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Abstract. The seasonal-to-decadal terrestrial water balance
on river basin scales depends on several well-characterized
but uncertain soil physical processes, including soil moisture,
plant available water, rooting depth, and recharge to lower
soil layers. Reducing uncertainties in these quantities using
observations is a key step toward improving the data fidelity
and skill of land surface models. In this study, we quanti-
tatively characterize the capability of Gravity Recovery and
Climate Experiment (NASA-GRACE) measurements – a key
constraint on total water storage (TWS) – to inform and con-
strain these processes. We use a reduced-complexity physi-
cally based model capable of simulating the hydrologic cy-
cle, and we apply Bayesian inference on the model parame-
ters using a Markov chain Monte Carlo algorithm, to min-
imize mismatches between model-simulated and GRACE-
observed TWS anomalies. Based on the prior and posterior
model parameter distributions, we further quantify informa-
tion gain with regard to terrestrial water states, associated
fluxes, and time-invariant process parameters. We show that
the data-constrained terrestrial water storage model can cap-
ture basic physics of the hydrologic cycle for a watershed in
the western Amazon during the period January 2003 through
December 2012, with an r2 of 0.98 and root mean square er-
ror of 30.99 mm between observed and simulated TWS. Fur-
thermore, we show a reduction of uncertainty in many of the
parameters and state variables, ranging from a 2 % reduction
in uncertainty for the porosity parameter to an 85 % reduction
for the rooting depth parameter. The annual and interannual
variability of the system are also simulated accurately, with
the model simulations capturing the impacts of the 2005–
2006 and 2010–2011 South American droughts. The results

shown here suggest the potential of using gravimetric obser-
vations of TWS to identify and constrain key parameters in
soil hydrologic models.

1 Introduction

The terrestrial water balance depends on many physical pro-
cesses, including soil moisture, plant available water (PAW),
rooting depth, recharge to lower soil layers, among others,
and these processes depend on each other in a dynamic way
(Margulis et al., 2006; Massoud et al., 2019a, 2020a). Some
variables, such as precipitation, surface runoff, or soil mois-
ture, can be directly observed in the field or by airborne mea-
surements (Walker et al., 2004; Swenson et al., 2006; Du-
rand et al., 2009; Liu et al., 2019), but other processes, such
as evapotranspiration (ET) or groundwater storage changes,
are more difficult to detect and observe (Tapley et al., 2004;
Pascolini-Campbell et al., 2020). Model simulations are one
tool that can be used to fill gaps where our understanding
of the hydrologic cycle is incomplete or missing (Purdy et
al., 2018; Massoud et al., 2018a). Different types of mod-
els exist, such as distributed models with dozens or hun-
dreds of parameters that simulate process-based physics on
the grid scale but are extremely expensive to run (Vivoni et
al., 2007; Hanson et al., 2012; Longo et al., 2019; Massoud et
al., 2019b), or lumped models that aggregate information in
space and time to reduce the cost of model simulations while
maintaining accuracy compared with measurements (Man-
freda et al., 2018; Massoud et al., 2018b). Recent advances in
model-data fusion have paved the way to merge land model
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simulations with observations (Girotto et al., 2016; Khaki et
al., 2017, 2018; Quetin et al., 2020; Sawada, 2020), limiting
the need for process representation in the model and increas-
ing the efficiency in the inference of unknown physical pro-
cesses, such as hydrologic variables that cannot be directly
measured.

The wealth of data available today, including in situ mea-
surements, flux towers, or satellite data from remote sensing,
has made it increasingly possible to fuse model simulations
with observations. This has been shown in several works in
the literature so far (Massoud et al., 2018a, b; Seo and Lee,
2020). One set of satellite observations that has been very
popular in the literature is the NASA Gravity Recovery and
Climate Experiment (GRACE) pair of satellites (Tapley et
al., 2004). Satellite observations of Earth’s gravity field from
GRACE are processed routinely into estimates of surface
mass change and can provide information about basin-scale
dynamics of hydrologic processes. GRACE mass change es-
timates can be combined with other hydrologic information,
such as model simulations or in situ observations, to infer
hydrologic parameters and state variables (Famiglietti et al.,
2011; Xiao et al., 2017; Trautmann et al., 2018; Massoud
et al., 2018a, 2020a; Liu et al., 2019). Numerous studies
in the literature have assimilated information from GRACE
into models for a better understanding of how groundwa-
ter systems behave on different scales (Zaitchik et al., 2008;
Houburg et al., 2012; Reager et al., 2015).

Across a variety of climate and land surface models
(Christoffersen et al., 2016; Purdy et al., 2018; Massoud et
al., 2019a; Schmidt-Walter et al., 2020), hydrology process
parameters – both physical states and empirical process vari-
ables – constitute a major uncertainty in models. Uncertain
variables include rooting depth, infiltration rates, water re-
tention curves, among other soil physical processes, which
are governing factors in the dynamic evolution of soil wa-
ter states. Typically, models prescribe these parameters ei-
ther by default values or by calibrating the models in well-
studied and extensively measured domains. However, few
efforts have been made to assess uncertainties tied to the
choice of these parameter values. Many of these prescribed
parameters come from observational studies, such as Hod-
nett and Tomasella (2002) and those indicated in Marthews et
al. (2014). Studies such as these optimize parameters, along
with their dependence on soil characteristics, to represent
field measurements of water retention curves. However, the
samples are often restricted to a few sites and not necessar-
ily representative of larger regions. Furthermore, the models
may have limitations in their physical process representation,
which could induce bias in predictions if these parameters
are used as the “truth”. In general, information on parameters
can be inferred with high confidence using datasets obtained
from remote sensing.

In this study, we demonstrate the ability of the decadal
GRACE total water storage (TWS) record to inform and re-
duce uncertainties of terrestrial hydrologic processes regu-

lating the seasonal and inter-annual variability of TWS in the
western Amazon, the Gavião watershed, for the period Jan-
uary 2003 through December 2012. To achieve this, we use
a model of necessary complexity to represent the first-order
controls on seasonal-to-decadal soil moisture dynamics, in-
cluding soil moisture, soil water potential, PAW, and rooting
depth. To characterize and quantify information content of
the GRACE record, we employ a Bayesian model-data fu-
sion approach to constrain model parameters (namely initial
states and time-invariant process variables), such that differ-
ences between GRACE and simulated TWS anomalies are
statistically minimized. We henceforth collectively refer to
time-invariant parameters governing soil moisture states –
such as porosity, rooting depth and hydraulic conductivity
coefficients – as model process parameters throughout the
manuscript.

