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Abstract. Evapotranspiration (ET) is a fundamental variable
for assessing water balance and the urban heat island (UHI)
effect. Terrestrial ET is deeply dependent on the land cover
as it derives mainly from soil evaporation and plant tran-
spiration. The majority of well-known process-based mod-
els based on the Penman–Monteith equation focus on the
atmospheric interfaces (e.g. radiation, temperature and hu-
midity), lacking explicit input parameters to precisely de-
scribe vegetation and soil properties. The model soil-canopy-
observation of photosynthesis and energy fluxes (SCOPE)
accounts for a broad range of surface–atmosphere inter-
actions to predict ET. However, like most modelling ap-
proaches, SCOPE assumes a homogeneous vegetated land-
scape to estimate ET. As urban environments are highly frag-
mented, exhibiting a mix of vegetated and impervious sur-
faces, we propose a two-stage modelling approach to cap-
ture most of the spatiotemporal variability of ET without
making the model overly complex. After predicting ET us-
ing the SCOPE model, the bias caused by the assumption
of homogeneous vegetation is corrected using the vegeta-
tion fraction extracted by footprint modelling. Two urban
sites equipped with eddy flux towers presenting different
levels of vegetation fraction and imperviousness located in
Berlin, Germany, were used as study cases. The correction
factor for urban environments increased the model accu-
racy significantly, reducing the relative bias in ET predic-
tions from 0.74 to 0.001 and 2.20 to −0.13 for the two sites
considering the SCOPE model with remote sensing-derived
inputs. Model errors (RMSE) were considerably reduced in
both sites, from 0.061 to 0.026 and 0.100 to 0.021, while the
coefficient of determination (R2) remained similar after cor-

rection, 0.82 and 0.47, respectively. The novelty of this study
is to provide hourly ET predictions combining the temporal
dynamics of ET in a natural environment with the spatially
fragmented land cover in urban environments at a low com-
putational cost. All model inputs are open data and avail-
able globally for most medium-sized and large cities. This
approach can provide ET maps in different temporal resolu-
tions to better manage vegetation in cities in order to mitigate
the UHI effect and droughts.

1 Introduction

Evapotranspiration (ET) is essential for understanding the
water cycle and energy balance, as it regulates precipitation,
temperature and vegetation productivity (Wang et al., 2020;
Zheng et al., 2020). The cooling capacity of ET can mitigate
the intensity of the urban heat island (UHI), which adversely
impacts the health and quality of life of urban residents (Ko-
vats and Hajat, 2008; Scherer et al., 2013). Optimising ET in
urban areas could reduce the impact of extreme events such
as severe heat waves, drought or flooding (Wang et al., 2020;
Ward and Grimmond, 2017). Although ET plays an essential
role in planning more sustainable cities, studies in urban en-
vironments are rare and very localised due to the challenges
of measuring and modelling evaporation in highly heteroge-
neous landscapes (Nouri et al., 2015). Terrestrial ET is the
sum of three primary sources of evaporation from land sur-
faces to the atmosphere (liquid to vapour): (1) evaporation
from soil moisture and groundwater; (2) evaporation from
plant transpiration; and (3) evaporation from intercepted pre-
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cipitation (Miralles et al., 2020; Nouri et al., 2019). The tem-
poral variation of ET is mainly driven by atmospheric condi-
tions such as sunlight intensity (i.e. incoming radiation), air
temperature and relative humidity (Foltýnová et al., 2020).
By contrast, the quantity of ET is spatially dependent on
the vegetation volume and the water availability in the soil
(Dwarakish et al., 2015; Wang et al., 2020; Zheng et al.,
2020).

The most suitable system for measuring ET in the ur-
ban environment is the eddy covariance (EC) method, which
is based on the turbulence flux and energy balance (Liang
and Wang, 2020; Nouri et al., 2013). The EC method mea-
sures latent heat flux (LE) from the atmosphere using sen-
sors installed over a tower, which can be converted to ET
later (Kotthaus and Grimmond, 2014). The observations are
continually collected over regular time intervals but repre-
sented by an irregular area based on footprints that change
shape, size and orientation according to atmospheric condi-
tions (Kljun et al., 2015; Kotthaus and Grimmond, 2014).
Therefore, EC measurements are affected by atmospheric
stability, wind profile and surface roughness in the surround-
ings of the flux tower (Foltýnová et al., 2020; Schmid and
Oke, 1990; Ward and Grimmond, 2017). Soil evaporation,
plant transpiration and interception are not separable when
measured by this method (Miralles et al., 2020). In addition,
anthropogenic sources of latent heat fluxes such as car com-
bustion or air conditioning are undistinguished from the pri-
mary sources of terrestrial ET, plant transpiration and soil
evaporation (Nouri et al., 2013). Eddy covariance measure-
ments represent a relatively small and constantly varying
land cover area around the flux tower (diameter∼ 500 m), in-
sufficient to map ET in a heterogeneous urban environment
(Kotthaus and Grimmond, 2014; Nouri et al., 2013; Vitale
et al., 2020). Given the high installation and operating costs,
it is also impractical to set up a widespread network of flux
towers over the city (Westerhoff, 2015).

As urban ET observations are rare, costly and available
only for a few cities in the world, an alternative is to esti-
mate ET using process-based or empirical models. Fitting
classic empirical models or machine-learning algorithms is
relatively common in natural landscapes but relatively scarce
in an urban environment (Vulova et al., 2021; Wang et al.,
2020). One reason is the necessity to train the model at rep-
resentative locations and conditions, which is a challenge in
urban areas due to the constantly changing land cover cap-
tured by the tower’s footprint and lack of flux towers at dif-
ferent surfaces in a highly fragmented and heterogeneous en-
vironment (Feigenwinter et al., 2018). In addition, most of
the widely used empirical models are unsuitable for variables
with strong spatiotemporal dependency, such as ET (Rocha
et al., 2018, 2020).

The most common types of process-based models to
estimate ET (i.e. latent heat flux) are surface energy
balance (SEB), hydrological models, urban land-surface
models (ULSM) and soil–vegetation–atmosphere trans-

fer (SVAT) models. SEB models estimated ET as the resid-
ual of the energy balance equation. Some versions, such as
surface energy balance algorithm for land (SEBAL) and sur-
face energy balance system (SEBS), include variables as land
surface temperature, albedo, and net radiation retrieved from
remote sensing variables (Nouri et al., 2015; van der Tol and
Norberto, 2012). However, SEB models are more suitable for
the regional scale and have low performance in the urban en-
vironment (Bayat et al., 2018).

Hydrological models are focused on streamflow, soil mois-
ture storage and runoff generation processes but often also
provide estimations of plant transpiration, soil evaporation
and interception loss (Devia et al., 2015; Zhao et al., 2013).
Some (eco)hydrological models are designed or adapted for
urban environments, such as SWMM-UrbanEVA and urban
climate and hydrology (UT&C), including anthropogenic
heating and urban canyon design (Hörnschemeyer et al.,
2021; Meili et al., 2020). However, several parameters are
difficult to supply for applications requiring a high temporal
and spatial resolution. For instance, UT&C requires inputs
that are possible only for experimental studies, such as the
distance of the wall to a tree trunk (m), albedo and emissiv-
ity of walls, volumetric heat capacity and thickness of wall
and roof layers (Meili et al., 2020). ULSMs such as surface
urban energy and water balance scheme (SUEWS) and urban
climate models (UCM) such as PALM-4U are specialised in
heat fluxes and microclimates in cities (Järvi et al., 2011;
Maronga et al., 2015). Like most urban models for ET esti-
mation, ULSM models also require several input parameters
and a demanding calibration process, hampering the model
transferability. The accuracy of urban models for LE is of-
ten the lowest among all fluxes and model outputs, especially
in densely built-up areas, undermining their use for estimat-
ing ET (Rafael et al., 2020; Ward et al., 2016; Ward and
Grimmond, 2017).

