
Hydrol. Earth Syst. Sci., 26, 1727–1743, 2022
https://doi.org/10.5194/hess-26-1727-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Technical note: Using long short-term memory models
to fill data gaps in hydrological monitoring networks
Huiying Ren1, Erol Cromwell2, Ben Kravitz3,4, and Xingyuan Chen4

1Earth Systems Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
2Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, WA, USA
3Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, IN, USA
4Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA

Correspondence: Xingyuan Chen (xingyuan.chen@pnnl.gov)

Received: 26 April 2019 – Discussion started: 16 May 2019
Revised: 22 January 2022 – Accepted: 23 February 2022 – Published: 5 April 2022

Abstract. Quantifying the spatiotemporal dynamics in sub-
surface hydrological flows over a long time window usually
employs a network of monitoring wells. However, such ob-
servations are often spatially sparse with potential tempo-
ral gaps due to poor quality or instrument failure. In this
study, we explore the ability of recurrent neural networks
to fill gaps in a spatially distributed time-series dataset. We
use a well network that monitors the dynamic and hetero-
geneous hydrologic exchanges between the Columbia River
and its adjacent groundwater aquifer at the U.S. Department
of Energy’s Hanford site. This 10-year-long dataset contains
hourly temperature, specific conductance, and groundwater
table elevation measurements from 42 wells with gaps of var-
ious lengths. We employ a long short-term memory (LSTM)
model to capture the temporal variations in the observed sys-
tem behaviors needed for gap filling. The performance of the
LSTM-based gap-filling method was evaluated against a tra-
ditional autoregressive integrated moving average (ARIMA)
method in terms of error statistics and accuracy in captur-
ing the temporal patterns of river corridor wells with var-
ious dynamics signatures. Our study demonstrates that the
ARIMA models yield better average error statistics, although
they tend to have larger errors during time windows with
abrupt changes or high-frequency (daily and subdaily) varia-
tions. The LSTM-based models excel in capturing both high-
frequency and low-frequency (monthly and seasonal) dy-
namics. However, the inclusion of high-frequency fluctua-
tions may also lead to overly dynamic predictions in time
windows that lack such fluctuations. The LSTM can take ad-
vantage of the spatial information from neighboring wells to

improve the gap-filling accuracy, especially for long gaps in
system states that vary at subdaily scales. While LSTM mod-
els require substantial training data and have limited extrap-
olation power beyond the conditions represented in the train-
ing data, they afford great flexibility to account for the spa-
tial correlations, temporal correlations, and nonlinearity in
data without a priori assumptions. Thus, LSTMs provide ef-
fective alternatives to fill in data gaps in spatially distributed
time-series observations characterized by multiple dominant
frequencies of variability, which are essential for advancing
our understanding of dynamic complex systems.

1 Introduction

Long-term hydrological monitoring using distributed well
networks is of critical importance for understanding how
ecosystems respond to chronic or extreme perturbations as
well as for informing policies and decisions related to natural
resources and environmental issues (Wett et al., 2002; Tay-
lor and Alley, 2002; Grant and Dietrich, 2017). One of the
most common methods for collecting hydrologic and chem-
istry data in groundwater is through wells (Güler and Thyne,
2004; Strobl and Robillard, 2008; Lin et al., 2012). However,
most well data have temporal gaps due to instrument failure
or poor measurement quality. These data gaps degrade the
quality of the dataset and increase the uncertainty in the spa-
tial and temporal patterns derived from the data. Gap filling
is essential for developing an understanding of dynamic sys-
tem behaviors and for use in creating continuous, internally
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consistent boundary conditions for numerical models. One
outstanding challenge in gap filling is capturing nonstation-
arity in data.

Various statistical methods have been developed to fill
gaps in spatiotemporal datasets, with the autoregressive in-
tegrated moving average (ARIMA) method being the most
commonly used (Han et al., 2010; Zhang, 2003). For any
given spatial location, ARIMA uses temporal autocorrela-
tions to predict unobserved data points in a time series.
Spatiotemporal autocorrelations can be considered by using
multivariate ARIMA and space–time autoregressive models
(Kamarianakis and Prastacos, 2003; Wikle et al., 1998; Ka-
marianakis and Prastacos, 2005). However, ARIMA cannot
capture nonlinear trends because it assumes a linear depen-
dence between adjacent observations (Faruk, 2010; Valen-
zuela et al., 2008; Ho et al., 2002). In addition, all exist-
ing space–time ARIMA models assume fixed global autore-
gressive and moving average terms, which fail to capture
evolving dynamics in highly dynamic systems (Pfeifer and
Deutrch, 1980; Griffith, 2010; Cheng et al., 2012, 2014).
Spectral-based methods, such as singular spectrum analysis,
the maximum entropy method, and the Lomb–Scargle pe-
riodogram, have been used to account for nonlinear trends
while filling in gaps in spatiotemporal datasets (Ghil et al.,
2002; Hocke and Kämpfer, 2008; Kondrashov and Ghil,
2006). These methods use a few optimal spatial or tempo-
ral modes occurring at low frequencies to predict the miss-
ing values, with the other higher-frequency components dis-
carded as noise. This can lead to a reduced accuracy of
the statistical models when fitting observations and predict-
ing missing values (Kondrashov et al., 2010; Wang et al.,
2012). Kriging and maximum likelihood estimation used in
spatial and spatiotemporal gap filling often face challenges
computing the covariance matrix of the data vector, as it
can be quite large (Katzfuss and Cressie, 2012; Eidsvik
et al., 2014). Other nonlinear methods have been explored
with some success, including expectation–maximization or
Bayesian probabilistic inference such as hierarchical mod-
els, Gaussian process, and Markov chain Monte Carlo. Us-
ing models that build dependencies in different stages or hi-
erarchies most effectively captures spatial and temporal cor-
relations (Calculli et al., 2015; Banerjee et al., 2014; Datta
et al., 2016; Finley et al., 2013; Stroud et al., 2017). In gen-
eral, the expectation–maximization algorithm and Bayesian-
based methods are sensitive to the choice of initial values and
prior distributions in parameter space (Katzfuss and Cressie,
2011, 2012). Moreover, prior distributions and their asso-
ciated parameters all need to be specified in both the spa-
tial and temporal domains, which becomes increasingly diffi-
cult in more complex systems. Empirical orthogonal function
(EOF) related interpolation methods, such as least squares
EOF (LSEOF), data interpolation EOF (DINEOF), and re-
cursively subtracted EOF (REEOF), are widely used to fill
in missing data such as clouds in sea surface temperature
datasets or other satellite-based images with regular gridded