Our study is set up as follows. In Sect. 2 we describe
the TWS model, the GRACE TWS data used to constrain
our simulations, and the Bayesian method used to infer the
model parameters. In Sect. 3, we define the model’s phys-
ically based equations, introduce the time-invariant model
parameters that are optimized and inferred, and highlight our
findings and results. We summarize our work in Sect. 4 and
discuss the implications of our results and priority points for
further developments.

2 Data and methods

2.1 Data-constrained terrestrial water storage model

We employ a model of necessary complexity to represent
basin scale hydrologic processes that regulate the storage
and movement of water on monthly timescales, as shown in
Fig. 1. The model includes two soil layers, where the top
layer represents the water that is available to plants via roots
(PAW), and the bottom layer representing depths of the soil
that plant roots cannot access (plant unavailable water, or
PUW). The model uses monthly time steps to integrate the
state variables and is driven with hydrologic flux variables
such as ET and precipitation. The model also includes other
processes such as infiltration into the soil, surface runoff,
drainage from each layer, recharge into the lower soil layer,
and various model parameters (listed in Table 1) that control
the simulations.

The model includes 13 parameters that represent process-
based hydrologic mechanisms, ones that are hypothesized to
be influential on basin-scale monthly resolution model sim-
ulations of the hydrologic cycle. As depicted in Fig. 1, there
are two soil layers representing the PAW and PUW pools.
Each of the two separate soil layers has its own inferred phys-
ical properties, such as the depth of each layer, soil moisture
initialization, porosity, field capacity, and retention capabili-
ties. Various fluxes are represented in the model, such as pre-
cipitation (P ), evapotranspiration (ET), infiltration, surface
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Figure 1. Model schematic for the data-constrained terrestrial water storage model. Arrows indicate the logical flow that describes the
movement and storage of water in the model. The domain on the right highlights the western Amazonian watershed investigated in this study,
the Gavião watershed.

Table 1. Parameter estimation results for the Gavião watershed. Shown here are the model parameters and associated symbols, prior ranges
(min–max), units, posterior solution median estimate (Markov chain Monte Carlo, MCMC), AK matrix diagonal values showing the level of
uncertainty reduction (i.e., AK= 1 for full reduction, AK= 0 for no reduction in uncertainty), and TWS sensitivities ([mm change in TWS
per 1 %-unit change in parameter]) showing the sensitivity of TWS variability to model parameters.

Parameter Symbol Min Max Units MCMC AK TWS
diagonal sensitivity

(1) Porosity Layer 1 ρ1 0.2 0.8 0.4686 0.0509 0.1192
(2) Porosity layer 2 ρ2 0.2 0.8 0.4544 0.0127 0.0614
(3) 9_field 9field −0.1 −0.01 MPa −0.0375 0.3735 0.3656
(4) Layer 1 depth (rooting depth) LPAW 1 100 m 23.7214 0.8441 0.2262
(5) Layer 2 depth (PUW depth) LPUW 1 100 m 12.2266 0.7136 0.5975
(6) Retention parameter b b 1.5 10 2.3767 0.8448 0.3647
(7) Saturated hydraulic conductivity K0 1.00× 10−7 1.00× 10−5 m s−1 2.57× 10−6 0.2593 0.4455
(8) Maximum infiltration Imax 100 2000 mm per month 1275.9 0.7758 0.0485
(9) SM @ t = 0 PAW SM1,t0 0.1 0.5 m3 m−3 0.1607 0.5873 0.3128
(10) SM @ t = 0 PUW SM2,t0 0.1 0.5 m3 m−3 0.4117 0.7889 0.133
(11) ET scale factor ETscale 0.5 1.5 0.5364 0.9694 0.0179
(12) P scale factor Pscale 0.5 1.5 0.8284 0.897 0.0586
(13) Q excess factor Qexcess 0.01 1 0.2832 0.864 0.0246

runoff, and drainage. The parameters of the model dictate
the simulation of each process in the hydrologic cycle, and
by adding the two water pools (PAW+PUW), an estimate
of total water storage (TWS) can be generated, which can
then ultimately be compared with the GRACE-based TWS.

We describe here the model equations that dictate how the
TWS is calculated in the model. To start, we know from
the water mass continuity that the changes in TWS in the
soil is equivalent to the balance between input (precipita-
tion, P ) and outputs (ET, and the total loss through drainage
and runoff Q). In effect, P and ET are prescribed boundary
conditions for the model. In this version of the model,

TWSt =MPAW
t +MPUW

t , (1)

where MPAW
t represents the PAW and MPUW

t is the PUW
each month, t . The soil is represented this way in the model
because plants cannot access all the water stored in the
ground; therefore, two separate layers are used to represent
the soil water in the rooting zone (PAW) and the soil water
that is not accessible to plants (PUW).

The following model equations are used to represent the
storage and flow of water in the model. The mass continuity
equations for water stored in the MPAW and MPUW layers
are:
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MPAW
t+1 =M

PAW
t + It −Dt,PAW−Ft −ETt (2)

MPUW
t+1 =M

PUW
t −Dt,PUW+Ft , (3)

where It is the infiltration into the top soil layer, Dt,PAW and
Dt,PUW are the drainage terms for each layer, Ft is the
recharge in between layers, and ETt is the ET term each
month, t . We assume that a fraction of precipitation cannot
infiltrate the soil. This occurs because during rainy events,
the precipitation rates often exceed the percolation rates of
the near-surface soil, which may become temporarily satu-
rated. These processes occur on sub-monthly scales and can-
not be explicitly accounted for in the model; therefore, we
use a phenomenological approach that assumes a maximum
infiltration rate:

It = Imax

(
1− e

−Pt
Imax

)
, (4)

where Pt represents the precipitation rate each month and
Imax is the parameter that represents the maximum infiltra-
tion. The excess precipitation is lost as surface runoff (St )
and never enters the soil storage:

St = Pt − It . (5)

The recharge flux between the PAW and PUW layers (Ft ,
positive when the flow goes from PAW to PUW) can be de-
fined by Darcy’s law, relating the difference in potentials be-
tween the two layers:

Ft = ρlKt,layer

[
10−6

ρlg

9t,PAW−9t,PUW
1
2 (LPUW−LPAW)

+ 1

]
, (6)

where 9t,PAW and 9t,PUW [MPa] are the soil matric po-
tential of each layer each month, ρl = 1000 kg m−3 is the
water density, g = 9.807 m s−2 is the gravity acceleration,
Kt,layer [m s−1] is the hydraulic conductivity of the source
layer (i.e., PAW if Fi is positive, and PUW if Fi is nega-
tive), and LPUW (rooting depth) and LPAW (remainder of soil
depth) are the parameters that represent the thickness of each
layer [m].

