0.63 for the alpine catchments. The
best transfer methods are global and local similarity and krig-
ing interpolation. If the wQ is larger than 0.4, then the me-
dian efficiency is between 0.67 and 0.69 in the lowland and
between 0.71 and 0.74 in the alpine region. The efficiency
of the transfer of model parameters calibrated by multiple-
objective approaches (for wQ > 0.4) for the similarity and
kriging methods is the same as that for the transfer of model
parameters obtained by calibration to runoff only (wQ = 1).
The reason for the similar runoff efficiency of the regional-
ization methods between wQ = 0.4 to 1.0 is that the runoff
model efficiencies of the donor catchments do not change ob-
viously when the satellite soil moisture and snow cover were
both included in the calibration with this wQ range (Tong et
al., 2021). In the validation period (Fig. 3), the median of
multiple-objective calibrations (wQ = 0.8) of kriging in the
lowland and similarity in the alpine catchments is even larger

than the runoff efficiency obtained by a transfer (kriging
or similarity) based on parameters calibrated to runoff only
(variant wQ = 1). Additionally, Table 3 also shows that the
regional variability (runoff model efficiency between catch-
ments) is small for kriging, while being large for local regres-
sion methods. A comparison of local and global variants of
the transfer methods indicates that the local methods are only
slightly better than the global methods in terms of runoff ef-
ficiency. The largest difference between the local and global
methods occurs for the mean approach, but the runoff effi-
ciency of the local mean is noticeably lower than for the spa-
tial proximity or similarity approaches. An exception is the
regression of model parameters, which has a larger runoff ef-
ficiency for the global than the local approach. The reason
is a larger correlation between model parameters and catch-
ment attributes estimated from all catchments. For example,
for wQ = 0.4, the median of the correlation between model
parameters and catchment attributes for the local regression
varies between 0.22 and 0.65. For the global regression ap-
proach, the median is larger and varies between 0.70 and
0.88. The results also show that the performance of trans-
fer methods is better in the alpine than in the lowland catch-
ments. In both groups, however, similarity and kriging are
the best approaches for predicting daily runoff.

4.2 Efficiency of transfer methods in simulating soil
moisture

The evaluation of eight parameter transfer methods in sim-
ulating root zone soil moisture is presented in Figs. 4 and
5. The results show the median and scatter (i.e., 25 % and
75 % quantiles) of the correlation between the satellite root
zone soil moisture index and simulated relative root zone
soil moisture in the lowland (left two panels) and alpine
(right two panels) catchments. The comparison of the differ-
ent transfer methods and calibration variants indicates that
the difference between the transfer methods is similar to
that found for the prediction of daily runoff. The best trans-
fer methods are kriging and similarity (local and global)
approaches. In the lowland catchments, the median of soil
moisture correlation ranges between 0.62 and 0.70 for these
methods. The impact of the calibration variants is, for each
transfer method, smaller than what is found for runoff. Gen-
erally, the correlation increases with decreasing wQ, and
the soil moisture agreement tends to be larger if the wQ
is smaller than 0.4. A much smaller agreement (correla-
tion) between soil moisture estimates is found in the alpine
catchments; this may likely be due to the heterogeneity in
temperature and snow cover in mountainous regions when
the soil moisture is retrieved from the satellite (Tong et al.,
2021). The best transfer methods in alpine catchments are
local and global similarity and kriging. The median corre-
lation between modeled and satellite soil moisture is, how-
ever, small and varies between 0.14 and 0.22. From Table 4,
the regional variability of soil moisture correlation is simi-
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Figure 3. Same as Fig. 2 but for the validation period (2010–2014).

lar for each method and larger in the lowlands than that in
the alpine regions. The comparison between the correlations
of the calibration and validation periods shows a similar pat-
tern. Interestingly, in the alpine catchments, the validation
period correlations are slightly higher than those found for
the transfer in the calibration period. This is likely related to
the warmer validation period. Warming decreases the snow
cover area, particularly in the alpine regions, and hence de-
creases the frequency of pixels which need to be masked in
the soil moisture dataset.