SVAT models are based on energy balance and mass
transfer, allowing for a comprehensive parameterisation of
soil and vegetation surface properties (Kracher et al., 2009;
Petropoulos et al., 2009). The soil-canopy-observation of
photosynthesis and energy fluxes (SCOPE) is a SVAT model
that accounts for surface–atmosphere interactions of both tur-
bulent heat fluxes and radiative transfer (van der Tol et al.,
2009). SCOPE has been successfully applied to predict ET in
croplands and natural environments (Bayat et al., 2018; Tim-
mermans et al., 2013). However, the effect of surface hetero-
geneity in the horizontal direction is not addressed by (one-
dimensional) models and SCOPE was never applied to urban
environments (van der Tol et al., 2009; Yang et al., 2021).
The ET estimations from most model approaches cited above
are based on energy balance and mass transfer methods often
derived from the Penman–Monteith equation (Devia et al.,
2015; Zhao et al., 2013). The Penman–Monteith equations,
which are widely used for agricultural applications (Allen
et al., 2005), focus mainly on the atmospheric interface for
a specific vegetation cover. Therefore, most ET modelling
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approaches assume a landscape of homogeneous vegetation
without anthropogenic elements to calculate ET from per-
vious soil and vegetation fractions but cannot capture plant
phenology (Nouri et al., 2015; Westerhoff, 2015). However,
some sophisticated urban models calculate anthropogenic la-
tent heat flux, the effect of building shadows over vegetated
areas and interception loss to provide the total ET (Järvi et
al., 2011).

Urban environments present highly fragmented and het-
erogeneous land cover in all dimensions (vertically and hori-
zontally) for both pervious and impervious surfaces (Feigen-
winter et al., 2012; Ward and Grimmond, 2017; Zheng et
al., 2020). The calibration and processing time to obtain ET
in high-temporal and high-spatial resolution for large areas
for all urban variations is very demanding, if not unfeasi-
ble (Zheng et al., 2020). It is also complicated to define a
spatial and temporal resolution suitable for most of the re-
quired model inputs and outputs (Rafael et al., 2019). For in-
stance, impervious areas are mainly static over a 1-year inter-
val, while characterising the weather conditions in an hourly
resolution is desirable. Thus, a model that embedded all the
interactions between atmospheric conditions, vegetation and
soil properties, impervious fractions and anthropogenic heat-
ing would be mostly redundant in space or time for hourly
ET estimation.

This study aims to develop a robust and transferable
method to map urban ET at any location in the city using
a high-resolution spatiotemporal model that requires only
freely available data inputs. The novelty is to provide a so-
lution that combines the high temporal dynamics of ET in a
vegetated environment with the spatial fragmentation in ur-
ban environments, producing a less computationally expen-
sive but plausible ET product. We assume that terrestrial ET
is mostly derived from plant transpiration and soil evapo-
ration, considering these sources to be essential in mitigat-
ing the UHI and droughts by better managing green areas in
the cities. We neglected interception loss from precipitation
and latent heat fluxes from anthropogenic sources such as
car combustion or house heating. These sources are not di-
rectly associated with the cooling effect of ET and may mis-
lead urban planning as they are likely inversely proportional
to UHI and droughts. We propose a process-based SVAT
model (i.e. SCOPE) combined with a correction factor for
urban environments based on the vegetation fraction to de-
rive hourly ET. The factor corrects the model bias due to im-
pervious surfaces using the vegetation fraction extracted by
hourly footprints. The hourly predictions for an entire year
(12 months, 24 h, 8760 timestamps) were compared with ref-
erence ET derived from the Penman–Monteith equation and
validated with flux tower measurements from two locations
in Berlin, Germany. The study focuses on modelling with
open data from standard meteorological stations and remote
sensing products available for most medium-sized and large
cities of Europe, targeting transferability.

2 Methods

2.1 Study area

Two sites in Germany’s biggest city and capital, Berlin, were
selected for this study because they are equipped with eddy
flux towers. Berlin is situated in a temperate climate zone
with humid sea air, presenting mild temperatures when air
masses come from southerly directions and cooler air from
the (Atlantic) north (Senate Department for Urban Devel-
opment and Housing, 2015). Easterly air masses or conti-
nental wind directions usually bring extremely dry air and
may cause very cold periods in winter and exceptionally hot
days in summer. Berlin is mainly flat with an elevation of
34 m above the sea (from 24 to 120 m). The maximum annual
volume of precipitation occurs in the summer, while winter
months present the highest number of hours under rainfall.
The lowest precipitation (volume and occurrences) is often
in the transitional seasons, with the driest month usually be-
ing April (Fig. 2).

Despite being equipped with similar eddy covariance in-
strumentation, the locations present different levels of vege-
tation cover and imperviousness. Although both sites have a
clear urban character, one site is located in a relatively green
neighbourhood, while the other is in a central built-up area,
with the two sites 6 km apart from each other (Fig. 1a). The
flux tower, referred to as Rothenburgstraße (ROTH), is lo-
cated in a research garden southwest of the city. ROTH ob-
servations are measured at approximately 40 m above the
ground, a few metres higher than the tree canopies and the
one building nearby. The other flux tower, called TUB Cam-
pus Charlottenburg (TUCC), is located on top of the univer-
sity’s main building in the city centre (Fig. 1d). The TUCC
measurements are taken from a tower 10 m above the roof
and 56 m above the ground. With 72 % imperviousness, the
TUCC site is a denser built-up area than the ROTH site with
49 % (Fig. 1b).

2.2 Data

2.2.1 Eddy covariance flux towers

The two eddy covariance (EC) flux towers are operated
by the Chair of Climatology at the Technische Univer-
sität Berlin (TUB) as part of the Urban Climate Obser-
vatory (UCO) Berlin (Scherer et al., 2019; Vulova et al.,
2021). The EC measurement system is based on an open-path
gas analyser and a three-dimensional sonic anemometer–
thermometer (IRGASON, Campbell Scientific). The soft-
ware EddyPro (Version 6.2.1) was used to derive turbulent
fluxes of sensible and latent heat by processing the raw
data sampled at 20 Hz. The pre-processing of raw data at
30 min intervals was performed as suggested by Vickers and
Mahrt (1997), including physical threshold filtering, statis-
tical screening and spike elimination. The double rotation

https://doi.org/10.5194/hess-26-1111-2022 Hydrol. Earth Syst. Sci., 26, 1111–1129, 2022



1114 A. Duarte Rocha et al.: Modelling hourly evapotranspiration in urban environments with SCOPE

Figure 1. Locations of the two sites with the respective (a) vegetation fraction (%), (b) impervious fraction (%) and (c) vegetation height (m)
in the surroundings of the flux towers (d). The red dotted areas represent a buffer of 1000 m around the towers (red dot), while the red ellipses
are examples of hourly footprints. The black dots on the Berlin map (c) refer to the DWD weather stations Tegel and Dahlem. The three land
surface maps were extracted from the Berlin Digital Environmental Atlas (Senate Department for Urban Development and Housing, 2017;
Senate Department for Urban Planning and the Environment, 2014).

method was applied by EddyPro for the calculation of a lo-
cal streamlined coordinate system as determined by the flow
statistics over the 30 min averaging period. Furthermore, EC
data were corrected for air density and sonic temperature for
humidity as well as high- and low-frequency spectral correc-
tions (Moncrieff et al., 1997; Webb et al., 1980).