Then, the soil matric potential of each layer is defined
as a function of relative soil moisture (SMt,layer), following
Brooks and Corey (1964):

ψt,layer = ψporosity

(
1

SMt,layer

)b
, (7)

where ψporosity =−0.117 MPa, and the parameter b corre-
sponds to the inverse of the pore size distribution index
(Marthews et al., 2014). The unsaturated hydraulic conduc-
tivity (Kt,layer) is defined following Campbell (1974):

Kt,layer =K0SM2b+3
t,layer, (8)

where K0 [m s−1] is the parameter that represents the satu-
rated hydraulic conductivity, and the parameter b is the same

as in Eq. (7). The drainage function is parameterized as the
removal of water that exceeds the field capacity, to represent
fast (sub-monthly) loss of water under near-saturated condi-
tions:

Dt,layer =
max

(
0,ψt,layer−ψfield

)
Qexcess

(
ψporosity−ψfield

) , (9)

where the scaling term Qexcess is a free parameter from 0–
1 that removes a fraction of SM excess above field capac-
ity, ψfield.

Last, one thing to note is that precipitation and ET bi-
ases in the Amazon are known to be significant, and ET can
even have an inverted seasonal cycle. The model is ca-
pable of substantially relaxing and constraining the simu-
lated evapotranspiration (ETt ) and precipitation (Pt ) values
each month, through the parameterization and inference of
scale factors (Pscale and ETscale). The data set used for P
each month, namely Pdata,t , is derived from precipitation
measurements from the Tropical Rainfall Measuring Mis-
sion (TRMM) 3B42 (Huffman et al., 2007), provided at
0.25◦× 0.25◦ and 3-hourly spatiotemporal resolutions. The
data sets used for ET each month, namely ETdata,t , is de-
rived following the approach in Swann and Koven (2017) and
Shi et al. (2019). That is, monthly total ET is derived from
satellite observations of precipitation and TWS and ground-
based measurements of river runoff. Unlike the ET retrievals
from the Moderate Resolution Imaging Spectroradiometer,
which have been shown to be seasonally biased in the wet
tropics (Maeda et al., 2017; Swann and Koven, 2017), this
ET estimation is robust across seasons (Swann and Koven,
2017). Runoff data sets for each watershed are obtained
from the Observation Service for the geodynamic, hydro-
logic, and biogeochemical control of erosion/alteration and
material transport in the Amazon (SO-HYBAM) in situ
river gauge discharge measurements (discharge measure-
ments can be found at http://www.ore-hybam.org/, last ac-
cess: 21 March 2017). With these three data sets, we estimate
subbasin-based monthly ET.

To clarify this further, three different derivations are used
for the TWS variable. These three estimates provide a
sense of uncertainty for the TWS. The uncertainty from the
GRACE product is used in the likelihood function of the
MCMC algorithm when fitting the model-simulated TWS
to the GRACE derived TWS. Next, three products are also
used in the precipitation and the runoff driving variables that
were used, to get a sense of the uncertainty in each variable.
To estimate the ET driving variable in this work, we use the
mean of the TWS, P , andQ products and create a water bal-
ance that will allow us to estimate a mean for the ET driving
variable. Then, by application of the ET scaling parameter,
we try to estimate whether our initial calculation of ET re-
quired any scaling to match the data. Therefore, even though
the GRACE TWS is somehow used in the derivation of the
ET data, the uncertainty that is applied throughout the work
allows us to still estimate ET that is not dependent on the
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GRACE data. See Shi et al. (2019) for more details on this
derivation. In essence, the simulated fluxes are represented as
ETt = ETscale·ETdata,t for ET, and Pt = Pscale·Pdata,t for pre-
cipitation, where ETscale and Pscale are inferable parameters.
Combining all these equations in the logical flow presented
in Fig. 1 of the manuscript allows the model to simulate total
water storage as TWSt =MPUW

t +MPAW
t . To our knowledge,

this model has not been presented before in the literature, and
this manuscript is the first to report on the model simulation
results.

The parameters of the model will be inferred such that the
TWS in the model simulations match the observed GRACE
TWS data. As GRACE TWS is known to have the smallest
uncertainties in the water budget (see Pascolini-Campbell et
al., 2020), we use this information to infer and understand the
more poorly constrained variables or processes in the model.
In this case study, we use the model for the Gavião water-
shed, located in the western Amazon (for the location of the
watershed refer to the map in Fig. 1). We chose the Gavião
watershed for this study owing to sufficient data availability,
and because there is a strong seasonal cycle for this water-
shed, which allows the model to capture hydrologic signals
more efficiently during the parameter inference.

2.2 GRACE data for total water storage

The GRACE mission by NASA (Tapley et al., 2004) has
proven to be an extremely valuable tool for regional to global
scale water cycle studies (Famiglietti, 2014; Reager et al.,
2015; Massoud et al., 2018a, 2020a). GRACE data have been
widely used to diagnose patterns of hydrological variability
(Seo et al., 2010; Rodell et al., 2009; Ramillien et al., 2006;
Feng et al., 2013), to validate and improve model simula-
tions (Döll et al., 2014; Güntner, 2008; Werth and Güntner,
2010; Chen et al., 2017; Eicker et al., 2014; Girotto et al.,
2016; Schellekens et al., 2017), to constrain decadal predic-
tions of groundwater storage (Massoud et al., 2018a), and to
enhance our understanding of the water cycle on regional to
global scales (Syed et al., 2009; Felfelani et al., 2017; Mas-
soud et al., 2020a). TWS estimates from GRACE include all
of the snow, ice, surface water, soil water, canopy water, and
groundwater in a region, and when combined with auxiliary
hydrologic datasets, TWS can be utilized to infer process in-
formation on model parameters or other model states.

