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Supplement  

 

Soil moisture is one of the key controls of runoff response. Past studies have used ground soil 

moisture measurements to provide insight into spatial and temporal soil moisture patterns and 

their relation to terrain, and soil and vegetation characteristics (e.g. Bardossy and Lehmann, 

1998, Western and Blöschl, 1999). However, ground-based measurements have spatial supports 

of only a few centimetres, and logistically, they can only cover relatively small areas. This makes 

it very difficult to estimate meaningful spatial averages over medium-sized to large catchments. 

Alternative more relevant for larger catchments are hydrological models and satellite 

observations (Babaeian et al., 2019). The main advantage of using hydrological models is that 

they explicitly represent areal averages, and soil moisture simulated by these models is 

considered vertically representative over the entire root zone (i.e. the critical zone for runoff 

generation) but they always need calibration for accurately representing hydrological processes in 

a particular case (Blöschl and Grayson, 2002).  

The TUWmodel used in this study is a conceptual hydrologic model, which simulates soil 

moisture in the root zone. The changes in the soil moisture state result from changes in snowmelt, 

rainfall, evapotranspiration and runoff generation contributions. The parameterization of soil 

moisture and runoff generation has three model parameters (FC, Beta, LP), which are calibrated. 

The relationship between rainfall, melt, soil moisture storage and runoff generation is described 

by a non-linear function, which is an empirical curve that connects effective precipitation to 

simulated soil moisture storage and the model parameter field capacity (FC) (Bergström and 

Lindström, 2015). The contribution of rain (PR) and snowmelt (M) to runoff is calculated by an 

explicit scheme as a function of the soil moisture SSM in the root zone, using the following non-

linear relationship:  

∆𝑆𝑈𝑍 = (
𝑆𝑆𝑀
𝐹𝐶

)
𝐵𝑒𝑡𝑎

∙ (𝑃𝑅 +𝑀), 

where FC is the maximum soil moisture storage and Beta is a parameter that controls the 

characteristics of runoff generation. Similar concepts can, for example, be found in the 

Xinanjiang model (Zhao, 1992) and the VIC model (Liang and Lettenmaier, 1994). For a full 

description of the TUWmodel and its implementation see Viglione and Parajka (2020), 

Astagneau et al. (2021) and Jansen et al. (2021). 

Satellite observations similarly provide an integral value over an area which allows direct 

comparisons with hydrologic models. Most satellite datasets are available globally with relatively 

high temporal resolution, so they are also suited for ungauged catchment predictions. However, 

microwave-based datasets have limited penetration depths and poor estimation under dense 

vegetation, on frozen ground and for snow-covered conditions. Because of the limited penetration 

depth of a few centimetres, further processing is needed to obtain soil moisture estimates over a 

deeper soil layer.  

The satellite estimates of root zone soil moisture used in this study are based on the change 

detection method of Wagner et al. (1999) which relates surface soil moisture and satellite 



backscatter. The surface soil moisture is determined by extrapolating the backscatter coefficient 

to a reference angle of 40° and accounting for surface roughness and vegetation characteristics. A 

simple two-layer water balance model then estimates the root zone soil moisture. The first layer 

represents the remotely sensed topsoil layer, and the second layer represents a reservoir 

connected to the surface layer. It is assumed that the surface wetness observations from the 

scatterometer reflect the high soil moisture dynamics due to precipitation, evaporation, and 

surface runoff and indicate the wetting and drying trend of the moisture content in the lower soil 

profile. The water flux between the two layers is assumed to be proportional to the volumetric 

water content in the surface layer and the reservoir. The result of this model is a Soil water index, 

which represents the profile soil moisture in relative units ranging between wilting point and field 

capacity. This method has been validated and compared with ground-based and modelled root-

zone soil moisture estimates in numerous studies (e.g. Paulik et al., 2014). It has become a part of 

the processing algorithms providing operational and experimental soil moisture products, such as 

S1ASCAT used in this study (Bauer-Marschallinger et al., 2018). 

One of the aims of this study is to compare the hydrologic model and satellite soil moisture 

predictions in ungauged basins. The procedure consists of transferring model parameters to 

ungauged basins, running the model, and estimating runoff, soil moisture and snow cover. We 

use a semi-distributed hydrologic model for the modelling and calculate the soil moisture and 

snow cover in individual elevation zones in each catchment. The catchments are partitioned into 

elevation zones of 200 m vertical width. The main idea of our approach is to keep the number of 

model parameters small (to allow an effective transfer to ungauged sites), but to represent the 

spatial (mostly altitudinal) variability of runoff processes, including snowmelt in alpine areas. 