domains (Beckers and Rixen, 2003; Beckers et al., 2006;
Alvera-Azcárate et al., 2016). However, EOF methods re-
quire gridded data, and this limits their use in filling data
gaps in irregularly spaced monitoring networks.

Deep neural networks (DNNs) (Schmidhuber, 2015) are
data-driven tools that, in principle, could provide a power-
ful way of extracting the nonlinear spatiotemporal patterns
hidden in distributed time-series data without knowing their
explicit forms (Längkvist et al., 2014). They are increasingly
being used in geoscience domains to extract patterns and in-
sights from streams of geospatial data and to transform our
understanding of complex systems (Reichstein et al., 2019;
Shen, 2018; Sun, 2018; Sun et al., 2019; Gentine et al., 2018).
The umbrella term of DNN contains numerous architecture
categories which can be selected for the problem at hand.
Recurrent neural networks (RNNs) are a natural choice of
architecture for the analyses in this paper, which focus on
filling gaps in time-series data (Jordan, 1986). RNNs take se-
quences (e.g., time series) as input, and they output either the
single values or sequences that follow. They are designed to
use information about previous events to make predictions
about future events by essentially letting the model “remem-
ber.” However, RNNs have been shown to lose memory from
previously trained data for longer sequences of data, i.e., they
“forget” (Hochreiter et al., 2001). The earlier information
becomes exponentially less impactful for prediction as the
sequence size increases. Long short-term memory (LSTM)
networks are variations of RNNs that are explicitly designed
to avoid this problem by using memory cells to retain infor-
mation about relevant past events (Hochreiter and Schmid-
huber, 1997). RNNs and LSTMs have been successfully ap-
plied to text prediction (Graves, 2013), text translation (Wu
et al., 2016), speech recognition (Graves et al., 2013), and
image captioning (You et al., 2016). Recently, hydrology ap-
plications of RNNs and LSTMs have emerged. For exam-
ple, Kratzert et al. (2018) used LSTMs to predict watershed
runoff from meteorological observations, Zhang et al. (2018)
used LSTMs for predicting sewer overflow events from rain-
fall intensity and sewer water level measurements, and Fang
et al. (2017) used LSTMs to predict soil moisture with high
fidelity.

Our study aims to evaluate the potential of using LSTM
models for filling gaps in spatiotemporal time-series data
collected from a distributed network. We tested the LSTM-
based gap-filling method using datasets collected to under-
stand the interactions between a regulated river and a con-
taminated groundwater aquifer. We treat the gap filling as a
forecasting problem, i.e., we use the historical data as input
to predict the missing values in the data gaps. The future in-
formation relative to the gap is implicitly used in training the
LSTM models. Framing gap filling as a predictive problem
is a common practice when machine learning methods are
used for filling gaps in time-series data (see examples in Kan-
dasamy et al., 2013; Körner et al., 2018; Chen et al., 2020;
Zhao et al., 2020; Sarafanov et al., 2020; and Contractor and
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Figure 1. Groundwater monitoring well network in the 300 Area of the Hanford site and the monitoring data at select wells. Each dot
represents a well instrumented to measure groundwater elevation, temperature, and specific conductance (SpC). The wells selected for this
study are marked with red dots with well names. The three variables monitored are shown in time-series plots using blue (water elevation),
black (SpC), and red (temperature) lines. (Base map © Google Maps.)

Roughan, 2021). The performance of the LSTM-based gap-
filling method is compared with traditional time-series ap-
proaches (i.e., ARIMA) to identify situations in which LSTM
models out- or underperform the ARIMA models.

2 Study site and data description

A 10-year (2008–2018) spatiotemporal dataset was collected
from a network of groundwater wells that monitor temper-
ature (CS547A water conductivity and temperature probe,
Campbell Scientific), specific conductance (SpC) (CS547A
water conductivity and temperature probe, Campbell Scien-
tific), and water table elevation (CS451 stainless-steel pres-
sure transducer, Campbell Scientific) at the 300 Area of the
U.S. Department of Energy Hanford site, located in south-
eastern Washington State. The groundwater well network
was originally built to monitor the attenuation of legacy
contaminants. The groundwater aquifer at the study site is
composed of two distinct geologic formations: a highly per-
meable formation (Hanford formation, consisting of coarse
gravelly sand and sandy gravel) underlain by a much less
permeable formation (the Ringold Formation, consisting of
silt and fine sand). The dominant hydrogeologic features of
the aquifer are defined by the interface between the Hanford

and Ringold formations as well as the heterogeneity within
the Hanford formation (Chen et al., 2012, 2013).