Various recent studies have demonstrated that GRACE-
derived estimates of variations of TWS can provide freshwa-
ter availability estimates with sufficient accuracy (Yeh et al.,
2006; Zaitchik et al., 2008; Massoud et al., 2018a). These
GRACE-based methods have been applied to regions such
as Northern India (Rodell et al., 2009; Tiwari et al., 2009),
the Middle East (Voss et al., 2013; Forootan et al., 2014;
Massoud et al., 2021), Northern China (Moiwo et al., 2009;
Feng et al., 2013), California (Famiglietti et al., 2011; Scan-
lon et al., 2012; Xiao et al., 2017; Massoud et al., 2018a,
2020a), northern mid- to high latitudes (Trautmann et al.,

2018), and the Amazon (Swann and Koven, 2017). In this
study, estimates of TWS are obtained from the GRACE re-
trievals of equivalent water thickness (Landerer and Swen-
son, 2012; Sakumura et al., 2014; Wiese et al., 2016). We
use three GRACE TWS retrievals from the spherical har-
monic data versions generated by the Center for Space Re-
search (CSR), GeoforschungsZentrum Potsdam (GFZ), and
Jet Propulsion Laboratory (JPL). These three GRACE TWS
retrievals are 1-degree solutions of land field products (each
was downloaded from ftp://podaac-ftp.jpl.nasa.gov/allData/
tellus/L3/land_mass/RL05/, last access: 14 June 2017). We
calculate the arithmetic mean of the three GRACE TWS
retrievals to represent TWS used in Eq. (1). We used this
GRACE product to constrain simulations of the hydrologic
model described in Sect. 2.1 for the Gavião watershed from
January 2003 through December 2012.

2.3 Bayesian parameter inference with MCMC

In this study, we aim to estimate parameters of a medium
complexity model that simulates the hydrologic cycle using
physics-based equations that capture large scale dynamics
of the watershed. We showcase how the data-constrained,
physically based model can simulate the hydrologic cycle by
fusing the model with auxiliary observations. When simu-
lated on its own, the model can represent a wide range of
physical possibilities, but when calibrated and trained to fit
some desired observed metric, the model simulations be-
gin to represent the underlying physical system it is being
trained to. Many tools exist to achieve model-data fusion,
such as Bayesian parameter inference with MCMC algo-
rithms (Schoups and Vrugt, 2010; Bloom et al., 2015; Vrugt,
2016; Vrugt and Massoud, 2018; Massoud et al., 2019c,
2020b) or data assimilation (Reichle et al., 2002; Vrugt et al.,
2005; Girotto et al., 2016; Khaki et al., 2017, 2018; Massoud
et al., 2018b). These state-of-the-art tools require enough
computational cost but can ensure that the underlying sys-
tem dynamics are being accurately replicated to an agreeable
amount of uncertainty. The model parameters in this study
are estimated using Bayesian inference with MCMC (Vrugt
and Massoud, 2018), where the final estimated distributions
are not required to follow any form, such as Gaussian or bi-
modal. The final estimates of the model parameters, shown
later to be the posterior of θ in Eq. (12), are the posterior so-
lutions and are utilized to constrain the spread of uncertainty
in the simulations.

In recent decades, Bayesian inference has emerged as a
working paradigm for modern probability theory, parameter
and state estimation, model selection, and hypothesis testing
(Vrugt and Massoud, 2018). According to Bayes’ theorem,
the posterior parameter distributions, P(A|B), depend upon
the prior distributions, P(A), which captures our initial be-
liefs about the values of the model parameters, and a likeli-
hood function, L(θ), which quantifies the confidence in the
model parameters, θ , considering the observed data, Y . The
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likelihood function is a critical property of this calculation.
This section shows the derivation of the likelihood function
used in this study. According to Bayes’ Theorem, the prob-
ability of an event is estimated based on prior knowledge
of conditions that might be related to the event. In equation
form, this looks like:

P(A|B)=

(
P(B|A) ·P(A)

P (B)

)
. (10)

For the purposes of this study, we can express P(A) as the
prior information of our calculation, which assumes that log-
uniform distribution for all parameters and the probability
outside the parameter bounds is equal to 0 (the minimum and
maximum values for each parameter are reported in Table 1).
P(B) is the evidence and is a normalizing constant and there-
fore taken out of the equation. This leaves us with:

P(A|B)∝ P(B|A); P(A|B)∝ L(θ), (11)

where P(A|B) is the final distribution of the model param-
eters, or the posterior of θ in Eq. (12) described in the next
paragraph, and P(B|A) is equivalent to the chosen likelihood
function, L(θ), also described in the next paragraph. There-
fore, the MCMC algorithm samples model parameter combi-
nations (θ ) that will maximize the fit to the GRACE data, and
thus will maximize the value of the likelihood function,L(θ).

The observed data in this case study is the GRACE satellite
observations, and our goal is to find the optimal set of model
parameters, θ , that produces a model simulation, X(θ),
which maximizes the fit, or the likelihood, relative to the ob-
servations. Our likelihood function is therefore set up as:

L(θ)=−
1

σ 2
GRACE

∑
t

[
YGRACE,t −XModel,t (θ)

]2
, (12)

where t refers to the time index (in months) of the simu-
lations, YGRACE,t is the observed GRACE data at month t ,
XModel,t (θ) is the optimized model simulations at month t
using the parameters θ , and σ 2

GRACE is the uncertainty associ-
ated with the GRACE data, which was chosen to be a homo-
geneous 50 mm per month for our applications. As GRACE
data are represented as anomalies from climatology, we for-
mat the model simulations into anomalies as well to perform
this model-data-fitting experiment. That is:

YGRACE,t = TWSGRACE,t −mean(TWSGRACE) , (13)

indicating that the form of the GRACE observations is in cli-
matological anomalies. Furthermore, we format the model
simulations in this manner for the parameter inference, as
follows:

XModel,t = TWSModel,t −mean(TWSModel) . (14)

We apply Bayesian inference on the model parameters in an
optimization framework and sample the likelihood function

in Eq. (12). This allows for the inference of the model param-
eters, or θ . These inferred model parameters will be used to
inform and constrain the spread of uncertainty in the model
simulations.

