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Abstract. Urban groundwater management requires com-
plex environmental models to represent interactions between
hydrogeological processes and infrastructure systems. While
the impacts of external uncertainties, such as climate and
population growth, have been widely studied, there is limited
understanding of how decision support is altered by endoge-
nous uncertainties arising from model parameters and obser-
vations used for calibration. This study investigates (1) the
importance of observation choice and parameter values on
aquifer management objectives when controlling for model
error and (2) how the relative performance of management
alternatives varies when exposed to endogenous uncertain-
ties, both individually and in combination. We use a spa-
tially distributed groundwater model of the Valley of Mex-
ico, where aquifer management alternatives include demand
management, targeted infiltration, and wastewater reuse. The
effects of uncertainty are evaluated using global sensitivity
analysis, performance ranking of alternatives under a range
of human–natural parameters, and identification of behav-
ioral parameter sets filtered with an error metric calculated
from varying subsets of observations. Results show that the
parameters governing hydraulic conductivity and total water
use in the basin have the greatest effect on management ob-
jectives. Error metrics (i.e., squared residuals of piezometric
head) are not necessarily controlled by the same parameters
as the head-based objectives needed for decision-making.
Additionally, observational and parameter uncertainty each
play a larger role in objective variation than the management
alternatives themselves. Finally, coupled endogenous uncer-
tainties have amplifying effects on decision-making, leading
to larger variations in the ranking of management alternatives
than each on their own. This study highlights how the uncer-

tain parameters of a physically based model and their inter-
actions with uncertain observations can affect water supply
planning decisions in densely populated urban areas.

1 Introduction

Groundwater resource planning and management requires in-
creasingly complex models to represent interactions between
hydrogeological and infrastructure systems to achieve sus-
tainability (Megdal et al., 2015; Singh, 2014; Wada et al.,
2017; Peters-Lidard et al., 2017). A key challenge for model-
based decision support is understanding the influence of mul-
tiple sources of uncertainty on the choice of infrastructure
alternatives. In particular, the role of external uncertainties,
such as future climate, population, and land use change,
have been investigated extensively in the systems analy-
sis field (Hadka et al., 2015; Maier et al., 2016; Kwakkel
and Haasnoot, 2019). Similar approaches have been applied
in groundwater systems to analyze the combined effects of
perturbations in external forcing (Dams et al., 2008, 2012;
Mustafa et al., 2019; Fletcher et al., 2019). However, the en-
dogenous uncertainties arising from physically based hydro-
logic and hydrogeologic models are often neglected in infras-
tructure planning studies, despite often influencing predic-
tions as much or more than external drivers (Mendoza et al.,
2016; Qiu et al., 2019; Herman et al., 2020). Furthermore,
the effects of endogenous model uncertainties on model error
may be different from their effects on the ranking of alterna-
tives and, therefore, on decision making. This difference has
been largely understudied and is the focus of this paper.
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Physically based groundwater models can support infras-
tructure decisions by ranking alternatives according to their
performance under stakeholder-defined management objec-
tives. Global sensitivity analyses of the ranking of alterna-
tives have generally focused on the influence of objective
values and weights in multi-criteria decision models, with-
out providing a physical basis for the determination of such
variations (Hyde and Maier, 2006; Ganji et al., 2016). As a
result, these decision models often do not account for un-
certainty in hydrologic processes, leaving an opportunity to
relate processes to the criteria values that are produced for
a given management alternative. For example, Ravalico et
al. (2009, 2010) analyze the effects of parameter changes on
the optimal policy ranking by determining the minimum, me-
dian, and maximum parameter values that change the rank-
ing of alternatives based on a single management objective;
however, their implementation did not address model error.
Specifically, none of the existing approaches explicitly eval-
uates the relationship between uncertain endogenous model
characteristics used to determine model error and ranking
of management alternatives for decision-making based on
model output.

In hydrogeologic models, endogenous uncertainty is con-
tributed by model parameters describing the natural and hu-
man components of the system and the set of historical obser-
vations used to calibrate or constrain the parameters (Moore
and Doherty, 2005; Doherty and Simmons, 2013). Parame-
ters provide the flexibility to represent complex systems on a
broader scale and, in some cases, can encapsulate differences
in model structure as well (Guillaume et al., 2016). The prop-
agation and attribution of parameter uncertainty has been
the topic of numerous hydrologic modeling studies, using
a combination of uncertainty analysis and sensitivity anal-
ysis (Razavi et al., 2021; Pianosi et al., 2016), though gen-
erally without considering the influence of this uncertainty
on model-based decision support (Jing et al., 2019) or only
focusing on local sensitivity analyses (Tolley et al., 2019).
Global sensitivity analysis in particular has seen growing us-
age with advances in computing power (Razavi and Gupta,
2015), including sensitivity varying over time and/or space
(Herman et al., 2013; Şalap-Ayça and Jankowski, 2016; Rei-
necke et al., 2019; Zhang and Liu, 2021) and model structure
(Mai et al., 2020). Observational uncertainty is typically also
excluded, except in the case of inverse modeling (Refsgaard
et al., 2007).

The choice of observations to support parameter identi-
fication is often complicated by a number of factors, includ-
ing the temporal and spatial representation of the model area,
data quantity and quality, and resolution of datasets that de-
termine model structure with respect to observation locations
(McMillan et al., 2018; Refsgaard et al., 2012; Lehr and Lis-
cheid, 2020). This is especially true for groundwater model-
ing in urban environments, where infrastructure, monitoring
practices, and pumping patterns can complicate groundwa-
ter data collection procedures meant to ensure accurate and

repeatable results (Foster et al., 1998; Vázquez-Suñé et al.,
2010; Bhaskar et al., 2016). Uncertainty in the selection of
observations will alter the parameter calibration (Montanari
and Di Baldassarre, 2013) and, in turn, the planning problem
(Brunner et al., 2012). Similarly, Rojas et al. (2010) explore
the availability and variety of observations in characteriz-
ing the choice of conceptual models in multimodel analysis,
again focusing on effects on model error.

