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Abstract. Accurate weather forecast information has the po-
tential to improve water resources management, energy, and
agriculture. This study evaluates the accuracy of medium-
range (1–15 d) precipitation forecasts from the Global Fore-
cast System (GFS) over watersheds of eight major dams
(Selingue Dam, Markala Dam, Goronyo Dam, Bakolori
Dam, Kainji Dam, Jebba Dam, Dadin Kowa Dam, and Lagdo
Dam) in the Niger river basin using NASA’s Integrated
Multi-satellitE Retrievals (IMERG) Final Run merged satel-
lite gauge rainfall observations. The results indicate that
the accuracy of GFS forecast varies depending on climatic
regime, lead time, accumulation timescale, and spatial scale.
The GFS forecast has large overestimation bias in the Guinea
region of the basin (wet climatic regime), moderate overes-
timation bias in the Savannah region (moderately wet cli-
matic regime), but has no bias in the Sahel region (dry cli-
mate). Averaging the forecasts at coarser spatial scales leads
to increased forecast accuracy. For daily rainfall forecasts,
the performance of GFS is very low for almost all water-
sheds, except for Markala and Kainji dams, both of which
have much larger watershed areas compared to the other wa-
tersheds. Averaging the forecasts at longer timescales also
leads to increased forecast accuracy. The GFS forecasts, at
15 d accumulation timescale, have better performance but
tend to overestimate high rain rates. Additionally, the perfor-
mance assessment of two other satellite products was con-
ducted using IMERG Final estimates as reference. The Cli-

mate Hazards Group InfraRed Precipitation with Station data
(CHIRPS) merged satellite gauge product has similar rainfall
characteristics to IMERG Final, indicating the robustness of
IMERG Final. The IMERG Early Run satellite-only rainfall
product is biased in the dry Sahel region; however, in the
wet Guinea and Savannah regions, IMERG Early Run out-
performs GFS in terms of bias.

1 Introduction

Global climate forecasts, with lead times ranging from hours
to several months, are becoming increasingly available (Saha
et al., 2014; Haiden et al., 2021; NCEP, 2015; JMA, 2019).
Significant societal benefit could be realized from research to
reduce common barriers in climate forecast utilization that
block the path to improving water resources management,
energy, and agriculture. One such a barrier is the lack of
understanding of climate forecast accuracy in different re-
gions of the world. This focus is timely, given the recent ad-
vances in numerical atmospheric models and in the wealth of
new observing capabilities, including satellite remote sens-
ing. These combined models and observational datasets pro-
vide an opportunity for researchers to quantify the accuracy
of climate forecasts.

The Niger river is the principal river of West Africa and is
shared among nine riparian countries (Fig. 1), namely Benin,
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Burkina Faso, Cameroon, Chad, Guinea, Côte D’Ivoire,
Mali, Niger, and Nigeria. The basin is facing multiple pres-
sures from increasing population, water abstraction for irri-
gation, and the risk of extreme hydrological events due to
climate change (Sylla et al., 2018). A number of hydropower
dams exist in the region, and additional dam projects are
envisaged in order to alleviate chronic power shortages in
the countries of the Niger basin. Optimal management of
water resources is key to maximizing the benefits, such as
hydropower generation, and minimizing the disasters, such
as flooding. Climate forecast information has the potential
to improve water resources management, energy, and agri-
culture (e.g., Patt et al., 2007; Breuer et al., 2010; Mase
and Prokopy, 2014; Pandya et al., 2015; Koppa et al., 2019;
Alexander et al., 2020). For example, in a recent study,
Koppa et al. (2019) showed that the use of seasonal precip-
itation forecasts in the reservoir planning of the Omo Gibe
I in Ethiopia can increase annual hydropower generation by
around 40 %.

Several studies have investigated the accuracy of seasonal
forecasts in West Africa (e.g., Bliefernicht et al., 2019; Pir-
ret et al., 2020). Seasonal forecasts are important for wa-
ter resource planning, while medium-range (1 to 15 d) fore-
casts are important for operational decisions, such as reser-
voir operations. The availability of medium-range global
climate forecasts has grown in recent years. Examples of
such forecast products include the Global Forecast System
(GFS; NCEP, 2015), NCEP (National Centers for Environ-
mental Prediction) Climate Forecast System (CFS; Saha et
al., 2014), the European Centre for Medium-Range Weather
Forecasts (ECMWF; Haiden et al., 2021), and the Global
Spectral Model (GSM; JMA, 2019). For these precipitation
forecasts to be effectively used in applications, their accuracy
must be known, which is usually performed through compar-
ison of precipitation forecasts to observations (e.g., Tian et
al., 2017; Yuan et al., 2014). Wang et al. (2019) performed
a numerical experiment to examine the sensitivity of GFS
to the inclusion or exclusion of additional observations col-
lected over the eastern Pacific during the El Niño Rapid Re-
sponse (ENRR) field campaign, the type of data assimilation
method to prepare the initial conditions, and the inclusion
or exclusion of stochastic parameterizations in the forecast
model. They reported that the GFS forecast errors are only
slightly sensitive to the additional ENRR observations, more
sensitive to the DA methods, and most sensitive to the inclu-
sion of stochastic parameterizations in the model. In addition,
they reported that GFS forecasts have difficulty in capturing
the location and magnitude of heavy rain rates. Sridevi et
al. (2018) evaluated the performance of GFS in India by us-
ing a rain gauge and satellite rainfall product and reported
that the GFS forecast shows some skills with 1 and 2 d lead
times but low skills from 3 d onwards. Lien et al. (2016) com-
pared the statistical properties of GFS forecasts and Tropical
Rainfall Measuring Mission (TRMM) Multisatellite Precip-
itation Analysis (TMPA; Huffman et al., 2007, 2010) obser-