4.3 Efficiency of transfer methods for simulating snow
cover

The efficiency of eight transfer methods for simulating snow
cover is evaluated in Figs. 6 and 7. The results indicate that
the variability and differences between the regionalization
approaches are the smallest for snow efficiency. A much
larger difference and impact on snow efficiency is found for
the runoff weight used in the model calibration. The differ-
ence in snow efficiency between transfer methods for the
same wQ is mostly between 1 % and 3 %, but the snow ef-
ficiency for different wQ (and the same transfer method)
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Table 3. Scatter (difference of 75 % and 25 % quantiles in model efficiency) of the leave-one-out runoff model efficiency (Eq. 5) obtained
by eight groups of parameter transfer methods and 11 calibration weights for lowland (94) and alpine (119) catchments in the calibration
(2000–2010; first value) and validation (2010–2014; second value) periods.

wQ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

L
ow

la
nd

s

GM 0.17/0.32 0.22/0.56 0.25/0.47 0.23/0.39 0.22/0.34 0.21/0.34 0.22/0.35 0.21/0.32 0.21/0.31 0.20/0.30 0.21/0.31
LM 0.32/0.29 0.15/0.27 0.15/0.22 0.14/0.24 0.15/0.23 0.15/0.19 0.19/0.21 0.17/0.22 0.16/0.25 0.17/0.25 0.18/0.27
GR 0.26/0.28 0.27/0.66 0.18/0.37 0.25/0.37 0.22/0.33 0.20/0.31 0.24/0.38 0.18/0.24 0.17/0.21 0.15/0.26 0.17/0.32
LR 0.94/1.82 0.51/0.85 0.88/1.45 0.56/0.72 0.56/0.55 1.10/1.61 0.63/1.05 0.68/1.15 0.58/0.86 0.61/0.84 0.61/0.84
ID 0.23/0.30 0.13/0.29 0.13/0.25 0.14/0.22 0.14/0.20 0.15/0.23 0.15/0.23 0.15/0.21 0.15/0.23 0.15/0.22 0.16/0.23
KR 0.45/0.47 0.13/0.19 0.12/0.16 0.13/0.16 0.13/0.15 0.15/0.19 0.14/0.18 0.12/0.17 0.12/0.18 0.13/0.18 0.13/0.21
GS 0.50/0.57 0.12/0.15 0.12/0.13 0.14/0.15 0.15/0.12 0.15/0.13 0.16/0.12 0.17/0.11 0.17/0.11 0.17/0.11 0.17/0.13
LS 0.53/0.57 0.12/0.15 0.12/0.14 0.14/0.16 0.15/0.14 0.15/0.13 0.16/0.12 0.16/0.11 0.17/0.12 0.17/0.11 0.17/0.12

A
lp

in
e

GM 0.22/0.29 0.21/0.26 0.18/0.24 0.20/0.26 0.18/0.23 0.19/0.24 0.18/0.25 0.19/0.24 0.19/0.23 0.19/0.22 0.18/0.22
LM 0.29/0.35 0.23/0.24 0.19/0.19 0.18/0.19 0.14/0.17 0.15/0.18 0.15/0.18 0.15/0.19 0.15/0.20 0.15/0.19 0.15/0.19
GR 0.29/0.35 0.26/0.25 0.20/0.24 0.18/0.24 0.19/0.21 0.18/0.18 0.19/0.17 0.19/0.17 0.20/0.19 0.16/0.16 0.17/0.18
LR 0.96/0.99 0.51/0.59 0.61/0.61 0.58/0.61 0.45/0.46 0.35/0.37 0.38/0.51 0.37/0.43 0.57/0.71 0.38/0.45 0.48/0.53
ID 0.24/0.34 0.25/0.25 0.21/0.21 0.19/0.19 0.16/0.19 0.16/0.17 0.16/0.18 0.15/0.17 0.17/0.17 0.16/0.18 0.15/0.17
KR 0.33/0.46 0.21/0.23 0.18/0.20 0.15/0.18 0.13/0.16 0.12/0.16 0.11/0.15 0.11/0.17 0.11/0.15 0.11/0.15 0.11/0.14
GS 0.48/0.59 0.24/0.22 0.21/0.22 0.17/0.20 0.14/0.17 0.16/0.19 0.17/0.21 0.16/0.22 0.17/0.20 0.17/0.21 0.18/0.23
LS 0.50/0.53 0.23/0.20 0.22/0.22 0.17/0.18 0.13/0.16 0.16/0.17 0.15/0.20 0.16/0.18 0.16/0.19 0.14/0.19 0.16/0.21

