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Abstract. So far, various studies have aimed at decomposing
the integrated terrestrial water storage variations observed by
satellite gravimetry (GRACE, GRACE-FO) with the help of
large-scale hydrological models. While the results of the stor-
age decomposition depend on model structure, little attention
has been given to the impact of the way that vegetation is
represented in these models. Although vegetation structure
and activity represent the crucial link between water, carbon,
and energy cycles, their representation in large-scale hydro-
logical models remains a major source of uncertainty. At the
same time, the increasing availability and quality of Earth-
observation-based vegetation data provide valuable informa-
tion with good prospects for improving model simulations
and gaining better insights into the role of vegetation within
the global water cycle.

In this study, we use observation-based vegetation infor-
mation such as vegetation indices and rooting depths for
spatializing the parameters of a simple global hydrological
model to define infiltration, root water uptake, and transpi-
ration processes. The parameters are further constrained by
considering observations of terrestrial water storage anoma-
lies (TWS), soil moisture, evapotranspiration (ET) and grid-
ded runoff (Q) estimates in a multi-criteria calibration ap-
proach. We assess the implications of including varying veg-
etation characteristics on the simulation results, with a partic-
ular focus on the partitioning between water storage compo-
nents. To isolate the effect of vegetation, we compare a model
experiment in which vegetation parameters vary in space and

time to a baseline experiment in which all parameters are cal-
ibrated as static, globally uniform values.

Both experiments show good overall performance, but ex-
plicitly including varying vegetation data leads to even better
performance and more physically plausible parameter val-
ues. The largest improvements regarding TWS and ET are
seen in supply-limited (semi-arid) regions and in the trop-
ics, whereas Q simulations improve mainly in northern lat-
itudes. While the total fluxes and storages are similar, ac-
counting for vegetation substantially changes the contribu-
tions of different soil water storage components to the TWS
variations. This suggests an important role of the represen-
tation of vegetation in hydrological models for interpret-
ing TWS variations. Our simulations further indicate a ma-
jor effect of deeper moisture storages and groundwater–soil
moisture–vegetation interactions as a key to understanding
TWS variations. We highlight the need for further observa-
tions to identify the adequate model structure rather than only
model parameters for a reasonable representation and inter-
pretation of vegetation–water interactions.

1 Introduction

Since 2002, the Gravity Recovery and Climate Experiment
(GRACE) mission has facilitated global monitoring of ter-
restrial water storage (TWS) variations from space – a mile-
stone of global hydrology (Rodell, 2004; Famiglietti and
Rodell, 2013). Observed TWS variations from GRACE have
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since become a cornerstone for diagnosing trends in wa-
ter resources due to climate change or anthropogenic ac-
tivities (Rodell et al., 2018; Reager et al., 2015; Scanlon et
al., 2018; Syed et al., 2009; Tapley et al., 2019), as well as
for benchmarking and improving global hydrological mod-
els (GHMs) (Scanlon et al., 2016; Döll et al., 2014; Werth et
al., 2009; Zhang et al., 2017; Kumar et al., 2016; Eicker et
al., 2014). Significant co-variations between GRACE TWS
and the global land carbon sink (Humphrey et al., 2018) and
surface temperatures (Humphrey et al., 2021) highlight the
importance of the water cycle as the nexus in the Earth sys-
tem.

However, GRACE TWS estimates represent a vertically
integrated signal of all water stored in snow, ice, soil, sur-
face water, and groundwater. Thus, understanding processes
and mechanisms of TWS variations requires attribution of
TWS variations to individual storage components. Despite
advancements in remote sensing, large-scale quantification
of these components based on observations remains chal-
lenging. For example, remote-sensing-based estimates of soil
moisture only capture depths up to 5 cm and do not neces-
sarily reflect the moisture availability in the deeper soil col-
umn (Dorigo et al., 2015). While these observations can be
extrapolated to derive estimates of root zone moisture, ei-
ther by using statistical relationships (Zhuang et al., 2020)
or by data assimilation into land surface models (Reichle et
al., 2017; Martens et al., 2017), such products rely on many
assumptions. Therefore, GHMs have been necessary to in-
terpret TWS variations in terms of contributions by snow,
soil moisture, groundwater, or surface water. However, sev-
eral studies suggested that current state-of-the-art GHMs
cannot reproduce key patterns of observed TWS variations
and show partly diverging TWS partitioning (Scanlon et al.,
2018; Schellekens et al., 2017; Zhang et al., 2017; Kraft et
al., 2021). This uncertainty of the available tools to interpret
TWS variations is clearly a major obstacle for diagnosing
and understanding global changes of the water cycle.

To improve model performance and reliability, GHMs are
traditionally calibrated against measured discharge time se-
ries at the outlet of catchments (Müller Schmied et al., 2021;
Telteu et al., 2021). However, discharge provides an inte-
grated response of an entire catchment with very limited in-
formation on the interplay of different processes and spatial
heterogeneities. In fact, the use of spatio-temporal data, for
example, from remote sensing, has been suggested for model
calibration (Su et al., 2020). While using spatio-temporal
vegetation data, for example, the normalized difference veg-
etation index (NDVI) seemed promising for this at the catch-
ment scale (Ruiz-Perez et al., 2017), many GHMs still have
a limited usage of such data in their modelling approach.
Some large-scale studies have shown clear improvements in
model performance when a larger number of observational
constraints are used to constrain the model parameters, espe-
cially when using TWS variations from GRACE (e.g. Lo et
al., 2010; Rakovec et al., 2016; Bai et al., 2018; Mostafaie

et al., 2018; Trautmann, 2018). Among them, Trautmann et
al. (2018) contributed insights into the drivers of TWS varia-
tions across spatial and temporal scales in northern high lat-
itudes, in particular with respect to contributions by snow
vs. liquid water storages. In this study, we follow a similar
framework of using multiple observational data streams to
constrain a simple hydrological model to understand the role
of varying vegetation characteristics for the partitioning of
TWS components at the global scale.

Among liquid water storages, especially the differentiation
between soil moisture and groundwater poses a challenge.
Reflecting on the determinants of rather shallow soil mois-
ture vs. deeper groundwater storage variations, it is apparent
that under most conditions, the soil moisture state itself is
the first-order control valve. In particular, it determines the
amount of water that is available for soil water uptake for
evapotranspiration but also for percolation into deeper soil
layers and consequently recharge into the groundwater stor-
age. The two key processes that shape soil moisture dynam-
ics, infiltration and evapotranspiration (ET), are strongly me-
diated by the presence and properties of vegetation (Wang
et al., 2018). For example, vegetation promotes infiltration
over surface runoff due to larger surface roughness, damp-
ened precipitation intensities, and more soil macropores due
to rooting and biological activity. In fact, such roles of veg-
etation in a global climate model were already envisioned
and evaluated almost 4 decades ago (Rind, 1984). In addi-
tion, vegetation alters soil properties like soil texture and or-
ganic matter content. Such soil properties together with root-
ing depth control the size of the soil moisture reservoir that
is available for ET and how plants respond to drought stress
conditions (Baldocchi et al., 2021; Yang et al., 2020). Fur-
thermore, deep roots may connect to the groundwater and
provide access to the deeper moisture storages and thus have
wider implications on the hydrological cycle. Rooting depth
is species-specific and, in addition, determined by the infil-
tration depth and groundwater table depth and thus has a
high spatial heterogeneity both across the globe and at the
local scale (Fan et al., 2017). The significance of interactions
between vegetation and soil moisture is at the heart of eco-
hydrology (Rodriguez-Iturbe et al., 2001) and has become
evident in many theoretical and experimental studies. Many
studies analysed the effects of water availability on vegeta-
tion functioning (Porporato et al., 2004; Reyer et al., 2013;
Wang et al., 2001; Yang et al., 2014) and the effect of chang-
ing vegetation cover on ecosystem water consumption (Du et
al., 2021). While large-scale hydrologic models usually ap-
ply simplified and static vegetation characteristics (Quevedo
et al., 2008; Weiss et al., 2012; Telteu et al., 2021), spatio-
temporal variations of vegetation pattern are vital for good
predictions of available water resources (Andersen et al.,
2010). On the ecosystem scale, Xu et al. (2016) showed the
advantage of accounting for different plant hydraulic traits
in an ecosystem model. And on a global scale, Weiss et al.
(2012), for instance, showed the positive influence on mod-

Hydrol. Earth Syst. Sci., 26, 1089–1109, 2022 https://doi.org/10.5194/hess-26-1089-2022



T. Trautmann et al.: The importance of vegetation in understanding terrestrial water storage variations 1091

elled evaporation when static vegetation characteristics are
replaced by monthly LAI (leaf area index) estimates in a cli-
mate model. However, how the representation of vegetation
affects global water storages and in particular the partition-
ing of TWS in large-scale hydrological models has received
surprisingly little attention so far.

Therefore, the objective of this study is to investigate
the effect of vegetation-dependent parameterizations of key
hydrological processes on TWS partitioning at the global
scale using a multi-criteria model data fusion approach. The
model, an expanded version of Trautmann et al. (2018), is a
simple conceptual four-pool water balance model. Model pa-
rameters are calibrated against TWS variations from GRACE
(Wiese et al., 2018), ET from FLUXCOM (Jung et al., 2019),
runoff from GRUN (Ghiggi et al., 2019), and ESA CCI soil
moisture (Dorigo et al., 2017). We contrast two experiments
which differ only with respect to how vegetation-related pa-
rameters are defined: (1) a baseline experiment with global
uniform parameters and (2) a vegetation experiment where
vegetation parameters vary in space and partly in time. In
contrast to the traditional approach of spatializing vegetation
parameters by plant functional type or land cover class, and
keeping this a priori parameterization fixed during model ap-
plication, we take advantage of continuous information on
few key properties that link vegetation and hydrological pro-
cesses: (1) spatially distributed and time-varying active veg-
etation cover that influences transpiration demand and inter-
ception storage, (2) the spatial pattern of soil water supply
for transpiration via roots, and (3) the spatially distributed
and time-varying influence of vegetation cover on infiltration
and runoff generation. Specifically, we are addressing the fol-
lowing questions:

1. Where, when, and by how much are global hydrological
simulations improved by spatially distributed and time-
varying vegetation parameters?

2. To what extent do the attribution and interpretation
of TWS variations for individual storage components
change when introducing spatial and temporal variation
of vegetation parameters?

2 Methods

In the first section, we give a general overview on the de-
sign of this study. Subsequently, the model and data streams
used as well as the calibration and evaluation approach are
explained in more detail.

2.1 Overview

To assess the potential effect of including continuous infor-
mation on vegetation, we compare two model variants that
are based on the same conceptual structure: (1) a base model
with static, globally uniform parameter values (B) and (2) a

model variant that includes spatially (and temporally) vary-
ing vegetation characteristics by defining vegetation param-
eters as a function of global data products (VEG). We addi-
tionally performed an experiment that discretizes vegetation
parameters for distinct classes of plant functional types, simi-
larly to some other GHMs. This PFT experiment is explained
and shown in Sect. S9 in the Supplement.

Forced with global climate data, the parameters of each
variant are calibrated for a spatial subset against multiple
Earth-observation-based data. In the B experiment, the pa-
rameters themselves are calibrated, and globally constant pa-
rameter values are obtained. While the optimized parameters
implicitly account for the effect of the nearly ubiquitous pres-
ence of vegetation, they cannot represent effects of spatially
and/or temporally varying vegetation properties. In the VEG
experiment, we describe vegetation-related parameters as a
linear function of spatio-temporal varying vegetation vari-
ables; i.e. we calibrate scalars representing the slopes of these
functions. By calibrating the slope, we include the continu-
ous pattern from the data but scale it to best fit the observa-
tional constraints. Hence, vegetation-related parameters vary
explicitly spatially and partly temporally.

Once the parameters are calibrated, the simulations for the
whole domain (global) are used to evaluate the model per-
formance at different spatial and temporal scales. To finally
delineate the effect of including varying vegetation character-
istics on the composition of simulated TWS across temporal
(mean seasonal, inter-annual) and spatial (local grid scale,
spatially aggregated) scales, we use the impact index as de-
fined by Getirana et al. (2017).