When developing groundwater models for planning pur-
poses, calibration is often carried out by selecting a best pa-
rameter set by minimizing one or more error metrics while
adjusting parameter values, using parameter sensitivity or
expert evaluation to determine which parameters to adjust.
Alternatively, some calibration frameworks use observations
and the resulting behavioral model space of a selected error
metric to refine the distribution of parameter values, rather
than optimizing a single one (Wagener et al., 2003; Bárdossy,
2007; Beven, 2016). In such calibration frameworks, a be-
havioral parameter set comprises a sample of parameter sets
from the behavioral model space through minimization of the
error metric. A number of studies have focused on improv-
ing behavioral parameter set analysis by including regional
datasets and expert knowledge, in addition to parameters and
inputs (Kelleher et al., 2017), or evaluating sets that perform
poorly with respect to a given error metric in addition to
acceptable simulations (Reusser and Zehe, 2011). However,
beyond prior studies of model error, there remains a need
to understand the coupled effect of uncertainty in hydrogeo-
logic model parameters and observations on the relative per-
formance of decision alternatives (Razavi et al., 2021).

This study aims to evaluate the sensitivity of groundwa-
ter model error and decision-relevant management objectives
to uncertain parameters and observations and to determine
the effects of this coupled uncertainty on the infrastructure
planning problem. The result is a planning-driven evalua-
tion of uncertainty to support groundwater management, with
the goals of identifying parameters to improve the accuracy
of the hydrogeologic model and those that should be better
constrained to support the selection of management alterna-
tives. This is done through a combination of a global sensi-
tivity analysis and a performance ranking under a range of
human–natural parameters and with the identification of be-
havioral parameter sets based on multiple possible subsets
of historical observations (Fig. 1). These diagnostic meth-
ods aim to evaluate the following two main consequences of
these decision-relevant uncertainties: first, the importance of
observation choice and parameter values on the absolute ob-
jective performance when controlling for model error, and
second, how the relative performance of management alter-
natives varies when exposed to endogenous uncertainties,
both individually and in combination. This approach exem-
plifies how the propagation of multiple endogenous uncer-
tainties throughout the modeling process can ultimately af-
fect the outcomes of regional groundwater supply planning.
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Figure 1. Flowchart of methods.

2 Methodology

This study focuses on the Mexico City Metropolitan Area to
evaluate the effects of parameter and observation uncertainty
on multi-objective groundwater modeling and decision-
making. The Mexico City Metropolitan Area lies within the
southwestern portion of the Valley of Mexico watershed,
characterized by volcanic peaks surrounding a high plains
basin (OCAVM, 2014). This paper uses a case study of the
urban aquifer management problem in the Valley of Mex-
ico, using a spatially distributed groundwater model adapted
from prior work (Herrera-Zamarrón et al., 2005; Lopez-
Alvis, 2014; Galán-Breth, 2018; Mautner et al., 2020). This
type of complex, three-dimensional model is required to ap-
proximate the interactions between physical hydrogeologic
properties and managed aquifer recharge interventions. This
model complexity makes uncertainty analysis difficult, but it
is also critical to understand how spatially and temporally ag-
gregated management objectives vary across many parameter
combinations.

2.1 Urban groundwater model

The Valley of Mexico model is written in Python, using the
flopy package to preprocess data and run the model in MOD-
FLOW, a widely used software which solves the groundwater
flow equation (Bakker et al., 2019), as presented in Maut-
ner et al. (2020). The following is a brief overview of the
Valley of Mexico test case. A set of model parameters gov-
ern model representation of geologic setting, land use and
land cover, and water resource infrastructure in Mexico City,
including artificial and natural recharge, time-varied ground-
water pumping, and heterogeneous subsurface characteristics
(Table 1). This model covers an area of 84 km by 67 km on
a 500× 500 m spatial grid and the time period from 1984
to 2013. All model inflows and outflows are applied at a

daily time step, varied according to a monthly stress period,
meaning that data are provided at the monthly timescale, al-
though data availability may cause some fluxes to vary at
the annual or decadal timescale. The four management al-
ternatives designed to increase groundwater recharge within
the basin while avoiding flooding are drawn from Mautner
et al. (2020). The alternatives were chosen based on con-
versations with local practitioners and previous modeling ef-
forts. The alternatives are the implementation of spatially dis-
tributed infiltration basins, demand management through re-
pair of leaks in the water supply network, injection of treated
wastewater at existing wastewater treatment plants, and the
status quo historical alternative.

Each alternative is then evaluated according to the follow-
ing three aquifer management objectives: pumping energy
use, water quality risk, and urban flood risk (Eqs. 1–3). The
management objectives evaluated are drawn from Mautner
et al. (2020) and modified to avoid outlier values that would
occur when parameter combinations led to high quantities
of model error that would affect the sensitivity analysis. The
pumping energy objective (YE) is governed by the energy re-
quired to pump a daily quantity of groundwater (p) from the
water table (h) to the ground surface (s) across all time peri-
ods (t) of varying length in days (d) and across all pumping
wells (w), converted to kilowatt hours, using an efficiency
and conversion term (ε). YE is calculated starting in the third
year of the model period to avoid spin-up effects. In the Val-
ley of Mexico, the lacustrine aquitard in the center of the
valley serves as a barrier to contamination of the underly-
ing productive alluvial aquifer, thereby ensuring that the hy-
draulic head remains above the confining layer and reduces
water quality impacts in the long term. The water quality risk
objective (YW) indicates the number of cells not meeting the
groundwater levels below the confining lacustrine layer nec-
essary to maintain water quality (l) divided by the total num-
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Table 1. Model parameters and sampling ranges.

Param Units Lower Upper Param Units Lower Upper
bound bound bound bound

Zonal geologic Time-varied infrastructure

HK1 m d−1 8.64E-7 5.00E-2 Q1990 – 0.3 2.25
HK2 m d−1 1.00E-1 1.00E+2 Q2000 – 0.45 3.5
HK3 m d−1 3.46E-2 1.50E+2 Q2010 – 0.5 4
HK4 m d−1 4.32E-2 4.32E+1 LK1990 – 0.5 2
HK5 m d−1 4.32E-4 8.64E+1 LK2000 – 0.5 2
Ss

