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Abstract. The dependence of rainfall on elevation has fre-
quently been documented in the scientific literature and may
be relevant in Italy, due to the high degree of geographical
and morphological heterogeneity of the country. However, a
detailed analysis of the spatial variability of short-duration
annual maximum rainfall depths and their connection to the
landforms does not exist. Using a new, comprehensive and
position-corrected rainfall extreme dataset (I2-RED, the Im-
proved Italian-Rainfall Extreme Dataset), we present a sys-
tematic study of the relationship between geomorphological
forms and the average annual maxima (index rainfall) across
the whole of Italy. We first investigated the dependence of
sub-daily rainfall depths on elevation and other landscape in-
dices through univariate and multivariate linear regressions.
The results of the national-scale regression analysis did not
confirm the assumption of elevation being the sole driver of
the variability of the index rainfall. The inclusion of longi-
tude, latitude, distance from the coastline, morphological ob-
structions and mean annual rainfall contributes to the expla-
nation of a larger percentage of the variance, even though this
was in different ways for different durations (1 to 24 h). After
analyzing the spatial variability of the regression residuals,
we repeated the analysis on geomorphological subdivisions
of Italy. Comparing the results of the best multivariate re-
gression models with univariate regressions applied to small
areas, deriving from morphological subdivisions, we found
that “local” rainfall–topography relationships outperformed
the country-wide multiple regressions, offered a uniform er-
ror spatial distribution and allowed the effect of morphology
on rainfall extremes to be better reproduced.

1 Introduction and background

The spatial patterns of rainfall depth statistics are known to
be affected by the geomorphological setting (Smith, 1979;
Basist et al., 1994; Prudhomme and Reed, 1998, 1999;
Faulkner and Prudhomme, 1998). The impact of orography
on daily, multi-daily and annual precipitation events can gen-
erally be attributed to the so-called “orographic enhancement
of precipitation”, i.e., an increase in rainfall depth along the
windward slope of a relief and a decrease on the lee side,
due to the lifting and the consequent drying of the air mass
(Smith, 1979; Daly et al., 1994; Frei and Schär, 1998; Napoli
et al., 2019). In a complex landscape, this effect can also
entail significant precipitation values on the lee side, due to
landforms that cause a delay in the hydrometeorological for-
mation of precipitation and falling raindrops (Smith, 1979).

The impact of the orography on extreme rainfall depths
and the complicated atmosphere–orography interactions for
large areas are still not sufficiently understood for sub-daily
rainfall events. In a country like Italy, characterized by a high
degree of morphological heterogeneity (Fig. 1), these rela-
tions assume an evident importance, considering the signifi-
cant exposure to Mediterranean storms (Claps and Siccardi,
2000). The focus of this study is the entire Italian territory
(≈ 300 000 km2), considered as a representative case, both in
terms of variety of landforms and in terms of variability of
the rainfall extremes, as will be seen in the following.

Most of the existing studies in Italy have focused on lim-
ited areas (Allamano et al., 2009; Caracciolo et al., 2012;
Pelosi and Furcolo, 2015; Furcolo et al., 2016; Furcolo and
Pelosi, 2018; Libertino et al., 2018; Formetta et al., 2022),
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Figure 1. Elevation data with the boundaries of the 20 Italian ad-
ministrative regions. Source: Shuttle Radar Topography Mission
(Farr et al., 2007).

and the only attempt to deal with sub-daily data covering the
entire nation was made by Avanzi et al. (2015).

These studies suffered from a lack of a comprehensive and
quality-assessed national database for sub-daily extremes.
Several of them analyzed the Italian Alpine area. For in-
stance, Frei and Schär (1998) focused on the entire European
Alps region and showed that foothills enhance monthly and
seasonal precipitation, while inner valleys produce an oro-
graphic shielding effect on rainfall. Nevertheless, they did
not find a unique precipitation depth–elevation relationship
that could be considered valid for the entire Alps and at-
tributed the observed variability to the effects of slope and
shielding. Allamano et al. (2009) investigated the depen-
dence of sub-daily annual maximum rainfall depths on eleva-
tion over the Italian Alpine region. They found a significant
decreasing trend for increasing elevations and a nonuniform
slope coefficient over the longitude range. The slope of the
rainfall depth–elevation regression was shown to decrease
for event durations that increased from 1 to 24 h. Libertino
et al. (2018) showed, in the western sector of the Italian Alps
(Fig. 1), that shorter durations (1–3 h) are characterized by a
negative slope coefficient as a function of elevation (statisti-
cally significant at a 5 % level), while longer durations (12–
24 h) show a positive slope and also a significant correlation,
and the trend of the extremes over 6 h loses significance with
elevation. Over Trento province, Formetta et al. (2022) iden-
tified a reverse orographic effect for hourly and sub-hourly

durations and an orographic enhancement for a duration of
about 8 h (or longer).

Other regional works that attempted to identify orographic
effects in the Mediterranean part of Italy are available for
Campania and Sicily. Pelosi and Furcolo (2015) and Fur-
colo et al. (2016) analyzed the daily annual maximum rainfall
depths over Campania (see Fig. 1 for the geographical loca-
tion) and attempted to explain systematic variations as being
the result of the presence of orographic barriers, identified
through the application of an automatic geomorphological
procedure (Cuomo et al., 2011). Their results showed a link
between orographic elements and a local increase in rain-
fall depths and allowed orographic elements that produced
enhanced variability of extreme rainfall to be identified. The
same group later worked on sub-daily annual maximum rain-
fall depths (Furcolo and Pelosi, 2018) and proposed a power-
law amplification factor of rainfall over three mountainous
systems.

Caracciolo et al. (2012) found, in Sicily, that the longi-
tude, latitude, distance from the sea and a concavity index
are the variables that govern the spatial variability of rainfall
depths. However, these authors found that no linear relation-
ship between sub-daily annual maximum rainfall depths and
elevation was significant at a 5 % level over the entire island
of Sicily.