vations. They reported that the GFS model has a positive
bias in the precipitation amount compared to TMPA obser-
vations, and that the GFS forecasts have large random errors
at higher resolutions, especially for convective precipitation.
According to Jiang et al. (2017) the lack of consideration of
the aerosol–cloud interactions (ACIs) in the GFS model leads
to significant bias in the GFS precipitation forecasts.

In our study region of the Niger river basin, there has
not been any performance evaluation of GFS precipitation
forecasts to date. The Niger basin lies in three different cli-
mate regimes (wet regime, moderately wet regime, and dry
regime) and is home to nine major irrigation and hydropower
dams (Selingue, Markala, Goronyo, Bakolori, Kainji, Jebba,
Dadin Kowa, and Lagdo). Recent advances in satellite rain-
fall products, particularly following the Global Precipitation
Measurement mission (GPM; Hou et al., 2014), and an ex-
tensive evaluation of GPM rainfall products in West Africa
provides us with an opportunity to use GPM rainfall prod-
ucts as a reference for our evaluation. Many studies have
been conducted to evaluate the accuracy of the satellite rain-
fall estimates in West Africa. Dezfuli et al. (2017a) evaluated
the performance of NASA’s Integrated Multi-satellitE Re-
trievals (IMERG) Final Run (IMERG Final; version 4; Huff-
man et al., 2019a, b) through comparison with two, high-
resolution, experimental rain gauge station datasets, pro-
vided by the Trans-African Hydro-Meteorological Observa-
tory (TAHMO; van de Giesen et al., 2014), and reported the
capability of IMERG Final to represent the diurnal cycle of
rainfall well. Using the same dataset, Dezfuli et al. (2017b)
showed that IMERG Final is able to capture the propagation
of large mesoscale convective systems (MCSs), a significant
advantage over its predecessor’s (TMPA) 3 h temporal res-
olution, which misses the time evolution of most of these
systems. Gossett et al. (2018) evaluated the performance of
a number of satellite rainfall products (focusing only on ver-
sions that do not include rain gauge data), through compar-
ison with rain gauge station networks in Benin and Niger,
and reported that the satellite products (especially IMERG
Early) exhibit a high performance in Niger but a relatively
lower performance in Benin. Satgé et al. (2020) evaluated the
accuracy of a number of gridded precipitation datasets over
West Africa through comparison against rain gauge station
data and reported that the Climate Hazards Group InfraRed
Precipitation with Station data (CHIRPS) and TMPA (the
predecessor to IMERG) provided reliable estimates at both
daily and monthly timescales, while the remaining satellite
products considered (Climate Prediction Center MORPHing
– CMORPH; Precipitation Estimates from Remotely Sensed
Information using Artificial Neural Network and Climate
Data Record – PERSIANN; Global Satellite Mapping of Pre-
cipitation standard – GSMaP; Africa Rainfall Climatology
– ARC; Tropical Applications of Meteorology using SATel-
lite and ground-based observation – TAMSAT) and all atmo-
spheric reanalysis products considered (Modern-Era Retro-
spective analysis for Research and Applications – MERRA;
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Figure 1. The Niger river basin and locations of major reservoir dams in the basin. (1) Selingue, (2) Markala, (3) Goronyo, (4) Bakolori,
(5) Kainji, (6) Jebba, (7) Dadin Kowa, and (8) Lagdo.

Japanese 55-year Reanalysis – JRA-55) were deemed unreli-
able. Furthermore, they found out that satellite products that
incorporated rain gauge information outperformed satellite-
only products. Maranan et al. (2020) compared the IMERG
Final products against experimental rain gauge station data
in the moist forest region of Ghana, West Africa, and showed
that IMERG Final datasets are able to capture monthly rain-
fall with a correlation coefficient close to unity.

The objective of this study is to evaluate the accuracy
of medium-range precipitation forecasts derived from the
Global Forecast System (GFS) for the major reservoir dams
of the Niger basin through comparison against IMERG Fi-
nal. We chose GFS model due to its relatively high spatial
(0.25◦× 0.25◦) and temporal resolution (3 to 6 h), as well as
the free-of-charge data availability to users. The main ques-
tions addressed in this study are as follows. First, how does
the accuracy of GFS forecast vary across different reservoir
dams in the same basin? Second, how does the accuracy vary
with lead time in the range 1 to 15 d? Third, what is the effect
of spatial averaging (from 0.25◦ all the way to basin scale)
and temporal aggregation (from 1 to 15 d) on the forecast
accuracy? Fourth, how does the accuracy of GFS forecast
compare with the accuracy of satellite-only rainfall products
that are available in near-real time, as the latter may have the
potential to calibrate and improve the accuracy of GFS?