Successful use of the MCMC application in a Bayesian
framework depends on many input factors, such as the num-
ber of chains, the prior used for the parameters, the num-
ber of generations to sample, and the convergence criteria.
For our application, we use the adaptive Metropolis-Hastings
MCMC, as described in Bloom et al. (2020). We use C = 4
chains, the prior was a log-uniform distribution for each pa-
rameter and the ranges shown are listed in Table 1, the num-
ber of generations was set at G= 100000, and the conver-
gence of the chains relied on the Gelman and Rubin (1992)
diagnostic, where we applied the commonly used conver-
gence threshold of R = 1.2. Given the high efficiency of
running this parsimonious model (compared with other high
dimensional and expensive models), it was computationally
feasible to obtain the set of G= 100000 simulations for the
MCMC algorithm (i.e., less than 1 h of CPU time to perform
the parameter inference).

2.4 Averaging kernel matrix

To better quantify the reduction of uncertainty for each pa-
rameter, we apply an averaging kernel (AK) calculation
(Worden et al., 2004), which is typically a measure of how a
modeled state (posterior) is sensitive to changes in the “true”
state (prior) and is a method that is common for satellite re-
trievals. The AK matrix is calculated as follows:

AK= I−
cov(Posterior)

cov(Prior)
, (15)

where AK is the diagonal vector of the averaging kernel ma-
trix, I is the identity matrix, “Posterior” is the Bayesian pa-
rameter posteriors sampled with MCMC, “Prior” are sam-
ples randomly drawn from the prior distribution, and cov is
the covariance function. We take the main diagonal of the
AK matrix, which represents uncertainty reduction from the
prior to the posterior parameter distributions. The AK di-
agonal values for each parameter are listed in Table 1 un-
der “AK Diagonal”. A value of AK= 1 represents a 100 %
reduction in uncertainty, whereas a value of AK= 0 repre-
sents no information gain and therefore no reduction in un-
certainty.

3 Results and discussion

3.1 Sensitivity of TWS variability to model parameter

To characterize the sensitivity of the monthly TWS variabil-
ity to model parameters, we perturb posterior parameters and
generate corresponding TWS simulations. Figure 2 shows
the sensitivity of the model-simulated TWS to minor pertur-
bations in parameter values. In these plots, the green curves

Hydrol. Earth Syst. Sci., 26, 1407–1423, 2022 https://doi.org/10.5194/hess-26-1407-2022



E. C. Massoud et al.: Information content of soil hydrology in a west Amazon watershed 1413

Figure 2. Sensitivity of the model-simulated TWS to minor per-
turbations in parameter values. Shown here (from top to bottom)
are sensitivities to (a) the rooting depth parameter, (b) the maxi-
mum infiltration parameter, and (c) the soil moisture initialization
parameter for layer 1. Green curves are the changes in simulated
TWS (dTWS) when each parameter is perturbed (dPar) by 1 %
of its prior range, indicating the magnitude and the time steps of
model sensitivity. TWS sensitivities to other parameters are shown
in Fig. S3. The x-axis depicts the number of months since 2003,
showing the 10-year period starting in January 2003 and ending in
December 2012.

show changes in simulated TWS (dTWS) when each param-
eter is perturbed (dPar) by 1 % of its prior range, indicating
the magnitude and the time steps of model sensitivity. Re-
sults in these plots show that sensitivity to initial conditions
is higher for the first 12-month period but is diminished af-
ter that. Furthermore, the sensitivity of simulated TWS varies
between wet and dry seasons.

The rooting depth parameter (Fig. 2a) is sensitive during
initialization as well as during the wet periods, the maxi-
mum infiltration parameter (Fig. 2b) seems to only be sen-
sitive during the wet periods, and the parameter representing
the initialization of soil moisture in the top layer (Fig. 2c)
is only sensitive during initialization. Figure S1 in the Sup-
plement shows how the remaining parameters affect TWS
sensitivity. To summarize these curves in a single value
(i.e., [mm change in TWS per 1 %-unit change in parame-
ter]), we show in Table 1 under “TWS sensitivity” the ag-

gregated value for each parameter, calculated as the mean
variance of all (dTWS/dPar) curves for each parameter.

3.2 Posterior model parameters and simulated states

3.2.1 Model parameters, TWS, and states – the Gavião
watershed

We apply Bayesian inference to the model parameters and
simulations and optimize the fit to the GRACE data to obtain
posterior solutions of the model parameters. We apply this
parameter inference for three basins. The first is the Gav-
ião watershed (shown in Fig. 1), which has a generally wet
climate. We then perform the same parameter inference to
a basin that is wetter than Gavião and is located upstream
from the Acanaui river gauge station (hereafter called Basin
1), and to a basin that is drier than Gavião and is upstream
from the Guayaramerin river gauge station (hereafter called
Basin 2).

For the Gavião watershed, the prior and posterior param-
eter distributions are shown in Fig. 3, and the median value
for these distributions is listed in Table 1 under “MCMC” for
each parameter. We investigated how the estimated parame-
ter values we find in this study compare with other studies
in the literature. For example, the retention parameter “b” in
our study is estimated to be around 2, which is lower than the
tabulated values of Cosby et al. (1984), Tomasella and Hod-
nett (1998), or Marthews et al. (2014). Of course, the model
in this study is simulated at much coarser resolution, and the
physical meaning of these parameters may change owing to
processes being solved on very different scales. This is an im-
portant message for the interpretation of these results, as tak-
ing a model developed on one scale and applying it to a dif-
ferent scale can induce spurious errors if parameters are not
adequately constrained at the intended resolution. We found
that most parameters exhibited a significant uncertainty re-
duction for the Gavião watershed. To quantify this reduction
of uncertainty, we apply an averaging kernel (AK) calcula-
tion. The results from the AK matrix are listed in Table 1
under “AK diagonal”, and they indicate that significant un-
certainty reduction occurs in some parameters, namely the
depth of the PAW layer (rooting depth) and the depth of the
PUW layer, as well as the retention and maximum infiltration
parameters. In contrast, we found that porosity, conductivity
at saturation, and ψfield exhibited the smallest relative uncer-
tainty reductions.

In Fig. 4 we show the model simulations of 10-year
monthly TWS for the Gavião watershed, including the prior
and the posterior simulations, and compare these with the
values obtained from satellite data (GRACE TWS). Posterior
ranges of the model-simulated TWS are shown in the orange
envelopes, and precipitation values used to drive the model
are shown to indicate wet vs dry periods. Results in Fig. 4
show that GRACE-informed soil hydrologic model simula-
tions (posterior) can capture the monthly TWS compared
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Figure 3. Histograms of the prior (blue) and posterior (orange) distributions of the GRACE-informed parameters for the Gavião watershed.