The model is run on daily time steps at a 1◦× 1◦ lati-
tude/longitude resolution, focusing on vegetated regions un-
der primarily natural conditions. To avoid biases of the cal-
ibrated model parameters due to processes that are not rep-
resented in the model structure, we exclude grid cells with
> 10 % permanent snow and ice cover, > 50 % water frac-
tion, > 20 % bare land surface, and > 10 % artificial land
cover fraction. These grid cells are masked out using the Glo-
beLand30 fractional land-cover map v2 (Chen et al., 2014).
Additionally, we exclude regions with a large human influ-
ence, mainly related to groundwater extraction, on the trend
in GRACE TWS variations (Rodell et al., 2018) (see Fig. 2).
The final study area comprises 74 % of the global land area.
All other datasets used in this study were resampled to the
1◦× 1◦ grid and subset to the same grid cells.

Due to the temporal coverage of forcing data and obser-
vational constraints, we calibrate the model for the period
January 2002–December 2014, while the global-scale model
runs and analyses are performed for the period March 2000–
December 2014. Prior to each model run, all states are initial-
ized by a 8-year spin-up period. The forcing for the spin-up
period is assembled by randomly rearranging complete years
of the forcing data.
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2.2 Model description

The conceptual hydrological model is forced by daily pre-
cipitation, air temperature, and net radiation (Table 1). It in-
cludes a snow component (see Trautmann et al., 2018), a
two-layer soil water storage (wSoil), a deep soil water stor-
age (wDeep), and a delayed, slow water storage (wSlow).
The schematic structure of the model is shown in Fig. 1, and
calibration parameters are explained in Table 2.

Depending on air temperature (Tair), precipitation (Precip)
is partitioned into snowfall (Snow), that accumulates in the
snow storage (wSnow), and rainfall (Rain), that is partly re-
tained in an interception storage. Interception throughfall to-
gether with snowmelt is partitioned into infiltration and in-
filtration excess depending on the ratio of actual soil mois-
ture and maximum soil water capacity following Bergström
(1991):

Iexc = Iin

[ ∑2
l=1wSoil(l)∑2

l=1wSoilmax(l)

]pberg

, (1)

where Iexc is the infiltration excess, IIn is the incoming water
from throughfall and snowmelt, wSoil(l) is the soil moisture
and wSoilmax(l) the maximum soil water capacity of each soil
layer l, and pberg is a calibration parameter. While pberg < 1
allocates a small fraction of the incoming water to the soil
water pool even if it is nearly empty, pberg > 1 allows a large
fraction of incoming water to infiltrate into the soil when soil
saturation is already high, and pberg = 1 describes a linear
relationship between soil water saturation and the amount of
incoming water that infiltrates.

A fraction of the infiltration excess (defined by the global
calibration parameter rfSlow) then replenishes a delayed wa-
ter storage (wSlow) that acts as a linear reservoir and gen-
erates slow runoff (Qslow). The remaining infiltration excess
represents fast direct runoff (Qfast). Qfast and Qslow together
represent total runoffQ that flows out of the system, i.e. grid
cell.

Infiltrated water is distributed among two soil layers fol-
lowing a top-to-bottom approach, where the maximum ca-
pacity of the first soil layer is prescribed as 4 mm, in order
to match the tentative depth of satellite soil moisture obser-
vations, while the storage capacity of the second soil layer is
a calibration parameter (wSoilmax(2)). The second soil layer
is connected with a deeper water storage (wDeep). The size
of wDeep is defined as a multiple of wSoilmax(2) by the cal-
ibrated scaling parameter sdeep. Depending on the moisture
gradient between the two storages, water either percolates
from the second soil layer to the deeper soil, or it rises from
the deeper storage into the second soil layer, by scaling to
a maximum flux rate (defined by the global calibration pa-
rameter, fmax). The deeper storage therefore acts as a storage
buffer that linearly discharges further to the delayed water
storage (wSlow), which also receives part of the infiltration
excess.

Evapotranspiration (ET) is represented by a demand–
supply approach that is driven by a potential ET demand fol-
lowing Priestley–Taylor and is limited by the available soil
moisture supply. ET is partitioned into interception evapo-
ration (EInt), bare soil evaporation from the first soil layer
(ESoil), and plant transpiration from the two soil layers
(ETransp). Interception and plant transpiration are only calcu-
lated for the vegetated fraction of each grid cell, while bare
soil evaporation is limited to the non-vegetated fraction of
each grid cell.

While water in wSoil is directly available for ET, wDeep
is only indirectly accessible by capillary rise, and the water
stored in wSlow is not plant-accessible. Total water storage
is the sum of all water storages, including wSnow, wSoil,
wDeep, and wSlow. Although groundwater and surface water
storages are not implemented explicitly, they are effectively
included in wDeep and wSlow, especially after calibration of
associated storage parameters against GRACE TWS.

2.3 Vegetation characteristics

We include three aspects of vegetation influence on hydro-
logical processes: (1) the specific transpiration demand by
vegetation, (2) the soil water supply for transpiration via
roots, and (3) the influence of vegetation on infiltration and
runoff generation. These three aspects are controlled by three
corresponding model parameters, namely the grid cell’s veg-
etation fraction (pveg), the maximum plant-available soil wa-
ter (wSoilmax(2)), and the runoff generation–infiltration co-
efficient (pberg). In the VEG experiment, scalar parameters
are used as linear multipliers of observation-based spatio-
temporal patterns to harvest the information of spatial and
temporal patterns from the continuous data products.

2.3.1 Vegetation fraction

The parameter pveg reflects the vegetation cover of each grid
cell that influences the grid’s interception storage, transpira-
tion demand, and partitioning of evapotranspiration compo-
nents. To describe its spatial and seasonal variations, we in-
clude the mean seasonal cycle (MSC) of the Enhanced Veg-
etation Index (EVI). Therefore, pveg at each time step is de-
fined as a linear function of EVI, where sEVI is the calibrated
scaling parameter:

pveg = sEVI ·EVI, (2)

with 0≤ pveg ≤ 1.
EVI data are calculated via the MODIS standard for-

mula (Didan and Barreto-Munoz, 2019) using the daily
BRDF, nadir BRDF-adjusted reflectance values MCD43C1
v6 (Schaaf and Wang, 2015) for the period January 2001–
December 2014:

EVI= 2.5
NIR–red

NIR+ 6 · red− 7.5 · blue+ 1
. (3)
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Table 1. Data used for model forcing, for description of vegetation characteristics, and for model calibration.

Product Space Time Data Reference
uncertainty

Forcing

Precip GPCP 1dd v1.2 global daily Huffmann et al. (2000)
Tair CRUNCEP v6 global daily Viovy et al. (2018)
Rn CERES Ed4 A global daily Loeb et al. (2018);

NASA/LARC/SD/ASDC (2017)

Vegetation characteristics

EVI based on MCD43C1 v6 (MODIS daily BRDF),
calculated via MODIS standard EVI formula

daily
climatology

Schaaf and Wang (2015)

RD1 maximum rooting depth static Fan et al. (2017)
RD2 effective rooting depth static Yang et al. (2016)
RD3 maximum soil water storage capacity static Wang-Erlandsson et al. (2016)
RD4 maximum plant-available water capacity static Tian et al. (2019)

Calibration

TWS GRACE mascon RL06 global monthly with product Wiese et al. (2018)
wSoil ESA CCI SM v4.04 (combined product) ∼ global daily with product Dorigo et al. (2017)
ET FLUXCOM RS ensemble global daily with product Jung et al. (2019)
Q GRUN v1 global monthly ∼ 50 % Ghiggi et al. (2019)

Since the daily EVI time series are not continuous due to
noise and missing values during cloudy conditions, snow, and
darkness, the data were preprocessed to be used in the model.
For each grid cell, we calculate the median seasonal cycle,
fill long gaps during wintertime with a low value, interpolate
missing values, and smooth the time series. Therefore, win-
ter is defined as days with negative net radiation, and gaps
are considered long when 10 consecutive days of EVI data
are missing. The wintertime gaps are filled with the 5th per-
centile of available wintertime data. The remaining missing
values are linearly interpolated, and finally the resulting sea-
sonal cycle is smoothed by a local regression with weighted
linear least squares and a first-order polynomial model.

2.3.2 Plant-available soil water

In order to determine the soil water supply for transpiration
as a function of vegetation, we define the maximum soil wa-
ter capacity of the second soil layer wSoilmax(2) based on
rooting depth and soil water storage capacity data. We in-
clude the maximum rooting depth by Fan et al. (2017) (RD1),
effective rooting depth by Yang et al. (2016) (RD2), maxi-
mum soil water capacity by Wang-Erlandsson et al. (2016)
(RD3), and maximum plant-accessible water capacity by
Tian et al. (2019) (RD4). Due to our definition of wSoilmax(2)
as maximum plant-accessible water, all four data are, theoret-
ically, suitable when focusing on spatial patterns. Practically,
though, they vary in their definition, underlying approaches,
spatial coverage and derived spatial pattern. The RD1 and
RD2 are based on principles of vegetation optimality and
plant adaptation, and RD3 and RD4 are based on a water

balance perspective but using Earth observations and/or data
assimilation techniques. Therefore, we employ an approach
in which we obtain a linear combination of the four products
where the weights of each product are calibrated during the
multi-criteria parameter optimization:

wSoilmax(2) =
∑4

d=1
sRD(d) ·RD(d), (4)

where RD(d) is the data from each data stream d , and sRD(d)
denotes the corresponding scaling factors that are calibrated.
As RD4 from Tian et al. (2019) is only available for arid to
moderately humid vegetated land area and excludes tropical
forests (Tian et al., 2019), resulting gaps in the study area
are filled by the calibration parameter wSoilmax(RD4) prior to
scaling RD4.

2.3.3 Runoff/infiltration coefficient

Finally, vegetation structure also affects the infiltration and
runoff generation process as it alters the surface and sub-
surface characteristics. To reflect this influence, we describe
the infiltration–runoff parameter pberg (Eq. 1) as a linear
function of the vegetation fraction pveg:

pberg = sberg ·pveg, (5)

where sberg is the calibrated scaling parameter.

2.4 Model calibration

In order to keep computational costs low and to avoid overfit-
ting of model parameters, we perform model calibration for
a subset of 904 (8 %) grid cells. Since model parameters are
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Table 2. Calibrated model parameters and their description, range, and calibrated values for experiments B and VEG. Text in italics highlights
calibrated values at the predefined parameter bounds.