1 m−1 9.19E-4 2.03E-2 LK2010 – 0.5 2
Ss

2 m−1 4.92E-5 1.05E-3 TWU1990 – 0.75 2
Ss

3 m−1 1.00E-7 6.89E-5 TWU2000 – 0.95 2
Ss

4 m−1 1.00E-7 1.02E-4 TWU2010 – 1.1 2
Ss

5 m−1 1.00E-7 6.89E-5

Sy
1 – 0.001 0.08 Zonal recharge

Sy
2 – 0.05 0.4 RCHurban % 0 10

Sy
3 – 0.01 0.2 RCHnatural % 1 80

Sy
4 – 0.05 0.4 RCHwater % 10 50

Sy
5 – 0.001 0.1

VANI1 – 1 1000 Leak infiltration

VANI2 – 1 1000 IN % 5 50
VANI3 – 0.1 100
VANI4 – 0.1 100
VANI5 – 0.1 100

1 Lacustrine, 2 alluvial, 3 fractured basalt, 4 volcaniclastic, and 5 andesitic. Note: HK – horizontal hydraulic
conductivity; Ss – specific storage; Sy – specific yield; VANI – vertical anisotropy of hydraulic conductivity;
Q – urban pumping multiplier; LK – ratio of distribution leaks to estimated leaks using 1997 data;
TWU – regional water use multiplier; RCH – recharge percentage for each land use type; IN – infiltration
percentage for leaked water.

ber of lacustrine cells in the model (L) during the time peri-
ods (t) in the last year of the model period. In conflict with
the previous two objectives, certain parts of the city lie in
areas that are affected by seasonal flooding resulting from
medium-term groundwater mounding, which is particularly
damaging in urban areas. To take into account these possible
negative effects from increasing groundwater head within the
valley, the urban flood risk (YF) is the sum of the urban area
in cells with groundwater mounding (a) divided by the total
urban area in the model (A) during the time periods (t) in the
last year of the model period.

YE =
∑360

t=25

∑nwells

w=1
εpd

(
st, w −ht, w

)
(1)

YW =

∑360
t=348lt∑360
t=348L

(2)

YF =

∑360
t=348at∑360
t=348A

. (3)

2.2 Uncertain parameters

The 33 model parameters include zonal geologic, time-varied
infrastructure, zonal recharge, and infiltration characteristics
(Table 1). There are four zonal geologic parameters for each
of the five geologic formations, i.e., one parameter for each
of the 3 decades during the model period for the total wa-
ter use, ratio of urban to peri-urban pumping, and distribu-
tion system leak multiplier, a recharge percentage for each
land use type, and an infiltration parameter for leaked wa-
ter. Parameter ranges are adapted from Mautner et al. (2020),
adding or adjusting maxima and minima where necessary
based on the literature and physical relationships. The cali-
bration carried out in Mautner et al. (2020) used a local sen-
sitivity analysis in which some parameters were not assigned
sampling ranges. In this study, a global sensitivity analysis is
used, and thus, some combinations of parameter values had
to be avoided based on the structure of the model (Table 1).
For example, estimated pumping in the region is determined
by subtracting historical non-pumping water source quanti-
ties from the total regional water use derived from the total
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water use multiplier (TWU), thus, the TWU must result in
a regional water use greater than the historical non-pumping
water sources. Similarly, the urban pumping multiplier (Q)
acts on a historical dataset and must result in total pump-
ing that is less than the estimated pumping determined by
the combination of regional water use, historical other sup-
ply sources, and the TWU multiplier. The selected parameter
ranges are shown in Table 1. Using these ranges, 100 000
unique parameter sets are generated using Latin hypercube
sampling. Simulations for each of the management alterna-
tives using the parameter sets were carried out on 296 pro-
cessors over a total of 107 814 CPU hours. A single model
run is of the order of 5 min, depending on the combination of
parameters and the processor speed.

2.3 Spatially clustered observations

Uncertainties introduced throughout the groundwater mod-
eling process propagate through to decision-making, based
on the simulated performance of management alternatives.
Parameter uncertainty is reduced by calibration against ob-
servations. However, there is also error in, and uneven repre-
sentation of the model area by, the observations used for cal-
ibration. Ideally, observation data can be filtered according
to knowledge of collection methods, characteristics of mon-
itoring wells, and distribution across the model area. How-
ever, increasingly, modelers face unwieldy and incomplete
observation datasets that have greater degrees of freedom and
limited or uncertain boundary conditions with which to cal-
ibrate models (Tiedeman et al., 2004; Tonkin et al., 2007;
Hrachowitz et al., 2013; Nearing et al., 2021). These uncer-
tainties can include a lack of data on the geologic formation
boundaries,the placement and magnitude of cones of influ-
ence from pumping wells, and the effects of urban karst and
land cover types on natural and artificial recharge near mon-
itoring wells.

A set of 8181 observations from 676 monitoring wells is
available for the area and time period of the urban ground-
water model used in this study. Well observations vary from
1 to 29 data points per well over the 30-year model period,
with a maximum of one observation per year. Multiple in-
teracting uncertainties (e.g., land use, pumping wells, and
geologic formations) can have unpredictable effects on the
relevance of certain observations; thus, the observation un-
certainty is represented in this study by separating the full
set of observations into randomly selected and spatially dis-
tinct subsets of observations to act as proxies for incomplete
historical records (Fig. 2). The full set was separated into five
clusters, using centroid initialization of K-means clustering
normalized within the 3-dimensional space of the set (Fig. 2),
resulting in a total of six clusters when the full set is included
as a control.

2.4 Model error

Doherty and Moore (2020) propose the selection of a
decision-critical prediction when assimilating observed data
into a model for calibration. In this model, the three ground-
water planning objectives are based on various spatial and
temporal aggregations of groundwater head values; thus, an
error metric that assesses model agreement with piezomet-
ric head, the decision-critical prediction, through space and
time was selected. As in Mautner et al. (2020), model error is
captured by the sum of squared weighted residuals (SSWRs)
between historical head observations (hobs, i) and simulated
values (hsim, i), using weights (ω) determined in Lopez-Alvis
(2014) and Galán-Breth (2018) as follows:

SSWR=
n∑
i=1

1
ω2 (hobs, i −hsim, i)

2. (4)

The model error is calculated under the status quo scenario
to characterize model agreement with historical hydraulic
head observations. Given the inclusion of multiple observa-
tions for a single well over time, the error metric captures
both spatial and temporal variability in the hydraulic head.
Higher values of this metric indicate poor model agreement
with observations, with larger disagreements amplified in the
metric as a result of the squared residual.