The intrusion of river water into the adjacent groundwa-
ter aquifer causes two water bodies with distinct geochem-
istry to mix and stimulates biogeochemical reactions at the
interface. The river water has lower SpC (0.1–0.12 mcm−1)
than the groundwater (averaging ∼ 0.4 mcm−1). Groundwa-
ter has a nearly constant temperature (16–17 ◦C) as opposed
to the seasonal variations in the river temperature (3–22 ◦C).
The highly heterogeneous coarse-textured aquifer (Zachara
et al., 2013) interacts with dynamic river stages to create
complex river intrusion and retreat pathways and dynam-
ics. The time series of multiyear SpC and temperature ob-
servations at the selected wells show these complicated pro-
cesses of river water intrusion into our study site (Fig. 1).
Wells near the river shoreline (e.g., wells 1-1, 1-10A, 2-2,
and 2-3) tend to be strongly affected by river water intru-
sion in spring and summer. As such, the dynamic patterns
of SpC and temperature correspond well to river stage fluc-
tuations, specifically that SpC decreases and temperature in-
creases with increasing river stage. Fluctuations in SpC in
well 2-2 appear to be stronger and at higher frequency than
in other wells, likely indicating its higher connectivity with
the river. For wells further inland (e.g., well 1-15), temper-
atures consistently remain within the groundwater tempera-
ture range, and SpC has three noticeable dips (dropping from
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0.5 to 0.4 mScm−1). The SpC dips coincide with the high
river stages in the years 2011, 2012, and 2017, which fea-
tured higher peak river stages than other years that enabled
river water to intrude further into the groundwater aquifer. In
wells located an intermediate distance from the river, such as
well 2-5, the intrusion of river water is evident in most years.
It is absent in low-flow years, such as 2009 and 2015, during
which both SpC and temperature remain nearly unchanged.

Earlier studies have demonstrated that physical hetero-
geneity contributes to the different response behaviors of
different locations while the river stage dynamics lead to
multifrequency dynamics in those responses. Natural cli-
matic forcing drives seasonal and annual variations (Ama-
ranto et al., 2019, 2018), whereas the operations of up-
stream hydroelectric dams to meet human societal needs
primarily induce the higher-frequency (i.e., daily and sub-
daily) fluctuations (Song et al., 2018). Our system is rep-
resentative of many dam-regulated gravel-bed rivers across
the world, where anthropogenic dam operations have signifi-
cantly altered the hydrologic exchanges between river water
and groundwater as well as the associated thermal and bio-
geochemical processes (Song et al., 2018; Shuai et al., 2019;
Zachara et al., 2020). Note that the multifrequency varia-
tions in data characterize the dynamic features of data, which
could exist in both short-term and long-term time-series data
as a result of short-term or long-term monitoring efforts.

To understand the multifrequency variations in the river
water and groundwater mixing in each well at the study
site, we perform spectral analysis on multiyear SpC observa-
tions at each selected well using a discrete wavelet transform
(DWT). The DWT is widely used for time–frequency anal-
ysis of time series and relies on a “mother wavelet”, which
is chosen to be the Morlet wavelet (Grossmann and Morlet,
1984) to deal with the time-varying frequency and amplitude
in this site’s time-series data (Stockwell et al., 1996; Grin-
sted et al., 2004). We illustrate the wavelet power spectrum
(WPS) in log scale and its normalized global power spec-
trum (average WPS over the time domain) for the multiyear
SpC time series in the first two columns of Fig. 2. Data gaps
are shown as blank regions in Fig. 2; examples include early
2009 at well 1-1, the beginning of 2011 at well 1-10A, and
the later part of 2012 at well 2-2. The WPS amplitude rep-
resents the relative importance of variation at a given fre-
quency compared to the variations at other frequencies across
the spectrum. At wells 1-1, 1-10A, 2-3, 2-5, and 2-2, the
strongest intensities of the SpC signals appear at half-yearly
and yearly frequencies; however, well 1-15 has a different
pattern, with most of its high intensities below the 256 h fre-
quency. The averaged WPS further shows the behavior con-
trast: wells 1-1, 1-10A, 2-3, and 2-5 have a dominant fre-
quency at half a year; well 2-2 has multiple dominant fre-
quencies at daily, monthly, and seasonal scales; and well 1-
15 has similar intensities at the half-yearly and hourly scales.
Using this information to inform our approach, we hypoth-

esize that gap filling at well 2-2 could be more challenging
due to the mixture of dynamics signatures.

As the system dynamics are driven by the river stage, we
perform magnitude-squared wavelet coherence analysis via
the Morlet wavelet to reveal the dynamic correlations be-
tween the SpC and river stage time series (Grinsted et al.,
2004; Vacha and Barunik, 2012). Wavelet coherence in the
time–frequency domain is plotted in the third column in
Fig. 2, and the average coherence is plotted in the fourth
column; red points indicate statistically significant values at
the 95th percent confidence interval. A larger coherence at a
given frequency indicates a stronger correlation at that fre-
quency between the SpC at a well and the river stage. We
consider these two variables to be highly correlated when
the coherence is larger than 0.7 (shown using colors rang-
ing from green to red in the “Coherence” plots). We found
that such high correlations exist at multiple frequencies, from
subdaily to daily to yearly, at all wells close to the river (e.g.,
1-1, 1-10A, 2-2, and 2-3). Wells farther from the river (e.g.,
1-15 and 2-5) have higher correlation regimes shifted to-
wards longer periods at semiannual and annual frequencies
and are less persistent in time.

As can be seen in Fig. 2, many of the wells have long
data gaps which have unknown effects on our ability to esti-
mate dynamics from the wavelet spectra. As such, gap filling
is needed to infer observations and guide our modeling of
the underlying system. Figure 3 provides a summary of gap
lengths for the overall network of monitoring wells. The ma-
jority of the gap lengths of the three monitored variables are
less than 50 h. Therefore, our investigations explore the abil-
ity of different methods to fill gaps of 1, 6, 12, 24, 48, and
72 h lengths to capture the multifrequency fluctuations using
hourly data input.

3 Gap-filling methods

In this section, we describe two methods that we imple-
mented to fill gaps of various lengths in SpC measurements at
selected wells: an LSTM model and the traditional ARIMA
model. We focused our analyses on filling gaps in SpC due to
its importance in revealing river water and groundwater mix-
ing. The same set of analyses can be performed on water level
and temperature. An input with M time steps (input window
length) is provided to both the LSTM and ARIMA models
for predicting the next time step immediately following the
input window. For gaps larger than 1 h, the gap-filling models
are applied to fill in one missing value at a time. The entire
gap is filled by sliding the input window forward hour by
hour and treating the gap-filled values of the previous miss-
ing hours as observed values.