All of the previously mentioned analyses refer to an an-
alytic relationship that connects annual maximum rainfall
depths of various durations, i.e., the average depth–duration
(ADD) curve of the simple-scaling approach, which is usu-
ally represented by a power law:

hd = a · d
n, (1)

where hd is the average of the annual maximum rainfall
depths of duration d , a is a scale factor and n is a scaling
exponent. Coefficient a represents the best unbiased linear
estimation of the 1 h average rainfall depths, considering that
h1 ∼= a.

Avanzi et al. (2015) analyzed the spatial variability of
the ADD curve parameters, a and n, at a national scale,
as obtained from measurements of 1494 stations distributed
throughout Italy. They referred to the so-called “reverse oro-
graphic effect”, i.e., the relationship found between parame-
ter a and elevation, which shows a decreasing trend. On the
other hand, the scaling exponent n appears to increase non-
linearly with elevation. More details are provided in the fol-
lowing section.

On the basis of the described background and the sig-
nificant improvements offered by a new, up-to-date rainfall
dataset, i.e., the Improved Italian-Rainfall Dataset, I2-RED
(Mazzoglio et al., 2020a), the present study has considered
more than 3700 stations with at least 10 years of data to relate
the average rainfall depths in all the durations (index rain-
fall) to several morphological variables and investigate their
dependency on elevation and on other geomorphological and
climatological parameters.
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Searching for models that allow the index rainfall to be es-
timated for various durations in any location in Italy is the
first, important, necessary step toward addressing the build-
ing of depth–duration–frequency curves over the entire coun-
try. For this purpose, simple (Sect. 2) and multiple (Sects. 3
and 4) national-scale regression models were first investi-
gated. We then introduced four geomorphological classifica-
tions to perform local-scale regression analysis in order to
tackle the evident spatial clustering of the regression residu-
als (Sect. 5). The comparisons made between the results ob-
tained from the wide-area and the local regressions allowed
the role of the morphology in rainfall variability to be dis-
cussed, as shown in Sect. 6. Some conclusions are drawn in
Sect. 7.

2 National-scale simple regression analysis

2.1 Methods

As the first step of the analysis, we investigated the influence
of elevation on the spatial distribution of the average of an-
nual maximum rainfall depths. We calculated the ADD curve
parameters for all the stations of the I2-RED dataset (Maz-
zoglio et al., 2020a) to compare them with previous studies
(mainly Avanzi et al., 2015). Parameters a and n (cf. Eq. 1)
were initially obtained by means of a linear regression of the
logarithm of the average of all the available extremes over the
1 to 24 h durations. We computed the median values of these
parameters, for all over Italy, to compare them with those of
Avanzi et al. (2015), who grouped the stations into elevation
ranges of 50 up to 1000 ma.s.l. and into intervals of 100 m
for higher elevations. We then plotted both series of medi-
ans (a and n) against the median elevation of each interval
(to consider that the distribution of the rain gauges in each
elevation interval was skewed) and fitted regression models.

We studied the differences between the measured and es-
timated rainfall statistics to assess the effectiveness of the re-
gression models, considering the observed averages of the
extremes over 1, 3, 6, 12 and 24 h. We obtained performance
indices for each station using the estimation errors 1d :

1d = havg(d)− â · d
n̂, (2)

where havg(d) is the sample average of the extreme rainfall
depth for duration d, while â and n̂ are the estimates of pa-
rameters a and n.

In this paper, we show and discuss only the results related
to the shortest and the longest of the five durations (1 and
24 h), as they can be considered the most representative of
the different classes of rainfall events (convective and strat-
iform, respectively). The corresponding dependent variables
are called h1 and h24 in the following.

The error statistics that were computed are the bias, the
mean absolute error (MAE), the root mean square error
(RMSE) and the Nash–Sutcliffe model efficiency (NSE)

coefficient (Nash and Sutcliffe, 1970; Wasserman, 2004).
Among all the statistics, particular attention was dedicated to
spatial bias, i.e., the bias evaluated as the difference between
the spatial mean of the observations over a generic area, and
the corresponding values predicted by the model.

2.2 Results

By applying the procedure described in Sect. 2.1, we ob-
tained results that are in agreement with those of Avanzi et al.
(2015):

1. Parameter a decreases linearly with elevation (R2
=

0.89), through the following equation:

a = 30.61− 0.0060 · z, (3)

which is comparable with the equation obtained in
Avanzi et al. (2015):

a = 29.17− 0.0062 · z. (4)

2. Parameter n increases nonlinearly with elevation (R2
=

0.86), through the following equation:

n= 0.54− exp[−0.000077 · (z+ 1650)]. (5)

For comparison purposes, Avanzi et al. (2015) obtained

n= 0.54− exp[−0.00086 · (z+ 1452)] (6)

for the latter parameter, with only a slight difference in
R2 (0.89).

The fitting of the four models is reported in Supplement
no. 1.

As already mentioned, parameter a is roughly equivalent
to h1. Its overall inverse dependence on elevation is some-
what counterintuitive, even though other authors have con-
firmed this dependence (e.g., Allamano et al., 2009; Marra
et al., 2021).

The error statistics computed on the two sets of residuals,
in this work and in that of Avanzi et al. (2015), are listed
in Table 1. The results show that the increase in the num-
ber of stations and the recording length achieved in I2-RED
have led to an improvement compared to the results of Avanzi
et al. (2015). This result is not surprising, but more insights
can be derived from the observation of the spatial distribu-
tion of the residuals, which were not discussed explicitly in
the previous literature.

In this regard, we mapped differences 11 and 124 to in-
vestigate where the under- and overestimations show spatial
coherence. The maps, reported in Fig. 2, clearly show that
clusters of residuals with high residuals of the same sign
emerge in various areas of the country: for instance, many
coherent errors larger than 3 times the MAE are present in
the Liguria region (see Fig. 1 for the geographic position) for
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Table 1. Comparison of national-scale error statistics related to the estimates performed with our data and those of Avanzi et al. (2015). The
results were obtained with Eqs. (3) to (6).