2.5 Parameter set selection

In complex systems with uncertain inputs, model processes
can be difficult to parameterize and even more difficult to
constrain. While perfect monitoring and representation is the
ideal, in reality, simplifying assumptions must be calibrated
to create models that can better inform policy and manage-
ment. In such cases, it is common to have multiple viable
parameter sets that produce simulations with acceptable or
equivalent model error. Changes in the observations used to
evaluate error can lead to differences in the behavioral pa-
rameter sets that are chosen as the best-performing simula-
tions. Here, we calculate the error metric for each of the six
observation clusters, inclusive of the full set of observations,
and choose the 5 % best-performing parameter sets accord-
ing to that metric. This gives a sample of 5000 parameter sets
that perform relatively well with respect to the full sample of
100 000. We refer to these as the cluster behavioral parameter
sets for each of the six observation clusters.

2.6 Sensitivity analysis

To better ensure robust management alternatives under un-
certain model inputs, global sensitivity analysis has been in-
creasingly explored as a decision support tool (Razavi et al.,
2021). The sensitivity of the management objectives across
the parameter space with respect to both management alter-
natives and cluster behavioral parameter sets indicates the
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Figure 2. (a) A 3-dimensional visualization of the five clusters of observations used in this study. (b) Observation clusters shown with the
geologic formations within the model area. (c) Observation clusters shown with the land use types for the model period covering 2010.

variability in uncertainty with respect to individual physi-
cal model parameters. Using the cluster behavioral param-
eter sets, a global sensitivity analysis is performed using
the delta moment-independent measure (δ) as follows (Bor-
gonovo, 2007; Plischke et al., 2013):

δi =
1
2
EXi

[∫
|dµY − dµY |Xi |

]
, (5)

where the moment independent sensitivity indicator of pa-
rameter Xi , with respect to the output Y (δi), represents the
normalized expected shift in the distribution of Y as a func-
tion of µY and µY |Xi and the unconditional and conditional
measures of Y , respectively. In this study, the parameters (Xi)
are the 33 parameters shown in Table 1, and the outputs (Y )
are the three management objectives described in Eqs. (1–
3). This method was selected for two reasons. First, δ pro-
vides a better representation of sensitivity with respect to
model structure when parameters are correlated, often true in
complex human–natural systems (e.g., increased groundwa-
ter pumping during periods of reduced recharge and surface

supplies from drought), when compared to variance-based
methods (Borgonovo and Plischke, 2016). Second, the delta
method does not require a specific structure of parameter
samples, thus allowing for the sub-selection of 5000 samples
from the initial set. By only evaluating objective sensitivity
across the solution space of the cluster behavioral parameter
sets rather than the entire solution space, we remove objec-
tive values of simulations that do not agree with observations
and which have the potential to introduce further uncertain-
ties. Parameter sensitivity is calculated for four model out-
puts, i.e., the error metric and three management objectives.
A total of 72 sensitivity analyses on 33 parameters are per-
formed across combinations of four alternatives, three objec-
tives, and six cluster behavioral parameter sets resulting from
filtering based on the error metric among each of the six ob-
servation clusters. The sensitivity analyses were performed
on 72 processors over a total of 4.9 CPU hours.
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2.7 Evaluation of decision uncertainty

To understand the extent to which uncertainty in obser-
vations and parameters can affect decision-making analy-
ses, we compare alternative performance across cluster be-
havioral parameter sets. First, management alternatives are
ranked within each objective for each of the parameter sets to
view differences in the alternative ranking across the cluster
behavioral parameter sets. We evaluate the model results to
visualize changes in ranking according to three types of com-
parisons using sets of heat maps that summarize the ranking
of the alternatives across all the parameter sets. The compar-
isons evaluated are as follows: (1) all three objectives across
the observation cluster behavioral sets, (2) all three objec-
tives for observation cluster behavioral set C-12345 across
the range of the alluvial hydraulic conductivity parameter
(HK2), and (3) the water quality objective (YW) across the
observation cluster behavioral sets and parameter HK2, si-
multaneously.

In all three comparisons, the first step is to rank the alterna-
tives according to the objective(s) from lowest (1) to highest
(4) in each parameter set. Then, the ranking data for all the
parameter sets in each comparison are summarized as fol-
lows:

– Evaluate three objectives across observation cluster be-
havioral sets. This evaluation shows the count of rank-
ings for each alternative. Each column (cluster) in each
objective row will sum to 5000.

– Evaluate three objectives for C-12345 across parame-
ter HK2. The 5000 sample set is separated into 10 bins
along the parameter value range from Table 1. The rank-
ing count in each bin is divided by the total number of
parameter samples in each bin to allow direct compar-
ison across all bins. This is necessary because the dis-
tribution of behavioral parameters can be non-uniform.
Each column (parameter value bin) in each objective
row will sum to 100 % or null if there are no parame-
ter sets in that bin.

– Evaluate YW across the observation cluster behavioral
sets and HK2, simultaneously. This is the same as in the
previous comparison but for only the water quality ob-
jective. This is repeated for the remaining observation
cluster behavioral sets (C-00001 to C-00005). Each col-
umn (parameter value bin) in each cluster row will sum
to 100 % or null if there are no parameter sets in that
bin.

Second, the difficulty of the decision was measured by
evaluating the percent difference between the first and second
ranked alternatives and between the first and worst ranked al-
ternatives. The distribution of these differences indicate the
relative performance between the alternatives, with a distri-
bution concentrated among lower values indicating a more

difficult decision because the relative differences between the
objective measures of the options are smaller. While alter-
native ranking can provide some information on the relative
performance of aquifer management alternatives with respect
to each other, it does not provide information on the dif-
ference between the performance in each simulation. More
importantly, by not knowing the range of objective values
between the management alternatives in a given simulation,
decision-makers might incorrectly infer the difficulty of a
decision. For example, take the case of two simulations in
which the performance in the urban flood risk objective of
the historical, infiltration basin, wastewater reuse, and repair
leaks alternatives are 1.5 %, 1.7 %, 1.8 %, and 2 %, respec-
tively, in the first simulation, and 2 %, 15 %, 32 %, and 40 %
in the second simulation. These two simulations may pro-
duce the same alternative ranking, i.e., historical (1), infil-
tration basins (2), wastewater reuse (3), and repair leaks (4).
However, it is clear that second simulation produces a much
easier decision than the first because the absolute and rela-
tive differences between the objective values are larger in the
second simulation than in the first.