The input window may contain multiple variables relevant
to the prediction from a single well or multiple wells. Af-
ter experimenting with different sets of input variables (SpC
only; SpC and water level; and SpC, water level, and tem-
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Figure 2. Wavelet power spectrum (WPS) analysis of SpC at each well from 2008 to 2018. The first column is the spectrogram (in
log10 scale) of SpC in each well; the second column is the averaged WPS; the third column is the coherence between SpC in each well
and the river stage; and the fourth column is the averaged coherence, with p < 0.05 values indicated in red.
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Figure 3. Histograms of gap lengths for each monitored variable, aggregated across all wells in the monitoring network from 2008 to 2018.

Figure 4. Illustration of LSTM models for gap filling. Panel (a) shows the architecture of the LSTM models, where M is the input window
size; it includes example input with M = 24 and an example LSTM layer with 128 units. Panel (b) presents an example of an LSTM unit,
where A is the repeating module of the LSTM unit, and h is the output.

perature), we found that including SpC and water level mea-
surements in the input window yielded the most robust per-
formance. Therefore, we used historic water level (m) and
SpC (mcm−1) observations to fill gaps in the SpC time series
of a single well. Using measurements from multiple wells as
input allows the models to account for both the temporal and
spatial correlations in the data, which impacts gap-filling per-
formance. Wells were selected based on adequate data avail-
ability and distance from the target well. Assuming the ob-
servations fromW (W ≥ 1) wells are used to fill in data gaps,
the input size of the model is then M × 2W .

3.1 LSTM models for gap filling

We designed an LSTM architecture, shown in Fig. 4, to train
models of an input size of M time steps and an output size
of one time step. The LSTM model contains a single LSTM
layer followed by an output dense layer. Figures S1 and S2
in the Supplement show the detailed structure of the LSTM
layer.

Training data for the LSTM models were created by find-
ing data segments of M + 1 h with no missing values, i.e.,
no gaps in the data, for both water level and SpC measure-
ments over a specified monitoring window. The well data
were then preprocessed by normalizing all measurements to
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Table 1. Parameters used in training single-well LSTM models.

Parameter Values

Training wells 1-1, 1-10A, 1-15, 2-2, 2-3, 2-5
Synthetic gap length (hours) 1, 6, 12, 24, 48, 72
Model input window (M hours) 24, 48, 72, 96, 120, 144, 168
LSTM units (U units) 32, 64, 128
Learning rate (L) 1× 10−3, 1× 10−4, 1× 10−5

Training period 2012–2015
Validation perioda 2011
Testing periodb 2008 for well 2-5; 2017 for well 1-15; 2016 for all other wells

a The parameter was used to select the best LSTM model configurations and hyperparameters. b The parameter was used to
evaluate the performance of LSTM vs. ARIMA.

zero mean and unit variance for each variable, as SpC is on
a scale of 10−1, and water level is on a scale of 102. Val-
idation datasets were used to select the best model hyper-
parameters and optimal input window size M (Sect. 3.1.1)
for gap filling at each well. Another independent testing pe-
riod was selected at each well, depending on data availability,
to compare the gap-filling performance using the LSTM and
ARIMA methods. The complete set of alternatives that we
considered for each LSTM model configuration is shown in
Table 1. We used the Adam optimizer (Kingma and Ba, 2014)
for training and the mean-squared error as the loss function.
The models were trained for 50 iterations (i.e., epochs) over
the training data.

To evaluate the accuracy of the trained LSTM models in
filling SpC data gaps during the validation and testing pro-
cesses, we assumed that synthetic gaps of various lengths
(e.g., 1, 6, 12, 24, 48, and 72 h, referred to as gap scenar-
ios hereafter) exist in the validation or testing dataset of a
well. We assume that only the SpC measurements are miss-
ing, whereas the water level measurements are available. An
LSTM model configured with an input of M is then given
M hours of data from the time series preceding the occur-
rence of a gap (assuming no missing values in theseM hours)
to fill in hour by hour. The accuracy of the gap-filling model
is evaluated by calculating the mean absolute percentage er-
ror (MAPE; %) between the filled in (i.e., predicted) and ob-
served SpC values:

MAPE= 100×
1
n

n∑
t=1

∣∣∣∣Prediction−Observation
Observation

∣∣∣∣ , (1)

where n is the total number of synthetic missing data points
during the evaluation period.

In addition to MAPE, the models are evaluated using
the Nash–Sutcliffe model efficiency coefficient (NSE) (Nash
and Sutcliffe, 1970) and the Kling–Gupta efficiency (KGE)
(Gupta et al., 2009) metric. NSE is a metric used to assess the
predictive skills and accuracy of hydrological models. Values
range from −∞ to 1, where 1 indicates a perfect model fit,
0 indicates that the model has the same predictive power as

the observational mean, and a value less than 0 indicates that
the model is a worse predictor than the observational mean.
The NSE of the SpC predictions is calculated using the fol-
lowing equation:

NSE= 1−
∑n
t=1(Pt −Ot )

2∑n
t=1(Ot −µ(O))

2 , (2)

where n is the total number of synthetic missing data points
during the evaluation period, Pt and Ot are the respective
predicted and observed SpC values at time t , and µ(O) is the
mean observed SpC value.

The KGE is another goodness-of-fit metric used to evalu-
ate hydrological models by combining the three components
of the NSE model errors (i.e., correlation, bias, and ratio
of variances or coefficients of variation) in a more balanced
way. It has the same range of values as the NSE, where 1 indi-
cates a perfect model fit. The KGE is calculated on a model’s
SpC predictions using the following equations:

KGE= 1−
√
(r − 1)2+ (α− 1)2+ (β − 1)2, (3)

r =
cov(O,P )
σ(O) · σ(P ),

(4)

α =
σ(P )

σ(O)
, (5)

β =
µ(P )

µ(O)
. (6)

Here, cov is the covariance, σ is the standard deviation, and
µ is the arithmetic mean.