The 30 min values of latent heat flux (LE, W m−2) un-
der the following conditions were excluded: (1) observations
with flag quality higher than 1 (Foken, 2008); (2) values
outside of the thresholds of −100 and 500 W m−2; (3) ob-
servations 6 standard deviations (SD) greater than the av-
erage (outliers), and (4) measurements during precipitation
or up to 4 h after rain events. Items 1–3 were performed us-
ing functions from the R package “FREddyPro” (Xenakis,
2016). The wind directions 17–35◦ at TUCC and 54–72◦

at ROTH are susceptible to distortion due to the mount-
ing setup of the instrument (wind coming from behind the
tower). However, as we are using a deterministic model that
does not require training and the effect on the model accuracy
for ET was insignificant, these observations were preserved.
Negative ET values (condensation) were set to 0 as annual
sums in millimetres will be provided and we are only inter-
ested in the amount of water released into the atmosphere by
soil evaporation and plant transpiration processes. The entire
year of 2019, including winter and nighttime, was selected as

there are EC observations simultaneously available for both
towers in 2019.

The upward latent heat flux (LE, W m−2) observations
were aggregated to hourly resolution and converted to ET
by the expression ET= LE/λ, where λ is the latent heat
of vaporisation (J kg−1). ET was calculated from LE as a
function of air temperature using the “bigleaf” R package
(Knauer et al., 2018) in order to use the same procedure for
both observed and modelled LE from SCOPE. After pre-
processing, from the 8760 timestamps, 43 % of the ROTH
and 42 % of the TUCC data were missing. The remaining val-
ues of ET, 4993 and 5104 values, respectively, were used to
assess the model accuracy. To obtain monthly and yearly es-
timates from the observed ET, gap-filling is required. Given
the strong seasonal and diurnal variation of ET, linear in-
terpolation is not recommended. A standard procedure uses
the marginal distribution sampling (MDS) gap-filling algo-
rithm, which considers meteorological variables to account
for the daily and annual seasonality (Falge et al., 2001; Wut-
zler et al., 2018). We performed (MDS) gap-filling using the
R package “REddyPROC” (Wutzler et al., 2018). Monthly
and yearly values of ET from MDS gap-filling will later be
compared with the modelled ET predictions.
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Figure 2. Time series of the main variables used in this study for both sites in 2019, where the green colour represents the data from the
ROTH site and blue, the TUCC site. (a) Air temperature (Ta), where the dotted lines represent the maximum and minimum daily values
and solid lines represent average daily values; (b) incoming shortwave radiation (Rin) is common for both sites, where the solid black line
represents the average and the dotted line, the maximum daily values; (c) LAI RS-derived values; (d) the volume of precipitation (mm); and
(e) the evapotranspiration observations from the EC towers (ET).

2.2.2 DWD meteorological data

In order to use model inputs completely independent of the
flux towers, data from the meteorological stations of the Ger-
man Meteorological Service network (DWD Climate Data
Center) were selected based on the distance to the flux tow-
ers (DWD, 2020). The data from the meteorological stations,
Tegel (∼ 5 km from TUCC) and Berlin-Dahlem (∼ 1 km
from ROTH), were used as model inputs (Table 1). The vari-
ables shortwave and longwave radiation were collected from
the Potsdam station to represent both sites. The Potsdam sta-

tion is located in the neighbouring city with the same name,
∼ 19 km and ∼ 23 km from the flux tower sites.

2.2.3 Remote sensing and GIS data

The LAI300m (V1) product generated by the Global Land
Service of Copernicus, the Earth Observation Programme of
the European Commission, provides a valuable estimate of
an essential biophysical parameter to model ET (Table 1).
The Copernicus product provides a grid of LAI values with
300 m spatial resolution and 10 d temporal resolution (Bauer-
Marschallinger and Paulik, 2019). The product is based on
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Table 1. Datasets and data sources used to model ET in this study.

Dataset Variables Sources

Meteorological data Air temperature (Ta, ◦C), air pressure (p, hPa), relative DWD Climate Data Center
– DWD stations humidity (RH, %), wind speed (ws, m s−1) and direction (wd, https://opendata.dwd.de/climate_environment/CDC/observations

degree), precipitation events (Oc_prec, yes/no), precipitation (last access: 15 October 2021)
volume (V_prec, mm h−1), incoming shortwave radiationa

(Rin, J cm−2), incoming longwave radiationa (Rli, J cm−2).

Eddy covariance data Latent heat flux (LE, W m−2), wind speed (ws, m s−1), wind Urban Climate Observatory (UCO);
– EC flux tower direction (wd, degree), friction velocity (u∗, m s−1), Obukhov Chair of Climatology – Technische

length (L, m) and northward wind (v_var, m2 s−2). Universität Berlin (TUB)

Remote sensing data – Leaf area index – 300 m resolution (LAI, unitless) Global Land Service of Copernicus –
Copernicus Portal Distribution

http://land.copernicus.vgt.vito.be/PDF/portal/Application.html
(last access: 25 May 2021)

RS hyperspectral data – Soil spectral reflectance (soil_spectra, unitless) It was collected using a field
soil samples spectrometer (ASD3) with a probe at the

ROTH site.

GIS/RS data Vegetation fraction (Veg_frac, %), Berlin Senate Department for Urban
– Berlin Environmental vegetation height (hc, m), roughness lengthb (z0, m) Development and Housing
Atlas, Green Volume and zero-plane displacementb (d , m) https://www.berlin.de/umweltatlas/en/biotopes/green-volume/
(edition 2017) (last access: 6 December 2020)

a Rin and Rli were later transformed to [W m−2]. b Calculated based on the vegetation and building height.

PROBA-V data, and the LAI was estimated by neural net-
work algorithms trained with MODIS and CYCLOPES prod-
ucts. The product was atmospherically corrected, with outlier
removal and cloud masking. Smoothing and gap-filling oper-
ations were applied based on the land cover type and tempo-
ral performance. A time series of 36 LAI maps for 2019 were
downloaded and linearly interpolated to match the timestamp
of the observed ET. We assumed that in between the 10 d gap,
the differences that occurred were relatively minor and irrel-
evant to this study.

Although the GIS data such as vegetation height and vege-
tation fraction maps are derived from a specific point in time,
the corresponding source area (footprint) of the EC flux mea-
surements (e.g. ET or LE) continually varies in shape, size
and orientation. Therefore, these two inputs were extracted
using footprints for both towers, varying hourly to capture the
spatiotemporal dynamics of the surface properties. The foot-
print model, according to Kormann and Meixner (2001), was
applied using the R package “FREddyPro” (Xenakis, 2016).
The input data for footprint modelling were derived from the
flux towers measurements, except for the aerodynamic pa-
rameter (zd), roughness length (z0) and zero-plane displace-
ment (d). These parameters were calculated from building
and vegetation height by seasons (i.e. winter, summer, and
intermediate) to incorporate changes in tree foliage. For fur-
ther information about how the parameters were calculated,
see Kent et al. (2017) and Quanz (2018).

The footprints were based on a regular grid of 10 m res-
olution with an extent (x, y) of 1000 m from the tower lo-
cations (fetch size). For each grid pixel, the probability that
the source area belongs to the influence zone of the flux

measurements was calculated for every hour (Schmid and
Oke, 1990). These grids of probabilities, excluding pixels
outside of 90 % of the footprint likelihood, were multiplied
to the raster of the surface property (e.g. vegetation height)
to extract average values for each timestamp of 2019. Sur-
face properties to characterise the two Berlin sites were de-
rived from a publicly available GIS database. Vegetation
fraction (%) and vegetation height (m) were obtained from
the Green Volume publication (edition 2017) from the Berlin
Digital Environmental Atlas (Senate Department for Urban
Development and Housing, 2017). All the layers of GIS maps
were converted to a raster with 10 m resolution and resam-
pled to the footprint grid of each tower to extract the aver-
age surface properties per timestamp. The raster layers of
each land surface were then multiplied by a footprint raster,
and the resulting pixel values were summed to obtain the
weighted averages for each site and timestamp.