2 Data and methodology

2.1 Global Forecast System (GFS) medium-range
precipitation forecasts

The Global Forecast System (GFS) is a global numerical
weather prediction system run by the U.S. National Weather
Service (NWS). The GFS forecast products, with a resolution
of 0.25◦ by 0.25◦, are obtained from National Center for At-
mospheric Research (NCAR) Research Data Archive (RDA)
GFS 0.25◦ Global Forecast Grids Historical Archive (NCEP,
2015). The GFS is run 4 times a day at 00:00, 06:00, 12:00,
and 18:00 UTC. One of the GFS model output variables is
accumulated precipitation, where the precipitation forecasts
are accumulations starting from the model runtime. We ob-
tained the 1 d lead daily rainfall forecast by subtracting the
24 h rainfall accumulation forecast from the 48 h rainfall ac-
cumulation forecast. Similarly, in order to obtain the 5 d lead
daily rainfall forecast, we subtracted the 120 h rainfall accu-
mulation forecast from the 144 h rainfall forecast. We only
considered the model runs at 00:00 UTC.

The GFS model went through a major upgrade, and its ver-
sion 15 forecasts have been available since 12 June 2019.
In version 15, the Finite-Volume Cubed-Sphere (FV3) dy-
namical core replaced the Global Spectral Model (GSM)
as the core model. In the GSM model, the horizontal res-
olutions were T1543 (12.5 km), from 0 to 240 h (0–10 d),
and T574 (∼ 34 km), from 240 to 384 h (10–16 d; NCEP,
2021a). However, in the FV3 model, the horizontal resolution
of the model is about 13 km for days 0–16 (NCEP, 2021b).
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The model runs are regridded to produce precipitation fore-
casts at 0.25◦ resolution (NCEP, 2015). The key FV3 model
schemes include the following (Putman and Lin, 2007):
(1) the rapid radiative transfer method for GCMs (RRTMG)
scheme for shortwave/longwave radiation (Mlawer et al.,
1997; Iacono et al., 2000; Clough et al., 2005), (2) the hy-
brid eddy-diffusivity mass-flux (EDMF) scheme for plane-
tary boundary layer (PBL; NCEP, 2021a), (3) the Noah land
surface model (LSM) scheme for land surface option (Chen
et al., 1997), (4) the Simplified Arakawa–Schubert (SAS)
deep convection for cumulus parameterization (Arakawa and
Schubert, 1974; Grell, 1993), and (5) an advanced Geo-
physical Fluid Dynamics Laboratory (GFDL) microphysics
scheme for microphysics (NCEP, 2021b).

2.2 IMERG Final satellite precipitation products

IMERG Final rainfall products are used in this study as a
reference to evaluate the performance of GFS precipitation
forecasts. IMERG Final combines all available microwave
precipitation estimates, microwave-calibrated infrared esti-
mates, and rain gauge data to provide rainfall estimates at
very high resolution (30 min, 0.10◦; Hou et al., 2014; Huff-
man et al., 2015). The IMERG products are categorized into
three types, namely early run, late run, and final run. It is
only the final run or final version that incorporates rain gauge
data. The data latency of IMERG Final is about 3.5 months.
Details of the IMERG algorithm developed by NASA are
available in Huffman et al. (2019a, b). The latest version
(V6B) of the IMERG datasets has been accessed from the
NASA’s Earth Data Goddard Earth Sciences Data and Infor-
mation Services Center (GES DISC) web portal (Huffman et
al., 2019a, b; see the data availability section at the end of the
paper for details).

2.3 Other satellite precipitation products

In order to put the GFS forecast performance into perspec-
tive, we also evaluated two other state-of-the-art satellite
rainfall products.

– IMERG Early provides uncalibrated IMERG rainfall
fields which do not include correction from rain gauges.
The data latency of IMERG Early is near-real time
(about 4 h). We have used the latest version (V6B) of
IMERG Early datasets. Post-processing calibration of
GFS forecasts (in order to improve the accuracy of GFS
forecasts) requires the use of relatively better perform-
ing and available in near-real time independent rainfall
observations to correct real-time dynamical GFS model
forecasts. A comparison of the performance of IMERG
Early with the performance of GFS would indicate to
what extent the IMERG Early products could be used
for the calibration of GFS forecasts.

– The Climate Hazards Group InfraRed Precipitation with
Station data (CHIRPS) are derived primarily from ther-
mal infrared data using the cold cloud duration (CCD)
approach, which is calibrated using TRMM Multisatel-
lite Precipitation Analysis (TMPA 3B42-V7; Huffman
et al., 2007) precipitation datasets by local regres-
sion, and include rain gauge station data from multi-
ple sources (regional and national meteorological ser-
vices). CHIRPS data are available at a spatial resolu-
tion of 0.05◦ and a temporal resolution of 1 d, with a
data latency period of about 3 weeks. Details of the
CHIRPS algorithm are available in Funk et al. (2015).
The agreement between the reference (IMERG Final)
and CHIRPS would indicate that the IMERG Final esti-
mates are robust.