In addition to the LSTM models trained for the single-well
setup, we also trained multi-well LSTM models that used ob-
servations from wells 1-1, 1-10A, and 1-16A to fill in data
gaps for well 1-1. We explored the same set of configura-
tion parameters in the multi-well LSTM models as shown
in Table 1 for the single-well models. We then compared
the gap-filling performance of the multi-well LSTM with the
single-well LSTM model for well 1-1. The multi-well mod-
els were not explored for other wells due to the lack of close-
proximity neighboring wells.

https://doi.org/10.5194/hess-26-1727-2022 Hydrol. Earth Syst. Sci., 26, 1727–1743, 2022
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Optimizing LSTM model configuration

We used a grid-search approach to explore different LSTM
model hyperparameter configurations to find the best model
for a given gap length at each well. This involved iterating
over all combinations of the input time window size (M),
the number of units (U ) in the LSTM layer, and the learning
rate (L) listed in Table 1 for each well. We chose the op-
timal LSTM configuration using model performance on the
validation dataset (see Table 1) based on the MAPE defined
in Eq. (1). The combinations that yielded the lowest SpC
MAPEs were selected as the best configuration for a given
gap length at each well. These configurations are shown
in Table S1 in the Supplement. The best model configura-
tions were then used to evaluate the LSTM-based gap-filling
method against the ARIMA-based method (Sect. 3.2) using
relative errors (similar to MAPE by setting n= 1 in Eq. (1)
and removing the absolute value operation) calculated for
each data point in the testing period (Table 1). These varied
among the wells due to the availability of continuous data
required for testing.

3.2 ARIMA models for gap filling

ARIMA is one of the most general model classes for extrap-
olating time series to produce forecasts. We used it as a base-
line to compare and assess the LSTM gap-filling method.
ARIMA can be applied to nonstationary time-series data us-
ing a combination of differencing, autoregressive, and mov-
ing average components. A nonseasonal ARIMA(p,d,q)
model is given by

Yt = c+φ1Y
d
t−1+φpY

d
t−p+ . . .+ θ1et−1+ θqet−q + et , (7)

where φs and θs are polynomials of orders p and q, respec-
tively, each containing no roots inside the unit circle; e rep-
resents error terms; Y d. is Y. differenced d times; and c is
a constant. Note that only nonseasonal terms (p,d,q) are
included in Eq. (2). Seasonal structure can be added with
parameters (P,D,Q)m to the base ARIMA model to con-
vert it to ARIMA(p,d,q)(P,D,Q)m, with a periodic com-
ponent containing m periods. c 6= 0 implies a polynomial of
order d+D in the forecast function. The detailed mathemat-
ical equations for the seasonal ARIMA model are provided
in the Supplement.

The main task in ARIMA-based forecasting is to select
appropriate model orders, i.e., the values of p,q,d,P,Q,
and D. If d and D are known, we can select the orders
p,q,P , and Q via an information criterion such as the
Akaike information criterion (AIC):

AIC=−2log(L)+ 2(p+ q +P +Q+ k), (8)

where k = 1 if c 6= 0 and is 0 otherwise, and L is the likeli-
hood of the model fitted to the differenced data. The ARIMA
models were built using the “auto.arima” function from

the “forecast” R package (Hyndman and Khandakar, 2007),
which applies the Hyndman–Khandakar algorithm (Hynd-
man and Khandakar, 2008) that minimizes the AIC to obtain
the best-fit parameters of the ARIMA model.

Similar to the LSTM-based gap filling, we explored var-
ious input window sizes, from 24 to 504 h in increments of
24 h, for the ARIMA model at each well to identify the opti-
mal input windows within the search range. An optimal input
window size is chosen for each gap length of each well using
the same MAPE metric (i.e., Eq. 1) on the validation dataset.

4 Results and discussion

4.1 Performance of single-well LSTM models

We selected the best combination of LSTM units (U ) and
learning rate (L) for each input time window (M) under each
gap length at each well using the MAPE metric. The valida-
tion MAPEs of those selected models were summarized in
box plots under different groupings, examples of which are
shown in Fig. 5. Each MAPE box plot was drawn from a
group of models with one parameter (corresponding to each
x axis) fixed at a given value while the other parameters cycle
through their possible combinations.

As shown in Fig. 5a, model performance deteriorates as
the gap length increases, indicating that the LSTM-based
method tends to lose ground truth information from its in-
put to inform prediction. In comparing MAPEs across the
various input window sizes shown in Fig. 5b, we observe that
models with all input windows have comparable MAPE sum-
mary statistics, with larger input windows (> 96 h) leading to
slightly smaller MAPE quartiles. The larger input windows
also yield fewer outliers on the larger MAPE end, indicat-
ing that the memory units in the LSTM layers are capturing
important daily to weekly signatures for some wells (which
is evident in the WPS plots in Fig. 2 for all wells except for
well 1-15).

The performance of single-well LSTM models varied
among the wells, as shown in Fig. 5c. The LSTM models
for well 1-15 lead performance with the smallest MAPEs,
whereas the model of well 2-2 yields the worst performance.
The LSTM models for wells 1-1,1-10A, 2-3, and 2-5 per-
formed comparably overall, with slightly more large MAPE
outliers for well 2-3.

4.2 Single-well LSTM and ARIMA comparisons

The single-well LSTM gap-filling approach was compared
to the ARIMA approach using the relative errors calculated
for each data point assumed to be missing in the testing data
by setting n= 1 in Eq. (1) for MAPE. Relative errors were
used to show the overestimations or underestimations of both
approaches. Their respective best model configurations, de-
termined on the validation dataset (i.e., data from year 2011),
were used to compare the two approaches. Figure 6 illus-
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Figure 5. Gap-filling performance for SpC evaluated against the
validation datasets, grouped by gap lengths (a), model input win-
dow size M (b), and training wells (c).

trates the optimal input windows for the LSTM and ARIMA
methods. We observe that the LSTM models require much
less input information than the ARIMA method under all gap
lengths for all of the wells.