Error statistic h1 – Avanzi et al., 2015 h1 – this paper h24 – Avanzi et al., 2015 h24 – this paper
(Eqs. 4 and 6) (Eqs. 3 and 5) (Eqs. 4 and 6) (Eqs. 3 and 5)

Bias (mm) 2.65 1.07 9.64 6.05
MAE (mm) 5.48 5.29 22.22 22.27
RMSE (mm) 7.39 6.98 32.81 31.99
NSE (–) −0.01 0.10 −0.02 0.03

Figure 2. Residuals of the estimations of the 1 h (a) and 24 h (b) durations performed using Eqs. (3) and (5). Source: I2-RED data (Mazzoglio
et al., 2020a).

both durations. Therefore, despite the high R2 values, signif-
icant spatially correlated errors can undermine the practical
validity of these general relationships.

On the basis of these results, the need for a more detailed
spatial analysis of these variables became evident. A set of
new analyses, aimed at reducing the local bias and increasing
the reliability of the results, was therefore introduced.

3 National-scale multiple regression analysis

3.1 Methods

In an attempt to improve the evaluation of the relationships
between rainfall and topography, we undertook an analysis of
the relationships between rainfall and several geomorpholog-
ical (and climatological) parameters, which may complement
the explanatory power of elevation. Unlike what was done in
Avanzi et al. (2015), multivariate models were used in the
literature to relate rainfall statistics and various morpholog-
ical variables, both of which were evaluated at the same lo-
cation. In these approaches, no aggregated or median spatial

statistics of rainfall were considered. Prudhomme and Reed
(1998, 1999), for instance, identified meaningful geographic
and morphological attributes of each location as good ex-
planatory variables of the daily rainfall maxima in Scotland.
They showed that obstruction indices, derived from the orog-
raphy, and the distance from the coastline are able to define
how morphological barriers influence the characteristics of
the extremes. These appear to work better than the EXPO
variable used by Basist et al. (1994) and Konrad (1996).

Basist et al. (1994) defined EXPO as the distance between
a rain gauge and an upwind barrier whose elevation is at least
500 m higher than the station. Konrad (1996) suggested an
elevation of the barrier at least 150 m higher than the station.
Prudhomme and Reed (1998) also tried to use this variable,
setting the elevation difference at 200 m, but concluded that
the definition of EXPO has several drawbacks, as it is based
on arbitrary thresholds and is defined assuming a specific and
subjective direction.

Introducing new variables with omnidirectional meaning,
as the distance from the sea, the obstruction and the barrier,
which are evaluated in the eight main directions, Prudhomme
and Reed (1998) were able to explain a much larger percent-
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age of variability in the annual maximum daily rainfall than
that explained by the EXPO variable.

Caracciolo et al. (2012) applied this latter approach on the
island of Sicily (south of Italy): they found that the longi-
tude, elevation, a barrier obstruction index and the distance
from the coastline are able to represent the spatial variability
of parameter a for the whole island, while the longitude, ele-
vation, a concavity index and the slope are able to satisfacto-
rily describe the variability of exponent n. They also noticed
that different descriptors became significant when analyzing
smaller portions of the island.

Based on the above considerations, in this work we fol-
lowed the approach suggested by Prudhomme and Reed
(1998, 1999), considering two groups of variables computed
for each station location:

a. Geographic and climatic variables. These do not re-
quire computation and do not depend on the land-
scape forms, that is, longitude (LONG, expressed in
the WGS84 UTM32N reference system, in m), latitude
(LAT, expressed in the WGS84 UTM32N reference sys-
tem, in m), elevation above sea level (z, in m), mini-
mum distance from the coastline (C, in km) and mean
annual rainfall (MAR, taken from Braca et al., 2021,
in mm); the latter represents a very robust climatolog-
ical variable, which is seldom used as ancillary infor-
mation but easily available throughout the world thanks
to the presence of various rainfall databases (Schneider
et al., 2011; Fick and Hijmans, 2017; Muñoz Sabater,
2019).

b. Morphological variables or descriptors. These are
based on a digital elevation model (DEM), computed
for each cell in a square grid. These variables are as fol-
lows:

– slope (S, in degrees), defined as the angle of the
inclination of the terrain to the horizontal, which is
evaluated using the eight closest DEM cells;

– obstruction (OBS, in degrees), defined as the max-
imum angle needed to overcome the highest oro-
graphic obstacles in the eight main cardinal direc-
tions (i.e., the maximum of the angles subtended
by the line that connects the rain gauge with the
highest orographic peak within a 15 km radius in
the eight main directions; see Fig. 3);

– barrier (BAR, in m), defined as the distance be-
tween the rain gauge and the highest orographic
obstacle defined in OBS (Prudhomme and Reed,
1998, 1999; see Fig. 3);

– maximum slope angle (MSA, in degrees), i.e., the
angle with the greatest slope needed to overcome
obstacles within a 15 km radius in the eight main
directions (see Fig. 3);

– maximum slope angle distance (MSAD, in m), de-
fined as the equivalent of BAR but computed with
respect to MSA (see Fig. 3);

– openness (OP, in radians), defined as a mean angu-
lar measurement of the relationships between the
surface of the relief and the horizontal distances, in
the eight main directions (Yokoyama et al., 2002).

The values of all of these variables depend on the land-
scape forms and can vary according to the resolution of
the used DEM. In our case, after thorough consideration,
we adopted the Shuttle Radar Topography Mission (SRTM)
DEM, which has a resolution of 30 m (Farr et al., 2007).
However, the openness required to be evaluated on the SRTM
DEM resampled at a resolution of 500 m due to computa-
tional limitations. This computation was conducted with the
SAGA “Topographic openness” module, using a radial limit
of 5 km. This value was obtained after testing different radial
limits and selecting the one that presents the best correlation
with the mean rainfall depth.