3 Results and discussion

3.1 Cluster behavioral parameter sets

Figure 3 shows the kernel density estimations (KDEs) for
the resulting parameter distributions when selecting the 5000
samples with the lowest error using each of the observa-
tion clusters (C-00001, C-00002, C-00003, C-00004, and C-
00005) and the entire observation set (C-12345). The initial
distribution (not shown) is uniform for all parameters. These
distributions indicate the parameters that have the greatest in-
fluence on model error, defined here as those with the great-
est deviation in distribution from the prior uniform distribu-
tion, namely the horizontal hydraulic conductivity (HK) pa-
rameters. The higher parameter values for the geologic char-
acteristics (horizontal hydraulic conductivity – HK; specific
storage – SS; specific yield – SY) of the alluvial formation
(formation number 2) are preferentially represented in the
low-error parameter sets. For hydraulic conductivity, this in-
dicates that an alluvial formation (HK2) that allows for more
rapid flow of groundwater, and thus greater dispersion of
groundwater throughout the model area, results in a lower
error. When combined with high values for flux parameters
such as the total water use (TWU; governing groundwater
pumping) and recharge (RCH), this could signal that these
models avoid extreme mounding or drawdown that would in-
crease model error. Similarly, the selection of a larger number
of high values for specific storage (SS2) and specific yield
(SY2) in the alluvial formation confirms that the selected pa-
rameters would tend to mitigate the effects of higher flux
values. Alternatively, all distributions of the horizontal hy-
draulic conductivity show a concentration of lower values for
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the volcaniclastic formation (HK4). This indicates parame-
ter values that encourage higher groundwater retention in the
mountainous, volcaniclastic areas, which could be a result of
observations in perched or mountainous regions having an
outsized effect on the error metric.

In terms of flux parameters, the total water use (TWU), the
recharge percentage of the natural land use type (RCH2), and
the leak (LK3) and pumping (Q3) multipliers for the third
decade of the model period all show a small redistribution
toward the extremes of the parameter ranges. The preference
for lower values of total water use, particularly in the first
decade (TWU1), could confirm that mitigated drawdown in
the model leads to a lower error. At the same time, the slight
tendency toward increased recharge in the natural land use
type agrees with the tendency toward low hydraulic conduc-
tivity in the volcaniclastic formation that, combined, would
indicate a preference for groundwater mounding along the
model edges. Finally, the higher values for the leak parame-
ter in the last decade of the model period (LK3) further con-
firms the preference for increased hydraulic head in the urban
areas.

In isolation, these findings reveal information about the
model representation and how to improve parameterizations
to minimize error, given the existing observations. However,
there are visible differences between the distributions of the
parameter values from the various cluster behavioral param-
eter sets. This is particularly evident in the hydraulic con-
ductivities of the alluvial (HK2), fractured basalt (HK3), and
volcaniclastic formations (HK4). Behavioral parameter sets
tend to focus on subranges of the horizontal hydraulic con-
ductivity, depending on the subset of observations used to
calculate the error metric, highlighting the importance of ob-
servational uncertainty on parameter identification.

Error reduction through parameter selection is an impor-
tant consideration for model use. However, we are also inter-
ested in how management objectives produced by the model
respond to uncertainty in model parameters. Figure 4 shows
the error metric and the three management objectives for all
parameter sets in gray and the behavioral parameter sets in
color. Here we visualize how the choice of observation clus-
ter affects the sample of parameter sets and, subsequently, the
range of performance among the pumping energy (green),
water quality risk (red), and urban flooding objectives (blue).
This example yields noticeable differences between the ob-
servation cluster choices, while other parameters (Fig. S1) re-
sult in fairly uniform sampling across the parameter ranges,
following Fig. 3. The three objectives are to be minimized;
thus, in certain objectives, higher alluvial hydraulic conduc-
tivity (HK2) results in better performance, particularly for
the energy and water quality objectives, while in the flooding
objective the performance is more variable across the param-
eter range. This performance is not consistent across clusters
for the alluvial hydraulic conductivity, indicating the impact
of observational uncertainty on the performance evaluation
of the system.

3.2 Sensitivity of error metric and management
objectives

To better understand the effects of parameter values on
management objectives, the moment-independent sensitivity
measures, δ, are shown for the energy objective in Fig. 5 (see
Fig. S2 for water quality risk and Fig. S3 for urban flooding
risk). The value of δ can range from 0, indicating that the out-
put is independent of the parameter in question, to 1. There
is not a standard value for δ that is considered to be highly
sensitive because parameter sensitivities should be evaluated
in relation to each other and in the context of each case study.
Based on the sensitivity values for this system, we consider
a δ of roughly 0.2 and above to be highly sensitive. As in
Fig. 4, the patterns of objective sensitivity to the parameters
vary across the samples chosen using different observation
clusters. However, in Fig. 5, we can also compare the sensi-
tivity of the objectives across management alternatives. With
a few exceptions, the sensitivities of the objectives across
the alternatives within each cluster sample are fairly consis-
tent. This suggests that the performance of the system with
respect to the management objectives is minimally affected
by the choice of alternative. This has two main implications.
First, this could signify that the relative performance of the
alternatives is similar across a range of parameter values and
indicate that the decisions made are robust across many pa-
rameter combinations. Second, if decision-makers are using
a sensitivity analysis to choose parameters for further study,
then they can be relatively confident that the choice of param-
eters to monitor will not favor a given alternative. The most
notable exception is the sensitivity of the pumping energy
objective with respect to the leak multiplier (LK1, and to a
lesser extent LK2 and LK3) for the repair leaks alternative.
This is expected given the reliance of the leak repair alterna-
tive on the quantity of leaks present – essentially, more leaks
available to be repaired indicates a larger water saving and,
thus, a higher water table from which to pump to the ground
surface.