2.4 Study region

The Niger river, with a drainage basin of 2 117 700 km2, is
the third-longest river in Africa. The source of the main river
is in the Guinea Highlands, and it runs through Mali, Niger,
on the border with Benin, and then through Nigeria, dis-
charging through a massive delta, known as the Niger Delta
(the world’s third-largest wetland), into the Atlantic Ocean.
The rainfall regimes in the region follow the seasonal migra-
tion of the Intertropical Convergence Zone (ITCZ), which
brings rainfall primarily in the summer season (Animashaun
et al., 2020; Sorí et al., 2017). Climatologically, the Niger
basin lies in the following three latitudinal subregions (Akin-
sanola et al., 2015, 2017): (1) the Guinea coast (latitude 4–
8◦ N), which borders the tropical Atlantic Ocean in the south;
(2) the Savannah (latitude 8–12◦ N), which is an intermedi-
ate subregion; and (3) the Sahel (latitude > 12◦ N), which
lies to the north. The Guinea coast experiences a bimodal
rainfall regime that is centered in the summer monsoon pe-
riod of June–September, with August being the period of a
short dry season, while the Savannah and Sahel subregions
experience a unimodal rainfall regime, with maximum rain-
fall occurring in August (Akinsanola and Zhou, 2018). The
ranges of annual rainfall amounts are 400–600 mm in the Sa-
hel, 900–1200 mm in the Savannah, and 1500–2000 mm in
the Guinea coast (Akinsanola et al., 2017).

The Niger basin is home to eight major reservoir dams (see
Table 1 and Fig. 1), including the following: (1) Selingue
Dam in Mali, which is primarily a hydropower dam;
(2) Markala Dam in Mali, which is primarily an irrigation
dam that serves about 75 000 ha of farmland; (3) Goronyo
Dam in Nigeria, which is a multipurpose dam for flood con-
trol, the provision of downstream water supply, and the re-
lease of water for irrigation in the dry season; (4) Bakolori
Dam in Nigeria, which is primarily an irrigation dam with a
command area of about 23 000 ha; (5) Kainji Dam in Nige-
ria, which is the largest dam on the Niger supplying power
for most towns in Nigeria; (6) Jebba Dam in Nigeria, which
is primarily a hydropower dam; (7) Dadin Kowa Dam, which
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is a multipurpose dam for water supply, electricity, and irri-
gation; and (8) Lagdo Dam in Cameroon, which is a mul-
tipurpose dam providing electricity to the northern part of
the country and supplying irrigation water for 15 000 ha of
cropland. The watersheds of the dams are primarily either
in the Savanna (Selingue, Markala, Jebba, Dadin Kowa, and
Lagdo), in the Sahel (Goronyo and Kainji), or partly in both
(Bakolori). The watershed sizes vary over a large range, from
4887 km2 (Bakolori) to 1 464 092 km2 (Kainji). The aver-
age elevations of the watersheds are close to each other at
500± 50 m a.s.l. (above sea level).

In order to make the results of this study meaningful to
reservoir managers, the Niger basin was divided into water-
sheds according to the locations of the dam reservoirs (see
Fig. 1). Then the subbasin of each dam was defined as the
drainage between the dam itself and the upstream dam. For
example, the drainage basin of the Markala Dam does not
include the drainage basin of the Selingue Dam.

2.5 Evaluation

IMERG Final rainfall products are used in this study as a ref-
erence to evaluate the performance of GFS precipitation fore-
casts. The comparison period is 15 June 2019 to 15 June 2020
to match the period for which version 15 of GFS model fore-
casts is available. The spatial resolutions of the forecast and
satellite products are different, namely 0.25◦ (GFS), 0.10◦

(IMERG Final and IMERG Early), and 0.05◦ (CHIRPS).
The temporal resolutions of the satellite products are 30 min
(IMERG Final and IMERG Early) and daily (CHIRPS). Our
comparison is mostly based on the subbasin (i.e., watershed
for each dam) average values, for which case we average
all the datasets to the subbasin spatial scale. In some cases,
where we compare the spatial patterns of rainfall, we resam-
ple both IMERG products and CHIRPS to 0.25◦, using the
bilinear interpolation technique to match the spatial resolu-
tion of GFS.

For evaluation metrics, we used the modified Kling–Gupta
efficiency (KGE; Gupta et al., 2009; Kling et al., 2012) and
its components, i.e., the bias ratio (BR), correlation (R), and
variability ratio (γ ). KGE measures the goodness of fit be-
tween estimates of precipitation forecasts and reference ob-
servations as follows:

KGE= 1−
√
(R− 1)2+ (BR− 1)2+ (γ − 1)2,

BR=
µf

µo

γ =
CVf

CVo
,

where R is the linear correlation coefficient between fore-
casted and observed precipitation, BR is the bias ratio, γ is
the variability ratio, µ is the mean precipitation, CV is the
coefficient of variation, and the indices f and o represent fore-
casted and observed precipitation values, respectively. KGE

values range from −∞ to 1, with values closer to 1 indi-
cating better model performance. Towner et al. (2019) sug-
gested the following classifications: good (KGE≥ 0.75), in-
termediate (0.75≥KGE≥ 0.5), poor (0.5≥KGE> 0), and
very poor (KGE≤ 0). The BR values greater than 1 indicate
a positive bias, whereby forecasts overestimate precipitation
relative to the observed data, while values less than 1 repre-
sent an underestimation. The γ values greater than 1 indicate
that the variability in the forecast time series is higher than
that observed, and values less than 1 show the opposite ef-
fect. The R measures the strength and direction of the linear
relationship between the forecast and observed values, and
to what extent the temporal dynamics of observed rainfall
is captured in the forecasts. The correlation values of 0.6 or
more are considered to be skillful (e.g., Alfieri et al., 2013).
In addition, the root mean square error normalized by refer-
ence precipitation mean (NRMSE) was also used.