Multiple linear regression models were built, based on the
following relationship:

Y = X ·β + δ =

N∑
i=1

βiXi + δ, (7)

where the dependent variable Y is related to the matrix of
the independent variables X or covariates. β in Eq. (7) is the
vector that contains the regression model coefficients, and
δ is the vector of the residuals.

In order to select the best model equation, the number i
of covariates can be increased as necessary, according to the
criteria of statistical significance of the estimated parameters.
Caracciolo et al. (2012), for instance, used a stepwise regres-
sion approach. In this paper, we have preferred to use a gener-
alized multiple regression approach, whereby increasing the
number of covariates to i+ 1 does not necessarily preserve
the descriptors that were the most significant at step i. This
approach entails always considering all the possible combi-
nations of two, three or four covariates until the “best” model
is found. Other tests made using five or more variables did
not lead to significantly higher R2

adj values.
The best regression model was selected on the basis of

an analysis of the regression residuals, favoring models with
the highest adjusted coefficient of determination, R2

adj. Stu-
dent’s t test was used to quantify the significance of the inde-
pendent variables. We checked for the possible presence of
multicollinearity for each model in which all the covariates
passed Student’s t test, as this could lead to the formulation
of an unstable model. Multicollinearity was measured using
the variance inflation factor (VIF), which is determined by
placing the j th independent variable as the dependent vari-
able and calculating the coefficient of determination R2

adj of
the multiple regression performed on the remaining p−1 in-
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Figure 3. Representation of the MSA, MSAD, OBS and BAR morphological variables.

dependent variables (Eq. 8).

VIFj =
1

1−R2
j

(8)

Values of VIF greater than 5 were associated with an un-
acceptable level of multicollinearity, and the corresponding
model was discarded (Montgomery et al., 2012).

3.2 Results

The equations of the best regression models (built using two
to four variables) are reported in Eqs. (9) to (11) for h1 and
in Eqs. (12) to (14) for h24. The R2

adj values in Eqs. (9)
to (11) are 0.46, 0.52 and 0.54, respectively. The coefficients
of determination are higher for h24, i.e., 0.66, 0.67 and 0.68
(Eqs. 12 to 14, respectively).

h1 = 20.3163− 0.0080 · z+ 0.0117 ·MAR (9)

h1 = − 21.6293− 0.0061 · z+ 0.0134 ·MAR

+ 26.2682 ·OP (10)

h1 = − 10.6928− 0.0051 · z− 0.0273 ·C

+ 0.0131 ·MAR+ 19.8449 ·OP (11)
h24 = 16.1392− 0.0937 ·C+ 0.0712 ·MAR (12)

h24 = 33.1529− 1.8574 · 10−5
·LONG− 0.1319 ·C

+ 0.0701 ·MAR (13)

h24 = 127.2773− 2.9498 · 10−5
·LONG

− 1.9130 · 10−5
·LAT− 0.0971 ·C+ 0.0735

·MAR (14)

Considering the three h1 models (Eqs. 9 to 11), it is pos-
sible to notice the negative slope coefficient associated with
elevation. This confirms what was discussed in the previous
section. On the other hand, it is remarkable that the best mod-
els found for h24 do not include the elevation: this outcome
can be explained by considering the fact that MAR is always
significant, regardless of the number of variables. Models in
which MAR was excluded actually present z as a significant
covariate but with less relevance than the regression models
for h1.

Regardless of the number of the variables considered, and
despite the marked increase in the corresponding value of
R2

adj, compared to the simple regression, we found that the
residuals of the multivariate regressions were still character-
ized by spatial clustering and high local errors, basically all
in the same areas in Fig. 2. In other words, resorting to addi-
tional variables but keeping a uniform relationship between
each variable and precipitation over all of Italy does not pro-
duce a decisive reduction in the bias for large areas of the
country. Thus, we decided to deconstruct the modeling ap-
proach and to look for clues of distinct generating mecha-
nisms in distinct areas of Italy.

4 Sub-national-scale multiple regression analysis

4.1 Methods

In this section, an additional paradigm is introduced into the
models for the spatial variability of precipitation to reduce
the spatial bias, namely the selection of limited areas to build
“local” regression models, as an alternative to using data for
the whole of Italy. Such an attempt was already made by
Caracciolo et al. (2012), who borrowed the subdivision crite-
rion from previous regional frequency analyses. In this work,
we have focused on the role of geography and morphology
in the spatial variability of annual maximum rainfall depths.

To better understand how to move from national-scale re-
lationships to relationships valid for smaller areas, we started
by considering the Alpine area separately from the Apennine
region along the entire peninsula, and from the two main is-
lands (Sicily and Sardinia; see Fig. 1 for the geographic po-
sitions), as a first approximation. We then built four different
multivariate models: (1) the Alpine region (i.e., from Pied-
mont, including the western part of Liguria, eastward up to
Friuli Venezia Giulia, delineated using the SOIUSA classifi-
cation, as suggested by Accorsi, 2016); (2) the Apennine re-
gion, including peninsular Italy; (3) Sicily; and (4) Sardinia.
We evaluated the best regression models for these four re-
gions, as described in Sect. 3.1, using up to four covariates.
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Table 2. Error statistics of the multiple regression models at a national scale and for the four macro-regions described in Sect. 4.1, for h1 and
h24.

Error statistic h1 – nation h1 – four regions h24 – nation h24 – four regions

Bias (mm) 0 0 0 0
MAE (mm) 3.83 3.65 13.14 11.71
RMSE (mm) 4.98 4.77 18.43 16.53
NSE (–) 0.54 0.58 0.68 0.74

4.2 Results

The new set of models built for the four regions were tested
by computing the error statistics over the entire country. The
obtained results indicated that they provided higher R2

adj than
for the national case and better error statistics (see Table 2 for
a comparison with the previous multivariate approach). The
better results achieved in terms of RMSE, MAE and NSE at
the national scale are due to the improvements obtained for
the two main islands (Sicily and Sardinia). More insights are
provided in Sect. 6.