It is also valuable to understand how the sensitivities of the
three management objectives compare to those for the error
metric. Many numerical groundwater models are constructed
with a specific management purpose, but the model itself is
calibrated to error metrics that represent available data, and
these may not necessarily rely on the same mechanisms driv-
ing the performance of management alternatives. Figure 6
shows the δ values for the parameters with the largest dif-
ferences in sensitivity between clusters. The sensitivities of
the error metric across the filtered sample are relatively small
because they include only the parameter sets with the lowest
error. While the sensitivities of the error metric to the param-
eters are smaller overall than those of the objective values,
the effects seen on the distributions in Fig. 3 are mirrored to
some extent here, with slight increases in the sensitivity of
the error metric to the horizontal hydraulic conductivity of
the alluvial (HK2) and volcaniclastic (HK4) formations.
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Figure 3. The distributions along the parameter ranges of the filtered samples, using the sum of squared error metric. The distributions
are colored according to the observation cluster used to filter the dataset. The prior distribution (not shown) is uniform for all parameters.
Parameter abbreviations are given in Table 1.

However, the patterns of the sensitivity of the error met-
ric generally do not align with the patterns seen in the man-
agement objectives. Objectives are more or less sensitive to
specific parameters, depending on the cluster behavioral pa-
rameter sets. For example, the sensitivity of all three manage-
ment objectives to the volcaniclastic hydraulic conductivity
(HK4) is largest for the C-00002 samples and is most pro-
nounced for the water quality risk objective. Figure 4 shows
that the parameter sets selected using the observation clus-
ter C-00002 result in a much broader set of values for the
hydraulic conductivity of the volcaniclastic formation than

the other objective cluster samples, particularly for the water
quality risk and urban flooding indicators. Similarly, samples
C-00001 and C-00004 result in much higher sensitivities of
the urban flooding objective to the recharge parameter of the
natural land cover (RCH2).

Higher sensitivities for certain cluster behavioral param-
eter sets may indicate that the chosen observations do not
properly constrain the model with respect to the given param-
eter, resulting in a number of non-unique solutions. Alterna-
tively, higher sensitivities may occur when the spatial extent
of the parameter and the management objective calculation
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Figure 4. A representative view of the four model output metrics for the historical alternative, plotted against the parameter range for
the hydraulic conductivity of the alluvial formation (the most sensitive parameter from Fig. 3). These include the error metric (sum of
squared weighted residuals; dimensionless), energy objective (kWh), water quality risk objective (percent of cells not meeting the objective),
and urban flooding objective (percent of cells not meeting the objective). Gray points represent all parameter sets, while colors represent
behavioral parameter sets meeting the error threshold.

are coincident, as in the case of the total water use parameters
(TWU), which act upon the pumping wells, and the energy
objective, which is calculated at the location of the pumping
wells. Finally, the sensitivities are also affected by the phys-
ical processes governed by a given parameter, as in the case
of the high sensitivity of the urban flooding objective to the
recharge percentage parameter (RCH). Understanding which
parameters contribute most to objective uncertainty indicates
opportunities for data collection to improve model represen-
tation of those processes. The δ values show that uncertain-
ties in the observations used in calibration can result in appre-

ciable changes in the distribution of the performance in man-
agement objectives. These findings underline the importance
of high quality, well-distributed, and diverse observation data
for calibration. Additionally, decision-making often depends
on the behavior of spatially and temporally aggregated in-
dicators or objectives whose sensitivity to model parameters
may or may not be aligned with the sensitivity of the error
metric to those same parameters.
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Figure 5. δ sensitivity of the energy objective according to the 5000 filtered samples for the 33 model parameters (columns). The sensitivity
is shown by cluster (rows) and by the four alternatives, from left to right (light to dark), i.e., historical, wastewater reuse, infiltration basins,
and repair leaks. The bootstrapped 95 % confidence interval for each sensitivity value is shown as a red line.

3.3 Decisions under observational uncertainty

Parameter sensitivities provide information about improve-
ments that can be made in the modeling and calibration pro-
cess to reduce error. However, it is also important to under-
stand how these uncertainties propagate into the decision-
making process, particularly whether they contribute to
changes in potential decisions informed by the simulation
model. Figure 7 shows the relative performance of the aquifer
management alternatives according to the cluster behavioral
parameter set and management objective. In the heat maps,
a lighter (yellow) color indicates more parameter sets where
that alternative is ranked at that value, and a darker (purple)
color indicates fewer parameter sets that are ranked at that

values. If no parameter sets result in a given rank for that
alternative, then the space is left gray.

For the pumping energy objective, the historical and re-
pair leaks alternatives rank worst (4) and best (1), respec-
tively, across all simulations in all parameter set samples,
while the wastewater reuse and infiltration basin alternatives
rank second and third almost evenly across the simulations.
The wastewater reuse alternative ranks second slightly more
often (lighter) in the pumping energy objective than the infil-
tration basin alternative, particularly in the C-00001 cluster
behavioral parameter set and the full observation sample set
(C-12345). In the water quality risk objective, the historical
alternative ranks fourth across practically all the cluster be-
havioral parameter sets. Similarly, the infiltration basins al-
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Figure 6. δ sensitivity of the error metric and three management objectives (rows) according to the 5000 filtered samples for the eight model
parameters (columns) with the largest differences in sensitivity between clusters for the historical management alternative. The sensitivity is
shown by cluster in order, from left to right, i.e., C-00001, C-00002, C-00003, C-00004, C-00005, and C-12345.

Figure 7. Alternative performance across the observation cluster parameter sets shown as heat maps of the count of sets where the alternative
performance was ranked from (1) best to (4) worst. Within each heat map, the rows are the rank, and the columns are the cluster behavioral
parameter sets. The subplots are organized by the three management objectives (rows) and the aquifer management alternatives (columns).

ternative ranks third in almost all behavioral parameter sets.
The first and second ranked alternatives, while less definitive,
are still fairly clear, with the repair leaks alternative ranking
first and the wastewater reuse alternative second across most
of the cluster behavioral parameter sets. Here, C-00003 and
C-00005 have less difference in the number of parameter sets
where the repair leaks alternative ranks first and the wastewa-

ter reuse alternative second when compared to the other clus-
ter behavioral parameter sets (C-00001, C-00002, C-00004,
C-12345). Finally, in the urban flooding objective, the best-
performing alternative is the historical alternative in the vast
majority of the parameter sets across all cluster behavioral
parameter sets. This is expected, given that the urban flood-
ing objective measures groundwater mounding in the model,
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and since the remaining three management alternatives all
increase recharge in the model, the status quo alternative ex-
periences the least amount of mounding. However, the rela-
tive ranking between the other three alternatives is much less
clear, particularly in the C-00003 and C-00005 cluster behav-
ioral parameter sets.