Figure 7 shows the box plots of relative errors under dif-
ferent gap lengths for all testing wells. As expected, the rel-
ative errors increase as the gap length increases for both ap-
proaches. The ARIMA models tend to perform better than
the LSTM models in terms of interquartile range. However,
the ARIMA models produce more outliers of large positive
or negative relative errors than the LSTM models in gen-
eral and particularly for larger gap lengths (48 and 72 h). For
well 1-15, the relative errors of both approaches are small for
all gap lengths. Both approaches appear to have larger error
outliers at well 2-3.

For each well, we performed a T test to calculate the
T score and p value between the relative errors of the two
models to determine the significance in the performance dif-
ference of the models. As seen in Table 2, each well has a

high T score and a p value significantly less than 0.05. Thus,
the differences between their relative errors are significant
and meaningful.

In addition to the relative errors, we calculated the MAPE,
root-mean-squared error (RMSE), NSE, and KGE for the
best LSTM and ARIMA model for each gap length. Table 2
compares the performance of the LSTM and ARIMA models
filling in gap lengths of 24 h. The results for all gap lengths
are given in the Supplement (Table S2).

The LSTM and ARIMA models yielded comparable av-
erage metrics at all wells for the 24 h gap length, as can be
seen in Table 2. The NSE and KGE resulting from both mod-
els are close to 1 for all of the wells with negligible differ-
ences between the two models. The difference in the MAPE
and RMSE is also small, with more notable differences for
wells 2-2 and 2-3, where the ARIMA models resulted in
lower MAPE and RMSE values.

In addition to the error statistics, it is also important to
examine how well a gap-filling method captures the desired
dynamics patterns in the gap-filled time series. Therefore, the
SpC time series reproduced by the gap-filling methods dur-
ing the testing period (2016 for wells 1-1, 1-10A, 2-2, 2-3;
2017 for well 1-15; 2008 for well 2-5) with 24 h synthetic
gaps are evaluated against the real time series. The model
configurations are the same as those used in the error statis-
tics comparison (Fig. 6). A gap length of 24 h is the selected
example, as we consider it a reasonably challenging case to
fill the gaps in time-series data exhibiting significant non-
stationarity, such as the SpC data at well 2-3. Moreover, the
relative performance of the two approaches is similar at other
gap lengths with varying error magnitudes.

As shown in the first column of Fig. 8, both approaches
capture the general dynamic patterns in the data fairly well.
For more detail, the time series of relative errors for both
methods are provided in Fig. S3. The ARIMA approach
(blue lines in column 1) missed some abrupt changes that
occur over a short time window (i.e., at higher frequency),
leading to more error spikes in all wells. This is consis-
tent with the relative error outliers in Fig. 7 and is an in-
dication that the ARIMA models lack mechanisms to rep-
resent such high-frequency changes. The LSTM approach
(red lines in column 1) is able to better capture such dy-
namics in all of the wells. However, the inclusion of the
high-frequency fluctuations may also lead to overly dynamic
predictions in time windows dominated by lower-frequency
fluctuations. This contributed to less desirable relative errors
distributed between the first and third quartiles in some wells
(i.e., wells 1-1, 2-3, 2-2, and 1-15), as shown in Fig. S4. The
errors are likely caused by the variability in dynamics signa-
tures among the training, validation, and testing periods, as
well as the selection of the training loss functions and valida-
tion metric that balance between the occurrence of small and
large errors to achieve optimal solutions.

To further investigate the dependence of the relative per-
formance of the two gap-filling methods on the inherent dy-
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Figure 6. Optimal input windows for the LSTM and ARIMA models to fill gaps of various lengths at each well.

Figure 7. Box plots of the relative errors for filling SpC gaps of various lengths (1, 6, 12, 24, 48, and 72 h) at each well during the test
periods. The best LSTM and ARIMA models were used for evaluation. The LSTM and ARIMA models are represented by red bars and blue
bars, respectively.

namics in each time series, spectral analyses for the testing
SpC datasets were performed using the same wavelet decom-
position method for the multiyear analyses (shown earlier in
Fig. 2). As shown in Fig. 8, the time windows of high rel-
ative errors are found to approximately co-locate with the
time when the high-frequency (daily and subdaily) signals
gain more power. The differences between the LSTM and
ARIMA models tend to be amplified during those time win-
dows. Wells 1-1, 1-10A, and 2-2 share similar seasonal pat-
terns in WPS, with the highest intensity bin above 1024 h
across February to July. Their average WPSs all show peaks
around daily and subdaily frequencies. Well 2-3 has its great-
est energy between 16 and 256 h from January to July.
Well 2-5 has low variability intensities at daily and subdaily
frequencies with low-frequency variations (monthly and sea-
sonal) dominating the January to March time frame. For
well 1-15, one of its strongest intensities is above 2048 h
across the entire year, and the other strong intensities are nar-

row bands between 16 and 256 h. In general, both LSTM and
ARIMA are effective at capturing low-frequency variability
(monthly and seasonal). Although LSTM is more effective
at capturing high-frequency (daily and subdaily) fluctuations
and nonlinearities in the datasets, it may also lead to overly
dynamic predictions in time windows with no considerable
high-frequency fluctuations. However, the errors during these
time windows are small and can be improved by smoothing
if such fluctuations are undesirable.