It is interesting to compare the results obtained for the in-
dividual Alpine region with those of Allamano et al. (2009),
who analyzed almost the same area. In that case, the ADD
curve parameters appeared to be related to elevation and lon-
gitude. For the different durations Allamano et al. (2009) also
estimated a regression model by linear regression between
rainfall depth, elevation and longitude. The dependence of
short-duration rainfall on elevation and longitude was found
to be statistically significant for all the time intervals, except
for the 1 h duration: in this case, the longitude was not sta-
tistically significant. In our application, the best relationships
found for h1 and h24 are those of Eqs. (15) and (16) (charac-
terized by R2

adj = 0.75 and 0.76, respectively):

h1 = 60.9365− 1.6664 · 10−5
·LAT− 0.0046 · z

+ 0.0148 ·MAR+ 25.1825 ·OP (15)

h24 = 59.0632− 7.2955 · 10−5
·LONG− 0.2223 ·C

+ 0.4306 ·OBS+ 0.0822 ·MAR. (16)

As expected, the h1− z relationship has a negative slope,
and the Eq. (15) does not include the longitude as covariate,
in agreement with Allamano et al. (2009). The same negative
relationship is found in a 24 h equation that includes z (which
produces an R2

adj = 0.74, that is, lower than that of Eq. 16).
These findings confirm the results of Allamano et al. (2009),
who found a general decrease in rainfall depth for increases
in elevation for all the durations (up to 24 h). Equation (16)
also confirms that, although h1 decreases systematically with
elevation over the whole alpine region, the dependence of
h24 on z decreases as the longitude increases, i.e., moving
westward.

The full set of equations used for the four regions is pro-
vided in Supplement no. 2, together with the R2

adj.

Although the improvements achieved with multivariate
models over the simple regressions are evident, we found
that they were not decisive in providing a homogeneous spa-
tial distribution of the errors. We in fact observed that, even
with the best model, we were not able to reduce the cluster-
ing effect shown in Fig. 2 for the peninsular region (see also
Supplement no. 3). We believe that a model capable of de-
scribing the observed spatial variability of the index rainfall
simultaneously at a national and a local level requires addi-
tional insights, which can be obtained using a finer spatial
segmentation of Italy.

5 Local-scale simple regression analysis of
morphological regions

5.1 Methods

On the basis of the considerations presented above pertaining
to the spatial clustering of residuals, we examined the possi-
bility of obtaining a meaningful segmentation of large areas
in subdomains that could be used to obtain “local” relation-
ships between annual maximum rainfall depths and terrain
properties. The main reasoning behind the segmentation is
that some macroscopic morphological differences can deter-
mine markedly different behaviors of the relationships be-
tween rainfall and elevation (or other local variables). One
example concerns what happens in the windward and lee-
ward sides of mountain ridges, which represent transversal
obstacles to the humid masses coming from the sea. Accord-
ingly, we considered some general geomorphological classi-
fications of the landscape that delineate homogeneous areas
based on the homogeneity of the macroscopic land proper-
ties, such as convexity and texture.

We considered four geomorphological classifications
(GCs) and denominated them as GC1 to GC4, according to
their diversity and success in the geomorphological literature
(see the Data availability section for more information).

The first considered classification, called GC1, was pro-
posed by Iwahashi and Pike (2007); they classified the
Earth’s surface into 16 topographic types, at a 1 km reso-
lution, based on slope gradient, local convexity and surface
texture. We vectorized the raster map, which is available on
the European Soil Data Centre website, and then, to reduce
the presence of small areas, which could have an extent of
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just a few square kilometers, all the areas covered by fewer
than 10 pixels (10 km2) were merged with the adjacent class.
Among the four different classifications that were used, this
is the only one that has a worldwide coverage, as all the other
classifications are available at a national scale. A detailed de-
scription of the methodologies used by the authors is avail-
able in the related references, thus allowing all the classifica-
tions to be reproduced over other nations.

The second classification – GC2 – is the Carta delle Unità
Fisiografiche dei Paesaggi italiani (“Map of the physio-
graphic units of Italian landscapes”) and is included in the
Carta della Natura (“Map of nature”; Amadei et al., 2003).
A vector map, which was obtained by means of a visual inter-
pretation of satellite images, aided by the analysis of further
land cover maps and morphological–lithological characteris-
tics, was available at a 1 : 250000 scale.

The third classification – GC3 – was proposed by Guzzetti
and Reichenbach (1994). It was obtained, in vector format,
by combining an unsupervised three-class cluster analysis of
four properties of altitude (altitude itself, slope curvature, fre-
quency of slope reversal and elevation–relief ratio) with a vi-
sual interpretation of morphometric maps and an inspection
of geological and structural maps.

The fourth classification – GC4 – is the one that delin-
eates areas with the greatest detail, as it is based on local
morphometric properties of the landscape. It was proposed
by Alvioli et al. (2020a), who considered a set of 439 water-
sheds, covering the whole of Italy, grouped into seven clus-
ters on the basis of the various properties of the slope units
within each basin, e.g., a distribution of slope unit sizes and
aspects. In this work, adjacent watersheds of the same class
were collapsed (GIS Dissolve), thus producing a total of 178
areas. Geomorphologically homogeneous terrain partitions
were defined as “slope units” that were delimited by drainage
and divide lines and delineated with a method that was first
introduced by Alvioli et al. (2016) and which is widely used
in the literature for geomorphological zonation purposes.

An additional geomorphological classification, which was
proposed by Meybeck et al. (2001) and which has a world-
wide coverage, was also considered. It is based on a combi-
nation of a relief roughness index and elevation and in prin-
ciple could have been a good fifth candidate. However, it was
not included in this analysis because, except for a very large
geographical zones, the resulting delineated areas often con-
tained very few rain gauges, which would have made it im-
possible to perform the desired statistical analyses.