In this study, water bodies were omitted as they represent
only 2.7 % of land cover at the TUCC site and 0 % at ROTH
on average. The Berlin Environmental Atlas also presents a
detailed set of maps from the study “Surface runoff, percola-
tion, total runoff and evaporation from precipitation” (Senate
Department for Urban Planning and the Environment, 2019).
This study will be used for comparison with our results.

2.3 Model approaches

2.3.1 Penman–Monteith model

A formulation based on the Penman–Monteith equation (the
ASCE standardised equation for short crops) was used to
calculate reference ET (ET0) (Allen et al., 1998, 2005).
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https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/hourly/
http://land.copernicus.vgt.vito.be/PDF/portal/Application.html
https://www.berlin.de/umweltatlas/en/biotopes/green-volume/


A. Duarte Rocha et al.: Modelling hourly evapotranspiration in urban environments with SCOPE 1117

Table 2. Input parameters which vary hourly for each SCOPE scenario.

Model inputs SCOPE scenarios

ET0 DWD DWD+RS

Air temperature [◦C] (Ta) X X X
Relative humidity [%] (RH) X X X
Wind speed [m s−1

] (u) X X X
Incoming shortwave radiation [W m−2

] (Rin) X X X
Incoming longwave radiation [W m−2

] (Rli) X X
Air pressure [hpa] (p) X X
Solar zenith angle [deg] (tts) X X
Leaf area index [–] (LAI) X
Vegetation height [m] (hc) X
Soil reflectance [–] (soil_spectra) X

(tts) was derived from the DWD timestamp. The setting options “soil heat method” and “applTcorr” to
correct Vcmax parameter by temperature were used to run the model scenarios DWD and RS.

Hourly ET0 was calculated by providing air temperature,
wind speed, relative humidity and incoming shortwave ra-
diation as model input using the R package “water” (Olmedo
et al., 2016). As this formulation of ET0 assumes a homoge-
neous landscape of short crops, no land surface information
is required, and the model is exclusively driven by meteo-
rological conditions (Table 2). Penman–Monteith ET0 is a
well-known and established approach which will be used as
a benchmarking method to evaluate to what extent includ-
ing inputs that characterise surface properties can improve
ET prediction accuracy.

2.3.2 SCOPE model

SCOPE is a process-based model (i.e. SVAT model), which
integrates radiative transfer models (RTM) of soil, leaf and
canopy with energy balance models (van der Tol et al., 2009).
SCOPE is an ensemble model approach, combining one-
dimensional bidirectional turbid medium radiative transfer,
micrometeorology and plant physiology (van der Tol et al.,
2009). This configuration allows SCOPE to account for a
wide range of surface–atmosphere interactions, requiring dif-
ferent model inputs according to the target outputs.

Since SCOPE is a one-dimensional vertical model that as-
sumes horizontal homogeneity, it is not designed for hetero-
geneous urban areas (Yang et al., 2021). However, as our fo-
cus is on soil evaporation and plant transpiration, the SCOPE
model provides the necessary framework for our application
due to the following reasons: (1) the capacity to integrate
both high-resolution climatological and medium-resolution
remote sensing data inputs for vegetation and soil such as
LAI, vegetation height and soil moisture; (2) sophisticated
approach to estimating energy fluxes – SCOPE calculates the
essential elements of the energy fluxes, including LE, H ,
G, net radiation, soil and canopy temperature, friction ve-
locity and aerodynamic resistance. It also estimates energy
fluxes (LE and H ) for soil and vegetation separately and

warns when the energy balances cannot be closed for a spe-
cific timestamp. There are also options to correct for Monin–
Obukhov atmospheric stability and maximum carboxylation
capacity (Vcmax) for temperature, which is crucial to ET es-
timation.

The model is divided into different modules, allowing the
user to focus on essential inputs for estimating heat flux out-
puts. SCOPE automatically calculates the effect of solar an-
gles on the fraction of sunlit and shaded leaves, reducing the
time lag difference between the spectral data and ET ob-
servations across the year driven by the fluctuation in sun
zenith angle. The calibration and processing time enable high
temporal resolution predictions for many different points in
space and time. The most important groups of variables to
estimate LE are: (1) meteorological inputs such as incom-
ing shortwave radiation (Rin), air temperature (Ta) and at-
mospheric vapour pressure (ea); (2) biochemical plant traits
inputs such as the Ball–Berry stomatal conductance param-
eter (m) and Vcmax; and (3) biophysical inputs such as leaf
angle distribution (LIDFa, LIDFb) and LAI (Yang et al.,
2021). No anthropogenic heat sources contribute to latent
heat fluxes in SCOPE, nor does building shadow constrain
it. Interception loss from precipitation is also not accounted
for by the model.

A list of the model inputs that vary across the timestamp
used in this study is provided in Table 2. Since changing all
model inputs of SCOPE to realistic values for a time series
of hourly observations is almost unfeasible, the other param-
eters were kept constant, except for the roughness length (z0)
and zero-plane displacement (d), which were set based on the
footprints. Three scenarios were tested: (1) a SCOPE model
with the same input variables as used for reference ET0
(Penman–Monteith); (2) a SCOPE model with all available
inputs from the DWD datasets; and (3) a SCOPE model
that combines DWD data with RS data. The model output,
total LE (W m−2), was converted to ET (mm h−1) using
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the same procedure used for the EC tower data. The mod-
elling was performed in MATLAB R2018b using SCOPE
version 2.0 (Yang et al., 2021).

2.3.3 Correction factor for urban environments

Our focus is on the primary sources of terrestrial ET (plant
transpiration and soil evaporation). Climatological condi-
tions are the main drivers of terrestrial ET, which present
high temporal dynamics. On the other hand, fragmented ur-
ban land cover and impervious surfaces are the main con-
straints of ET released into the atmosphere. Therefore, a
model to predict urban ET accurately requires high tempo-
ral and spatial resolutions. Still, processing all time–space
interactions is demanding and currently unfeasible for the
resolution needed for our application. However, ET predic-
tions from SCOPE are likely to be biased if the impervi-
ousness areas are not accounted for, as the models assume
homogeneous vegetation (horizontally). Based on these as-
sumptions, we propose this two-stage modelling approach to
capture most of the spatiotemporal variability of ET without
making the model overly complex. First, we predicted ET us-
ing the SCOPE model for the described scenarios. Then, we
corrected the predictions to represent only vegetated areas
extracted from the footprints of each timestamp.

This strategy combines hourly SCOPE predictions with
high spatial resolution vegetation fraction maps to correct
the assumption of homogeneous vegetation and impervious
areas. Impervious areas are mainly static over a 1-year inter-
val; therefore, embedding urban features and anthropogenic
heat sources in the model would be predominantly redundant
and very computationally demanding. This approach allows
us to predict ET for different spatial and temporal resolu-
tions, which would be more complicated if using a more spe-
cialised urban model for hourly ET predictions. In order to
correct the ET predictions according to the surface charac-
teristics of each site, we use the extracted vegetation frac-
tion average from the footprints per timestamp to subtract
the ET estimated in impervious areas with a 10 m resolution
product.

The correction factor for urban environments is a relative
value that varies from 0 to 1, where 0 means completely im-
pervious and 1 fully vegetated. The factor is multiplied by the
total ET predictions from SCOPE and ET0 from Penman–
Monteith to provide the corrected estimate for each times-
tamp. This approach assumes zero ET coming from imper-
vious fractions. However, none of the footprint estimations
of the correction factor (i.e. vegetation fraction) was en-
tirely impervious. The ROTH site presents an annual average
(footprint) of the vegetation fraction of 0.55 (0.15–0.77) and
of canopy height of 7.7 m (2.9–10.0), while the TUCC site
presents an average of 0.27 (0.03–0.87) and 7.1 m (2.7–15.1),
respectively. Street trees were considered for the calculation
of vegetation height and fraction.