There is also a significant difference in the computational
cost for the LSTM and ARIMA methods. ARIMA requires
very few computational resources: the auto.arima function
in R requires approximately 40 s to fit and validate a model
for each prediction segment on a personal computer with a
3.00 GHz CPU. Conversely, training and validating a sin-
gle LSTM model takes approximately 20–30 min on GPUs
based on dual NVIDIA P100 12GB PCI-e cards.
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Figure 8. Column 1 shows time series of model predictions from the LSTM (in red) and ARIMA (in blue) methods, respectively, assuming
a 24 h synthetic gap in the SpC data compared with observations (in black). The best model configurations were used for all models. The
testing data come from the year 2016 for wells 1-1, 1-10A, 2-2, and 2-3; from the year 2017 for well 1-15; and from the year 2008 for
well 2-5. Column 2 is the spectrogram of each well, and column 3 is the averaged WPS for the corresponding year.
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Table 2. Comparison of single-well LSTM and ARIMA models for a 24 h synthetic gap in the SpC data of the test set for each well. The
models are the same as those used in Fig. 8. The calculated statistics are as follows: the mean absolute percentage error (MAPE), the root-
mean-squared error (RMSE), the Nash–Sutcliffe model efficiency coefficient (NSE), and the Kling–Gupta efficiency (KGE). The T score
and p value are calculated for the relative errors of the two models per well.

Well Model type MAPE RMSE NSE KGE T score P value

1-1 LSTM 1.38 8.33× 10−3 0.991 0.988 19.1 1.00× 10−80

ARIMA 1.36 8.98× 10−3 0.989 0.994

1-10A LSTM 1.37 8.07× 10−3 0.986 0.968 −24.6 1.48× 10−131

ARIMA 1.5 9.60× 10−3 0.98 0.987

1-15 LSTM 0.259 1.88× 10−3 0.989 0.982 −48.9 0.00× 10+00

ARIMA 0.119 1.18× 10−3 0.996 0.997

2-2 LSTM 2.97 1.87× 10−2 0.922 0.962 48.1 0.00× 10+00

ARIMA 2.23 1.64× 10−2 0.939 0.967

2-3 LSTM 2.15 1.63× 10−2 0.945 0.965 21.6 4.69× 10−102

ARIMA 1.72 1.48× 10−2 0.954 0.971

2-5 LSTM 0.929 6.86× 10−3 0.976 0.988 −9.6 9.22× 10−22

ARIMA 0.866 7.45× 10−3 0.971 0.977

4.3 Performance of multi-well models

We evaluated the predictive ability of multi-well models us-
ing both approaches for filling gaps of various lengths in the
SpC data at well 1-1 by comparing their performance against
their single-well counterparts. Well 1-1 was chosen because
of the data availability for nearby wells (wells 1-10A and 1-
16A). Similar to the single-well ARIMA and LSTM model
for well 1-1, the multi-well models also predict the SpC mea-
surement using water level and SpC from three wells. We
adopted the same LSTM architecture from the single-well
LSTM model and trained the same set of alternatives con-
sidering input window sizes, LSTM units, and learning rates
for various gap lengths as listed in Table 1. The same train-
ing and validation periods were adopted to select the optimal
combination of M , U , and L. The optimal combinations are
shown in Table S3. For the multi-well ARIMA models, we
included additional variables as regression terms when build-
ing and fitting models using the auto.arima function. The op-
timal input window sizes of ARIMA are 216, 240, 288, 288,
288, and 192 h for gap lengths of 1, 6, 12, 24, 48, and 72 h, re-
spectively. These are smaller than the optimal window sizes
of the single-well models.

The box plots of relative errors yielded from the single-
well and multi-well models using both approaches are pro-
vided in Fig. 9 for comparison. Additionally, we include per-
formance metrics for comparing the single- and multi-well
models in Table 3. Additional spatial information seems to
exacerbate the relative errors of the ARIMA models, except
in large gaps (e.g., 72 h). The LSTM approach, on the con-
trary, benefits from the information carried by the neighbor-
ing wells when filling in the larger gaps, whereas the per-

formance for small gaps remains unchanged. The aggregated
performance metrics in Table 3 show slightly improved met-
rics for multi-well ARIMA models for gaps smaller than
24 h compared with the single-well models, while the turn-
ing point in relative performance is at 12 h for the LSTM
models. The deteriorated performance metrics of the multi-
well LSTM models at the larger gap lengths are consistent
with the larger interquartile ranges, as shown in the box plots
of relative errors in Fig. 9. However, the multi-well LSTM
and ARIMA models can reduce the occurrence of large rela-
tive errors for larger gaps and provide more robust gap filling
under those circumstances.

These comparisons show that, although the information
from a single well may be sufficient to fill in gaps smaller
than a day, including spatial information from neighboring
wells in the LSTM and ARIMA models could potentially in-
crease the chance of successes in filling data gaps under more
challenging circumstances, such as capturing more complex
dynamic patterns with longer data gaps. While the aggre-
gated metrics provide an overall assessment of model per-
formance, examining the distribution of relative errors could
provide complementary information on large error spikes
while selecting optimal model configurations.

5 Conclusions

In this study, we implemented an LSTM-based gap-filling
method to account for spatiotemporal correlations in moni-
toring data. We extensively evaluated the method on its abil-
ity to fill data gaps in the groundwater SpC measurements
that are often used to indicate groundwater and river water
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Figure 9. Comparing relative error performance between the best single-well LSTM models (well 1-1 – red), multi-well LSTM models
(wells 1-1, 1-10A, and 1-16A – yellow), a single-well ARIMA model (blue), and a multi-well ARIMA model (green) for filling in various
SpC gap lengths for well 1-1 during the test period (year 2016).

interactions along river corridors. We took advantage of a 10-
year, spatially distributed, multivariable time-series dataset
collected by a groundwater monitoring well network and op-
timized an LSTM architecture for filling SpC data gaps. A
primary advantage of using LSTM is its ability to incorporate
spatiotemporal correlations and nonlinearity in model states
without a priori assuming an explicit form of correlations
or nonlinear functions in advancing system states. We com-
pared the performance of a single-well LSTM-based gap-
filling method with a traditional gap-filling method, ARIMA,
to evaluate how well an LSTM model can capture multifre-
quency dynamics. We also trained LSTM and ARIMA mod-
els that take input from multiple wells to predict responses at
one well. The multi-well models were compared with single-
well models to identify and assess improvements in gap-
filling performance from including additional spatial corre-
lation from neighboring wells.