Table 4. Scatter (difference of 75 % and 25 % quantiles of model efficiency) of the leave-one-out soil moisture correlation (Eq. 8) obtained
by eight groups of parameter transfer methods and 11 calibration weights for lowland (94) and alpine (119) catchments in the calibration
(2007–2010; first value) and validation (2010–2014; second value) periods.

wQ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

L
ow

la
nd

s

GM 0.24/0.22 0.24/0.22 0.25/0.22 0.25/0.23 0.26/0.24 0.26/0.23 0.27/0.24 0.28/0.24 0.28/0.24 0.29/0.24 0.28/0.24
LM 0.30/0.31 0.31/0.28 0.32/0.28 0.32/0.29 0.32/0.29 0.32/0.28 0.32/0.28 0.31/0.26 0.31/0.26 0.31/0.25 0.30/0.25
GR 0.29/0.24 0.23/0.26 0.29/0.26 0.29/0.31 0.27/0.27 0.30/0.23 0.30/0.27 0.30/0.25 0.30/0.25 0.30/0.24 0.28/0.24
LR 0.28/0.26 0.27/0.24 0.27/0.22 0.30/0.25 0.31/0.29 0.34/0.34 0.33/0.31 0.27/0.25 0.27/0.25 0.30/0.29 0.30/0.29
ID 0.29/0.27 0.28/0.27 0.28/0.27 0.29/0.28 0.30/0.28 0.30/0.28 0.29/0.28 0.29/0.25 0.31/0.24 0.30/0.24 0.29/0.24
KR 0.29/0.26 0.29/0.26 0.29/0.27 0.29/0.26 0.29/0.27 0.29/0.28 0.29/0.29 0.28/0.25 0.31/0.25 0.29/0.25 0.30/0.26
GS 0.29/0.26 0.30/0.28 0.30/0.27 0.30/0.26 0.30/0.26 0.30/0.27 0.31/0.28 0.30/0.27 0.30/0.26 0.30/0.24 0.27/0.25
LS 0.29/0.26 0.31/0.28 0.31/0.27 0.30/0.27 0.31/0.26 0.30/0.27 0.31/0.28 0.31/0.27 0.33/0.27 0.31/0.26 0.31/0.27

A
lp

in
e

GM 0.23/0.19 0.23/0.18 0.23/0.19 0.24/0.19 0.24/0.19 0.23/0.20 0.23/0.20 0.23/0.19 0.23/0.19 0.23/0.19 0.22/0.19
LM 0.26/0.25 0.20/0.25 0.18/0.25 0.17/0.26 0.17/0.26 0.21/0.26 0.19/0.26 0.20/0.26 0.21/0.24 0.21/0.24 0.22/0.23
GR 0.22/0.21 0.16/0.25 0.14/0.39 0.15/0.37 0.17/0.26 0.18/0.28 0.20/0.24 0.16/0.25 0.20/0.28 0.20/0.22 0.19/0.24
LR 0.27/0.32 0.22/0.30 0.17/0.37 0.19/0.37 0.16/0.34 0.20/0.30 0.22/0.30 0.21/0.39 0.16/0.37 0.16/0.35 0.15/0.34
ID 0.25/0.24 0.24/0.25 0.21/0.26 0.20/0.25 0.17/0.24 0.21/0.27 0.23/0.28 0.22/0.28 0.21/0.25 0.20/0.23 0.21/0.22
KR 0.23/0.29 0.20/0.29 0.21/0.28 0.21/0.29 0.19/0.27 0.21/0.30 0.22/0.28 0.19/0.28 0.21/0.26 0.20/0.25 0.21/0.23
GS 0.24/0.29 0.20/0.28 0.23/0.25 0.18/0.25 0.16/0.24 0.17/0.23 0.18/0.23 0.18/0.24 0.18/0.21 0.17/0.20 0.17/0.19
LS 0.22/0.31 0.20/0.28 0.24/0.26 0.20/0.25 0.18/0.24 0.19/0.25 0.20/0.24 0.20/0.24 0.20/0.21 0.19/0.21 0.16/0.19