Coherently with the aim of addressing connections be-
tween terrain properties and rainfall at a more local level,
we built a set of linear regression models between elevation
and index rainfall for all the classifications, considering an
individual model for each outlined geomorphological zone.
Only the internal rain gauges in each of these homogeneous
areas with a minimum of five available stations that had to
ensure at least 100 m of difference in elevation were consid-
ered for the regressions. There were four possible outcomes

of the applications: (a) a positive and significant correlation
(at the 5 % level), (b) a negative and significant correlation;
(c) a nonsignificant correlation and (d) an insufficient num-
ber of stations or an insufficient difference in elevation.

5.2 Results

The results for h1 are presented hereafter, while the details on
h24 are available in Supplement no. 4. The results obtained
for each geomorphological zone are mapped in Fig. 4a–d.
Blue areas denote geographical zones, where h1 increases
together with elevation, while the red palette applies to zones
where rainfall decreases with elevation. The color intensity is
proportional to the respective slopes. The light gray color de-
notes zones in which the linear regression is not statistically
significant (at a 5 % level), while dark gray denotes insuffi-
cient data (case d). A comparison of the maps (Fig. 4a–d)
clarifies that the more detailed the geomorphological zona-
tion is, the less likely it is to satisfy the requirements nec-
essary to build a significant regression. On the other hand,
if one applies regression models to finer geomorphological
classifications, it is possible to see that the regression sign is
not uniform over the entire country. For example, with regard
to 1 h data, it is possible to clearly recognize the presence of
zones with a positive rainfall depth versus elevation trend for
pre-hill/plain morphology in both GC3 (Fig. 4c) and GC4
(Fig. 4d).

The spatial distribution of the light gray zones is an impor-
tant piece of information: no trend can be assumed over these
areas because the p value is greater than 0.05. Consequently,
h1 can be considered constant over these areas. Finally, the
occurrence of the dark gray zones is directly connected to the
kind of classification: the smaller the areas delineated by the
classification are, the more likely it is that the requirement of
having at least five rain gauges with at least 100 m difference
in elevation is not satisfied. In this regard, we can observe
that the above requirements are not met for the elevation dif-
ference, i.e., in plain areas, and it is necessary to assume a
constant h1 in the area as being the most reasonable value.

The maps in Fig. 4a–d show that the availability of more
detail in the spatial analysis of the relationship between rain-
fall depth and elevation has a remarkable effect on both the
sign of the regression and the slope of the regression line in
several areas. In addition, even the quality of the relationship
can improve, as can be seen from a comparison of Fig. 4e–h:
far more areas with high R2 can be seen in Fig. 4h than in
Fig. 4e. This allows us to conclude that lower values of R2

are obtained in wider areas.
The same analysis was conducted on h24, where all of the

above outcomes were confirmed, except for the sign of the
precipitation vs. elevation relationship (Supplement no. 4).
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Figure 4. Slope coefficients of the regression between the mean 1 h rainfall depth and elevation for GC1 (a), GC2 (b), GC3 (c) and GC4 (d)
and theR2 of the regression between the mean 1 h rainfall depth and elevation for GC1 (e), GC2 (f), GC3 (g) and GC4 (h). Geomorphological
data source: Iwahashi and Pike (2007), Amadei et al. (2003), Guzzetti and Reichenbach (1994) and Alvioli et al. (2020a).

Table 3. National-scale error statistics for the 1 h interval. Statistics for GC1, GC2 and GC3 were only evaluated over areas where the
regression was statistically significant at a 5 % level, while GC4 was tested on both statistically significant areas and over the entire nation,
using the mean rainfall, where there was a p value > 0.05 or where the requirement of at least five rain gauges with at least 100 m difference
in elevation was not satisfied.

Regression model Bias MAE RMSE NSE
(mm) (mm) (mm) (–)

GC1 Iwahashi and Pike (2007) 0 5.94 7.67 0.10
GC2 Carta della Natura (Amadei et al., 2003) 0 5.65 7.18 0.15
GC3 Guzzetti and Reichenbach (1994) 0 5.15 6.77 0.27
GC4 Alvioli et al. (2020a) over statistically significant areas 0 4.53 5.84 0.50
GC4 Alvioli et al. (2020a) over the entire nation 0 3.87 5.12 0.52

5.3 Error analysis

To test the reliability of the regression models built over the
GCs, the linear equations found in each geomorphological
zone were applied to all the rain gauge positions, to obtain
errors that could be examined at the country scale. The global
indices computed for the GC areas in which the regressions
were statistically significant are reported in Table 3 for h1
and in Table 4 for h24. These results clearly show a lower
performance of the GC1 than the national-scale regression
model. On the other hand, the error statistics in Tables 3 and 4
show that GC4 produces the smallest errors, and this geo-
morphological subdivision therefore presents the best perfor-

mances. It is possible to understand this result by considering
that GC4 uses watershed units, while the other classifications
are based on the automatic processing of digital terrain data.

A constant value of the index rainfall computed as the spa-
tial average of hd was adopted over any areas where the mor-
phological regression model was not statistically significant.
In this way, it was possible to compute the statistical indexes
at the whole country scale. The error statistics obtained with
this application are reported in the last rows of Tables 3 and 4.
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Table 4. National-scale error statistics for the 24 h interval. Statistics for GC1, GC2 and GC3 were only evaluated over areas where the
regression was statistically significant at a 5 % level, while GC4 was tested on both statistically significant areas and over the entire nation,
using the mean rainfall, where there was a p value > 0.05 or where the requirement of at least five rain gauges with at least 100 m difference
in elevation was not satisfied.