Parameter Description Units Default Range Calibrated values ±
value uncertainty (%)

B VEG

Vegetation fraction

pveg active vegetation fraction of the grid cell 0.5 0.3–1 0.37± 0.05
sEVI scaling parameter to derive active vegetation frac-

tion from EVI data
1 0–5 3.89± 0.05

Evapotranspiration

pInt interception storage mm 1 0–10 1.0± 0.08 0.6± 0.02
kSoil fraction of first soil layer available for evaporation 0.5 0.1–0.95 0.1± 0.01 0.4± 0.08
αveg α parameter of the Priestley–Taylor equation 1 0.2–3 2.25± 0.15 0.92± 0.00
kTransp fraction of soil water available for transpiration 0.02 0–1 0.12± 0.32 0.48± 1.76

Infiltration–runoff

pberg runoff–infiltration coefficient 1.1 0.1–5 1.32± 0.02
sberg scaling parameter to derive the runoff–infiltration

coefficient from pveg

3 0.1–10 3.08± 0.02

Soil moisture

wSoilmax(2) maximum (available) water capacity of the second
soil layer

mm 300 10–1000 752± 0.02

sRD(1) weight to include maximum rooting depth by Fan
et al. (2017)

0.05 0–5 0.01± 0.00

sRD(2) weight to include effective rooting depth by Yang
et al. (2016)

0.05 0–5 0.00± 0.00

sRD(3) weight to include maximum soil water storage ca-
pacity by Wang-Erlandsson et al. (2016)

0.05 0–5 0.15± 0.06

sRD(4) weight to include plant-available water capacity
by Tian et al. (2019)

0.05 0–5 0.15± 0.07

wSoilmax(RD4) maximum (available) water capacity of the second
soil layer for grids with missing estimates in Tian
et al. (2019)

mm 50 0–1000 145± 0.08

Deep soil

sdeep scaling parameter to derive the maximum deep
soil storage from wSoilmax(2)

0.5 0–50 9.1± 461317 5.6± 0.21

fmax maximum flux rate between deep soil and the sec-
ond soil layer

mmd−1 10 0–20 1.5± 0.00 5.1± 0.01

dDeep depletion coefficient from deep soil to delayed wa-
ter storage

0.5 0–1 1.0± 5.61 0.01± 0.00

Delayed water storage

rfSlow recharge fraction of infiltration excess into delayed
water storage

0.5 0–1 0.78± 1.72 0.68± 0.01

dSlow depletion coefficient from delayed water storage
to slow runoff

0.01 0–1 1.0± 2329 0.02± 0.03
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Figure 1. Schematic of the underlying model structure, with blue font denoting forcing data: Precip is precipitation, and Tair is air tempera-
ture. Boxes represent states as follows: Eint is interception storage, wSnow snow water storage, wSoil(1) upper soil layer, wSoil(2) second
soil layer, wDeep deep water storage, and wSlow slowly varying water storage. Arrows denote fluxes as follows: Rain is rainfall, Snow
snowfall, ESub sublimation, Qmelt snowmelt, Iin incoming water from throughfall and snowmelt, Iexc infiltration excess, Qfast fast direct
runoff, Qslow slow runoff, Q total runoff, EInt evaporation from interception storage, ESoil soil evaporation, ETransp plant transpiration, ET
total evapotranspiration, fDeepSoil the flux between wSoil and wDeep (percolation resp. capillary rise), and fDeepSlow the flux from wDeep
to wSlow. Bold print highlights model variables that are constrained in the calibration. Green highlights show where vegetation influence
is included explicitly: [1] the parameter pveg to define each grid cell’s vegetation fraction, [2] the parameter wSoilmax(2) that defines the
maximum plant-available soil water, and [3] the parameter pberg to define the infiltration and runoff generation partitioning.

expected to vary much more in space than in time (between
years), and due to the rather short time period of available
constraints, we build two subsets of data for calibration and
validation data in the spatial domain rather than in time (spa-
tial split-sample approach). Calibration grid cells are cho-
sen by a stratified random sampling method that maintains
the overall proportion of different climate and hydrological
regimes defined by Köppen–Geiger climate regions (Kottek
et al., 2006).

Since this study focuses on the impact of vegetation, and
in order to keep the number of calibration parameters low,
we do not optimize snow-related parameters and use the op-
timized snow parameters from Trautmann et al. (2018). This
results in a total of 11 calibration parameters for the B model
and a total of 16 parameters for the VEG model (Table 2).

In order to constrain different aspects of the water cy-
cle, we use a multi-criteria calibration approach similar to
Trautmann et al. (2018). The parameters of each model vari-
ant are simultaneously optimized against multiple observa-
tional constraints, including monthly TWS anomalies from
GRACE (Wiese et al., 2018; Watkins et al,. 2015), ESA CCI

soil moisture (Dorigo et al., 2017), evapotranspiration esti-
mates from the FLUXCOM-RS ensemble (Jung et al., 2019),
and gridded runoff from GRUN (Ghiggi et al., 2019) (Ta-
ble 1).

When using observational datasets from several sources,
it is essential to consider possible inconsistencies between
them that arise from their respective characteristics and un-
certainties (Zeng et al., 2015, 2019). Therefore, we derived
the monthly water (im)balance of the observations follow-
ing a similar approach to Rodell et al. (2015) (see Sect. S10
in the Supplement). Although we did not find major system-
atic inconsistencies at the global scale, we take into account
each dataset’s characteristics and uncertainties in model cali-
bration via the cost term at the grid cell level. To this end, we
only use grid cells and time steps with available observations,
which vary for the different data streams. To retrieve one cost
term per observational constraint, we concatenate the time
series of all grid cells into a single vector for which costs are
calculated. The individual cost terms are considered to have
the full weight of 1, resulting in a total cost value (costtotal) as
the sum of individual costs. The total cost is then minimized
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during the optimization process using a global search algo-
rithm, the covariance matrix evolutionary strategy (CMAES)
algorithm (Hansen and Kern, 2004).

costtotal =
∑n

ds=1
cost(ds), (6)

where cost(ds) is the cost for each data stream ds. For TWS,
ET, and Q, the cost terms are based on the weighted Nash–
Sutcliffe efficiency (Nash and Sutcliffe, 1970), which explic-
itly considers the observational uncertainty σ :

cost=

∑n
i=1

(xobs,i−xmod,i )
2

σi∑n
i=1

(xobs,i−xobs)2

σi

, (7)

where xmod,i is the modelled variable, xobs,i is the observed
variable, xobs is the average of xobs, and σi is the uncertainty
of xobs of each data point i. The cost criterion reflects the
overall fit in terms of variances and biases, with an optimal
value of 0 and a range from 0–∞.

Owing to the larger uncertainties of Qobs on inter-annual
scales (Ghiggi et al., 2019), we only use the monthly mean
seasonal cycle, while for the other variables, full monthly
time series were used.

To define σ of ETobs, we utilize the median absolute devi-
ation of the FLUXCOM-RS ensemble. For Qobs, we assume
an average uncertainty of 50 % based on values reported in
Ghiggi et al. (2019). For TWSobs, the spatially and tem-
porally varying uncertainty information provided with the
GRACE data is used. In addition, the largest monthly val-
ues of TWSobs (<−500 and > 500 mm) were masked out to
avoid the effect of outliers on optimization results. Note that
these outliers represent less than 0.5 % of the data and are
mainly located in coastal arctic regions and are, thus, poten-
tially related to land and sea ice and/or leakage from neigh-
bouring grid cells over ocean. Before calculating costTWS,
the monthly means of observed and modelled TWS are re-
spectively removed to calculate anomalies over a common
time period 1 January 2002–31 December 2012.

Since remote-sensing-based soil moisture only captures
the top few centimetres of soil depth, usually about 5 cm,
costwSoil is calculated based on the modelled soil moisture
in the first soil layer. As the combined ESA CCI soil mois-
ture imposes absolute values and ranges from GLDAS Noah
(Dorigo et al., 2015), we use Pearson’s correlation coefficient
as costwSoil and focus on soil moisture dynamics that is most
reflective of the original remote sensing observation. Only
estimates from 1 January 2007 onwards are considered, as
data before that period are sparse. Further, costwSoil is cal-
culated from the monthly averaged values to circumvent the
large noise in the daily data. Thereby, only months with ob-
servations available for at least 10 d are considered. Due to
snow cover, the temporal coverage of the product decreases
with increasing latitude. Therefore, to prevent a bias towards
northern summer months, we also exclude grid cells that
lack more than 40 % of monthly estimates. After filtering for

missing data, monthly surface soil moisture time series for
56 % of the total study area and 51 % of the calibration grid
cells are available.

2.5 Model evaluation and analysis

For model evaluation, we contrast the optimized parameter
values and their uncertainties. The relative uncertainty in the
optimized parameter vector is estimated by quantifying each
parameter’s standard error according to Omlin and Reichert
(1999) and Draper and Smith (1981), similar to Trautmann
et al. (2018).

For each experiment, the optimized parameter sets are
used to produce model simulations for the global study
area. Their performances are then evaluated using Pearson’s
correlation coefficient and the uncertainty-weighted Nash–
Sutcliffe efficiency (wNSE) for TWS, ET, and Q observa-
tions (Eq. 8). The performances are evaluated on local (for
each grid cell individually), regional, and global scales.

wNSE= 1−

∑n
i=1

(xobs,i−xmod,i )
2

σi∑n
i=1

(xobs,i−xobs)2

σi

(8)

For the regional analysis, we derive five hydroclimatic re-
gions by performing a cluster analysis using the spatio-
temporal characteristics of TWS, ET, and Q observations,
as well as each grid cell’s latitude. By that, each zone is char-
acterized by similar seasonal dynamics and amplitudes of
the water cycle variables, allowing for a better comparison
of regional averages than, for example, the commonly used
Köppen–Geiger regions which lump regions with very differ-
ent amplitudes and phasing of the water cycle variables. The
resulting regions are shown in Fig. 2. Region 1 comprises
the snow-dominated northern latitudes (cold), while region
2 includes the moderate mid-latitudes (temperate). Very hu-
mid and mostly tropical regions are combined in region 3
(humid). Region 4 is characterized by a distinct rain season
(sub-humid), while region 5 includes semi-arid areas in low
latitudes (semi-arid). Although we hereafter use these hydro-
climatic cluster regions for model evaluation, the same analy-
sis for Köppen–Geiger climate zones is presented in Fig. S11
in the Supplement to facilitate comparison with other studies.

Finally, we assess the contributions of the four water stor-
age components, wSnow, wSoil, wDeep and wSlow, to sea-
sonal and inter-annual variations of the total water storage
across spatial scales, i.e. the local grid cell, the regional and
the global average. To do so, we apply the impact index I fol-
lowing Getirana et al. (2017). The metric describes the con-
tribution C of each water storage s as the sum of its absolute
monthly anomaly:

Cs =
∑nt

t=1
|st − s|, (9)

where s is the average storage of the time steps t–nt, with
nt= 12 for mean seasonal and nt= 178 for inter-annual dy-
namics.

Hydrol. Earth Syst. Sci., 26, 1089–1109, 2022 https://doi.org/10.5194/hess-26-1089-2022



T. Trautmann et al.: The importance of vegetation in understanding terrestrial water storage variations 1097

Figure 2. Hydroclimatic cluster regions of the study area (R1 – cold, R2 – temperate, R3 – humid, R4 – sub-humid, R5 – semi-arid) and grid
cells that have been excluded from this study (w is the water fraction > 50 %, s the permanent snow and ice cover > 10 %, a the artificial
land cover fraction > 10 %, b the bare land surface > 20 %, and hTWS the direct human impact on the trend in GRACE TWS).

The impact index Is is then defined as the ratio of each
water storage component contribution Cs to the total contri-
butions from all storage components:

Is =
Cs∑n
s=1Cs

. (10)

The value of Is range from 0–1, with 0 indicating no impact
and 1 indicating full control of all variations.

3 Results

In the following section we first evaluate both calibrated
model variants by comparing their calibrated model parame-
ters and by comparing modelled TWS, ET andQ against ob-
servations at global, regional and local scale. Subsequently,
we show the contribution of individual storage components
to TWS variability for B and VEG on different spatial and
temporal scales.

3.1 Model evaluation

3.1.1 Calibrated parameters

Table 2 summarizes the calibrated parameters and their un-
certainties for the B and VEG model experiments. Overall,
including varying vegetation characteristics leads to more
plausible parameter values after calibration, while in B sev-
eral parameters hit their prescribed bounds. Furthermore,
very high parameter uncertainties present in B, that indicate
poorly constrained values, could be strongly reduced in VEG
(Fig. S3 in the Supplement).

For B, pveg suggests that on average only 37 % of each grid
cell is covered with vegetation globally. This low vegetation
fraction is counteracted by a high αveg value (2.25), which
is much higher than commonly used α coefficients of the
Priestley–Taylor equation of around 1.2 (Lu et al., 2005), to
yield good performance of modelled ET (Fig. 3). At the same
time, a very low fraction of the first soil layer is available
for soil evaporation, as kSoil hits its lower bound of 10 %. In
addition, the parameters controlling the drainage from deep
and slow water storage (dDeep, dSlow) are high, resulting in
a fast drainage and effectively discarding any influence of
these water pools.