Our approach uses lumped model parameters (i.e. the same parameters in all elevation zones of a 

catchment), but the model inputs and state variables differ between elevation zones. This 

methodology has been widely used in the past (e.g. Paris Anguela et al., 2008, Parajka et al., 

2009). 

The individual steps of the methodology are documented in Figs S1-S4. Fig. S1 shows an 

example of the regional patterns of root zone soil moisture estimated from the ASCAT satellite, 

indicating that the spatial resolution reflects mainly the large scale rainfall patterns and 

antecedent melt processes, rather than the morphometric characteristics of the terrain (e.g. 

differences between concave and convex landforms).  



 

Figure S1. Relative root zone soil moisture from ASCAT on May 15, 2016 in Austria. Grey 

colour indicates masking because of snow cover.  

 

Figure S1 shows higher soil moisture in central and western (alpine) parts of Austria due to 

rainfall on May 14, 2016 and preceding snowmelt than in the eastern lowlands. Wetter soils in 

the South-east reflect local rainfall events on May 14 and 15. Both the seasonal precipitation and 

melt processes have strong altitudinal variability, so we decided to estimate the agreement in soil 

moisture for individual elevation zones in each catchment. We extracted for each day the average 

satellite soil moisture in each elevation zone in each catchment. The example in Figure S2 shows 

the S1ASCAT root-zone soil moisture averages for different elevation zones at the top and 

observed daily discharge at the bottom.  

 

 



 

Figure S2. Time-series of observed S1ASCAT soil moisture in different elevation zones and 

observed discharge for the Pramerdorf-Pram catchment (341 km²) in Upper Austria. 

 

In a next step we considered (in turn, leave one out) each catchment as ungauged and transferred 

calibrated model parameters to it by using different regionalization methods. The model 

parameters had been calibrated in a previous study of Tong et al. (2021) using a multiple-

objective framework. We tested 11 different sets of model calibrations representing different 

runoff weightings and satellite snow cover and soil moisture objective functions. While the 

weight wQ=1 represents a traditional calibration to runoff only, wQ=0 represents a calibration to 

snow cover and soil moisture only. Values of wQ between 0 and 1 represent different tradeoffs 

between these objectives. Regionalization model performance in each catchment was then 



evaluated against runoff and satellite data. The soil moisture efficiency compares the correlation 

(OSM) between the simulated relative root zone soil moisture and the ASCAT snow water index. 

In a preliminary testing phase, we tested different methods for calculating the OSM agreement. 

We found that the OSM combining soil moisture estimated from different elevation zones allows 

more robust description of the OSM agreement than the correlation between soil moisture 

estimates averaged over the entire catchment (Fig. S3).  

 

Figure S3. Comparison of the Pearson correlation coefficient (MEsoil) estimated from the mean 

catchment averages (red symbols) and from elevation zone averages (blue symbols) in 213 

catchments. The black bars show the variability of Pearson correlation calculated for the 

elevation zones within each catchment. The Pearson correlation is estimated between ASCAT 

root zone soil moisture and hydrologic model relative root zone soil moisture in the calibration 

period. 

 

Particularly in the alpine (higher altitude) regions, correlations calculated from the catchment 

averages of soil moisture estimates hide the spatial variability in the agreement between ASCAT 

and hydrologic root-zone soil moisture estimates, because in catchments with large altitudinal 

variability, the correlation between catchment averages is often large (red symbols in Fig. S3), 

but the soil moisture agreement in higher elevation zones (lines representing the range of 

correlation in Fig. S3) is much smaller. We thus decided to estimate the correlation for elevation 

zones rather than catchment averages. The final correlation coefficient is calculated as average 

over all elevation zones for every day where soil moisture is available. Days for which elevation 

zone average satellite soil moisture cannot be estimated (due to missing pixel values that indicate 



snow cover or frozen ground) are excluded from the correlation estimation. An example of the 

soil moisture agreement (correlation) for the Pramersdorf-Pram catchment in the calibration and 

validation period is presented in Figure S4. 

 

 

Figure S4 Example of soil moisture agreement (correlation) for the Pramersdorf-Pram catchment 

in the calibration and validation periods. 
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