Here it is apparent that the choice of observations by spa-
tial clusters would have a minimal effect on decision-making,
making this type of comparison of the alternatives robust
across behavioral parameter sets chosen using observations
from many different regions within the model area. This
reveals the following two main points: first, the apparent
agreement between sensitivities of performance to parame-
ters across the alternatives may indicate the relative stability
of the performance of alternatives across the cluster behav-
ioral parameter sets, even though parameter sensitivities are
not consistent across those same sets. Second, the compar-
ison of rankings across the observational clusters may not
capture the full interplay of absolute performance under ob-
servational uncertainties.

Next, in Fig. 8, we compare the ranking across one of
the most sensitive parameters, the hydraulic conductivity of
the alluvial formation (HK2), looking only at the behavioral
parameter sets chosen using the C-12345 (full) observation
cluster. Similar to the comparison across observation clus-
ters, the ranking of the management alternatives across the
range of parameter values is stable for the pumping energy
objective. The wastewater treatment and infiltration basin al-
ternatives show a roughly even split between the second and
third ranking. However, in the other two objectives, the rank-
ing changes depending on the value of the alluvial hydraulic
conductivity. This is particularly apparent in the water qual-
ity risk objective, although it also occurs to a lesser degree
in the urban flooding objective. Notably, the repair leaks al-
ternative ranks first in the water quality risk objective except
at lower values of the parameter range, where the wastewater
reuse objective is preferred. There are many competing fac-
tors that could contribute to this outcome. For example, lower
hydraulic conductivity in the alluvial aquifer would indicate
higher groundwater retention and could, thus, favor parame-
ter sets with lower urban leak and total water use values to
reduce model error by avoiding local mounding and cones
of depression. In those cases, the wastewater treatment alter-
native would increase groundwater recharge more than the
repair leak alternative and, thus, improve groundwater levels
within the clay layer that influences water quality risk in the
basin. Additionally, some of the fluctuations in the ranking
result from the sample counts in each bin after the behav-
ioral parameter set filtering. For example, the lowest bin in
the water quality risk objective of the historical and infiltra-
tion basin alternatives shows a large difference because the
sample count is low. In this case, a change in the bin size
could change the relationship between the parameter values
and the alternative ranking.

Finally, Fig. 9 shows the combined effects of the obser-
vation and parameter uncertainty on alternative performance
in the water quality risk objective. Here it is apparent that
the observation cluster choice has an effect on the ranking
patterns of the management alternatives across the parameter
range. While the pattern of favoring the wastewater reuse al-
ternative at the lower alluvial hydraulic conductivity values
and the repair leaks at the higher conductivity values is con-
sistent across all the observation cluster behavioral parame-
ter sets, the point along the parameter values at which this
occurs changes between the clusters used to evaluate model
error. There is even a case, at low alluvial hydraulic conduc-
tivity in the C-00002 set, where the wastewater reuse, infil-
tration basins, and repair leaks alternatives are ranked first,
second, and third, respectively, in contrast with the findings
from Fig. 7 and, to some extent, Fig. 8. This makes clear
the importance of evaluating the coupled effects of multiple
types of endogenous uncertainties on management outcomes
in concert rather than in isolation.

To visualize the effects of the cluster behavioral param-
eter set on the difficulty of the decision, Fig. 10 shows the
distributions of the percent differences between the first and
second ranked alternatives in each sample (row 1) and be-
tween the best (first) and worst (fourth) ranked alternatives
in each sample (row 2) for each cluster behavioral parameter
set. In this figure, a distribution that is clustered near the ori-
gin of the graph indicates a more difficult decision because
the percent difference between the objective values of each
of the alternatives is smaller.

In the pumping energy objective, the minimal differences
in the distributions confirm the conclusions, from Fig. 7, that
the alternative rankings are not affected by which cluster be-
havioral parameter set was used for calibration. However,
in the water quality risk objective, and to a lesser extent in
the urban flooding objective, the cluster behavioral param-
eter set has an effect on the distribution of the percent dif-
ference between the first and second ranked alternatives and
the best and worst ranked alternatives. In the water quality
risk objective, C-00001, C-00004, and C-00005 show more
instances of difficult decisions. These same cluster behav-
ioral parameter sets also showed more difficult decisions in
the urban flooding objective. This indicates that the availabil-
ity of observational data could contribute to changes in the
decision-making process when using the urban flooding and
water quality risk objectives in this system.

3.4 Limitations and future work

Uncertainty analyses face limitations from model complex-
ity and the sample size needed to capture multiple inter-
acting forms of uncertainty. This study can be extended in
several ways to address the challenge of propagating uncer-
tainties throughout the groundwater infrastructure modeling
and planning process. For example, this study did not con-
sider multiple model structures and their effects on objec-
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Figure 8. Alternative performance across the parameter range of the alluvial hydraulic conductivity (one of the most sensitive parameters)
shown as heat maps of the count of sets where the alternative performance was ranked from (1) best to (4) worst. Within each heat map,
the rows are the rank, and the columns are the parameter value from minimum (1.00× 10−1) to maximum (1.00× 102). The subplots are
organized by the three management objectives (rows) and the aquifer management alternatives (columns).

Figure 9. Alternative performance in the water quality objective,
shown as heat maps of the count of parameter sets, where the
alternative performance was ranked from (1) best to (4) worst.
Within each heat map, the rows are the rank, and the columns
are the parameter value from minimum (1.00× 10−1) to maximum
(1.00× 102). The subplots are organized by the observation clus-
ter used for the behavioral parameter set selection (rows) and the
aquifer management alternatives (columns).

tive sensitivity and alternative ranking. Such changes could
include varying representations of model geology and feed-
backs after the implementation of management alternatives.

Similarly, the use of observation clusters to reveal spatially
dependent sensitivities may obscure the role of outlier obser-
vations on parameter sensitivity. Future work could identify
the individual observations that contribute the most to sensi-
tivity in each objective across the various parameters to un-
derstand better the limitations of the available observations,
as has been achieved in other local sensitivity analysis ap-
proaches (Poeter et al., 2014; Matott, 2017; Tonkin et al.,
2007).