3 Results and discussion

3.1 Annual spatial variability and seasonal
characteristics

The spatial map of annual (15 June 2019–15 June 2020) rain-
fall from the various rainfall products is given in Fig. 2. Ac-
cording to the reference rainfall product (i.e., IMERG Fi-
nal), the Niger basin experiences an average annual rainfall
of 700 mm. The spatial rainfall distribution shows a north-to-
south increasing gradient, with the Sahel region (> 12◦ N)
receiving, on average, 346 mm per year, the Savanna re-
gion (8–12◦ N) receiving, on average, 1206 mm per year, and
the Guinea region (4–8◦ N) receiving, on average, 1620 mm
per year. The spatial structures (climatology and north–south
gradient in rainfall) of GFS, IMERG, and CHIRPS rainfall
fields are quite similar to those of IMERG Final. However,
the 1 d GFS tends to overestimate in the wet Guinea region
of the basin, whereas both IMERG Early and CHIRPS give
values that are very close to IMERG Final.

Figure 3 shows the seasonal rainfall pattern for each clima-
tological region. According to the reference IMERG Final,
as one goes from north to south, the rainy season expands
from 3 months (June–September) in the Sahel to 6 months
(March–November) in the Savanna and Guinea regions. The
peak rainfall also shows a north–south gradient, with peak
rainfall of 130 mm in the Sahel to 269 mm in the Savanna
and 350 mm in the Guinea region. The rainfall pattern is uni-
modal, with a peak rainfall value in August for both the Sahel
and Savanna, but becomes bimodal with one peak in May and
the other in September for Guinea.

When validated against IMERG Final, the performance of
GFS in capturing the seasonal rainfall characteristics deterio-
rates as one goes from north to south. GFS captures both the
seasonal rainfall pattern and rainfall peak in the Sahel and
captures the seasonal rainfall pattern but tends to moderately
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Table 1. Selected dams and their watershed characteristics.

Primary purposeb

Dam Country Operational Capacity Power Irrigation Flood Hydro- Area of Elevation
sincea (×106 m3)a (MW)a and water control electri- drainage of drainage

supply city basin basin
(km2)b (m)b

Selingue Mali 1982 2170 44 × 32 685 473
Markala Mali 1947 175 × 102 882 442
Goronyo Nigeria 1983 942 × × 31 547 446
Bakolori Nigeria 1978 450 × 4887 519
Kainji Nigeria 1968 15 000 960 × 1 464 092 406
Jebba Nigeria 1984 3600 540 × 40 268 308
Dadin Kowa Nigeria 1988 2855 35 × × 32 936 535
Lagdo Cameroon 1983 7800 72 × × 31 352 452

a Information obtained from the Global Reservoir and Dam Database (Lehner et al., 2011) and the Global Information System on Water and Agriculture (AQUASTAT) of
the Food and Agriculture Organization (FAO) of the United Nations. b Calculated from HydroSHEDS (Lehner et al., 2008).

Figure 2. Spatial map of annual rainfall (in millimeters), for the period 15 June 2019 to 15 June 2020, derived from (a) IMERG Final,
(b) GFS (1 d lead time), (c) IMERG Early, and (d) CHIRPS.

overestimate the peak in the Savannah, while it has a large
overestimation (almost twice as much as the reference) in
the Guinea region, particularly during summer. As far as the
other satellite products are concerned, IMERG Early tends
to slightly overestimate in the Sahel across all rainy months
but performs relatively well in the Savannah and Guinea re-
gions. CHIRPS is very close to IMERG Final in all regions
and months, with the exception of a modest overestimation
of the July rainfall in Guinea.

3.2 How well do GFS forecasts capture annual rainfall?

Here, we aggregate the 1 d lead GFS forecasts to an annual
timescale and compare the results against corresponding an-
nual precipitation estimates from IMERG Final. Figure 4
presents the watershed-averaged annual rainfall for each dam
watershed. According to IMERG Final, the annual rainfall
varies from 434 mm (in Kainji) to 1481 mm (in Selingue).
Watersheds 1 (Selingue) and 2 (Markala), located in the
western part of the Savannah, receive the largest amount of
rainfall, i.e., 1481 and 1406 mm, respectively. Watershed 3
(Markala), located in the eastern part of the Sahel, receives
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Figure 3. Monthly precipitation regime for the three climatolog-
ical zones of the Niger river basin. (a) Sahel, (b) Savanna, and
(c) Guinea. Analyses are based on rainfall fields derived from
IMERG Final, GFS (1 d lead time), IMERG Early, and CHIRPS.
The time period covers 15 June 2019 to 15 June 2020.