2.3.4 Model assessment

As both models are fully deterministic, no train and test split-
ting or cross-validation approaches are needed to select and
validate the models. The model accuracy was assessed using
all available ET values from the flux tower time series. To as-
sess model precision, the metrics RMSE and the coefficient
of determination (R2) between predicted and observed ET
were used. Since deterministic or process-based models are
more prone to prediction biases than fitted empirical models,
the relative bias (rBias) was assessed. The rBias is calculated
as the sum of the differences between predicted and observed
values of each timestamp relative to the total ET observed in
the period. In this study, bias relative to the observed ET was
also used as an indicator of the correction factor efficiency in
providing unbiased predictions in an urban environment. All
plots and metrics for model assessment were performed us-
ing the “ggplot2” package (Wickham, 2016) and basic func-
tions in R software (R Core Team, 2020).

3 Results

3.1 ET prediction in urban environments

As atmospheric conditions are the main drivers for evapo-
transpiration, we first tested the similarity of the climato-
logical variables measured by the flux towers compared to
nearby standard meteorological (DWD) stations. The results
(Fig. 3a) show that there is a strong relationship between
the ET0 calculated using data from flux towers (x axis) and
data from DWD stations (y axis), but also between the loca-
tions using the same data. For any of the six combinations
of ET0 pairs, the coefficient of correlation is at least 0.96
(not shown). This result indicates that a nearby meteorolog-
ical station can represent the local atmospheric conditions
without losing significant accuracy. Therefore, we use only
publicly available meteorological model inputs to predict ET,
completely independent of the measurements from the two
towers. As meteorological variables and vegetation fractions
are available for most medium-sized and large cities of Eu-
rope, there is a great potential for the methodology to be
transferred to other locations based on the promising results
shown for the two EC towers in Berlin.

Although atmospheric conditions and water availability
mainly drive the temporal variability of ET, the spatial vari-
ability, which determines the volume of ET, depends primar-
ily on the land surface characteristics. The models clearly
overestimate ET in highly fragmented landscapes with im-
pervious surfaces, as shown in Fig. 3b. The difference be-
tween the two towers emphasises the dependence on the veg-
etation fraction. The ROTH site contains a higher average of
vegetation and pervious fractions (55 % and 49 %) than the
TUCC site (27 % and 28 %). Therefore, the model bias at
ROTH is more than twice as low as when the model is ap-
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Figure 3. The relationship between ET0 calculated using data from the meteorological stations and the EC towers (a), ET0 from the
DWD data versus observed ET from the EC tower (b), ET0 (corrected) versus observed ET (c), corrected SCOPE_ET0 inputs versus ob-
served ET (d), corrected SCOPE_DWD versus observed ET (e), and corrected SCOPE_RS versus observed ET (f). The green dots represent
the ROTH site, and the blue dots represent the TUCC site.

Table 3. Model accuracy for each scenario according to the metrics RMSE, R2 and relative bias for ET0 (Penman-Monteith) and SCOPE,
with and without the correction factor for urban environments. The highlighted bold values represent the highest precision and lowest bias
based on each metric.

Model Input Correction for urban ROTH TUCC

approaches scenarios environments RMSE R2 rBias RMSE R2 rBias

ET0 ET0 Uncorrected 0.126 0.80 1.57 0.165 0.53 3.83
ET0 Corrected 0.051 0.82 0.48 0.033 0.48 0.32

SCOPE ET0 Uncorrected 0.081 0.77 0.71 0.114 0.49 2.22
ET0 Corrected 0.033 0.78 −0.007 0.024 0.45 −0.12
DWD Uncorrected 0.063 0.82 0.64 0.099 0.51 2.09
DWD Corrected 0.026 0.83 0.05 0.021 0.47 −0.16
DWD+RS Uncorrected 0.061 0.81 0.74 0.100 0.51 2.20
DWD+RS Corrected 0.026 0.82 0.001 0.021 0.47 −0.13

plied at TUCC without the correction factor (Table 3). As
presented earlier, the ET0 of the two towers is very similar,
while the observed ET is twice as low at TUCC.

The proposed correction factor for urban environments re-
duces the prediction biases (rBias) and model errors (RMSE)
significantly. The corrected ET0 prediction from Penman–
Monteith, which initially presents a rBias of 1.57 and 3.83
(ROTH and TUCC), is reduced to 0.48 and 0.32, respec-
tively (Table 3). For ROTH, while RMSE has decreased by

a factor of more than 2 after the predictions were corrected,
the R2 value was kept similar to the original. For TUCC,
RMSE was reduced even further, but so was the R2, which
was caused by a reduction in the range of values after be-
ing corrected. Despite the significant improvement using the
correction factor, ET prediction based on ET0 is still biased,
which agrees with other authors who have reported recur-
rent overestimation from Penman–Monteith models even for
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Figure 4. Hourly averages per month in 2019 for: (a) precipitation events; (b) percentage of the vegetation fraction (solid line) and imper-
vious fraction (dashed lines); (c) predictions for the ROTH site; and (d) predictions for the TUCC site. The observed ET (black line) and
corrected ET0 (orange line) for both sites. The corrected SCOPE predictions are represented by green lines for ROTH and blues for the
TUCC site. The light to dark colours represent SCOPE_ET0, SCOPE_DWD and SCOPE_RS, respectively, for both sites.

fully vegetated areas (Allen et al., 2005; Ortega-Farias et al.,
2004).

SCOPE model outputs have similar R2 values but dras-
tically reduce the relative bias and model error for the
corrected predictions compared with ET0 predictions. The
SCOPE model using the same input variables as the
ET0 model is more accurate than the Penman–Monteith
model. However, the model accuracy is further improved
(R2 of 0.82 and RMSE of 0.026) by the inclusion of other
DWD scenario input parameters such as incoming long-
wave radiation (Rli) and atmospheric pressure (p). The
SCOPE models for the RS and DWD scenarios for ROTH
present a similar accuracy but lower bias, 0.1 % (RS) ver-
sus 5 % (DWD). The reduction in bias in the RS scenario
can be explained by the inclusion of LAI, which provides
a more precise estimation of the vegetation structure in the
early season, improving the ET predictions considerably for

April. The SCOPE_RS model for TUCC presents an even
smaller RMSE (0.021) but a much smaller R2 and higher
bias than ROTH. The ET range partially explains these dif-
ferences in R2 between the two towers, varying from 0 to
0.29 mm at ROTH and from 0 to 0.16 mm at TUCC.

3.2 ET seasonality

ET varies greatly across the day and seasons according to
changes in meteorological conditions (e.g. temperature, ra-
diation), plant phenology (e.g. LAI, stomatal conductance)
and water availability (dry and wet seasons). Figure 4c and d
shows the variability in average hourly ET across the months
between the two towers (black line). The differences in scale
between the two sites are clear, but they present very similar
behaviour across time. The predictions using corrected ET0
(orange line) overestimate ET from February to October for
ROTH and from April to September for TUCC but fit well
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Figure 5. Smoothed time series of the volume (mm h−1) of precipitation (grey line) and model error (observed–predicted) for the ROTH
site (a) and the TUCC site (b). Smoothing function (formula= y ∼ splines :: bs(x,20)).

otherwise. The corrected SCOPE models exhibit the oppo-
site behaviour, being more accurate around spring–summer
and underestimating ET otherwise.