For VEG, the median vegetation fraction is 73 %, leading
to a more realistic fraction of soil moisture being available for
evaporation (kSoil = 0.4), which is similar to the modal value
of 0.33 reported by McColl et al. (2017), and a more real-
istic αveg value of 0.92, that effectively leads to the median
Priestley–Taylor α coefficient of 0.81 (Fig. S2 in the Supple-
ment). In comparison to B, the resulting wSoilmax(2) of VEG
with a median value of 52 mm is considerably lower. Its spa-
tial pattern mainly originates from RD3 (Wang-Erlandsson
et al., 2016) and RD4 (Tian et al., 2019) data, while RD1
(Fan et al., 2017) contributes only little, and RD2 (Yang et
al., 2016) data are negligible. The resulting spatial patterns
of the maximum soil water capacity from the combination
of all datasets (Sect. S2) are still consistent with those from
other estimates and patterns of rooting depth (e.g. Schenk
and Jackson, 2005). We note here that the soil water capac-
ity data are favoured over the rooting depth data. This agrees
with Küçük et al. (2022), who suggest that estimating plant
storage capacity based on Earth observation data may be

https://doi.org/10.5194/hess-26-1089-2022 Hydrol. Earth Syst. Sci., 26, 1089–1109, 2022



1098 T. Trautmann et al.: The importance of vegetation in understanding terrestrial water storage variations

Figure 3. Global and regional mean seasonal cycles of total water storage (TWS), evapotranspiration (ET), and runoff (Q) for the B and
VEG experiments compared to the observational constraints by GRACE (TWS), FLUXCOM (ET), and GRUN (Q).

more suitable than those using optimality principles. Related
to the limited size of wSoil, calibration enforces a deeper and
a slow water storage with reasonable depletion parameters
(dDeep, dSlow) in order to match observed TWS variations.
By that, the considerable low wSoilmax(2) parameter is coun-
teracted by refilling wDeep, which indirectly provides plant-
accessible water via capillary rise. Likewise, kTransp, which
describes the fraction of the second soil layer that is avail-
able for transpiration, is relatively high, as a larger fraction
of the small soil water storage needs to transpire to match
observed ET. Hence, calibrated kTransp is higher than empiri-
cal values of ET decay between 0.02–0.08 that are based on
assuming one soil water pool (Teuling et al., 2006).

3.1.2 Model performance

Table 3 contrasts the overall model performance metrics for
TWS, ET, and Q for the two experiments for the calibration
subset of 8 % grid cells (opti) and the entire study domain
(global). The metrics are calculated in the same way as dur-
ing optimization, i.e. by concatenation of the time series of
all grid cells into a single vector for which statistics are cal-
culated. In general, the differences between opti and global,
as well as between B and VEG, are marginal. For VEG, re-
sults mainly improve for TWS and slightly for ET. Although
the models were only calibrated for the spatial subset in opti,
equally good or even better performances are obtained when
the calibrated parameters are applied over the entire study
domain. This suggests that the calibration subset was repre-

sentative of the entire study domain, and the calibration did
not overfit model parameters.

Among the variables, the best model performance in terms
of wNSE and corr is obtained for ET. While the correlation
between observed and simulated TWS is high, the overall
wNSE is relatively low, which mainly results from higher
uncertainties in TWSobs and a larger variance error, likely
originating from grid cells with low observed TWS variance.

Similar to the global metrics, the average mean seasonal
cycle of different regions shows an equally good or slightly
better performance of VEG compared to B regarding all vari-
ables (Fig. 3). At regional scale (Fig. 4), the general pattern of
grid-wise Pearson correlation is similar for both experiments.
However, the difference between the correlation coefficients
highlights an improvement using VEG for a large proportion
of grid cells and regarding all TWS, ET, andQ (indicated by
brown colour).

For TWS, the amplitude at the global scale is well cap-
tured yet with a phase difference of∼ 1 month in both model
variants, where both model variants show an earlier timing
of peak storage (Fig. 3). The phase shift is also apparent in
the temperate and cold regions, while the seasonal dynamics
in sub-humid and humid regions is captured well, yet with
an underestimation of the amplitude. Though differences are
small, VEG obtains higher correlation, except for the semi-
arid region. At local scale, correlation with GRACE TWS
is lowest in rather semi-arid grid cells (Fig. 4), where TWS
variation is low. However, including spatial patterns of vege-
tation improves TWS mainly in these (semi-)arid regions.
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Table 3. Overall model performance metrics in terms of weighted Nash–Sutcliffe efficiency (wNSE) and Pearson’s correlation coefficient
(corr) of total water storage (TWS), evapotranspiration (ET), and runoff (Q) in B and VEG experiments for the calibration subset (opti) and
the entire study domain (global).

TWS ET Q

wNSE corr wNSE corr wNSE (MSC) corr (MSC)

opti global opti global opti global opti global opti global opti global

B 0.33 0.33 0.69 0.69 0.97 0.97 0.90 0.90 0.63 0.63 0.86 0.86
VEG 0.38 0.41 0.71 0.72 0.98 0.98 0.90 0.91 0.60 0.57 0.85 0.85

Figure 4. Grid-wise Pearson’s correlation coefficient for total water storage (TWS), evapotranspiration (ET), and runoff (Q) between (1)
observations and B and (2) observations and VEG, as well as differences between (1) and (2) (brown colour, i.e. negative values, indicates
higher correlations for VEG, while purple colour, i.e. positive values, indicates better correlation values for B).

Regarding ET, both experiments reproduce seasonal dy-
namics in all regions quite well yet tend to underestimate ET
in the semi-arid, sub-humid, and humid regions, especially in
months with low ET (Fig. 3). At grid scale (Fig. 4), correla-
tion of ET is very high, except for tropical regions due to low
seasonality. Compared to B, VEG improves correlation here,
as well as in some (semi-)arid regions such as the Sahel zone
and the Western United States.

In contrast to ET, performance for Q is generally the best
in regions with poorer model performance in terms of ET
(semi-arid, sub-humid and humid regions) (Fig. 3), suggest-
ing a trade-off between the two different observation data
streams, i.e. the inability of matching both observed fluxes
simultaneously. Nonetheless, including varying vegetation

characteristics improves peak runoff in all regions and re-
duces the underestimation ofQ especially in the cold region.
While the improvement of Q simulations in northern lati-
tudes gets even more obvious at grid scale, B shows higher
correlation with observations in Africa and the Mediter-
ranean (Fig. 4).

3.2 Importance of varying vegetation properties to
TWS variability

In this section, we present the influences of vegetation on
TWS partitioning into snow (wSnow), plant-accessible soil
moisture (wSoil), not directly plant-accessible deep soil wa-
ter (wDeep), and non-plant-accessible slow water storages
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(wSlow) at different spatial and temporal scales. We first fo-
cus on mean seasonal dynamics and continue with the contri-
bution of each component to inter-annual TWS variability at
local grid-cell and regional scales, respectively, before pre-
senting the analysis at the global scale.

3.2.1 Local and regional scale

Figure 5 shows the contribution of individual water storages
to mean seasonal TWS variations at local grid scale. For both
B and VEG, wSnow has the highest impact in northern lat-
itudes and high altitudes where snowfall occurs regularly.
Locally, the contribution of liquid water increases gradually
with decreasing latitude and, finally, causes all TWS vari-
ations south of ∼ 45◦ N. Within the liquid water storages, B
attributes nearly all variations to directly plant-accessible soil
moisture wSoil, with an average of 76 % over all grid cells.
While showing a similar pattern of increasing contribution
towards lower latitudes, the VEG experiment only has an av-
erage of 17 % contribution from wSoil. Instead, most varia-
tions (40 %) are due to variability in the deeper soil storage,
wDeep. In addition, the average impact of slow water stor-
ages wSlow (20 %) is comparable to that of wSnow (22 %)
in VEG, though it is spatially much more limited to tropical
regions, such as the Amazon basin.

Mean seasonal dynamics averaged globally and for differ-
ent regions are shown in Fig. 6. As indicated by the grid-
scale results, wSnow dominates TWS variations in the north-
ern cold region (73 % in B, resp. 69 % in VEG) and plays a
considerable role in the temperate region (28 % resp. 26 %).
For the other regions, B attributes nearly all remaining vari-
ability to wSoil, while in VEG wDeep has the highest impact
index (59 % in semi-arid, 50 % in sub-humid, and 43 % in
humid).

At the inter-annual scales, the impact of wSnow decreases
to 10 % (B) and 12 % (VEG) locally (Fig. 7). For most of
the grid cells, all inter-annual TWS variations are caused by
wSoil in B. In VEG, however, the deeper soil layer wDeep
is again the most important storage, with an average impact
index of 53 % for all grid cells. The contribution of wSoil
and wSlow remains more or less the same as that for seasonal
TWS variations.

Average contributions for different regions and globally
(Sect. S4 in the Supplement) show again that, in B, nearly
all inter-annual TWS variability is caused by wSoil (87 %–
99 %). Only in the cold region does the impact of wSoil de-
crease to 69 % in favour of wSnow (31 %). Similar to the
local scale, in VEG, wDeep explains > 50 % of TWS vari-
ability in most regions. Only in the cold region is the con-
tribution of wDeep similar to wSnow (39 % vs. 38 %). The
contribution of wSoil ranges from 9 % (cold) to 19 % (semi-
arid), while the impact of wSlow is between 16 %–18 % in
most regions and increases in sub-humid (24 %) and humid
(34 %) regions.

3.2.2 Global scale

Finally, Fig. 8 contrasts the impact of water storage com-
ponents to the total storage, in B and VEG, at the global
scale. As with the local and regional scales, including vary-
ing vegetation characteristics differentiates the composition
of global TWS variations drastically. In both experiments,
wSnow clearly dominates the spatially aggregated mean sea-
sonal cycle with an impact index of 71 % (B) and 61 %
(VEG). These contributions are considerably higher than the
average local impact index over all grid cells (B 24 %, VEG
22 %; Fig. 5). As already seen at local scale, liquid water stor-
ages dominate the inter-annual TWS variability, whereby B
and VEG differ in the attribution to different components of
the liquid water storage. In B, all variations other than wS-
now originate from wSoil, but wDeep dominates in VEG.
Especially at inter-annual scales, wDeep accounts for half of
all TWS variations. In contrast to B, in VEG, wSoil only has
a minor impact of 7 % at seasonal and 13 % at inter-annual
scale. Instead, wSlow has a moderate contribution of 11 %
(mean seasonal) and 17 % (inter-annual). In contrast to the
mean seasonal dynamics in which the dominating storages
are different at local and global scales, the inter-annual dy-
namics are consistent across scales, with the same storage
component dominating at both local and global scale (Figs. 5,
7, and 8).

4 Discussion

In order to address the two main research questions of this
study, the following section discusses the above-shown dif-
ferences between B and VEG, first regarding model per-
formance and finally regarding the modelled partitioning of
TWS.

4.1 Model performance

Both experiments show good performance against the obser-
vational constraints, and the differences between B and VEG
are relatively small at the global scale. However, there are
systematic improvements for VEG at the regional and local
scale, and calibrated parameter values for VEG are more re-
alistic and better constrained. This suggests a more realistic
representation of fluxes and states in VEG overall. Remain-
ing discrepancies compared to observations can be associ-
ated with shortcomings and uncertainties in the observational
data as well as to the processes that are not represented in the
rather simple model structure.

The differences in the seasonal phase of global TWS in
both model experiments mainly originate from the temperate
and cold regions, and such model simulation differences have
been reported previously (Döll et al., 2014; Schellekens et al.,
2017; Trautmann et al., 2018). One of the potential reasons
is the temporary storage of meltwater during spring in rivers
and other surface water bodies, which occurs contiguously
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Figure 5. Global distribution of the impact index I for the contribution of simulated snow (wSnow), soil (wSoil), deep water storage (wDeep),
and delayed water storage (wSlow) to the mean seasonal cycle of total water storage, for B and VEG.

Figure 6. Global and regional average mean seasonal cycles of simulated total water storage and its components for B and VEG, including
the regional impact index I for each storage.

over large areas in mid-latitudes to high latitudes (Döll et al.,
2014; Schellekens et al., 2017; Schmidt et al., 2008; Kim et
al., 2009) and which delays the storage decay. In this context,
lateral water transport may also additionally affect the TWS
variations in downstream grid cells. Yet, such processes and
conditions are neither represented in B nor VEG.