Regression model Bias MAE RMSE NSE
(mm) (mm) (mm) (–)

GC1 Iwahashi and Pike (2007) 0 30.44 39.49 −0.11
GC2 Carta della Natura (Amadei et al., 2003) 0 20.30 31.29 0.11
GC3 Guzzetti and Reichenbach (1994) 0 20.03 28.84 0.32
GC4 Alvioli et al. (2020a) over statistically significant areas 0 14.84 21.12 0.61
GC4 Alvioli et al. (2020a) over the entire nation 0 14.36 20.73 0.60

6 Discussion

The different regression models used in this work to inves-
tigate the role of morphology in the spatial distribution of
sub-daily annual maximum rainfall depths produced results
deserving some comments. First of all, it must be mentioned
that a nationwide multiple regression model that includes
morpho-climatic attributes represents a significant step for-
ward with respect to the simple regression model, as the er-
ror statistics show. In this approach, working at a national
scale and given the elongated shape of the Italian peninsula,
geographic location was expected to play a major role in the
spatial distribution of extremes, even though this evidence
was not mentioned in similar national-scale analyses (see,
e.g., Faulkner and Prudhomme, 1998, for the UK, and Avanzi
et al., 2015, for Italy). The role of geography progressively
weakened while seeking further improvements, in terms of
MAE and RMSE, through the application of distinct multiple
regressions to four macro-regions, i.e., the Alps, peninsular
Italy and the main islands (Supplement no. 5).

Our findings show that while the 24 h index rainfall ex-
hibits a clear overall dependence on the geographic location
at a full national scale (Eq. 14), the same does not apply to
1 h extremes (Eq. 11). In an area with a lesser span in lat-
itude (the Italian Alps), instead, the 1 h extremes curiously
show some dependence on latitude (Eq. 15). Formetta et al.
(2022) followed a similar reasoning, recognizing the role of
geography and elevation as they partitioned by longitude and
elevation even a small area (the province of Trento) before
applying their statistical analyses.

While the multivariate regression can be a good tool to
express geographic dependence, and on 24 h extremes the
national scale helps in drawing some general findings, the
residual errors in large clustered areas are still very signifi-
cant. Therefore, geographic attributes seem not to drive uni-
formly the variability of rainfall extremes all over Italy, as the
high residuals of the multiple regression over these areas do
not apparently follow any latitudinal/longitudinal gradient.
These findings can only derive from a national-scale analy-
sis.

The better suitability of the application of multiple re-
gressions on four regions is confirmed by the increase of
the adjusted coefficient of determination (R2

adj), as reported
in Sect. 3.2 and in Supplement no. 2. Moreover, while the
national-scale multiple regression model provides high neg-
ative residuals over Sardinia and high positive residuals over
Sicily, the four-region multiple regression model signifi-
cantly improves this result (see Supplement no. 3–5 for more
details). However, similar improvements were not achieved
in the peninsular and alpine areas of the country.

The subsequent investigations undertaken in Sect. 5 de-
scend from the above considerations; i.e., the building of re-
gressions in morphological regions that are a fraction of the
whole area is an attempt to overcome the highlighted lack of
regularity in the dependence between rainfall and geography.
Among all the considered geomorphological classifications,
the selection of rain gauges for the model application is more
effective in the case of GC4 (Alvioli et al., 2020a), which also
embeds hydrographic information. The GC4 model behaves
reasonably well for both the 1 and 24 h durations, compared
to the multiple regression models, as far as the national scale
is considered. Table 5 summarizes all the previously men-
tioned statistics.

Analyzing the error statistics computed globally at the na-
tional scale, it seems that the four-region multiple regression
approach is the most precise. However, this is not necessar-
ily true at a local scale. In order to clarify the drawbacks that
large-scale regression models can produce, for the 1 h case,
we compared the residuals obtained from the four-region
multiple regression model (Fig. 5a) in the areas identified by
GC4 with the residuals of the GC4 regression model by se-
lecting: (1) the GC4 areas that were statistically significant
(Fig. 5b) and (2) the entire nation (Fig. 5c). The mean rain-
fall depths were considered over nonstatistically significant
areas (i.e., the gray areas visible in Fig. 5b). The GC4 re-
gression models were statistically significant for h1 for 45 %
of the Italian area, for a total of 31 different areas, while the
GC4 model for h24 were statistically significant in 49 % of
the area, for a total of 47 different zones (figures dealing with
the 24 h case are available in the Supplement). From a com-
parison of the maps in Fig. 5, it is possible to note that the
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Table 5. Error statistics for the 1 and 24 h intervals at a national scale. Average spatial values are used for the gray areas in Fig. 4d. The bias
of the national simple regression is different from zero, being evaluated as biasd = 1

n ·
∑
havg(d)− â · d

n̂.

Regression model Bias MAE RMSE NSE
(mm) (mm) (mm) (–)

1 h National simple regression 1.07 5.29 6.98 0.10
1 h National multiple regression 0 3.83 4.98 0.54
1 h Four-region multiple regression 0 3.65 4.77 0.58
1 h GC4 regression 0 3.87 5.12 0.52
24 h National simple regression 6.05 22.27 31.99 0.03
24 h National multiple regression 0 13.14 18.43 0.68
24 h Four-region multiple regression 0 11.71 16.53 0.74
24 h GC4 regression 0 14.36 20.73 0.60

multiple regression model has a spatially nonuniform bias
while the average bias obtained from the individual models
in the zones selected by GC4 is zero all over Italy. Maps of all
the other statistics are reported in Supplement no. 5 (Fig. S4
in the Supplement). This outcome is also evident for the 24 h
case (see, for example, the maps of the bias – Fig. S5a–e in
the Supplement).

An additional comparison was undertaken to investigate
the local bias. In this case, we computed the bias for each
subdomain of GC4. We compared the bias values obtained
using the following four conditions: (1) the national-scale
simple regression model (Eqs. 3 and 5), (2) the national-scale
multiple linear regression model (Eqs. 11 and 14), (3) the
four-region multiple regression model (Eqs. S3, S6, S9, S12,
S15, S18, S21 and S24 in Supplement no. 2) and (4) the GC4
simple regression model (Sect. 5).