Observed ET is only higher than predicted ET0 in Jan-
uary and December for both sites. The periods when SCOPE
models underestimate predictions correspond precisely with
the months in which the number of hours of precipitation
is higher than the average (Fig. 4a). April was an extremely
dry month, and all models overestimated ET for both sites,
as ET is limited by underground water. A second condition
occurred in April, causing a significant increase in the vege-
tation fraction and a decrease in the impervious fraction ex-
tracted from the footprints at the TUCC site. Atmospheric
conditions have led to overall greener footprints since they
were atypically concentrated in a vegetated area (park), re-
ducing the effect of the correction factor without increasing
ET values. This phenomenon may occur at TUCC because
the tower is located on the top of a building completely sealed
with a surrounding wall (Fig. 1) and the effects of dry and wet
surfaces are more noticeable there than at ROTH.

When analysing model accuracy in the time series, the
error (mm h−1), as expected, is not randomly distributed
around 0 across the year. The predictions, in general, are
overestimated in summer and underestimated in winter. As
both approaches are deterministic, there is no assumption of
the independent and identical distribution residuals as in em-
pirical models. However, temporal distribution in the residu-
als (autocorrelation) can help identify in which environmen-
tal conditions the precision and bias in predictions affect the

overall accuracy. In our case, Fig. 5 clearly shows that model
bias is strongly related to the volume of rain over the season.

The curve of the SCOPE model errors has very similar
behaviour compared with the millimetres of rainfall across
the year. When the volume of precipitation is over a cer-
tain threshold (around 0.5 mm h−1), the ET predictions are
underestimated, while the model often overestimates ET be-
low the threshold. The predictions based on ET0 are most
overestimated during the spring and summer seasons. The
year 2019 was extremely dry, Germany’s third-warmest year
since 1881 (German Weather Service – DWD), partially ex-
plaining the overestimated ET values, especially in the most
vegetated site (ROTH, Fig. 5b).

3.3 Monthly and yearly ET estimations

As 42 % of the hourly ET observations were missing values,
we used the MDS gap-filling method to estimate monthly
or yearly observed ET values. The estimated value for the
ROTH site was 336 mm yr−1, representing 66 % of the ob-
served annual precipitation (Fig. 6). This value is similar to
that of the corrected SCOPE RS model, 330 mm yr−1 or 65 %
of the annual precipitation according to the nearby DWD
meteorological station. The corrected ET0 annual estimate
of 477 mm yr−1 (94 %) is most likely overestimated. At the
TUCC site, MDS gap-filling estimates 188 mm yr−1, repre-
senting nearly half of the annual precipitation volume (47 %),
which is much lower than at ROTH. The ET0 estimated at
TUCC is 236 mm, representing 59 % of the annual precip-
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Figure 6. ET by day of the year and hours of the day for the ROTH site. Observed ET after cleaning (a), observed ET gap-filled with MDS (b),
Penman–Monteith ET0 (c), predicted ET with SCOPE_ET0 model (d), predicted ET with SCOPE_DWD model (e), and predicted ET with
SCOPE_RS model (f). For TUCC, see Fig. A1.

itation, while the SCOPE models estimate the lowest val-
ues, ranging from 146 to 151 mm yr−1 (36 % to 38 %). The
maximum volume of precipitation for ROTH (i.e. Dahlem
station) was observed in June (75 mm) and the minimum
in April (6 mm). The maximum value of estimated ET was
95 mm for ET0 and 67 mm for SCOPE_RS, also in June,
while the minimum was 6 and 4 mm, respectively, in Jan-
uary. The TUCC site (i.e. Tegel station) presents a maximum
volume of precipitation in March (62 mm) and the minimum
also in April (7.5 mm). The ET estimate reaches the max-
imum of 49 and 32 mm for ET0 and SCOPE_RS models in
June and a minimum of 3.2 and 2.2 mm in December, respec-
tively.

4 Discussion

4.1 Predicting urban ET with SCOPE

As demonstrated in this study, the approach combining a cor-
rection factor for urban environments with a SVAT model
can provide accurate predictions of ET, similar to the values
measured by the eddy covariance method. However, our ap-

proach offers a low-cost and less computationally intensive
method to estimate ET using data from standard meteorolog-
ical stations combined with freely available remote sensing
data. Data from meteorological stations provide consistent
measurements with nearly no missing values, while EC data
often have significant gaps.

We also showed that similar atmospheric conditions would
produce very distinctive ET values as the process is highly
dependent on the vegetation fraction of the location under
consideration. As a sum of evaporation from the soil, plant
transpiration and intercepted precipitation, the volume of wa-
ter released into the atmosphere by ET varies significantly
according to the imperviousness. Our assumption that most
terrestrial ET could be attributed to the two primary pro-
cesses of soil evaporation and plant transpiration seems to be
valid for the urban environment. The most vegetated urban
site (ROTH) presented a high accuracy for the ET predic-
tions and no bias after the proposed correction. Furthermore,
daytime ET in the summertime is twice as high in ROTH, the
highly vegetated site, as in TUCC, demonstrating the domi-
nant contribution of transpiration to urban ET.
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Classic process-based models using the Penman–Monteith
equation focus mostly on the atmospheric interfaces, lacking
representation of soil and vegetation properties. The crop or
grassland factors suggested for the Penman–Monteith equa-
tion are often calibrated for the growing season in optimal
conditions (Allen et al., 1998), which otherwise overestimate
ET. However, using variables to characterise plant phenology
and water availability in the soil offered in the SCOPE model
allows for a comprehensive parameterisation to capture the
ET variation in the vegetated areas of the city (van der Tol
et al., 2009). The effect of surface heterogeneity in the hori-
zontal direction, typical in an urban environment, is not ad-
dressed by (one-dimensional) SCOPE or Penman–Monteith-
based models. However, accounting for surface–atmosphere
interactions in vegetation fractions with a SCOPE model
combined with high-resolution land cover to mask the im-
pervious areas makes it possible to predict ET accurately in
urban environments.

The inclusion of remote sensing data proved beneficial
in modelling urban ET using SCOPE. Important plant phe-
nology parameters such as LAI, water content and chloro-
phyll (Chl) can be obtained using available satellite images
(Raj et al., 2020). Our study included remote sensing-derived
LAI from Copernicus, reducing bias in ET predictions in the
early spring. Incorporating LAI was particularly beneficial
in April, as using the default constant value of LAI overesti-
mates ET. In 2019, the air temperature started to increase in
this period, but the canopy foliage was still incomplete.

The accuracy (i.e. bias) varied differently depending on
the season. In general, our models underestimate ET in win-
tertime. Modelling SCOPE separately for each season may
improve the accuracy as aerodynamic, photosynthetic, soil,
and canopy constants could be better specified for these pe-
riods. Given that most of the applications to model ET are
constrained to the growing season, constants and default pa-
rameters are likely to be optimised for these conditions (Ward
et al., 2016). Tuning or measuring most of the input parame-
ters to match the reality of the specific urban environment
under consideration can further improve the model accu-
racy. SCOPE has more than 60 model inputs, allowing for
greater model customisation to the local environment than
presented in this study. However, the objective of this study
was to demonstrate the potential of our approach for estimat-
ing hourly ET with open data rather than to provide a final
model for Berlin. Thus, most of the parameters were kept
constant using default model values.