As previous studies have applied space–time optimization
for groundwater monitoring networks to reduce the variance
of water quality estimates, future studies can apply simi-
lar techniques combined with the δ sensitivity measure of
groundwater management objectives to determine optimal
sampling locations. Additionally, uncertainty in the proper
weighting of observations could be simulated using Monte
Carlo selection of weights. Finally, clusters were chosen spa-
tially in this study to simulate the over-representation of cer-
tain areas in monitoring; however, future research may com-
pare clusters based on physical properties, such as land use
and geologic formation, or other factors, such as the time pe-
riod or the agency collecting the data. Similarly, bootstrap-
ping or random selection instead of clustering could reveal
the outsized influence of certain individual observations on
parameter calibration and decision-making.

Additionally, while this study investigates parameter sen-
sitivity and the effects of parameter uncertainty on ranking
decisions, it does not explicitly quantify the relationship be-
tween the two. The results do not show a clear relationship
between the magnitude of the sensitivity of the objectives
to changes in the parameters. However, relative differences
in the sensitivities of the objectives under different manage-
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Figure 10. The difficulty of the decision represented by the relative performance of the alternatives within the samples evaluated for each
objective (columns). Panels (a)–(c) show the distribution of the percent difference in each sample between the first and second ranked
alternatives within the cluster datasets. Panels (d)–(f) show the distribution of the percent difference in each sample between the first and
fourth ranked alternatives within the cluster datasets.

ment alternatives may play a role in the alternative ranking.
This relationship could be further investigated by developing
a metric to capture the fluctuations in ranking driven by each
parameter, which is then to be compared with the differences
in sensitivity of a given parameter under each alternative.
Similarly, while this study considers the impact of coupled
uncertainties on three different management objectives, fu-
ture work could implement a multi-objective approach eval-
uating Pareto optimality to consider all three objectives si-
multaneously.

Finally, the implementation of groundwater recharge alter-
natives could be modified to improve the accuracy of the sim-
ulations. One option would be to include costs of the man-
agement alternatives as either an additional objective or as
a constraint to the implementation. Similarly, combinations
of the various management alternatives or varying degrees
of implementation may give further multi-objective benefits
beyond those of each management alternative implemented
individually.

4 Conclusions

In this study, we explore how observation and parameter un-
certainty propagate through a hydrogeologic model to influ-
ence the ranking of decision alternatives. Using a global sen-
sitivity analysis and an evaluation of aquifer management
objectives across behavioral parameter sets filtered from a
global sample, we evaluate how physical properties of the
model and choice of observations for calibration can lead

to variations in decision-relevant model outputs. We find
that metrics that are generally used to determine predictive
ability, such as the sum of squared weighted residuals, are
not necessarily aligned with the decision-making applica-
tions for which models are applied. The management ob-
jective values in the behavioral parameter samples show a
much greater range of sensitivity than those demonstrated by
the model error. This underlines the importance of carrying
through sensitivity analyses to the decision-making stage of
the modeling process, beyond just the parameter calibration
stage.

Additionally, results show that observational uncertainty
plays a much larger role in the sensitivity of the objectives
than the management alternatives themselves. This suggests
that the performance of the system with respect to the man-
agement objectives is minimally affected by the choice of
alternative when compared to the variability produced by en-
dogenous model uncertainties. Under certain conditions, the
relative performance of the alternatives under some of the
objectives is consistent across many combinations of param-
eters and observation clusters – particularly for the pumping
energy objective. This confirms that the performance of the
demand management represented by the leak repair alterna-
tive is robust across many realizations of uncertainty.

The choice of observations shows a minimal effect on
decision-making, with almost no differences in alternative
ranking between the behavioral parameter sets. In contrast,
the ranking of the leak repair and wastewater reuse alter-
natives showed fluctuations in ranking across the range of
one of the most sensitive model parameters, i.e., the allu-
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vial hydraulic conductivity. However, when combined with
the parameter uncertainty, the observational uncertainty does
contribute to greater fluctuations in alternative ranking. This
makes clear the importance of evaluating the coupled effects
of multiple types of endogenous uncertainties on manage-
ment outcomes in concert, rather than in isolation.

Finally, the selection of alternatives becomes more or less
difficult according to the relative performance of manage-
ment objectives. Specifically, the distribution of the difficulty
metric in each of the objectives changes based on the obser-
vation cluster used to select the behavioral parameter sets.
These methods could be leveraged to determine which ad-
ditional observations would help to more easily identify the
best-performing alternative under multiple management ob-
jectives. This study highlights the importance of understand-
ing how the uncertain parameters of a physical model and
their interactions with the observations used to calibrate them
can affect water supply planning decisions in densely popu-
lated urban areas.
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Appendix A: Additional figures

Fig. A1 is an additional figure, similar to Fig. 4 in the main
text, but with the x axis representing the vertical anisotropy
of the hydraulic conductivity of the alluvial formation, a pa-
rameter that maintained uniform sampling across the param-
eter range.

Figure A1. A representative view of the four model output metrics for the historical alternative, plotted against the parameter range for the
vertical anisotropy of the hydraulic conductivity of the alluvial formation. These include the error metric (sum of squared weighted residuals;
dimensionless), energy objective (kWh), water quality risk objective (percent of cells not meeting the objective), and urban flooding objective
(percent of cells not meeting the objective). Gray points represent all parameter sets, while colors represent behavioral parameter sets meeting
the error threshold.
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Figures A2 and A3 are additional figures, similar to Fig. 5
in the main text, but with the δ sensitivity values for the water
quality risk objective and the urban flooding risk objective,
respectively.

Figure A2. δ sensitivity of the water quality risk objective according to the 5000 filtered samples for the 33 model parameters (columns).
The sensitivity is shown by cluster (rows) and by the four alternatives from left to right (light to dark), i.e., historical, wastewater reuse,
infiltration basins, and repair leaks.
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Figure A3. δ sensitivity of the urban flooding risk objective according to the 5000 filtered samples for the 33 model parameters (columns).
The sensitivity is shown by cluster (rows) and by the four alternatives from left to right (light to dark), i.e., historical, wastewater reuse,
infiltration basins, and repair leaks.

Code and data availability. The model, with input datasets,
observations, results, and postprocessing scripts, is avail-
able in a GitHub repository at https://github.com/mrlmautner/
UrbanGW/tree/sensitivityanalysis (last access: 10 February 2022)
(https://doi.org/10.5281/zenodo.6039830; Mautner et al., 2022).
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