Weaker performance of TWS in (semi-) arid regions is
likely mainly due to low observed TWS variations and a
low signal-to-noise ratio (Scanlon et al., 2016). Hence, less
weight is also given to those grid cells in the cost component
during calibration due to their small variations. In addition,
alteration by human activities like groundwater withdrawal,
dams, and irrigation to overcome the natural water short-
age in such regions as Northeast China and the American
(Mid)West can be regionally large in relative terms. While
we aimed to exclude grid cells with large human impact a pri-
ori, we cannot completely exclude the influence of the afore-
mentioned anthropogenic processes that are not explicitly

represented in our model experiments. It should, however, be
noted that the observational EVI data used in the VEG exper-
iment do have an imprint of, for example, irrigated agricul-
ture, as the measured surface reflectance includes the higher
vegetation activity due to irrigation. The better representation
of ET in semi-arid regions due to the EVI constraint con-
tributes to the improved simulation of TWS variations in the
VEG experiment.

While overall ET performance is good, tropical regions
show low correlation. These areas are associated with higher
uncertainties in the FLUXCOM ET estimates (Jung et al.,
2019) due to underlying data uncertainties of the eddy co-
variance observations. Those uncertainties are related to poor
station coverage and energy balance closure gap but also
to issues of the satellite data inputs caused by cloud cov-
erage. Nonetheless, including varying vegetation character-
istics data improves simulated ET here, suggesting a better
representation of the characteristic highly active vegetation
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Figure 7. Global distribution of the impact index I for the contribution of simulated snow (wSnow), soil (wSoil), deep water storage (wDeep),
and delayed water storage (wSlow) to the inter-annual variability of total water storage, for B and VEG.

Figure 8. Impact index I for the contribution of simulated snow
(wSnow), soil (wSoil), deep water storage (wDeep), and delayed
water storage (wSlow) to the global average mean seasonal cycle
and inter-annual variability of total water storage, for B and VEG.

compared to other regions and to global averages. In addi-
tion, VEG improves ET mainly in water supply-limited re-
gions for the reasons already presented above for improved
TWS performance in (semi-) arid regions.

The trade-off between the performances, in particular in
terms of the bias of Q and ET, suggests larger uncertainties
in one of the data streams for these regions, inconsistencies
between the ET andQ constraints from independent sources,
and/or model structure deficits. A small tendency to a nega-
tive water balance in the consistency checks of the observa-
tional data for these regions (Sect. S10) implies either under-
estimation of the precipitation forcing or overestimation of
FLUXCOM ET or GRUN Q. Global precipitation datasets
tend to underestimate precipitation (Trenberth et al., 2007;

Contractor et al., 2020) due to limitations of the satellite re-
trieval, gauge measurements, and, if combined, the combi-
nation method (Fekete et al., 2004). Validation of the GPCD
1DD data used in this study showed an underestimation of
precipitation in complex terrain and regionally during spring
and autumn, while precipitation in wintertime tends to be
overestimated (Huffman et al., 2000). While we accounted
for the latter by reducing snowfall (via a scaling parameter
that was calibrated in Trautmann et al., 2018), we do not con-
sider potential underestimation in the rainfall forcing. There-
fore, precipitation forcing may not provide sufficient water
input for ET and Q in the model to achieve the magnitudes
given by the observation-based products. Lastly, some dete-
rioration of performance of Q in VEG may originate from
deficiencies in the GRUN product itself, which was gener-
ated with climatic drivers only, disregarding information on
spatio-temporal variations in vegetation (Ghiggi et al., 2019).

The improvement of Q in northern latitudes is associated
with the activation of the slow and delayed storage in the
VEG experiment, with spatial varying parameterization of
soil water storage capacity. The relatively low storage capac-
ity in these regions facilitates faster saturation excess runoff.
In addition, the slow storage better represents the runoff de-
lay in surface water and rivers in these regions that results
in improvements of low flow during winter as well as the in-
crease of runoff during spring (Fig. 3). Such delayed runoff
also improves the simulation of peak runoff in the sub-humid
and humid regions.

The remaining deficiencies in model performance, espe-
cially in the cold region, indicate missing processes in the
simple model structure. Such processes include freeze–thaw
dynamics and permafrost (Yu et al., 2020) as well as ice
jam in river channels that would increase surface water stor-
age and allow for high spring flood (Kim et al., 2009).
In addition, snow parameters have been calibrated against
remote-sensing-based GlobSnow snow water equivalent, that
is known to saturate for deep snow conditions (Takala et al.,
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2011) (see Trautmann et al., 2018). Although the calibration
process considered this shortcoming, an underestimation of
modelled snow accumulation is possible – leading to an un-
derestimation of peak snowpack in winter that would result
in an underestimation of runoff due to lower snowmelt in
spring.

While the VEG experiment presented here considers all
three aspects of vegetation influences on hydrological pro-
cesses explicitly (see Sect. 2.2.1), we also run experiments
that include these aspects separately in the model calibra-
tion (not shown). These analyses found that the largest im-
provement was obtained when including soil water stor-
age capacity as a function of rooting depth and storage ca-
pacity data and a rather low impact when considering the
runoff/infiltration partitioning as a function of the vegetation
fraction. This highlights the central role of soil water stor-
ages and the importance of adequately describing soil mois-
ture pattern and dynamics in hydrological models.

4.2 Contribution to TWS variability

Albeit their global coverage, the above-presented results
agree with the previous regional study that focused on north-
ern mid-latitudes to high latitudes (Trautmann et al., 2018).
Similarly, both model experiments show a dominating role of
snow accumulation and depletion on global seasonal TWS
variability, whereas liquid water storages determine inter-
annual TWS variations. At the same time, the contribution of
individual storages to TWS variations differs at the local grid
scale compared to when they are averaged over a region or
globally. The stronger contribution of snow on spatially ag-
gregated signals can be explained by the spatial coherence of
snow accumulation over larger areas. Liquid water storages,
on the other hand, are more spatially heterogeneous, with in-
creasing and decreasing dynamics across regions that cancel
out and compensate for each other when spatially aggregated
(Trautmann et al., 2018; Jung et al., 2017). In contrast to the
mean seasonal dynamics, the inter-annual impact indices of
the storage components at the global scale are similar to the
average local impact indices (Figs. 7 and 8). This suggests
that at inter-annual timescales, there is no spatially coherent
pattern of one single storage component that leads to higher
accumulated impact indices than the local averages. How-
ever, while both experiments agree in the general pattern of
the impact of snow versus liquid water storages, they system-
atically differ in the allocation of water among liquid storage
compartments. In B, all variations other than wSnow origi-
nate from directly plant-accessible soil moisture, whereas, in
VEG, the deeper soil storage wDeep becomes the most im-
portant. Therefore, including observation-based information
on vegetation changes the attribution of TWS variations dras-
tically, while the variations of total TWS themselves do not
change significantly.

Differences in the composition of TWS variability be-
tween B and VEG are effectively reflected in the differ-

ences of calibrated parameters. In B, the directly plant-
accessible soil water storage is larger, due to a higher ef-
fective wSoilmax(2), while delayed water storages are “turned
off” because of increased drainage (dDeep, dSlow), reducing
the variations in wDeep and wSlow. Although VEG has been
calibrated in the same way as the same observational con-
straints, calibrated model parameters differ as the data on
vegetation characteristics included provide complementary
information on spatial and temporal patterns. Therefore, the
resulting calibrated parameters can be assumed to be more
realistic. For example, they enable (delayed) longer term wa-
ter storage as well as capillary rise from the deeper soil water
storage when the directly plant-accessible storage dries out.
Due to this process, TWS variations are mainly controlled by
wDeep in VEG.

In detail, the increased importance of the indirect plant-
accessible storage wDeep in VEG can be related to the lim-
ited maximum soil water capacity wSoilmax(2) that is con-
strained by rooting depth–soil water capacity data and to a
higher kTransp parameter. The smaller wSoil storage increases
percolation to wDeep, but the water is still available when
needed due to the capillary rise from wDeep to wSoil.

Removing capillary flux from wDeep to wSoil in fact
increases the contribution of wSoil to seasonal variability,
while the impact of wDeep remains high on inter-annual
scales (Sect. S7 in the Supplement). While the contribution
of capillary rise to total ET is < 20 % for most grid cells,
it becomes more important in arid-to-wet transition regions,
for example, sub-Saharan Sahel, Savannas, northern Aus-
tralia, and the Indian subcontinent (Fig. 9). These are regions
with high precipitation seasonality, where vegetation often
grows deep roots to access deep unsaturated zone storage
and groundwater during the dry season. The spatial patterns
of ET supported by capillary rise agree with the findings of
Koirala et al. (2014), who applied the physically based model
MATSIRO to investigate the effect of capillary flux on hydro-
logical variables. The spatial patterns are also in line with the
predicted probability of deep rooting by Schenk and Jackson
(2005) and are supported by Tian et al. (2019), who found
that vegetation remains active long into the dry season in
Africa, suggesting that soil–deep soil–groundwater interac-
tion plays a considerable role. Therefore, the spatial pattern
of the interactions of wDeep with wSoil in VEG seems rea-
sonable, and our results indicate that capillary rise appears to
be a process of large-scale relevance.

While defined as the “fraction of soil water available for
transpiration”, kTransp is an effective decay parameter for the
depletion of wSoil via transpiration processes under water-
limited conditions. Plausible values derived from eddy co-
variance observations of ET are in the order of 10−3–10−1

(Teuling et al., 2006), similar in magnitude to delay coeffi-
cients for baseflow. By calibrating a model against GRACE
TWS, it is difficult to decide whether water leaves the system
slowly via ET or byQ, especially during drydown periods. In
B, kTransp is much smaller than in VEG and more consistent
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Figure 9. Total evapotranspiration (ET) of VEG with capillary flux from the deep soil water storage (left) and difference compared to a
model version without capillary flux in millimetres (right map) and as a percentage difference (right).

with expected magnitudes, yet other slow depleting storages
are effectively “turned off”. In contrast, VEG with additional
vegetation data simulates an important slow storage that con-
tributes to Q and also to soil moisture via capillary rise and
has a rather high calibrated kTransp. To better understand the
implications of parameterizing supply-limited ET decay in
the model, we conducted another experiment where we fixed
kTransp in VEG to 0.05 (about the median value of empiri-
cally derived kTransp from Teuling et al., 2006) and optimized
all other parameters again. This caused most TWS variations
to originate from wSoil but with less improvement in model
performance compared to B (Sect. S8 in the Supplement).
Therefore, TWS decomposition is very sensitive to parame-
ters controlling ET under water-limited conditions. However,
VEG and VEG with fixed kTransp qualitatively agree in the
importance of the slow water storage in humid regions, which
was also shown by Getirana et al. (2017). Overall, our results
imply that the representation of ET under water-limited con-
ditions in the models plays a decisive role in the simulated
partitioning of TWS in soil moisture and slow water pools.

The large impact of the role of vegetation and of transpi-
ration water supply within the model is also supported by a
complementary experiment in which vegetation parameters
were discretized for plant functional type classes and cali-
brated with the same multi-criteria approach (Sect. S9).

As with the presented model variants, TWS composi-
tion simulated with existing large-scale hydrological mod-
els differs widely (Scanlon et al., 2018; Schellekens et al.,
2017; Zhang et al., 2017). For example, PCR-GLOBWB and
W3RA attribute seasonal TWS variations in the tropics to
groundwater, while other models suggest they are mainly
caused by soil moisture. These results are largely dependent
on model structure and parametrization, which is potentially
a challenge when models are used to decompose the inte-
grated GRACE TWS signal and when implications of dif-
ferent processes and interactions are drawn. For example,
Humphrey et al. (2018) analysed how the CO2 growth rate, a
proxy for the land carbon balance fluctuations, is affected by
inter-annual variations in GRACE TWS, assuming that these
represent fluctuations in plant-accessible water that influence
the carbon uptake of land ecosystems. In contrast, our study,
along with previous reports, shows that a significant propor-
tion of the GRACE TWS signal in the tropics is not directly

plant-accessible soil moisture but deeper soil water and slow
storage components. The latter comprises surface water stor-
age, whose importance for TWS variations in tropical regions
has been shown by several studies (e.g. Güntner et al., 2007;
Getirana et al., 2017).