ranges between 8 % and 17 %. The snow efficiency decreases
with increasing wQ, and it is generally larger in the lowland
than in the alpine catchments. It is related to the different
frequencies of snow cover conditions in these two regions,
and generally the snow-free condition has with fewer errors
for the simulation. Interestingly, in the alpine catchments,
the similarity-based approaches and kriging have the small-
est efficiency, and the most accurate results are obtained by
the global mean and global regression methods. At the same
time, the regional variability in the snow model efficiencies
(Table 5) has a small difference between different wQ. As
also indicated in the Table 5, the local regression method per-
formed relatively unstably for the snow simulations, and in
the Alpine regions the regional variability in the snow model

efficiency is larger than that in the lowlands. The impact of
the calibration variant is, however, much more important than
the selection of transfer method. The comparison between
calibration and validation periods indicates an overall larger
snow efficiency in the validation period. This is likely linked
with a warmer validation period and, generally, fewer days
with snow cover associated with an increase in air tempera-
ture in the last few decades (Duethmann and Blöschl, 2018).

4.4 Improvement of multi-objective regionalization vs.
runoff-only regionalization

This section analyses the impact of calibration and runoff
weight on the efficiency of different transfer methods for
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Figure 4. Median and regional scatter of the leave-one-out soil moisture correlation (Eq. 8) obtained by eight groups of parameter transfer
methods and 11 calibration weights for lowland (94) and alpine (119) catchments in the calibration (2007–2010; blue symbols) period. Blue
circles represent the median and whiskers the 25 % and 75 % quantiles of the leave-one-out efficiency. Red symbols show the median of the
at-site soil moisture correlations.

simulating runoff, soil moisture, and snow cover. We com-
pared the efficiencies of the predictions obtained by trans-
ferring the model parameters from a multiple-objective cal-
ibration (i.e., wQ < 1) with those obtained by parameters
calibrated to runoff only (wQ = 1). The results are shown
in Figs. 8 and 9 for the calibration and validation periods,
respectively, in terms of the relative improvement in snow
cover (x axis), soil moisture (y axis), and runoff (color of
symbol) efficiencies for eight transfer methods (panels) and

10 calibration weights (symbol size) in the lowland (left)
and alpine (right) catchments. Positive efficiencies indicate
an improvement when using a multiple-objective calibration
compared to a runoff-only calibration. The figures suggest
that the runoff predictions are very similar (i.e., within a 1 %
range) if the runoff weight is larger than 0.5. The largest im-
pact of the multiple-objective calibration is found for the soil
moisture prediction, where the improvement is larger than
for snow cover. In the lowland catchments, the soil mois-
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Figure 5. Same as Fig. 4 but for the validation period (2010–2014).