In general, both LSTM and ARIMA methods were highly
accurate in filling smaller data gaps (i.e., 1 and 6 h). They
were reasonably effective at filling in medium gaps between
12 and 48 h, while more work is needed for gaps larger than
48 h. Both models captured the long-term trends in data (i.e.,
low-frequency variations at monthly or seasonal timescales).
The ARIMA method was found to have difficulty capturing
abrupt changes and is, thus, more suitable for time series with
less dynamic behavior. Compared with the ARIMA models,
the LSTM models excel in dealing with high-frequency dy-
namics (daily and subdaily) and nonlinearities, although they
require more training data and computational resources. As a
side effect of including high-frequency (daily and subdaily)
fluctuations in the model, the LSTM approach may produce
overly dynamic predictions in time windows that lack dy-
namics. As with any deep learning method, the availability of
sufficient training data that cover a wide range of conditions
is critical for the success of LSTM methods. Extrapolating

the LSTM models to conditions beyond those in the training
data remains a major challenge.

Wavelet analysis could provide useful insights into the dy-
namic signatures of the data and changes in the composition
of their important frequencies over time, which can serve as a
basis for selecting an appropriate gap-filling method. For ex-
ample, the ARIMA method would work well if the dynam-
ics are dominated by seasonal cycles, while more sophisti-
cated approaches like LSTM-based methods could work bet-
ter if there is evidence of weekly, daily, and subdaily fluctua-
tions. Depending on the mixture of high- and low-frequency
variability inherent in the time series, different LSTM ar-
chitecture and configurations can be explored and evaluated
through hyperparameter searches with respect to LSTM lay-
ers, dense layers, and activation functions to achieve bet-
ter performance in capturing complex dynamics. The opti-
mal LSTM model configuration and achievable performance
would vary case by case.

We also demonstrated that incorporating spatial informa-
tion from neighboring stations in LSTM models could con-
tribute to performance improvements under challenging sce-
narios with dynamic system behaviors and longer data gaps
of up to 2 d. However, other alternatives need to be explored
for gaps beyond 2 d. Bidirectional and convolutional LSTMs
are two promising methods to leverage information from the
future time window and spatially distributed networks, re-
spectively. While we introduced a new method that can be
broadly applied to fill in gaps in an irregularly spaced net-
work for monitoring groundwater and surface water interac-
tions, the transferability of this method to other monitoring
systems could be more extensively evaluated by community
participation. When applying LSTM or other DNN-based
methods for gap filling, it is important to rigorously evaluate
the model performance by asking the following questions:
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Table 3. Comparison of single-well and multi-well LSTM and ARIMA models for all synthetic gap lengths in the SpC data. The models
are the same as those used in Fig. 9. Calculations are performed on the test dataset for well 1-1 (year 2016). The calculated statistics are as
follows: the mean absolute percentage error (MAPE), the root-mean-squared error (RMSE), the Nash–Sutcliffe model efficiency coefficient
(NSE), and the Kling–Gupta efficiency (KGE). T scores and p values are calculated on the relative errors of the two single-well models for
each gap length and calculated on the relative errors of the two multi-well models.

Gap length (hours) Model type MAPE RMSE NSE KGE T score p value

1 Single-well LSTM 0.117 7.76× 10−4 1.0 0.999 11.6 6.14× 10−31

Single-well ARIMA 0.183 1.23× 10−3 1.0 1.0

Multi-well LSTM 0.117 7.94× 10−4 1.0 1.0 9.37 8.54× 10−21

Multi-well ARIMA 0.134 1.22× 10−3 1.0 1.0

6 Single-well LSTM 0.435 2.92× 10−3 0.999 0.995 13.8 4.46× 10−43

Single-well ARIMA 0.461 3.29× 10−3 0.999 0.999

Multi-well LSTM 0.435 2.98× 10−3 0.999 0.998 12.2 5.82× 10−34

Multi-well ARIMA 0.405 3.16× 10−3 0.999 0.999

12 Single-well LSTM 0.75 5.07× 10−3 0.997 0.996 16.0 2.05× 10−57

Single-well ARIMA 0.781 5.47× 10−3 0.996 0.996

Multi-well LSTM 1.19 6.48× 10−3 0.994 0.985 5.25 1.55× 10−7

Multi-well ARIMA 0.77 5.40× 10−3 0.996 0.997

24 Single-well LSTM 1.38 8.33× 10−3 0.991 0.988 19.1 1.00× 10−80

Single-well ARIMA 1.36 8.98× 10−3 0.989 0.994

Multi-well LSTM 2.26 1.17× 10−2 0.982 0.968 7.77 8.48× 10−15

Multi-well ARIMA 1.47 9.55× 10−3 0.988 0.99

48 Single-well LSTM 2.13 1.21× 10−2 0.98 0.988 17.8 3.24× 10−70

Single-well ARIMA 2.15 1.34× 10−2 0.976 0.988

Multi-well LSTM 3.49 1.76× 10−2 0.958 0.969 28.4 7.83× 10−174

Multi-well ARIMA 2.35 1.40× 10−2 0.974 0.981

72 Single-well LSTM 2.56 1.40× 10−2 0.974 0.983 26.7 4.91× 10−154

Single-well ARIMA 2.57 1.46× 10−2 0.971 0.985

Multi-well LSTM 4.41 2.19× 10−2 0.936 0.955 31.7 4.78× 10−214

Multi-well ARIMA 3.02 1.78× 10−2 0.958 0.972

– What is the dynamics signature of the data to be filled?

– How is gap-filling performance impacted by the length
of gaps?

– How does the amount of training data impact the model
performance?

– How does the choice of the input time window impact
gap-filling performance?

– How much value can measurements at neighboring add
to the performance improvement?

Better capturing spatiotemporal dynamics in system states is
essential for generating the most valuable insights to advance
our understanding of dynamic complex systems.
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