Although VEG can be considered more reliable because
of more realistic parameter values and better model perfor-
mance, the current study still has some shortcomings. De-
spite using a multi-criteria calibration, individual component
fluxes and states may not necessarily be well constrained.
To further improve and solidify conclusions, especially on
TWS partitioning, more constraints, such as deep soil mois-
ture estimates or high-quality observations of surface water,
are needed. Furthermore, spatial constraints for defining the
depletion of water storages via ET andQ – either with spatial
information on the delay parameters (kTransp for ET, dSlow for
Q) or on their sub-fluxes (transpiration or evaporation, base-
flow or direct runoff) – would be beneficial. In this context,
runoff characteristics as the baseflow index or the baseflow
recession coefficient provided by Beck et al. (2015) are po-
tentially useful to define the spatial pattern of the slow runoff
component. In addition, a GRACE product with daily res-
olution (Eicker et al., 2020) could enable better decomposi-
tion and differentiation of fast and slow storages whose short-
term imprints are lumped in the monthly TWS signal.

5 Conclusions

In this study, we investigated the effect of varying vegeta-
tion characteristics on global hydrological simulations and
in particular on the partitioning of TWS variations among
snow, plant-accessible soil moisture, a deep soil water stor-
age, and a slowly varying water pool that represents ground-
water, surface and near-surface water storage. To do so, we
included observation-based continuous vegetation informa-
tion to parameterize the hydrological processes of evapotran-
spiration, soil water storage, and runoff generation in a large-
scale hydrological model. With the parsimonious model that
was constrained against multiple observations, we highlight
the value of observation-based datasets in constraining model
parameters of global hydrological models while maintaining
simple model formulations to evaluate the influences of veg-
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etation in the global hydrological cycle. First, we find that
using a multi-criteria calibration approach allows for differ-
ent model variants to perform relatively well despite major
differences in model parameterization among them. In fact,
even without accounting for dynamics and patterns of veg-
etation explicitly, the model performance can be interpreted
as reasonable and more so at the global scale. However, in-
cluding the spatial pattern of vegetation further improved
the model performance. For example, large improvements
were found in supply-limited regions, i.e. (semi-) arid regions
(TWS and ET) and in tropical regions (ET), and Q simu-
lations both globally and regionally in the Northern Hemi-
sphere. Undoubtedly, spatio-temporal variations of vegeta-
tion characteristics are relevant for regional and global hy-
drological simulations.

Interestingly, we find that the calibrated parameter values
are also more reasonable when the model is fed with the
vegetation information. In particular, parameter interactions
and equifinality were reduced even though the same observa-
tional constraints were used for calibration.

Lastly, we show how the representation of vegetation can
modulate surface and subsurface hydrological process rep-
resentation in the model, changing the spatial–temporal dy-
namics of individual storage components while maintaining
the same overall response of total hydrological fluxes and
storage variations. With or without accounting for varying
vegetation characteristics explicitly, seasonal storage vari-
ations are dominated by snow at the global scale. How-
ever, including varying vegetation characteristics drastically
changes the attribution of TWS variations among soil mois-
ture, deep soil water, and slow water storages. Without vary-
ing vegetation parameters, the soil moisture effectively con-
trols most of the TWS variation, but with varying vegetation
characteristics, the role of deeper and delayed water stor-
age becomes prominent. In particular, the representation of
water-limited ET by the interplay of its sensitivity to soil
moisture, maximum plant-accessible water storage capacity,
and interactions with deep soil moisture or groundwater seem
to play a decisive role in TWS partitioning in the simulations.

In summary, this study highlights the value of including
varying vegetation characteristics to further constrain model
parameters with a parsimonious model structure. The find-
ings further suggest an important role of groundwater–soil
moisture–vegetation interactions in TWS variations. Since
the representation of vegetation-related processes in global
hydrological models seems to be a key factor for controlling
TWS partitioning, we emphasizes the need for further studies
and improvements of global water cycle models with respect
to the role of vegetation by utilizing observational constraints
on ecohydrological functioning in multi-criteria model cali-
bration exercises.

Code and data availability. The code to perform
the analysis of this study can be assessed via

https://doi.org/10.5281/zenodo.5770238 (Trautmann, 2021),
and the dataset with processed data and model simulations is
available at https://doi.org/10.5281/zenodo.5763838 (Trautmann,
2022).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-26-1089-2022-supplement.

Author contributions. TT designed the research in extensive col-
laboration with SK, NC and MJ. TT and SK programmed the model
experiments. NC contributed to parameter estimation and uncer-
tainty analysis. TT performed the analysis and prepared the first
draft of the manuscript. All co-authors provided recommendations
for the data analysis, participated in discussions about the results,
and edited the manuscript.

Competing interests. The contact author has declared that neither
they nor their co-authors have any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. All experiments of this study, including the
model implementation and calibrations, were performed within the
SINDBAD model data integration framework developed at the Max
Planck Institute for Biogeochemistry, Jena.

Financial support. The article processing charges for this open-
access publication were covered by the Max Planck Society.

Review statement. This paper was edited by Bob Su and reviewed
by three anonymous referees.

References

Andersen, O. B., Krogh, P. E., Bauer-Gottwein, P., Leiriao, S.,
Smith, R., and Berry, P.: Terrestrial Water Storage from GRACE
and Satellite Altimetry in the Okavango Delta (Botswana), IAG
Symp., 135, 521–526, https://doi.org/10.1007/978-3-642-10634-
7_69, 2010.

Bai, P., Liu, X., and Liu, C.: Improving hydrological simulations
by incorporating GRACE data for model calibration, J. Hydrol.,
557, 291–304, https://doi.org/10.1016/j.jhydrol.2017.12.025,
2018.

Baldocchi, D., Ma, S., and Verfaillie, J.: On the inter- and intra-
annual variability of ecosystem evapotranspiration and water use
efficiency of an oak savanna and annual grassland subjected to
booms and busts in rainfall, Glob. Change Biol., 27, 359–375,
https://doi.org/10.1111/gcb.15414, 2021.

https://doi.org/10.5194/hess-26-1089-2022 Hydrol. Earth Syst. Sci., 26, 1089–1109, 2022

https://doi.org/10.5281/zenodo.5770238
https://doi.org/10.5281/zenodo.5763838
https://doi.org/10.5194/hess-26-1089-2022-supplement
https://doi.org/10.1007/978-3-642-10634-7_69
https://doi.org/10.1007/978-3-642-10634-7_69
https://doi.org/10.1016/j.jhydrol.2017.12.025
https://doi.org/10.1111/gcb.15414


1106 T. Trautmann et al.: The importance of vegetation in understanding terrestrial water storage variations

Beck, H. E., de Roo, A., and van Dijk, A. I. J. M.: Global Maps
of Streamflow Characteristics Based on Observations from Sev-
eral Thousand Catchments*, J. Hydrometeorol., 16, 1478–1501,
https://doi.org/10.1175/jhm-d-14-0155.1, 2015.

Bergström, S.: Principles and Confidence in Hydrological Mod-
elling, Nord. Hydrol., 22, 123–136, 1991.

Chen, J., Ban, Y., and Li, S.: Open access to Earth land-cover map,
Nature, 514, 434–434, https://doi.org/10.1038/514434c, 2014.

Contractor, S., Donat, M. G., Alexander, L. V., Ziese, M., Meyer-
Christoffer, A., Schneider, U., Rustemeier, E., Becker, A., Durre,
I., and Vose, R. S.: Rainfall Estimates on a Gridded Net-
work (REGEN) – a global land-based gridded dataset of daily
precipitation from 1950 to 2016, Hydrol. Earth Syst. Sci., 24,
919–943, https://doi.org/10.5194/hess-24-919-2020, 2020.

Didan, K. and Barreto-Munoz, A.: MODIS Vegetation Index
User’s Guide (MOD13 Series), The University of Ari-
zona, https://vip.arizona.edu/documents/MODIS/MODIS_
VI_UsersGuide_09_18_2019_C61.pdf (last access: 22 Febru-
ary 2022), 2019.

Döll, P., Fritsche, M., Eicker, A., and Müller Schmied, H.: Sea-
sonal Water Storage Variations as Impacted by Water Abstrac-
tions: Comparing the Output of a Global Hydrological Model
with GRACE and GPS Observations, Surv. Geophys., 35, 1311–
1331, https://doi.org/10.1007/s10712-014-9282-2, 2014.

Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G.,
Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E.,
Hamer, P. D., Hirschi, M., Ikonen, J., de Jeu, R., Kidd, R., La-
hoz, W., Liu, Y. Y., Miralles, D., Mistelbauer, T., Nicolai-Shaw,
N., Parinussa, R., Pratola, C., Reimer, C., van der Schalie, R.,
Seneviratne, S. I., Smolander, T., and Lecomte, P.: ESA CCI Soil
Moisture for improved Earth system understanding: State-of-the
art and future directions, Remote Sens. Environ., 203, 185–215,
https://doi.org/10.1016/j.rse.2017.07.001, 2017.

Dorigo, W. A., Gruber, A., De Jeu, R. A. M., Wagner, W., Stacke, T.,
Loew, A., Albergel, C., Brocca, L., Chung, D., Parinussa, R. M.,
and Kidd, R.: Evaluation of the ESA CCI soil moisture product
using ground-based observations, Remote Sens. Environ., 162,
380–395, https://doi.org/10.1016/j.rse.2014.07.023, 2015.

Draper, N. and Smith, H.: Applied Regression Analysis, 2nd edn.,
Wiley, New York, NY, ISBN 10 0471029955, 1981.

Du, L., Zeng, Y., Ma, L., Qiao, C., Wu, H., Su, Z., and Bao, G.:
Effects of anthropogenic revegetation on the water and carbon
cycles of a desert steppe ecosystem, Agr. Forest Meteorol., 300,
108339, https://doi.org/10.1016/j.agrformet.2021.108339, 2021.

Eicker, A., Schumacher, M., Kusche, J., Döll, P., and Schmied,
H. M.: Calibration/data assimilation approach for integrating
GRACE data into the WaterGAP Global Hydrology Model
(WGHM) using an ensemble Kalman filter: First results, Surv.
Geophys., 35, 1285–1309, 2014.

Eicker, A., Jensen, L., Wöhnke, V., Dobslaw, H., Kvas, A., Mayer-
Gürr, T., and Dill, R.: Daily GRACE satellite data evaluate short-
term hydro-meteorological fluxes from global atmospheric re-
analyses, Sci. Rep., 10, 4504, https://doi.org/10.1038/s41598-
020-61166-0, 2020.

Famiglietti, J. S. and Rodell, M.: Water in the Balance, Science,
340, 1300–1301, https://doi.org/10.1126/science.1236460, 2013.

Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B.,
and Otero-Casal, C.: Hydrologic regulation of plant root-

ing depth, P. Natl. Acad. Sci. USA, 114, 10572–10577,
https://doi.org/10.1073/pnas.1712381114, 2017.

Fekete, B. M., Vörösmarty, C. J., Roads, J. O., and Willmott, C. J.:
Uncertainties in Precipitation and Their Impacts on Runoff Es-
timates, J. Climate, 17, 294–304, https://doi.org/10.1175/1520-
0442(2004)017<0294:uipati>2.0.co;2, 2004.

Getirana, A., Kumar, S., Girotto, M., and Rodell, M.: Rivers
and Floodplains as Key Components of Global Terrestrial Wa-
ter Storage Variability, Geophys. Res. Lett., 44, 10359–10368,
https://doi.org/10.1002/2017gl074684, 2017.

Ghiggi, G., Humphrey, V., Seneviratne, S. I., and Gudmundsson,
L.: GRUN: an observation-based global gridded runoff dataset
from 1902 to 2014, Earth Syst. Sci. Data, 11, 1655–1674,
https://doi.org/10.5194/essd-11-1655-2019, 2019.