4.2 Model validation

The EC system used in this study is one of the most suitable
approaches for deriving observed terrestrial ET, especially
in urban areas (Foltýnová et al., 2020; Nouri et al., 2013).
Despite the EC method representing the closest attempt to
measure ET directly, studies have reported accuracy vary-
ing from 5 % to 20 % (Foken, 2008; Liang and Wang, 2020),

which may be even higher in urban environments as the lack
of energy balance closure is more pronounced. The use of
EC measurements to validate the model predictions present
some drawbacks to EC measurements, such as: (1) the source
area varies continuously in size and shape, which makes it
difficult to identify the surface from which ET is released
(Kljun et al., 2002; Kotthaus and Grimmond, 2014; Schmid
and Oke, 1990); (2) during rain and after a certain subse-
quent period, EC measurements are not reliable, presenting
unrealistically high values of ET (Kotthaus and Grimmond,
2014; Ward et al., 2013); and (3) it is not possible to separate
evaporation into soil evaporation, plant transpiration, anthro-
pogenic vapour emissions and intercepted precipitation (Kar-
sisto et al., 2016; Kotthaus and Grimmond, 2012; Nordbo et
al., 2012; Nouri et al., 2013).

The discrepancy between the concept of our modelled ET
and the direct EC measurements makes model validation
challenging. Some of the model bias could be attributed to
the neglect of evaporation from interception and (dry) im-
pervious surfaces, or to the flux tower measurements. For
instance, the underestimation in the ET predictions around
winter and periods with higher precipitation could be an arte-
fact of bias in EC measurements caused by water in the
instrument. Ward et al. (2013) also indicate that LE mea-
sured by the EC method presents significantly higher val-
ues than modelled LE in the following hours after rain-
fall. EC measurements can also be unreliable during certain
conditions such as non-steady-state conditions or absence of
well-developed turbulence. LE measurements from EC tow-
ers are reported as slightly underestimated due to the lack of
closure in energy balance caused by low turbulence (Kracher
et al., 2009).

The different evaporation processes may not exhibit simi-
lar seasonality. For instance, soil evaporation and plant tran-
spiration are often strongly correlated as they have similar
drivers. On the other hand, evaporation from interception be-
haves differently across seasons, and it is mainly driven by
precipitation and less constrained by net radiation (Webb et
al., 1980). Given the differences in temporal resolution of the
model inputs and ET seasonality (daily and yearly), the vali-
dation should not only focus on the general accuracy but also
assess the residuals across time and space to evaluate the im-
pact of each parameter in the model performance as shown
in Fig. 5.

Further investigation at other locations is needed to con-
clude on the role of footprint modelling in the overall predic-
tion accuracy where the vegetation fraction varies strongly
with wind speed and direction. Otherwise, a simple buffer
estimation could be performed instead. While in the ROTH
site, the correction using the vegetation fraction from foot-
prints improves the model accuracy compared to a buffer, in
the case of the TUCC site, using a buffer of 500 m presents
slightly better accuracy than using footprints. This occurs
since ET shows a moderate correlation (0.35 and−0.44) with
the vegetation fraction and impervious fraction extracted
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from the footprints for the ROTH site but no significant cor-
relation for the TUCC site. However, vegetation fractions can
partially explain the difference between observed ET and ref-
erence ET (ET0) in spring and summertime, presenting a cor-
relation of 0.44 for the TUCC site and 0.62 when both lo-
cations are analysed together. In summer at the ROTH site,
the percentage of vegetation fraction increases during the
day up to noon, while the impervious fraction shows the op-
posite behaviour (Fig. 4b), which may partially explain the
better correlation. These differences in footprint size across
the day are affected by alterations in atmospheric stabil-
ity and wind speed, which, combined with the vegetation-
impervious composition in the tower surroundings, deter-
mine the vegetation fraction in the source area.

Both predictions and observations have a certain level of
bias and imprecision (random and systematic errors) that
behave differently according to the environmental condi-
tions and model calibration. Therefore, when seeking global
model accuracy, one may increase the bias to fit the ob-
served ET better in general, affecting predictions in other
conditions in which the model could be closer to reality than
the EC measurement. A better approach would be to calibrate
the model separately for different conditions. For instance,
the bias values for TUCC can be further reduced if the correc-
tion is applied only during the daytime. Also, model accuracy
was significantly improved when the option to correct the
parameter Vcmax by the hourly temperature was selected,
showing that the seasonality of photosynthetic parameters is
very important for ET estimates.

4.3 Model comparison

Our approach requires fewer and freely available model in-
puts, demanding less calibration and computational cost than
hydrological and urban models that provide ET orLE as out-
put. For instance, SUEWS models have many non-ordinary
inputs that are difficult to supply in a high temporal and
spatial resolution (Järvi et al., 2011). Several inputs are de-
scribed as important in the model, including the fraction of
irrigated surface area, soil fraction without rocks and maxi-
mum soil storage capacity. Rafael et al. (2020) state that the
availability of measured data is a limitation for applications.
UT&C models require even more complex parameters, in-
cluding the distance of the wall to the tree trunk (m), the
albedo and emissivity of walls, the thickness of walls and
roofs, and the volumetric heat capacity of impervious sur-
faces, roofs and walls. These variables are possible to es-
timate for experimental models at a reduced scale but un-
reasonable to be applied in real-life cases, especially when
aiming to map ET at a high spatial resolution for an entire
city. While the SCOPE model includes more than 60 inputs,
our study shows that calibrating no more than 10 inputs was
enough to have relatively high accuracy for ET/LE predic-
tions.

Despite our approach using a simplifying assumption and
few required inputs, the prediction accuracy (precision and
bias) is compatible with the state-of-the-art urban ET mod-
els while being potentially more transferable. The estima-
tions of LE may be critical output in most urban models,
often showing a low accuracy, especially in dense urban ar-
eas. Rafael et al. (2020) applied the SUEWS model in two
locations in Portugal, concluding that the performance of
LE predictions in suburban areas was far better than the
denser urban site (correlation 0.61 and 0.13, respectively).
The statement is consistent with previous studies using two
areas with different levels of urbanisation, conducted in the
surroundings of London (R2 0.72 and 0.25) and Helsinki
(correlation 0.79 and 0.44) (Karsisto et al., 2016; Ward et al.,
2016). Although the UT&C model is a very sophisticated and
detailed urban model (i.e. urban canyon design), the accu-
racy is similar to the SUEWS models. TheR2 values reported
for the three locations (Singapore, Melbourne and Phoenix)
range from 0.50 to 0.62 (Meili et al., 2020). However, given
that the model was developed and calibrated for these sites,
the accuracy may be lower when transferred to a different lo-
cation or period. Our modelling approach also presents better
accuracy for the suburban site ROTH (R2 0.82) than the built-
up area TUCC (R2 0.47), similar to the SUEWS models. In
general, the accuracy of the dense urban sites is lower than
more vegetated areas, independent of the model approach.
However, a specialised urban model should perform opti-
mally in denser built-up areas since they were designed for
such environments.

Our study opted to use a simplifying assumption that (dry)
impervious surfaces do not evaporate, similarly to other mod-
els. Ward et al. (2016) suggest that future model development
should allow some evaporation from paved and built-up sur-
faces other than evaporation of intercepted water. Therefore,
the assumption of urban models such as SUEWS is similar to
our simplification, which considers that completely impervi-
ous surfaces have no ET using the correction factor.

We also compared our approach with the hydrological wa-
ter balance model (ABIMO 3.2), which models and maps
evaporation from precipitation for Berlin available in the
study “Surface runoff, percolation, total runoff and evap-
oration from precipitation” (Senate Department for Urban
Planning and the Environment, 2019). This model requires
approximately 25 data inputs for almost 25 000 single sec-
tions of the city (blocks, streets and other features), provid-
ing a detailed spatial resolution but only an annual tempo-
ral resolution which is not updated every year. It reports that
around 60 % of Berlin’s precipitation evaporates and varies
from less than 3.7 mm yr−1 to more than 659 mm yr−1 ac-
cording to the land surface and water systems available in
the region. For the block where the two EC towers are in-
stalled, the evaporation from precipitation was reported as
344 mm yr−1 at ROTH and 196 mm yr−1 at the TUCC site.
When considering the average footprint of each tower, the
annual values of the Berlin Environmental Atlas decrease to
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266 mm at ROTH and 165 mm at TUCC. Our approach esti-
mated 330 and 151 mm, respectively, while the EC observa-
tions (gap-filled with MDS) were 336 and 188 mm. Our study
arrives at similar annual values of ET using a much simpler
approach while providing accurate ET estimates at an hourly
scale that can better support actions to mitigate the UHI ef-
fect. The greater differences are observed at the TUCC site,
suggesting that the intercepted precipitation on impervious
surfaces may cause underestimation in this location.