Figure 4. Monthly total water storage (TWS) anomaly estimates from satellite data (GRACE TWS), the prior simulation from the model, and
the data-constrained version of the model simulations for the Gavião watershed. GRACE-informed posterior ranges of the model-simulated
TWS are shown here in the orange envelopes. Precipitation values used to drive the model are shown to indicate the seasonal cycle.

with concurrent GRACE measurements, with an r2
= 0.9837

and root mean square error (RMSE)= 30.99 mm between
observed and simulated TWS. Comparing this result with the
prior model simulations (mean of the prior shown in Fig. 4,
and the distribution from the prior is shown in Fig. S2),
we see a major improvement in the constrained posterior
model simulations. The mean prior has an r2

= 0.4360 and
RMSE= 10.50 mm compared with the GRACE TWS, and
the range of the prior simulations in Fig. S2 span a wide

range of possibilities. This result indicates that this simple
model can accurately simulate TWS in the Gavião water-
shed when the parameters are inferred using GRACE mea-
surements as a fitting target.

The model is then simulated using all samples from the
posterior, which provides posterior solutions for the state
variables. These are shown in Fig. 5, which displays spe-
cific model processes for the Gavião watershed (map of the
basin shown in the bottom right panel of Fig. 5). The ma-
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Figure 5. GRACE-informed model-simulated states and fluxes for the Gavião watershed (basin shown in the bottom right panel in the context
of the broader South American domain). These figures show specific model processes, such as (a) the matric potential of plant available
water (PAWψ), (b) the matric potential of plant unavailable water (PUWψ), (c) recharge (PUW->PAW flux) where negative values indicate
a downward flux, (d) discharge from the top layer (QPAW), (e) discharge from the bottom layer (QPUW), (f) infiltration, (g) soil moisture
of the top layer (SM PAW), and (h) soil moisture of the bottom layer (SM PUW). The ranges shown here in orange envelopes indicate the
GRACE-informed posterior ranges. A map showing the location of the Gavião watershed is shown in the bottom right panel.

tric potential of plant available water (PAWψ) and the ma-
tric potential of plant unavailable water (PUWψ) represent
the suction pressure in each soil layer that is associated with
dryness/wetness. In other words, a completely wet soil layer
would have a matric potential of 0 and higher levels of dry-
ness result in more negative matric potential values. Based
on the results in Fig. 5a and b, the PUW layer seems to have
more wetness, and therefore less suction pressure, for this
watershed (i.e., values closer to 0 for the PUW layer). The
recharge value (PUW->PAW flux) represents the flux of wa-
ter from the top layer to the bottom layer, where negative
values indicate a downward flux. Results in Fig. 5c show that
a flux of water continually flowing downward from the top
layer (PAW) to the bottom layer (PUW), roughly at the mag-
nitude of 50–100 mm per month. The discharge values rep-
resent the drainage from the top layer (QPAW) and from the
bottom layer (QPUW). The results in Fig. 5d and e show
that there is drainage from the top layer (PAW) that peaks in
the wet season at roughly 40 mm per month, and that there
is drainage that follows a seasonal cycle from the bottom

layer (PUW) at around 40–80 mm per month. The infiltration
represents the water that infiltrates from the surface into the
top soil layer. According to Fig. 5f, this flux also follows a
seasonal cycle, with about 250 mm per month infiltrated into
the top layer during the wet season and dropping to roughly
50 mm per month in the dry season. Last, soil moisture of the
top (SM PAW) and bottom layers (SM PUW) represent the
state of soil moisture in each layer. Based on the results in
Fig. 5g and h, the PUW layer seems to have more wetness,
and therefore higher soil moisture values, for this watershed
and these results correspond to what is seen for the matric
potential in Fig. 5a and b (i.e., more wetness in the PUW
layer). In Fig. 5, the ranges shown in orange envelopes are
the posterior ranges, indicating the range of possible solu-
tions for each GRACE-informed state variable for the Gav-
ião watershed. Some dynamical constraints were applied in
the Bayesian optimization, such as SM1,t0 and SM2,t0 , are
greater than 0.1 but less than 0.5 [m3 m−3]. The rationale
for these “common-sense” rules follows that of Bloom and
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Williams (2015), to ensure that nonrealistic physical proper-
ties of the system are not allowed.

The resulting model simulations are largely affected by
the way that ET is used in the model. We described in the
methods section how ET is calculated in our study, and it
is important to note that there are alternative approaches for
prescribing watershed ET. For example, FLUXCOM (Jung et
al., 2019), JPL-PT ET (Fisher et al., 2009), or parsimonious
prognostic ET scheme (Liu et al., 2021) estimates can pro-
vide robust alternatives for the residual-based ET approach.

3.2.2 Interpretation of results

The posterior parameters and model simulations provide in-
formation that can be used to identify and estimate the pro-
cesses responsible for TWS variability in this watershed. In-
sights into rooting depth (histograms in Fig. 3) are critical for
determining the resilience of rootzone water storage during
dry season events (see Lewis et al., 2011; Shi et al., 2019; Liu
et al., 2017, amongst others). Insights into soil water poten-
tial seasonality (posteriors in Fig. 5) are critical for resolving
plant hydraulic process responses to atmospheric water de-
mand and soil water supply (Novick et al., 2019; Konings and
Gentine, 2017; Liu et al., 2021). Quantitative top-down in-
sights into the infiltration, retention, and runoff parametriza-
tions (histograms in Fig. 3 and posteriors in Fig. 5) are key
to understanding the partitioning of precipitation – and its
associated seasonal and inter-annual variability – into runoff
and storage (which all remain key uncertainties in hydrologic
models). Ultimately, mechanistic insights allow for further
investigations into instantaneous and lagged responses of soil
hydrologic states to climatic variability. Of course, these pro-
cess dynamics can vary between watersheds, and it is im-
portant to understand the causes and drivers of variability in
water storage between basins.