ture improvement is about 1 % to 7 % for wQ larger than 0.4.
In the case of snow cover, the improvement is within 5 %
when wQ larger than 0.4. The patterns of improvement for
the best transfer methods (kriging and similarity approaches)
are very similar. The improvement increases with decreasing
runoff weight but at the expense of decreasing the runoff ef-
ficiency. The largest improvement in soil moisture (i.e., over
25 %) is found for the similarity approaches in the alpine
catchments, but the overall soil moisture efficiency is rather
low. The patterns of improvement are very consistent with
those obtained for the transfer of model parameters in the
validation period (Fig. 9). The improvement in soil moisture

and snow cover increases with the decreasing runoff weight,
and the improvement is larger in the alpine than the lowland
catchments. The patterns of improvement are very consistent
with those obtained for the transfer of model parameters in
the validation period. The most noticeable finding is that the
improvement in soil moisture and snow cover increases with
decreasing runoff weight, and the improvement is larger in
the alpine than in the lowland catchments.
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Table 5. Scatter (difference of 75 % and 25 % quantiles of model efficiency) of the leave-one-out snow model efficiency (Eq. 9) obtained
by eight groups of parameter transfer methods and 11 calibration weights for lowland (94) and alpine (119) catchments in the calibration
(2000–2010; first value) and validation (2010–2014; second value) periods.

wQ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

L
ow

la
nd

s

GM 0.05/0.02 0.05/0.03 0.06/0.04 0.06/0.05 0.06/0.05 0.06/0.06 0.06/0.06 0.06/0.06 0.06/0.06 0.06/0.06 0.06/0.06
LM 0.04/0.03 0.04/0.02 0.06/0.04 0.07/0.05 0.08/0.07 0.08/0.07 0.08/0.07 0.08/0.07 0.08/0.06 0.07/0.07 0.06/0.07
GR 0.05/0.03 0.05/0.02 0.06/0.04 0.07/0.06 0.06/0.06 0.06/0.06 0.07/0.07 0.06/0.06 0.07/0.06 0.07/0.06 0.07/0.07
LR 0.04/0.03 0.05/0.03 0.07/0.05 0.10/0.07 0.13/0.12 0.10/0.09 0.09/0.07 0.08/0.09 0.10/0.09 0.09/0.08 0.09/0.08
ID 0.04/0.03 0.04/0.02 0.06/0.04 0.06/0.05 0.06/0.05 0.06/0.05 0.06/0.05 0.07/0.06 0.07/0.06 0.07/0.06 0.07/0.06
KR 0.04/0.02 0.04/0.02 0.06/0.04 0.06/0.05 0.06/0.05 0.06/0.05 0.06/0.05 0.07/0.05 0.07/0.05 0.07/0.05 0.07/0.06
GS 0.04/0.03 0.04/0.03 0.07/0.04 0.07/0.05 0.06/0.05 0.07/0.05 0.07/0.05 0.06/0.05 0.07/0.05 0.07/0.05 0.07/0.06
LS 0.04/0.03 0.04/0.03 0.07/0.04 0.07/0.05 0.06/0.05 0.06/0.05 0.07/0.05 0.07/0.06 0.07/0.06 0.08/0.06 0.07/0.06

A
lp

in
e

GM 0.09/0.08 0.09/0.08 0.10/0.09 0.12/0.10 0.12/0.11 0.13/0.11 0.13/0.12 0.13/0.12 0.13/0.12 0.13/0.12 0.14/0.12
LM 0.10/0.10 0.12/0.11 0.13/0.12 0.15/0.12 0.15/0.13 0.16/0.14 0.17/0.14 0.17/0.14 0.17/0.14 0.16/0.14 0.16/0.14
GR 0.11/0.11 0.11/0.11 0.14/0.12 0.14/0.12 0.15/0.12 0.15/0.13 0.16/0.15 0.17/0.15 0.16/0.15 0.16/0.14 0.15/0.14
LR 0.14/0.12 0.17/0.14 0.20/0.19 0.17/0.14 0.18/0.17 0.18/0.18 0.19/0.18 0.20/0.18 0.16/0.16 0.17/0.15 0.18/0.17
ID 0.10/0.11 0.13/0.12 0.15/0.14 0.16/0.13 0.16/0.14 0.16/0.14 0.16/0.14 0.16/0.14 0.16/0.14 0.16/0.14 0.16/0.14
KR 0.11/0.11 0.14/0.14 0.17/0.15 0.17/0.14 0.16/0.15 0.16/0.16 0.16/0.15 0.15/0.14 0.16/0.15 0.17/0.15 0.16/0.14
GS 0.11/0.10 0.15/0.14 0.16/0.16 0.18/0.15 0.17/0.14 0.16/0.14 0.16/0.14 0.17/0.14 0.14/0.13 0.16/0.13 0.16/0.14
LS 0.11/0.10 0.14/0.13 0.16/0.15 0.18/0.16 0.18/0.14 0.17/0.14 0.17/0.15 0.17/0.14 0.16/0.13 0.16/0.13 0.15/0.13