4.4 Interception from precipitation

Despite the predominant role of soil evaporation and plant
transpiration, interception loss is also a substantial com-
ponent of urban ET. According to Ramamurthy and Bou-
Zeid (2014), wet impervious surfaces evaporate at higher
rates than wet vegetation as they often store more heat. They
conclude that evaporation from wet impervious surfaces such
as concrete pavements, asphalt and building rooftops ac-
counted for around 18 % of the LE and may last up to
10 d, with the highest evaporation rates occurring 48 h after
a precipitation event. Interception can exceed daytime tran-
spiration rates even at night and is disproportionately high
in winter (Martens et al., 2017; Miralles et al., 2020). The
EC tower at the TUCC site is installed 10 m over a build-
ing with a flat roof, intensifying the interception loss even
in conditions of low radiation and low air temperature. For
the denser built-up site (TUCC), the lower accuracy and the
relative underestimation (−0.13 of bias) in comparison with
ROTH could mostly be attributed to interception loss com-
bined with higher land surface temperature caused by anthro-
pogenic heating (Fig. 5b). Although the ROTH site presents
a considerably higher overall ET and vegetation fraction, the
average night ET at TUCC is higher than at ROTH for all
seasons. Based on Figs. 4 and 5, the interception loss could
explain most of the model error at the TUCC site, indicating
that the impervious urban canopy may intercept more precip-
itation and evaporate faster than the vegetated canopy.

The monthly and annual ET values may be underesti-
mated, especially in the most built-up areas, as interception
loss and precipitation are not part of the model. The model
underestimation occurs mainly at night and winter, which
makes us conclude that direct anthropogenic heat sources
have a minor contribution to LE during the spring and sum-
mer. However, during winter, neither moisture nor the cool-
ing effect capacity of ET is important in this part of the globe.

The intercepted precipitation on impervious surfaces plays
a role in increasing the evaporation after rainfall, as demon-
strated by the underestimated model prediction in the period
when more frequent rain events occur (Fig. 5). However, in-
tercepted precipitation is an independent process that should
not be confused with evaporation from plants and soil for
two reasons. First of all, it is difficult to assess the contri-
bution of interception loss to measured LE, as the EC data
during and just after rain are not available (missing values) or

non-reliable (Wouters et al., 2015). The second reason is that
despite increasing ET and affecting the EC measurements,
interception loss from impervious surfaces does not mitigate
UHI and droughts or make cities more sustainable. On the
contrary, partially sealed or non-sealed surfaces favour per-
colation, recharging the groundwater and maintaining soil
moisture (Gillefalk et al., 2021; Kuhlemann et al., 2021).
Also, depending on the topography, the capacity to store wa-
ter on impervious surfaces can vary greatly.

4.5 Applications and limitations

Applications providing accurate ET maps can range from
controlling irrigation for managing green spaces in cities to
planning more sustainable urban environments. Smart and
green city initiatives could utilise dynamic ET maps to mon-
itor the impact of climate change and identify solutions to
improve the quality of life in cities worldwide. A better un-
derstanding and management of the water cycle (green, blue
and grey) will be vital for human well-being in the near fu-
ture.

The advantage of a process-based model (i.e. fully de-
terministic) over an empirical model is that training is not
required, which increases the chances of generalising the
model to other locations. Our approach can be applied to
estimate ET at any location in the city or time aggregation
(ranging from hourly to annually). The network of DWD
stations could be used to create spatiotemporal raster layers
with the primary inputs of atmospheric conditions required
to model ET using the grid resolution of the land surface
data. Combining high temporal resolution raster data of at-
mospheric conditions and land cover surface data with high
spatial resolution can make it feasible to produce accurate
ET maps for entire metropolitan regions.

We demonstrate that one meteorological station is enough
to provide input variables to characterise the atmospheric
conditions for different locations in a large city such as
Berlin. For instance, the incoming solar radiation inputs
(shortwave and longwave) used in this study were provided
by a DWD station located in another town (Potsdam) more
than 20 km from both sites. A high spatial resolution is not
as crucial to represent the atmospheric conditions as a high
temporal resolution (e.g. hourly). However, this approach re-
quires adequate spatial resolution of the vegetation fraction
to apply the correction for urban environments.

Limitations of our approach related to the omission of
the intercepted precipitation may occur when applying the
model in very wet places where rainy conditions are pre-
dominant throughout the year. The proposed approach is not
able to estimate the complete water balance similar to the
EC measurements, which include the interception and an-
thropogenic sources of evaporation. However, our approach
presents higher accuracy with fewer inputs compared with
well-known models for urban ET that can be applied in high
spatial and temporal resolutions. The latent heat flux estimate
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from SCOPE can be separated into soil LE and canopy LE,
which allows us to incorporate different levels of impervi-
ousness in the correction factor to overcome our prior as-
sumption of no evaporation from (dry) paved surfaces. Maps
derived from our approach are well suited to support local
governments in mitigating UHI effects during extreme sum-
mer temperatures since the neglected sources affect winter
predictions more. The mapping for the entire city, the inclu-
sion of different levels of imperviousness, a correction for
intercepted precipitation, and the assessment of the model
transferability in different locations will be explored in fu-
ture works.

5 Conclusion

This study proposed a novel approach to estimate hourly
ET in urban environments using a process-based model and
freely available meteorological and remote sensing data.
Therefore, this modelling approach can predict ET in an en-
tire city in different spatial and temporal resolutions, paving
the way for mapping urban ET systematically without highly
specialised and costly EC tower equipment. Although the
SCOPE model was successfully applied to predict ET in
previous studies, this is the first time that SCOPE was ap-
plied in an urban environment. Most process-based model
approaches to estimating ET, including SCOPE, are designed
for homogeneous vegetated landscapes, resulting in the over-
estimation of ET in urban areas. However, we developed a
correction factor for urban environments using the vegetation
fraction derived from remote sensing data that has proved to
reduce model bias and improve global accuracy. The solu-
tion combines high temporal resolution data of atmospheric
conditions from meteorological stations and high spatial res-
olution data of land surface derived from remote sensing. We
demonstrate that a single meteorological station is enough
to provide model input to characterise the atmospheric con-
ditions for different locations in a city, which increases the
potential to generalise the approach to produce ET maps for
other urban regions. The model performance decreases at
nighttime, winter and in the presence of wet surfaces as in-
terception loss is not considered. However, these conditions
are not important for adapting to droughts and mitigating the
urban heat island.

Appendix A

Figure A1. ET by day of the year and hours of the day for the
TUCC site. Observed ET after cleaning (a), observed ET gap-
filled with MDS (b), Penman–Monteith ET0 (c), predicted ET
with SCOPE_ET0 model (d), predicted ET with SCOPE_DWD
model (e), and predicted ET with SCOPE_RS model (f).

Code and data availability. The SCOPE documentation and codes
are freely available (https://doi.org/10.5281/zenodo.4309327;
van der Tol et al., 2020). The R code to download the DWD
data and the Berlin Environmental Atlas maps, to extract the
footprints and evaluate the model accuracy can be find at
https://doi.org/10.5281/zenodo.6204580 (Duarte Rocha, 2022).
The data used are available from the author upon request.
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