3.2.3 Model parameters, TWS, and states – other
basins

To ensure that the results from the parameter inference can
provide insights into other basins, we estimate parameter
posteriors and corresponding TWS simulations for the two
other basins mentioned above, Basin 1 (a basin that is wetter
than Gavião and is located upstream from the Acanaui river
gauge station) and Basin 2 (a basin that is drier than Gavião
and is upstream from the Guayaramerin river gauge station).
Table S1 in the Supplement reports the median value for
the posterior distributions of each parameter in each basin.
The TWS simulations for each basin are shown in Fig. S3
(Basin 1) and Fig. S4 (Basin 2). Applying the parameter in-
ference for these basins also produced accurate simulations,
with an r2

= 0.9548 and RMSE= 28.49 mm between ob-
served and simulated TWS for Basin 1 (Fig. S3), and an
r2
= 0.9891 and RMSE= 18.89 mm between observed and

simulated TWS for Basin 2 (Fig. S4). Furthermore, we show

in Figs. S5 and S6 the GRACE-informed model-simulated
states and fluxes for Basins 1 and 2, respectively. From these
results, it is apparent that Basin 1 is wetter than Basin 2, e.g.,
this can be seen by comparing the precipitation levels de-
picted in Figs. S3 and S4, but also by comparing the matric
potential values in panel a or the discharge values in pan-
els d and e in Figs. S5 and S6. The location of these basins
in the context of the broader South America are shown in
the bottom right panel of Figs. S5 and S6. Overall, the mod-
eled state variables and parameters for these basins are con-
strained using the GRACE data, and this information can be
used to identify and estimate the processes responsible for
TWS variability in these watersheds.

3.3 Model simulations at the Gavião watershed: model
validation, annual cycle, and annual variability

3.3.1 Model calibration and validation

It is typical in works involving parameter inference to apply
a model calibration and a model validation to different pe-
riods of the data set to ensure that the estimated parameters
are not over-fitting the data and can be used to describe the
underlying system and thus make predictions. In this section,
we apply a model calibration in the Gavião watershed for the
first half of the data set spanning 5 years, and then we apply a
validation for the second half of the data set spanning the re-
maining 5 years. Figure 6 shows results for the model calibra-
tion and validation. Posterior ranges of the model-simulated
TWS are shown in Fig. 6 in the orange envelopes for the
calibration and validation years, and the red line represents
the mean estimates for the validation period. The results in
Fig. 6 show that the calibration period RMSE is 47.71 mm
with a correlation of 0.9520, and for the validation period the
RMSE is 40.17 mm with a correlation of 0.9801. This shows
that the estimated parameters during the calibration period
are still valid for the validation period and indicates that the
GRACE-informed soil hydrologic model parameters are both
useful for diagnosing present-day soil water dynamics (cali-
bration) as well as predicting seasonal and inter-annual soil
water dynamics (validation).

3.3.2 Annual cycle and annual variability

We further investigate the ability of the tuned model to
capture the annual variability in TWS in the Gavião wa-
tershed. In Fig. 7a, we compared the annual cycle of the
TWS anomalies produced from GRACE with those produced
by the model. The annual variability is captured well with
the model, with an r2

= 0.9979 and RMSE= 11.00 mm be-
tween observed and simulated TWS annual cycles. The an-
nual cycle of the mean prior simulation is also shown in
Fig. 7 (dashed red line) for comparison. In Fig. 7b, the
timeline of de-seasonalized TWS anomaly estimates are
shown. To obtain this plot, we subtract the annual cycle
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Figure 6. Model calibration and validation for monthly TWS anomaly estimates in the Gavião watershed, for the period January 2003
through December 2012. The plot shows the first 5 years of the data for calibration and the remaining 5 years for validation. GRACE-
informed posterior ranges of the model-simulated TWS are shown here in the orange envelopes for the calibration and validation years, and
the red line is used to represent the mean estimates for the validation period.

in Fig. 7a from each month’s estimate shown in Fig. 4.
The de-seasonalized plot in Fig. 7b has an r2

= 0.8512 and
RMSE= 29.27 mm between observed and simulated time-
lines, and the model accurately portrays whether a dry or
wet period is experienced relative to what is expected in
the annual cycle. This is a vast improvement from esti-
mating the annual cycle and de-seasonalized TWS timeline
in the prior simulations (mean prior simulation shown in
Fig. 7, and the distribution of prior simulations is shown
in Fig. S7). For the prior simulations of the annual cycle,
the model has a r2

= 0.9761 and RMSE= 417.62 mm, and
for the de-seasonalized TWS timeline, the model prior has a
r2
= 0.4323 and RMSE= 93.32 mm between observed and

simulated timelines. Therefore, the model posterior solutions
show a great improvement compared with the prior for sim-
ulating the annual cycle and capturing the seasonality of the
hydrologic cycle for each watershed.

In the results shown in Fig. 7, we see that the model can
capture the 2005–2006 and 2010–2011 droughts in the Gav-
ião watershed that are shown in the GRACE data (see Lewis
et al., 2011). The model also captures the wet periods ob-
served in 2003, 2004, 2008, 2009, and 2012 (see Fig. 7b).
The model captures the positive and negative anomalies quite
well; however, it does have some limitation in capturing the
magnitude of some extreme events (positive and negative),
which may be partly caused by the coarser time step and spa-
tial scale of the simulation. Yet, the model does succeed in
capturing some delayed anomalies in water storage follow-
ing the 2005–2006 and 2010–2011 droughts, which is very
promising. This gives confidence in the data-constrained
model to provides meaningful estimates of TWS anomalies
on monthly and seasonal scales.

3.4 Correlations between posterior model parameters
and model states

After the model parameters and states variables are con-
strained by the GRACE data for the Gavião watershed, rela-
tionships between the model parameters and simulated states
begin to emerge. We show in Fig. 8a the scatter plot between
posterior solutions of model-simulated TWS and the excess
runoff parameter. This figure shows that the region inside the
black box, or the high-density region of the posterior, is the
region within the posterior domain that has high information
content (i.e., plausible solutions with a high likelihood). The
true value provided by the GRACE data is marked with a red
line in Fig. 8a. Other regions of this space, such as locations
with excess runoff values below 0.2, produce unlikely model
simulations, and similarly, locations with excess runoff val-
ues higher than 0.5 are also less likely. This can also be seen
in Fig. 3, in the posterior histograms for the excess runoff pa-
rameter. Similar relationships between other parameters and
state variables (including soil moisture of layer 1 and dis-
charge from layer 1) are shown in Fig. S8. Overall, these
plots not only show the emergent relationships between vari-
ables as informed by GRACE, but also indicate if and how
they correlate in the Gavião watershed.