741 mm of annual rainfall. Watershed 4 (Bakolori), charac-
terized by the smallest watershed area compared to the rest
of the watersheds, lies partly in the Sahel and partly in the Sa-
vannah region and receives 921 mm of annual rainfall. Water-
shed 5 (Kainji), characterized by the largest watershed area
of all, lies mostly in the Sahel region and receives the lowest
amount of annual rainfall (434 mm). Watersheds 6 (Jebba), 7
(Dadin Kowa), and 8 (Lagdo), located in the Savannah, re-
ceive annual rainfall amounts of 1190, 941, and 1295 mm,
respectively.

Validated against IMERG Final, the GFS tends to over-
estimate rainfall in all watersheds located in the Savannah
(or watersheds that receive relatively large rainfall amounts),
with an overestimation varying in the range from 8 % to
33 %, with a larger bias for watersheds receiving higher rain-
fall amount. For watersheds in the Sahel (watersheds receiv-
ing a low rainfall amount), GFS gives less bias (−11 % for
the driest Kainji watershed and +10 % for Bakolori).

In contrast, IMERG Early tends to underestimate rainfall
in all watersheds located in the Savannah (with a larger nega-
tive bias in watersheds with a large rainfall amount) but tends
to overestimate in all watersheds located in the Sahel (with
a very large overestimation bias for the driest watershed)
Therefore, GFS and IMERG Early have different bias char-
acteristics; whereas GFS outperforms IMERG Early in the
Sahelian climate where well-organized convective systems
dominate the monsoon, IMERG Early outperforms GFS in
the Savannah and Guinea climates, which are characterized
by short-lasting and localized systems and wet land sur-
face conditions. CHIRPS estimates are reasonably close to

Figure 4. Subbasin-averaged annual precipitation (millimeters) for
the period 15 June 2019 to 15 June 2020, for each of the Niger’s
subbasins, derived from the 1 d lead time GFS forecast and different
satellite precipitation products.

IMERG Final, indicating that the choice of reference product
between CHIRPS and IMERG Final would not substantially
affect the findings on the accuracy of GFS forecasts.

3.3 How well is the time series of daily precipitation
forecasted?

Figures 5 and 6 present the time series of watershed-averaged
daily rainfall for the wet period of June–October. Accord-
ing to IMERG Final, the temporal variability (as measured
through coefficient of variation or CV) varies from 1.22 to
2.60. Validated against IMERG Final, the GFS tends to un-
derestimate the temporal variability, and particularly under-
estimate large spikes in rainfall, at almost all sites except at
Kainji. The GFS’s relatively better performance for Kainji
could be attributed to the watershed’s large area that results
in a relatively smooth temporal variability. Both IMERG
Early and CHIRPS provide CV values that are very close to
IMERG Final.

Figure 7 displays the performance statistics of watershed-
averaged daily rainfall (validated against IMERG Final) in
terms of the Kling–Gupta efficiency (KGE), bias ratio (BR),
correlation (R), variability ratio (γ ), and root mean square
error normalized by reference precipitation mean (NRMSE).
First, the performance results for the 1 d lead GFS are consid-
ered. The KGE scores are poor (0.3< KGE< 0.5) for half
of the watersheds considered (Selingue, Goronyo, Bakolori,
and Lagdo) and intermediate (0.5< KGE< 0.75) for the re-
maining half of the watersheds (Markala, Kainji, Jebba, and
Dadin Kowa). The breakdown of the KGE scores (BR, R,
and γ ) reveals the key factors contributing to the KGE es-
timates. The GFS tends to overestimate the daily precipi-
tation for most subbasins, as the BR is higher than 1, ex-
cept for Kainji. The overestimation is particularly high for
Selingue and Markala, where BR is 1.33 and 1.22, respec-
tively. The correlation coefficient between GFS and IMERG
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Figure 5. Time series of subbasin-averaged precipitation total (mil-
limeters) for the wet period (June–September 2019) for all sub-
basins and derived from various precipitation products for five sub-
basins. The figure also shows the coefficient of variation (CV) as a
measure of the temporal variation.

Figure 6. Same as Fig. 5 but for the remaining three watersheds.

Final is mostly low (R < 0.60) and is particularly lower for
Bakolori (R = 0.36) and Goronyo (R = 0.43). The variabil-
ity ratio of GFS is mostly between 0.69 and 0.83 (except for
Kainji, where γ is 1.09), indicating that the GFS tends to
give a lower temporal variability in rainfall. The NRMSE is
very high, ranging from 100 % to 266 %, and is particularly
high for Goronyo (266 %) and Bakolori (264 %), which are
relatively small-sized watersheds.