Güntner, A., Stuck, J., Werth, S., Döll, P., Verzano, K., and Merz,
B.: A global analysis of temporal and spatial variations in
continental water storage, Water Resour. Res., 43, W05416,
https://doi.org/10.1029/2006WR005247, 2007.

Hansen, N. and Kern, S.: Evaluating the CMA Evolution Strategy
on Multimodal Test Functions, in: Parallel Problem Solving from
Nature – PPSN VIII, edited by: Yao, X., Burke, E., Lozano,
J. A., Smith, J., Merelo-Guervós, J. J., Bullinaria, J. A., Rowe,
J., Tino, P., Kabán, A., and Schwefel, H.-P., Springer, Berlin,
https://doi.org/10.1007/978-3-540-30217-9_29, 2004.

Huffman, G. J., Adler, R., Morrissey, M. M., Bolvin, D., Curtis,
S., Joyce, R., McGavock, B., and Susskind, J.: Global Precipita-
tion at One-Degree Resolution from Multisatellite Observations,
J. Hydrometeorol., 2, 36–50, 2000.

Humphrey, V., Zscheischler, J., Ciais, P., Gudmundsson, L., Sitch,
S., and Seneviratne, S. I.: Sensitivity of atmospheric CO2 growth
rate to observed changes in terrestrial water storage, Nature, 560,
628–631, https://doi.org/10.1038/s41586-018-0424-4, 2018.

Humphrey, V., Berg, A., Ciais, P., Gentine, P., Jung, M., Reich-
stein, M., Seneviratne, S. I., and Frankenberg, C.: Soil moisture–
atmosphere feedback dominates land carbon uptake variability,
Nature, 592, 65–69, https://doi.org/10.1038/s41586-021-03325-
5, 2021.

Jung, M., Reichstein, M., Schwalm, C. R., Huntingford, C.,
Sitch, S., Ahlstrom, A., Arneth, A., Camps-Valls, G., Ciais,
P., Friedlingstein, P., Gans, F., Ichii, K., Jain, A. K., Kato,
E., Papale, D., Poulter, B., Raduly, B., Rodenbeck, C., Tra-
montana, G., Viovy, N., Wang, Y. P., Weber, U., Zaehle, S.,
and Zeng, N.: Compensatory water effects link yearly global
land CO2 sink changes to temperature, Nature, 541, 516–520,
https://doi.org/10.1038/nature20780, 2017.

Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camps-Valls,
G., Papale, D., Schwalm, C., Tramontana, G., and Reichstein,
M.: The FLUXCOM ensemble of global land-atmosphere energy
fluxes, Sci. Data, 6, 1–14, 2019.

Kim, H., Yeh, P. J. F., Oki, T., and Kanae, S.: Role of
rivers in the seasonal variations of terrestrial water stor-
age over global basins, Geophys. Res. Lett., 36, L17402,
https://doi.org/10.1029/2009GL039006, 2009.

Koirala, S., Yeh, P. J. F., Hirabayashi, Y., Kanae, S., and Oki, T.:
Global-scale land surface hydrologic modeling with the repre-
sentation of water table dynamics, J. Geophys. Res.-Atmos., 119,
75–89, https://doi.org/10.1002/2013JD020398, 2014.

Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.:
World Map of the Köppen-Geiger climate classification up-

Hydrol. Earth Syst. Sci., 26, 1089–1109, 2022 https://doi.org/10.5194/hess-26-1089-2022

https://doi.org/10.1175/jhm-d-14-0155.1
https://doi.org/10.1038/514434c
https://doi.org/10.5194/hess-24-919-2020
https://vip.arizona.edu/documents/MODIS/MODIS_VI_UsersGuide_09_18_2019_C61.pdf
https://vip.arizona.edu/documents/MODIS/MODIS_VI_UsersGuide_09_18_2019_C61.pdf
https://doi.org/10.1007/s10712-014-9282-2
https://doi.org/10.1016/j.rse.2017.07.001
https://doi.org/10.1016/j.rse.2014.07.023
https://doi.org/10.1016/j.agrformet.2021.108339
https://doi.org/10.1038/s41598-020-61166-0
https://doi.org/10.1038/s41598-020-61166-0
https://doi.org/10.1126/science.1236460
https://doi.org/10.1073/pnas.1712381114
https://doi.org/10.1175/1520-0442(2004)017<0294:uipati>2.0.co;2
https://doi.org/10.1175/1520-0442(2004)017<0294:uipati>2.0.co;2
https://doi.org/10.1002/2017gl074684
https://doi.org/10.5194/essd-11-1655-2019
https://doi.org/10.1029/2006WR005247
https://doi.org/10.1007/978-3-540-30217-9_29
https://doi.org/10.1038/s41586-018-0424-4
https://doi.org/10.1038/s41586-021-03325-5
https://doi.org/10.1038/s41586-021-03325-5
https://doi.org/10.1038/nature20780
https://doi.org/10.1029/2009GL039006
https://doi.org/10.1002/2013JD020398


T. Trautmann et al.: The importance of vegetation in understanding terrestrial water storage variations 1107

dated, Meteorol. Z., 15, 259–263, https://doi.org/10.1127/0941-
2948/2006/0130, 2006.

Kraft, B., Jung, M., Körner, M., Koirala, S., and Reichstein, M.: To-
wards hybrid modeling of the global hydrological cycle, Hydrol.
Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-
2021-211, in review, 2021.

Küçük, Ç., Koirala, S., Carvalhais, N., Miralles, D. G., Reich-
stein, M., and Jung, M.: Characterising the response of veg-
etation cover to water limitation in Africa using geostation-
ary satellites, J. Adv. Model. Earth Sy., 14, e2021MS002730,
https://doi.org/10.1029/2021MS002730, 2022.

Kumar, S. V., Zaitchik, B. F., Peters-Lidard, C. D., Rodell, M., Re-
ichle, R., Li, B., Jasinski, M., Mocko, D., Getirana, A., De Lan-
noy, G., Cosh, M. H., Hain, C. R., Anderson, M., Arsenault, K.
R., Xia, Y., and Ek, M.: Assimilation of Gridded GRACE Ter-
restrial Water Storage Estimates in the North American Land
Data Assimilation System, J. Hydrometeorol., 17, 1951–1972,
https://doi.org/10.1175/jhm-d-15-0157.1, 2016.

Lo, M.-H., Famiglietti, J. S., Yeh, P. J.-F., and Syed, T. H.: Im-
proving parameter estimation and water table depth simula-
tion in a land surface model using GRACE water storage and
estimated base flow data, Water Resour. Res., 46, W05517,
https://doi.org/10.1029/2009WR007855, 2010.

Loeb, N. G., Doelling, D. R., Wang, H., Su, W., Nguyen,
C., Corbett, J. G., Liang, L., Mitrescu, C., Rose, F. G.,
and Kato, S.: Clouds and the Earth’s Radiant Energy Sys-
tem (CERES) Energy Balanced and Filled (EBAF) Top-of-
Atmosphere (TOA) Edition-4.0 Data Product, J. Climate, 31,
895–918, https://doi.org/10.1175/JCLI-D-17-0208.1, 2018.

Lu, J., Sun, G., McNulty, S. G., and Amatya, D. M.: A ccomparison
of six potential evapotranspiration methods for regional use in
the southeastern United States, J. Am. Water Resour. As., 41,
621–633, 2005.

Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de
Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A.,
and Verhoest, N. E. C.: GLEAM v3: satellite-based land evapora-
tion and root-zone soil moisture, Geosci. Model Dev., 10, 1903–
1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017.

McColl, K. A., Wang, W., Peng, B., Akbar, R., Short Gianotti, D.
J., Lu, H., Pan, M., and Entekhabi, D.: Global characterization of
surface soil moisture drydowns, Geophys. Res. Lett., 44, 3682–
3690, https://doi.org/10.1002/2017GL072819, 2017.

Mostafaie, A., Forootan, E., Safari, A., and Schumacher, M.:
Comparing multi-objective optimization techniques to cali-
brate a conceptual hydrological model using in situ runoff
and daily GRACE data, Comput. Geosci., 22, 789–814,
https://doi.org/10.1007/s10596-018-9726-8, 2018.

Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert,
C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Rei-
necke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Traut-
mann, T., and Döll, P.: The global water resources and use model
WaterGAP v2.2d: model description and evaluation, Geosci.
Model Dev., 14, 1037–1079, https://doi.org/10.5194/gmd-14-
1037-2021, 2021.

NASA/LARC/SD/ASDC: CERES and GEO-Enhanced TOA,
Within-Atmosphere and Surface Fluxes, Clouds and
Aerosols Daily Terra-Aqua Edition4A. NASA Lang-
ley Atmospheric Science Data Center DAAC [data set],

https://doi.org/10.5067/Terra+Aqua/CERES/SYN1degDay_L3.004A,
2017.

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through con-
ceptual models Part I – A discussion of principles, J. Hydrol., 10,
282–290, 1970.

Omlin, M. and Reichert, P.: A comparison of techniques for the
estimation of model prediction uncertainty, Ecol. Model., 115,
45–59, 1999.

Porporato, A., Daly, E., and Rodriguez-Iturbe, I.: Soil water balance
and ecosystem response to climate change, Am. Nat., 164, 625–
632, 2004.

Quevedo, D. I. and Francés, F.: A conceptual dynamic vegetation-
soil model for arid and semiarid zones, Hydrol. Earth Syst.
Sci., 12, 1175–1187, https://doi.org/10.5194/hess-12-1175-2008,
2008.

Rakovec, O., Kumar, R., Attinger, S., and Samaniego, L.: Improving
the realism of hydrologic model functioning through multivari-
ate parameter estimation, Water Resour. Res., 52, 7779–7792,
https://doi.org/10.1002/2016WR019430, 2016.

Reager, J. T., Thomas, A. C., Sproles, E. A., Rodell, M., Beaudoing,
H. K., Li, B., and Famiglietti, J. S.: Assimilation of GRACE Ter-
restrial Water Storage Observations into a Land Surface Model
for the Assessment of Regional Flood Potential, Remote Sens.,
7, 14663–14679, 2015.

Reichle, R. H., Draper, C. S., Liu, Q., Girotto, M., Mahanama, S.
P. P., Koster, R. D., and De Lannoy, G. J. M.: Assessment of
MERRA-2 Land Surface Hydrology Estimates, J. Climate, 30,
2937–2960, https://doi.org/10.1175/jcli-d-16-0720.1, 2017.

Reyer, C. P. O., Leuzinger, S., Rammig, A., Wolf, A., Bartholomeus,
R. P., Bonfante, A., de Lorenzi, F., Dury, M., Gloning, P.,
Abou Jaoudé, R., Klein, T., Kuster, T. M., Martins, M.,
Niedrist, G., Riccardi, M., Wohlfahrt, G., de Angelis, P.,
de Dato, G., François, L., Menzel, A., and Pereira, M.: A
plant’s perspective of extremes: terrestrial plant responses to
changing climatic variability, Glob. Change Biol., 19, 75–89,
https://doi.org/10.1111/gcb.12023, 2013.

Rind, D.: The influence of vegetation on the hydrologic cycle in a
global climate model, in: Climate Processes and Climate Sen-
sitivity, edited by: Hansen, J. E. and Takahashi, T., AGU Geo-
physical Monograph 29, Maurice Ewing American Geophysical
Union, 73–91, https://doi.org/10.1029/GM029p0073, 1984.

Rodell, M.: Basin scale estimates of evapotranspiration using
GRACE and other observations, Geophys. Res. Lett., 31,
L20504, https://doi.org/10.1029/2004gl020873, 2004.

Rodell, M., Beaudoing, H. K., L’Ecuyer, T. S., Olson, W. S.,
Famiglietti, J. S., Houser, P. R., Adler, R., Bosilovich, M. G.,
Clayson, C. A., Chambers, D., Clark, E., Fetzer, E. J., Gao,
X., Gu, G., Hilburn, K., Huffman, G. J., Lettenmaier, D. P.,
Liu, W. T., Robertson, F. R., Schlosser, C. A., Sheffield, J.,
and Wood, E. F.: The Observed State of the Water Cycle in
the Early Twenty-First Century, J. Climate, 28, 8289–8318,
https://doi.org/10.1175/jcli-d-14-00555.1, 2015.