The results are illustrated in the maps of Fig. 6, which
shows the best regression model for each area in different
colors: Fig. 6a and b are related to h1, while Fig. 6c and d
refer to h24; Fig. 6a and c only highlight the situations where
significant regressions were found. The results in Fig. 6b
and d include the bias calculated in nonstatistically signifi-
cant areas with respect to the spatial average of the rainfall
depths. The good results obtained in the areas where the spa-
tial mean values are adopted can be seen by comparing the
borders of the GC4 areas with the clusters of the residuals
of the multiple regression model (see Supplement no. 3). A
dedicated multiple regression model was built for the island
of Sardinia: nevertheless, the bias all over the GC4 areas is
smaller when the local spatial average is used. A good corre-
spondence between the residual clusters and the GC4 borders
is evident.

From Fig. 6, it is possible to conclude that the morpho-
logical subdivisions allow a set of simple linear regression
models to be built that can perform better almost everywhere
than the other wide-area models in terms of local bias.

7 Conclusions

In this paper, we have analyzed the role of orography
and morphology in short-duration annual maximum rain-
fall depths, taking advantage of a new and comprehensive
database for Italy, I2-RED (Mazzoglio et al., 2020a). The ap-
proach finds its relevance in the first use of the most complete
and updated data collection of short-duration annual maxima
available for the whole Italian territory. As regards to the pre-
vious knowledge on the topic, our analyses allowed us to bet-
ter understand, confirm and extend previous results from the
literature.

The results described in this paper show that a national-
scale simple regression model of the precipitation vs. eleva-
tion presents some weaknesses (high residual values, high
local- and national-scale bias, and low NSE coefficient, etc.)
and therefore needs to be improved.

The use of multiple regression models introduces some
benefits, such as a reduction of MAE and RMSE at the na-
tional scale; nevertheless they were not successful in reduc-
ing the local bias.

Considering the necessity of working on smaller domains,
we analyzed several geomorphological classifications which
are able to preserve the intrinsic value of the statistically sig-
nificant landscape variables that emerge in regression mod-
els. Four different geomorphological classifications available
in literature were used to provide criteria for the identifica-
tion of homogeneous regions. We applied simple linear re-
gression models over these homogeneous domains and com-
pared the performances at both a national and a local level.
Among all the considered classifications, the selection of rain
gauges for the model application was found to be more effec-
tive in the case of GC4 (Alvioli et al., 2020a), which embeds
hydrographic information.

The best approach was selected by evaluating the error
statistics for the bias at both a national and a local scale and
at a national scale for MAE, RMSE and NSE. The obtained
results have shown that using simple linear regression ap-
plied to the GC4 model produces better results than all the
others, in the areas in which the GC4 model is statistically
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Figure 5. The 1 h case. Local bias for the four-region multiple regression model (a), the GC4 simple linear regression model over statistically
significant areas (b) and the GC4 simple linear regression model over all the areas (c). Geomorphological data source: Alvioli et al. (2020a).

Figure 6. Absolute bias assessment for all the regression models used for the 1 h case (a, b) and 24 h case (c, d). The color refers to the model
that provides the lowest absolute value of the bias. The GC4 model bias in cases (a) and (c) was only evaluated for statistically significant
areas, while it was evaluated over every area in (b) and (d). Geomorphological data source: Alvioli et al. (2020a).

significant, in terms of bias. As far as national statistics are
concerned, considering the mean rainfall depths in the gray
areas in Fig. 5b does not significantly affect the performance
of GC4, in terms of MAE, RMSE and NSE, in particular for
the 1 h duration. In short, we propose using the GC4 model
where possible and adopting the (spatial) mean value of the
rainfall depths in case of a nonstatistically significant rela-
tionship.

This work has led to the following conclusions. The rela-
tionship between precipitation and elevation is not meaning-
ful in all the areas in Italy, as already pointed out by Carac-
ciolo et al. (2012) for the island of Sicily. In this work, this
concept has systematically been extended to the whole coun-
try, and significant relationships have only been obtained for
45 % of the area for h1 and 49 % for h24. As far as the model
that we suggest using is concerned, that is GC4, we are aware
that improvements are possible, considering that no signifi-
cant regressions were found over 55 % (h1) and 51 % (h24)

of the territory. However, it should be pointed out that the
rainfall station density is not sufficient for the application of
the method proposed here over 9 % of the territory.

Details regarding the model based on GC4 and numerical
values of the regression parameters are provided in the Data
availability section.

Data availability. The Iwahashi and Pike geomorphological
classification (GC1) is available at https://esdac.jrc.ec.europa.eu/
content/global-landform-classification (Iwahashi and Pike, 2007),
the “Carta della Natura” classification (GC2) is available at https:
//www.isprambiente.gov.it/it/pubblicazioni/manuali-e-linee-guida/
Il-Progetto-Carta-della-Natura-alla-scala-1-250.000 (Amadei
et al., 2003) and the Guzzetti and Reichenbach classifica-
tion (GC3) is available upon request to the authors, while
the Alvioli et al. (2020b) classification (GC4) is available at
http://geomorphology.irpi.cnr.it/tools/slope-units.
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The rainfall data were obtained from the I2-RED database. Al-
though Italian law requires an open-source policy for all public
data, this right has not yet been implemented by all the Italian
agencies involved in the management of the rain gauge network.
The agreements we signed with some of these agencies, aimed
at monitoring the correct use of the data, restricted their use to
the aims of the authors’ project. As a result of these legal re-
strictions, a complete version of I2-RED can only be provided to
two groups of people: members of the authors’ research group
(who are already fully authorized to use the data) and people who
can prove they have received clearance from the regional authori-
ties. The entire quality-controlled database is available on Zenodo
(https://doi.org/10.5281/zenodo.4269509, Mazzoglio et al., 2020b),
albeit with restricted access. The data can be used by third parties,
for an indefinite timeframe, upon having completed an agreement
with the authors and with the regional agencies involved in the data
collection. The raw data availability depends on the region: a com-
plete description of how to access these data is reported in Maz-
zoglio et al. (2020b).

The model based on GC4 and the numerical values of the regres-
sion parameters are available in the Supplement.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-26-1659-2022-supplement.
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