Next, the performance of IMERG Early was examined
with respect to IMERG Final, mainly to assess if it is possible
to use the near-real-time IMERG Early product to calibrate
and improve the accuracy of GFS forecasts. The IMERG
Early performs much better with KGE values higher than
0.75 (except for Kainji, where KGE is 0.69), a correlation
higher than 0.90, and a variability ratio close to the optimum
value. The high performance of IMERG Early is due to its
similarity with the IMERG Final product, as the main differ-
ence between the two products is that IMERG Early, unlike
IMERG Final, does not use monthly rain gauge observations
for bias correction. Such monthly bias correction techniques
would not alter the pattern and variability of IMERG Early
compared to IMERG Final. Therefore, the performance of
IMERG Early should be evaluated using bias statistics; the
other statistics (correlation and variability ratio) are pre-
sented for completeness. IMERG Early overestimates rain-
fall in most watersheds in the range of 11 % (Lagdo) to 28 %
(Kainji), except for two watersheds where it slightly under-
estimates by 14 % (Selingue) and 11 % (Markala). Compari-
son of the performance of GFS and IMERG Early indicates
that both products have different bias characteristics. In some
watersheds (e.g., Kainji), GFS outperforms IMERG Early in
terms of bias, whereas in other watersheds (e.g., Markala),
IMERG Early outperforms GFS.

CHIRPS was also compared with IMERG Final to assess
how the use of different reference products may affect the
finding about the performance of GFS forecasts. The KGE
scores of CHIRPS are higher than 0.75 in all cases, indicat-
ing that CHIRPS and IMERG Final have comparable KGE
performance. Therefore, the performance of GFS is expected
to be about the same, even if the reference product used this
in this study (IMERG Final) changes to CHIRPS.

3.4 Dependence of forecast performance on
precipitation rate

Figure 8 presents the scatterplot of 1 d lead GFS forecasts
and IMERG Final at daily and watershed-averaged scales.
The performance of GFS varies between watersheds. In the
Markala and Kainji watersheds, GFS forecasts agree well
with IMERG Final at almost all rain rates. In the Selingue
watershed, GFS agrees well with IMERG Final for rain rates
under 30 mm/d−1 but GFS substantially underestimates all
rain rates above 30 mm/d−1. In the remaining five water-
sheds, GFS has a poor performance, replete with a large scat-
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Figure 7. Summary of performance statistics (Kling–Gupta efficiency, KGE, bias ratio, BR, correlation, R, variability ratio, γ , and root mean
square error normalized (NRMSE) by reference rainfall (percent) for the 1 d lead time GFS forecasts and other satellite products. The time
period considered was 15 June 2019–15 June 2020.

ter, high false alarm, and large underestimation bias of heavy
rain rates.

3.5 Dependence of daily forecast performance on lead
time and spatial scale

In order to assess the effect of various lead times and spa-
tial scales on forecast performance, we obtained daily GFS
forecasts at various lead times (1, 5, 10, and 15 d) and ag-
gregated the forecasts at spatial scales from 0.25◦ to coarser
scales (0.5, 0.75, and 1◦) by averaging the grids. The purpose
of degrading the resolution is to determine at which resolu-
tion the forecasts have an acceptable performance. The KGE
value at each spatial resolution was calculated with the fol-
lowing steps: (i) average the data at the required spatial reso-
lution, (ii) extract pairs of data (one from IMERG Final and
the other from GFS), (iii) concatenate the pairs to form one
large series of data, and (iv) compute a single KGE from this
data series. The resulting KGE values are shown in Fig. 9.

With regard to the effect of spatial scales, the KGE at
the GFS native resolution (i.e., 0.25◦) is very low. As the

spatial scale increases, KGE increases, as expected. For in-
stance, for the Markala watershed, KGE increases from 0.27
(0.25◦) to 0.40 (1◦) for a 1 d lead. This indicates that the
variation in KGE values between the watersheds could be
partly explained by the watershed size. For example, based
on Fig. 5, the KGE for the 1 d lead daily GFS forecast was
the highest for the largest Kainji watershed (watershed area
of 1 464 092 km2) and the lowest for the smallest Bakolori
watershed (4887 km2). With regard to the effect of the lead
time for daily forecasts, KGE decreases significantly as lead
time increases. For instance, for the Markala watershed and
a grid size of 1◦, KGE decreases from 0.40 (1 d lead) to 0.21
(15 d lead).

3.6 Effect of temporal aggregation scale on forecast
performance

To assess the effect of temporal aggregation scale, we ob-
tained the 1 d total, 5 d total, 10 d total, and 15 d total GFS
precipitation forecasts. These multiday forecasts are con-
structed by combining multiple lead time forecasts. For in-
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Figure 8. Scatterplot of watershed-averaged and daily precipitation
forecast obtained from 1 d lead GFS forecasts against corresponding
values from IMERG Final.

stance, the 5 d total forecast is obtained by adding the 1 d
lead, 2 d lead, 3 d lead, 4 d lead, and 5 d lead daily fore-
casts. Figure 10 presents the KGE values for GFS forecasts
over different temporal aggregation scales and different grid
sizes. Temporal aggregation substantially increases KGE at
all spatial scales. For example, at the grid size of 1◦ over
Markala watershed, the KGE values jump from 0.40 at the
daily timescale to 0.73 at 15 d total timescale.