5 Discussion

The main aim of the study was to test to what extent satellite
data can improve the prediction of daily runoff in ungauged
catchments. Tong et al. (2021) showed that ASCAT and
MODIS satellites in hydrological model calibration improve
simulations of a conceptual hydrological model and that the
improvements of runoff and soil moisture simulations were
larger in low elevation and agricultural catchments. Here, we
tested different methods for transferring model parameters
from gauged to ungauged sites in the study region (Merz
and Blöschl, 2004; Parajka et al., 2005). We examined which
method and to what extent transferring model parameters
calibrated to different objectives improves the prediction of
runoff, soil moisture, and snow cover at ungauged sites. The
results showed that the improvement is large in the simula-
tion of soil moisture and snow cover, without a significant
impact on runoff prediction accuracy. The assessment of the
efficiencies between different transfer methods indicates that
the similarity approach and kriging of model parameters are
the best in the study region. This finding is in line with that
of Yang et al. (2020), who concluded that the spatial prox-
imity and similarity approaches are relatively better than the
parameter average or regression method in Norwegian catch-
ments. This finding is also entirely consistent with the results
of Parajka et al. (2005), who calibrated the model parameters
in a larger number of catchments but by using only runoff
and interpolated snow depth (but not soil moisture). The re-
sults and efficiency of other similarity combinations tested
in Parajka et al. (2005) are slightly lower or very similar
in terms of runoff, soil moisture, and snow cover efficiency.
The efficiency of global and local regression and arithmetic
mean methods are very similar, even though here we use 107
catchments (33 %) fewer than what was tested in Parajka et

al. (2005). Overall, the lower prediction accuracy of global
mean or local regression is also consistent with the global as-
sessment of the accuracy of the transfer methods presented
in Parajka et al. (2013).

The results of Tong et al. (2021) show that using only satel-
lite soil moisture and snow cover data is not sufficient for cal-
ibrating a conceptual hydrological model in ungauged catch-
ments. The lower runoff accuracy of the calibration variants
with no or only a small weight to runoff is also reflected in the
performance of the transfer methods. Satellite soil moisture
and snow cover data are very useful for constraining model
parameters related to the simulation of snow cover and soil
moisture (Nijzink et al., 2018; Tong et al., 2021). However,
the use of runoff is still essential for the accurate prediction
of the complete runoff hydrographs; this is consistent with
recent studies that used remotely sensed evaporation and/or
total water storage anomalies for daily timescale hydrograph
simulation (Zhang et al., 2020, 2021; Dembélé et al., 2020;
Hulsman et al., 2021). This finding agrees with the previ-
ous assessment of using soil moisture estimates from ERS
(European Remote Sensing) scatterometer observations to
improve hydrological simulations in gauged and ungauged
catchments (Parajka et al., 2006). The scatterometer data as-
similation did not improve the prediction in ungauged sites
but provided more consistent patterns of soil moisture esti-
mates. The use of the experimental disaggregated ASCAT
dataset showed that the detailed spatial and temporal res-
olution of satellite soil moisture improves the application
and agreement of soil moisture estimates in smaller lowland
catchments. Similarly, as found in Széles et al. (2020) for a
small Austrian catchment, the use of soil moisture data has a
larger impact on the overall consistency of the model simu-
lations compared to snow cover observations.
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Figure 6. Median and regional scatter of the leave-one-out snow model efficiency (Eq. 9) obtained by eight groups of parameter transfer
methods and 11 calibration weights for lowland (94) and alpine (119) catchments in the calibration (2000–2010; blue symbols) period. Blue
circles represent the median and whiskers the 25 % and 75 % quantiles of the leave-one-out efficiency. Red symbols show the median of the
at-site snow model efficiency.