Similarly, the posterior parameter solutions can be used
to infer relationships between the parameters themselves. To
this end, we show in Fig. 8b a scatter plot depicting the
GRACE-informed correlation of the posterior parameter val-
ues for the soil moisture initialization parameters in the Gav-
ião watershed. We see that the initial soil moisture in the bot-
tom layer is greater than 0.2 [m3 m−3], and in the top layer it
is less than 0.3 [m3 m−3], which can be seen in Fig. 3, in the
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Figure 7. (a) Annual cycle of the monthly TWS anomalies [mm], from satellite data (GRACE), the prior simulation from the model (Prior),
and the data-constrained version of the model simulations (Posterior) for the Gavião watershed. GRACE-informed posterior ranges of the
model-simulated TWS annual cycle are shown here in the orange envelopes. (b) To obtain the de-seasonalized values of TWS for the Gavião
watershed shown in panel (b), we subtract the annual cycle in panel (a) from each month’s estimate shown in Fig. 4. This shows whether the
anomaly values in each time step of panel (b) portrays an extremely dry or wet period relative to what is expected in the annual cycle. Hence,
the data-constrained model can capture the 2005–2006 and 2010–2011 droughts that are shown in the GRACE data.

posterior histograms for the soil moisture initialization pa-
rameters. One property that also emerges in Fig. 8b is that the
initial soil moisture in the bottom layer is larger than that of
the top layer. This indicates that, in the initial time step of the
simulations, the bottom layer should have greater soil mois-
ture than the top layer. These relationships can be created for
any pair of parameters in the posterior space, and Fig. S9 por-
trays these relationships for several combinations of parame-
ters, indicating what combinations of parameters are possible
for this hydrologic system, as inferred by GRACE.

We summarize the results reported in this subsection with
the following points. First, we find considerable correlations
between the posteriors of individual model parameters and
model states in the Gavião watershed. We also find consider-

able correlations between the posteriors of individual model
parameters and other parameters. This is important, because
the correlations between parameters and states indicate that
the choice of hydrologic constants can have a considerable
impact on simulated TWS. The relationships found in the
parameter posteriors imply that although several parameters
exhibit considerable uncertainty, only a subset of parameter
combinations provide GRACE-consistent model solutions.
In essence, these GRACE-based relationships portray what
parameter combinations are possible for accurately simulat-
ing the chosen watershed.
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Figure 8. (a) Posterior relationship of the model-simulated TWS [mm] during April 2003 and the runoff excess parameter [unitless]. The
region inside the black box indicates the posterior region with high density, i.e., plausible solutions with high likelihood. The red line shows
the “true” TWS value seen in the GRACE data for this period. (b) Posterior relationship of the initialization parameters for soil moisture in
layers 1 and 2, respectively. Initial SM in layer 2 is larger than 0.2 [m3 m−3], initial SM in layer 1 is less than 0.3 [m3 m−3], and SM2,t0 is
generally larger than SM1,t0 , as indicated in this plot. See Table 1 and Sect. 3.4 for details.

4 Summary

In this paper we used a parsimonious hydrologic model ca-
pable of simulating various aspects of land surface hydrol-
ogy, and we ran the model for different basins in the west-
ern Amazon. We performed extensive analysis on the Gav-
ião watershed, a relatively wet basin, and also reported re-
sults for two other basins, one wetter (Basin 1) and one drier
(Basin 2). The model used in this study includes two soil lay-
ers (plant available and unavailable water pools), is driven by
hydrologic flux variables such as ET and precipitation, and
includes other processes such as infiltration into the soil, sur-
face runoff, drainage from each layer, and recharge into the
lower soil layer. Various model parameters that control the
simulations for the Gavião watershed, with their respective
estimated values, are listed in Table 1. Table S1 lists these
parameter values for Basins 1 and 2. We applied Bayesian in-
ference to estimate posteriors for the model parameters that
allowed the simulations to match satellite-based estimates of
TWS obtained from GRACE.

Results in this paper showcased the estimated parame-
ter posteriors along with their priors (Fig. 3), the poste-
rior solution of simulated TWS (Fig. 4), and the estimated
model states (Fig. 5). We also performed a model calibra-
tion and validation exercise (Fig. 6), to show how estimated
parameters during the calibration period are still useful for
the validation period. We also compared the annual cycle
and de-seasonalized TWS anomalies produced from both the
GRACE data and the model, and we showed how the data-
constrained TWS model can capture the annual variability as
well as drought events that occurred in this system (Fig. 7a
and b). For further diagnosis of our results, we showed the

relationships between model-simulated states and the esti-
mated parameters (Figs. 8a and S8). Then we showed re-
lationships between combinations of estimated parameters
(Figs. 8b and S9). Furthermore, we investigated the sensi-
tivity of the model-simulated TWS to minor perturbations in
parameter values (Figs. 2 and S1), and we showed how pa-
rameters can create sensitivities in TWS in different ways,
for example, during wet or dry periods, or during model ini-
tialization. Simulation results for Basins 1 and 2 are shown
in Figs. S3–S6.

Overall, the results in this paper allowed us to make the
following conclusions. First, GRACE-informed soil hydro-
logic model parameters are useful for diagnosing present-
day soil water hydrology. Substantial uncertainty reduction
was found for parameters that represent soil moisture initial-
ization, rooting depth, and conductivity and retention rela-
tionships. However, limited uncertainty reduction was found
for infiltration rates and porosity parameters, and further
model development may be needed to describe the informa-
tion content of these processes and their associated uncertain-
ties more accurately. The second conclusion is that GRACE-
informed model parameters can be used for predicting sea-
sonal and inter-annual soil water hydrology. We showed that
using a 5-year data record of TWS allows the parameter in-
ference to still be applicable to the remaining 5-year data
record, which is simulated without the use of information
from GRACE. Last, a medium complexity model like the one
used here can be sufficient for capturing monthly to seasonal-
scale hydrology of the land surface at the basin scale, such as
the Gavião watershed in the Amazon.
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By fusing information from the signal of the surface mass
change with other hydrologic information, such as physical
constraints in model simulations or seasonal behavior of in
situ observations, GRACE has proven its ability to infer hy-
drologic parameters and state variables accurately. We found
that this methodology is generalizable to other regions, and
we reported the results from additional testing that was con-
ducted on other watersheds in the Amazon. Our results sug-
gest the potential of using gravimetric observations of TWS
from GRACE to identify and constrain key parameters in soil
hydrologic models.
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