In Fig. 11, we show the performance statistics of GFS
for the 15 d accumulated watershed-averaged rainfall fore-
cast. The KGE values are intermediate (0.5<KGE< 0.75)
for four watersheds and good (KGE> 0.75) for the remain-
ing four watersheds. An analysis of the components of KGE
reveals that the improvement of KGE at longer timescales
comes as a result of the improved correlation and variability
ratio. At the 15 d accumulation timescale, IMERG Early es-
timates have less bias than GFS at all watersheds, except at
Kainji watershed. Figure 12 presents the scatterplot of 15 d
accumulated GFS forecast vs. IMERG Final. In general, the
GFS estimates perform well for low to moderate rain rates
but tend to overestimate higher rain rates. This is consistent
with Wang et al. (2019), who reported the difficulty in cap-
turing the magnitude of high rain rates in the GFS model.

4 Conclusions

This study has evaluated the accuracy of medium-range (1
to 15 d lead time) forecasts available from the Global Fore-

Figure 9. Kling–Gupta efficiency (KGE) for daily precipitation of
GFS as a function of lead time (1, 5, 10, and 15 d) and spatial scale
(0.25, 0.50, 0.75, and 1.0◦). The dam names and corresponding wa-
tershed areas are given in the titles.

Figure 10. Kling–Gupta efficiency (KGE) of GFS as a function of
the accumulation timescale (1, 5, 10, and 15 d) and spatial scale
(0.25, 0.50, 0.75, and 1.0◦).
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Figure 11. Summary of the performance statistics (Kling–Gupta efficiency, KGE, bias ratio, BR, correlation, R, variability ratio, γ , and root
mean square error normalized (NRMSE) by reference rainfall (percent) for the 15 d accumulated GFS forecast and other satellite products.

Figure 12. Scatterplot of watershed-averaged 15 d accumulated pre-
cipitation forecast obtained from GFS forecast against correspond-
ing values from IMERG Final.

cast System (GFS) for the watersheds of large dams in the
Niger river basin. Despite the limited temporal coverage,
some consistent features emerged from this evaluation. The
accuracy of the GFS forecast depends on climatic regime,
lead time, accumulation timescale, and spatial scale. With re-
gard to the role of climatic regimes, the GFS forecast has
a large overestimation bias in the Guinea region (wet cli-
matic regime), a moderate overestimation bias in the Savan-
nah (moderately wet climatic regime), but has no bias in the
Sahel (dry climate). With regard to lead time, as the lead
time increases, the forecast accuracy decreases. Averaging
the forecasts at coarser spatial scales leads to increased fore-
cast accuracy. For daily rainfall forecasts, the performance
of GFS is very low (KGE< 0.32) at almost all watersheds,
except at Markala (KGE= 0.44) and Kainji (KGE= 0.68) as
both have much larger watershed areas compared to the other
watersheds. Averaging the forecasts at longer timescales also
leads to increased forecast accuracy. For the 15 d rainfall ac-
cumulation timescale, the KGE values are either interme-
diate (i.e., 0.50≤KGE≤ 0.75) for half of the watersheds
(Selingue, Goronyo, Bakolori, and Dadin Kowa) or good
(i.e., KGE≥ 0.75) for the remaining half (Markala, Kainji,
Jebba, and Lagdo). With regard to the effect of rainfall rate,
the 15 d accumulated GFS forecasts tend to perform better
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for low to medium rain rates but contain large overestima-
tion bias at high rain rates.

The performance statistics of GFS indicate the need for
calibrating GFS forecasts in order to improve their accuracy.
Post-processing calibration of GFS forecasts requires the use
of independent rainfall observations that are relatively bet-
ter performing and available in near-real time to correct the
real-time dynamical GFS model forecasts. This study has
compared the performance of IMERG Early satellite rain-
fall products with the performance of GFS in terms of bias.
In the Guinea and Savannah regions, IMERG Early outper-
forms GFS in terms of bias, while in the dry Sahel region,
IMERG Early is outperformed by GFS.

We acknowledge that the reference dataset used in our
evaluation (i.e., IMERG Final) has its own estimation errors.
We conducted an additional assessment to evaluate the per-
formance of IMERG Final with respect to another indepen-
dent and high-quality (i.e., merged satellite gauge) rainfall
product (i.e., CHIRPS). Our results show that IMERG Final
and CHIRPS have similar rainfall characteristics, indicating
the robustness of IMERG Final.

Overall, we conclude that the GFS forecasts, at the 15 d
accumulation timescale, have acceptable performance, al-
though they tend to overestimate high rain rates. The shorter
the timescale, the lower the GFS performance is. Given that
IMERG Early outperforms GFS particularly in the wet re-
gion of the Niger, we recommend testing the suitability of
IMERG Early to serve as input into post-processing of GFS
in order to improve the accuracy of GFS forecasts. Possible
post-processing techniques that could be explored include
simple bias (multiplicative) correction (Gumindoga et al.,
2019), multiresolution bias correction through wavelet anal-
ysis (Xu et al., 2019), or the empirical mode decomposition
method (Wang et al., 2020; Prasad et al., 2019), and artificial-
intelligence-based methods, such as the feedforward neural
network (Cloud et al., 2019), support vector machine (Du et
al., 2017; Yu et al., 2017), and adaptive neuro-fuzzy infer-
ence system (Jehanzaib et al., 2021).
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