The transfer of model parameters to ungauged sites and
the efficiency of different approaches for predicting runoff
hydrographs are affected by different sources of uncertainty.
During the conceptualization of the analysis, we considered
the following potential sources of uncertainty: (a) model in-
puts, (b) model structure, (c) accuracy of the satellite data, (d)
model calibration, and (e) model parameter regionalization.
We considered the impact of sources (a) to (c) to be smaller
than (d) and (e) for the following reasons. The uncertainty

of the model inputs (a) is generally mainly due to the spatial
interpolation of point (precipitation and air temperature) ob-
servations, as catchment averages are needed for water bal-
ance reasons, and this is a topic that has traditionally attracted
a lot of interest in hydrology (e.g., Faurès et al., 1995). In
this study, the model inputs (mean daily precipitation and
air temperature) are estimated from the gridded SPARTA-
CUS dataset, with a grid resolution of 1 km that is small rel-
ative to the median catchment size 167 km2. Hiebl and Frei
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Figure 7. Same as Fig. 6 but for the validation period (2010–2014).

(2018) show the accuracy of the precipitation interpolation
used in SPARTACUS to be high and the monthly biases to
be very small (values are within ±2 %). The cross-validation
of the air temperature interpolation (Hiebl and Frei, 2016) in-
dicates no systematic overestimation or underestimation, i.e.,
the compound mean error is 0 ◦C and the root mean square
error is 1.4 ◦C.

Model structure (b) is, of course, more difficult to evaluate,
and previous studies, in the context of regionalization per-
formance (e.g., Petheram et al., 2012; Parajka et al., 2013;
Yang et al., 2020), have shown that the simpler models are
not superior to complex models (nor much worse) in pre-

dicting daily hydrographs in ungauged catchments, and more
generally, the difference between hydrological models tends
to be small (Petheram et al., 2012). Parajka et al. (2013)
grouped models according to the number of model param-
eters and showed that the median of the regionalization per-
formance (Nash–Sutcliffe efficiency) for each group of mod-
els is around 0.65. Yang et al. (2020) compared four daily
rainfall–runoff models (GR4J, WASMOD, HBV, and XAJ,
with 6, 8, 13, and 17 parameters) and reported that the differ-
ence in model structure has a smaller impact on the region-
alization model performance than the difference in climate
conditions. Yang et al. (2020) shows that the average Nash–
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Figure 8. Relative difference (%) in the median of snow cover (horizontal axis), soil moisture (vertical axis), and runoff (color of symbols)
efficiency between model simulations obtained by transferring model parameters calibrated by multiple-objective calibration and calibration
to runoff only. The relative difference is estimated for eight model transfer methods (panels) applied in the lowland (left panels) and alpine
(right panels) catchments in the calibration period 2000–2010 (soil moisture from 2007 to 2010).

Sutcliffe runoff efficiency values are, for the best regional-
ization method (physical similarity methods with output av-
eraging), larger than 0.6 for all tested model structures.

The evaluation of the MODIS snow cover (c) of Tong
et al. (2021) indicates an overall classification accu-
racy of the most recent MODIS snow cover product of
larger than 97 %, which implies much smaller uncertain-
ties than most of the other sources. The accuracy assess-
ment of the experimental S1ASCAT dataset at the re-
gional scale is still work in progress. A preliminary assess-
ment (Panic et al., 2020; https://presentations.copernicus.

org/EGU2020/EGU2020-16222_presentation.pdf, last ac-
cess: 6 April 2022) demonstrates that S1ASCAT compares
well with point-scale and area-representative in situ root zone
measurements. The correlation between observed in situ (i.e.,
time-domain reflectometry (TDR) soil network and cosmic-
ray neutron probe) and S1ASCAT soil moisture is 0.59 and
0.51, respectively. These correlations are higher than those
obtained between in situ and existing COPERNICUS soil
moisture products (surface soil moisture, SSM, 1 km and
SWI 1 km), and it is to be expected that only a part of the
differences between the data types is due to the satellite data,
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Figure 9. Same as Fig. 8 but for the validation period (2010–2014).

as TDR soil probes and cosmic-ray neutron probes also have
some level of uncertainty.

We thus decided to focus on the uncertainties resulting
from model calibration (d) and selection of regionalization
method (e). The impact of using different time periods for
the prediction of runoff hydrographs is evaluated by the split-
sample uncertainty assessment proposed by Klemes (1985).
Regionalization studies typically refer only to regionaliza-
tion model efficiencies obtained for the same period as that
used for model calibration. Our results indicate that regional-
ization efficiencies obtained in an independent validation pe-
riod generally show a small decrease (loss) in runoff model
performance. The median of the loss in the Nash–Sutcliffe
efficiency varies between 0.02 and 0.07, depending on the re-

gionalization method and calibration weight. In the lowlands,
the average median loss is 0.06, while it is 0.03 in the alpine
basins. The results also show that the median loss of runoff
efficiency tends to be smaller for multiple-objective variants
(average median loss of 0.05) than for variants using param-
eters calibrated to runoff only (average median loss of 0.06).
These results are consistent with Yang et al. (2020), who re-
ported a small degradation of the regionalization runoff per-
formance from the calibration to the validation period. The
largest relative improvement of soil moisture efficiency is
found in alpine catchments (more than 70 %), but the abso-
lute value of the correlations (on average 0.31) is still lower
than in lowland catchments (average correlation 0.59). These
numbers suggest that the differences in performance (which
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are an indicator of the uncertainties to be expected) are quite
significant for the uncertainty source (d).

The evaluation of the uncertainty of runoff prediction, us-
ing different regionalization methods (e), shows that the vari-
ability in the medians of the runoff regionalization efficiency
is smaller between regionalization methods than between dif-
ferent calibration variants (i.e., runoff weights). For example,
the standard deviation of the medians obtained for 11 runoff
weights for the local similarity regionalization method in
alpine catchments is 0.17. The standard deviation of the me-
dians between eight regionalization methods ranges (depend-
ing on the runoff weight) between 0.04 and 0.11. The differ-
ences are somewhat smaller in lowland catchments (i.e., the
standard deviation of medians between runoff weights and
regionalization methods is 0.14 and about 0.09, respectively).

6 Conclusions and outlook

This study shows that the recent advances in the remote sens-
ing of water balance components contribute to improving the
hydrological predictions in ungauged catchments. The main
improvements are in estimating soil moisture and snow cover
dynamics, mostly in alpine catchments. Future analyses may
focus on assessing the value of satellite data for other types
of regionalization approaches, such as regional calibration
(Parajka et al., 2007) or multiscale parameter regionaliza-
tion methods (Samaniego et al., 2010; Kumar et al., 2013).
It will also be interesting to evaluate how much runoff in-
formation is needed in addition to existing satellite products
to improve and constrain the model predictions in ungauged
basins. Such an investigation can also include an analysis of
the role of nested catchments in parameter transfer and the
impact of stream gauge density on the regionalization model
performance.

Data availability. The streamflow observation data can be ob-
tained from HZB (https://ehyd.gv.at/; BMLRT, 2021). The me-
teorological data from the ZAMG are currently not publicly
available and requests should be sent to klima@zamg.ac.at.
The ASCAT soil moisture data are available via the Coper-
nicus Global Land Service (https://land.copernicus.eu/global/
products/swi/; CGLS, 2018). MODIS C6 snow cover prod-
ucts are from NASA National Snow and Ice Data Cen-
ter (https://doi.org/10.5067/MODIS/MOD10A1, Hall and Riggs,
2016a; https://doi.org/10.5067/MODIS/MYD10A1.0, Hall and
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formation is from the Copernicus Land Monitoring Service (https://
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