Rodell, M., Famiglietti, J. S., Wiese, D. N., Reager, J. T., Beau-
doing, H. K., Landerer, F. W., and Lo, M. H.: Emerging
trends in global freshwater availability, Nature, 557, 651–659,
https://doi.org/10.1038/s41586-018-0123-1, 2018.

Rodriguez-Iturbe, I., Porporato, A., Laio, F., and Ridolfi, L.:
Plants in water-controlled ecosystems: active role in hy-
drologic processes and response to water stress: I. Scope

https://doi.org/10.5194/hess-26-1089-2022 Hydrol. Earth Syst. Sci., 26, 1089–1109, 2022

https://doi.org/10.1127/0941-2948/2006/0130
https://doi.org/10.1127/0941-2948/2006/0130
https://doi.org/10.5194/hess-2021-211
https://doi.org/10.5194/hess-2021-211
https://doi.org/10.1029/2021MS002730
https://doi.org/10.1175/jhm-d-15-0157.1
https://doi.org/10.1029/2009WR007855
https://doi.org/10.1175/JCLI-D-17-0208.1
https://doi.org/10.5194/gmd-10-1903-2017
https://doi.org/10.1002/2017GL072819
https://doi.org/10.1007/s10596-018-9726-8
https://doi.org/10.5194/gmd-14-1037-2021
https://doi.org/10.5194/gmd-14-1037-2021
https://doi.org/10.5067/Terra+Aqua/CERES/SYN1degDay_L3.004A
https://doi.org/10.5194/hess-12-1175-2008
https://doi.org/10.1002/2016WR019430
https://doi.org/10.1175/jcli-d-16-0720.1
https://doi.org/10.1111/gcb.12023
https://doi.org/10.1029/GM029p0073
https://doi.org/10.1029/2004gl020873
https://doi.org/10.1175/jcli-d-14-00555.1
https://doi.org/10.1038/s41586-018-0123-1


1108 T. Trautmann et al.: The importance of vegetation in understanding terrestrial water storage variations

and general outline, Adv. Water Resour., 24, 695–705,
https://doi.org/10.1016/S0309-1708(01)00004-5, 2001.

Ruiz-Pérez, G., Koch, J., Manfreda, S., Caylor, K., and Francés, F.:
Calibration of a parsimonious distributed ecohydrological daily
model in a data-scarce basin by exclusively using the spatio-
temporal variation of NDVI, Hydrol. Earth Syst. Sci., 21, 6235–
6251, https://doi.org/10.5194/hess-21-6235-2017, 2017.

Scanlon, B. R., Zhang, Z. Z., Save, H., Wiese, D. N., Lan-
derer, F. W., Long, D., Longuevergne, L., and Chen, J. l.:
Global evaluation of new GRACE mascon products for hy-
drologic applications, Water Resour. Res., 52, 9412–9429,
https://doi.org/10.1002/2016wr019494, 2016.

Scanlon, B. R., Zhang, Z., Save, H., Sun, A. Y., Müller Schmied,
H., van Beek, L. P. H., Wiese, D. N., Wada, Y., Long,
D., Reedy, R. C., Longuevergne, L., Döll, P., and Bierkens,
M. F. P.: Global models underestimate large decadal de-
clining and rising water storage trends relative to GRACE
satellite data, P. Natl. Acad. Sci. USA, 115, E1080–E1089,
https://doi.org/10.1073/pnas.1704665115, 2018.

Schaaf, C., and Wang, Z.: MCD43A1 MODIS/Terra+Aqua
BRDF/Albedo Model Parameters Daily L3 Global – 500 m
V006, NASA EOSDIS Land Processes DAAC [data set],
https://doi.org/10.5067/MODIS/MCD43A1.006, 2015.

Schellekens, J., Dutra, E., Martínez-de la Torre, A., Balsamo,
G., van Dijk, A., Sperna Weiland, F., Minvielle, M., Cal-
vet, J.-C., Decharme, B., Eisner, S., Fink, G., Flörke, M.,
Peßenteiner, S., van Beek, R., Polcher, J., Beck, H., Orth,
R., Calton, B., Burke, S., Dorigo, W., and Weedon, G. P.: A
global water resources ensemble of hydrological models: the
eartH2Observe Tier-1 dataset, Earth Syst. Sci. Data, 9, 389–413,
https://doi.org/10.5194/essd-9-389-2017, 2017.

Schenk, H. J., and Jackson, R. B.: Mapping the global
distribution of deep roots in relation to climate
and soil characteristics, Geoderma, 126, 129–140,
https://doi.org/10.1016/j.geoderma.2004.11.018, 2005.

Schmidt, R., Petrovic, S., Güntner, A., Barthelmes, F., Wünsch, J.,
and Kusche, J.: Periodic components of water storage changes
from GRACE and global hydrology models, J. Geophys. Res.-
Sol. Ea., 113, B08419, https://doi.org/10.1029/2007JB005363,
2008.

Su, Z., Zeng, Y., Romano, N., Manfreda, S., Francés, F., Ben Dor,
E., Szabó, B., Vico, G., Nasta, P., Zhuang, R., Francos, N.,
Mészáros, J., Dal Sasso, S. F., Bassiouni, M., Zhang, L., Rwa-
soka, D. T., Retsios, B., Yu, L., Blatchford, M. L., and Mannaerts,
C.: An Integrative Information Aqueduct to Close the Gaps be-
tween Satellite Observation of Water Cycle and Local Sustain-
able Management of Water Resources, Water, 12, 1495, 2020.

Syed, T. H., Famiglietti, J. S., and Chambers, D. P.: GRACE-
Based Estimates of Terrestrial Freshwater Discharge from
Basin to Continental Scales, J. Hydrometeorol., 10, 22–40,
https://doi.org/10.1175/2008jhm993.1, 2009.

Takala, M., Luojus, K., Pulliainen, J., Derksen, C., Lemmetyi-
nen, J., Kärnä, J.-P., Koskinen, J., and Bojkov, B.: Estimating
northern hemisphere snow water equivalent for climate research
through assimilation of space-borne radiometer data and ground-
based measurements, Remote Sens. Environ., 115, 3517–3529,
https://doi.org/10.1016/j.rse.2011.08.014, 2011.

Tapley, B. D., Watkins, M. M., Flechtner, F., Reigber, C., Bettad-
pur, S., Rodell, M., Sasgen, I., Famiglietti, J. S., Landerer, F. W.,

Chambers, D. P., Reager, J. T., Gardner, A. S., Save, H., Ivins,
E. R., Swenson, S. C., Boening, C., Dahle, C., Wiese, D. N.,
Dobslaw, H., Tamisiea, M. E., and Velicogna, I.: Contributions
of GRACE to understanding climate change, Nat. Clim. Change,
9, 358–369, https://doi.org/10.1038/s41558-019-0456-2, 2019.

Telteu, C.-E., Müller Schmied, H., Thiery, W., Leng, G., Burek,
P., Liu, X., Boulange, J. E. S., Andersen, L. S., Grillakis, M.,
Gosling, S. N., Satoh, Y., Rakovec, O., Stacke, T., Chang, J.,
Wanders, N., Shah, H. L., Trautmann, T., Mao, G., Hanasaki, N.,
Koutroulis, A., Pokhrel, Y., Samaniego, L., Wada, Y., Mishra, V.,
Liu, J., Döll, P., Zhao, F., Gädeke, A., Rabin, S. S., and Herz,
F.: Understanding each other’s models: an introduction and a
standard representation of 16 global water models to support
intercomparison, improvement, and communication, Geosci.
Model Dev., 14, 3843–3878, https://doi.org/10.5194/gmd-14-
3843-2021, 2021.

Teuling, A. J., Seneviratne, S. I., Williams, C., and Troch,
P. A.: Observed timescales of evapotranspiration re-
sponse to soil moisture, Geophys. Res. Lett., 33, L23403,
https://doi.org/10.1029/2006gl028178, 2006.

Tian, S., Van Dijk, A. I. J. M., Tregoning, P., and Renzullo,
L. J.: Forecasting dryland vegetation condition months in ad-
vance through satellite data assimilation, Nat. Commun., 10, 469,
https://doi.org/10.1038/s41467-019-08403-x, 2019.

Trautmann, T.: VEGPaper_2021: v0.1, Zenodo, [code],
https://doi.org/10.5281/zenodo.5770238, 2021.

Trautmann, T.: Datasets for Trautmann et al. 2021 (Version 1), Zen-
odo [data set], https://doi.org/10.5281/zenodo.5763838, 2022.

Trautmann, T., Koirala, S., Carvalhais, N., Eicker, A., Fink, M., Nie-
mann, C., and Jung, M.: Understanding terrestrial water storage
variations in northern latitudes across scales, Hydrol. Earth Syst.
Sci., 22, 4061–4082, https://doi.org/10.5194/hess-22-4061-2018,
2018.

Trenberth, K. E., Smith, L., Qian, T., Dai, A., and Fasullo, J.: Es-
timates of the Global Water Budget and Its Annual Cycle Using
Observational and Model Data, J. Hydrometeorol., 8, 758–769,
https://doi.org/10.1175/jhm600.1, 2007.

Viovy, N.: CRUNCEP Version 7 - Atmospheric Forcing Data for
the Community Land Model. Research Data Archive at the
National Center for Atmospheric Research, Computational and
Information Systems Laboratory, https://doi.org/10.5065/PZ8F-
F017, 2018.

Wang, F., Polcher, J., Peylin, P., and Bastrikov, V.: Assimilation of
river discharge in a land surface model to improve estimates of
the continental water cycles, Hydrol. Earth Syst. Sci., 22, 3863–
3882, https://doi.org/10.5194/hess-22-3863-2018, 2018.

Wang, J., Price, K. P., and Rich, P. M.: Spatial patterns of
NDVI in response to precipitation and temperature in the
central Great Plains, Int. J. Remote Sens., 22, 3827–3844,
https://doi.org/10.1080/01431160010007033, 2001.

Wang-Erlandsson, L., Bastiaanssen, W. G. M., Gao, H., Jägermeyr,
J., Senay, G. B., van Dijk, A. I. J. M., Guerschman, J. P., Keys,
P. W., Gordon, L. J., and Savenije, H. H. G.: Global root zone
storage capacity from satellite-based evaporation, Hydrol. Earth
Syst. Sci., 20, 1459–1481, https://doi.org/10.5194/hess-20-1459-
2016, 2016.

Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C., and
Landerer, F. W.: Improved methods for observing Earth’s
time variable mass distribution with GRACE using spheri-

Hydrol. Earth Syst. Sci., 26, 1089–1109, 2022 https://doi.org/10.5194/hess-26-1089-2022

https://doi.org/10.1016/S0309-1708(01)00004-5
https://doi.org/10.5194/hess-21-6235-2017
https://doi.org/10.1002/2016wr019494
https://doi.org/10.1073/pnas.1704665115
https://doi.org/10.5067/MODIS/MCD43A1.006
https://doi.org/10.5194/essd-9-389-2017
https://doi.org/10.1016/j.geoderma.2004.11.018
https://doi.org/10.1029/2007JB005363
https://doi.org/10.1175/2008jhm993.1
https://doi.org/10.1016/j.rse.2011.08.014
https://doi.org/10.1038/s41558-019-0456-2
https://doi.org/10.5194/gmd-14-3843-2021
https://doi.org/10.5194/gmd-14-3843-2021
https://doi.org/10.1029/2006gl028178
https://doi.org/10.1038/s41467-019-08403-x
https://doi.org/10.5281/zenodo.5770238
https://doi.org/10.5281/zenodo.5763838
https://doi.org/10.5194/hess-22-4061-2018
https://doi.org/10.1175/jhm600.1
https://doi.org/10.5065/PZ8F-F017
https://doi.org/10.5065/PZ8F-F017
https://doi.org/10.5194/hess-22-3863-2018
https://doi.org/10.1080/01431160010007033
https://doi.org/10.5194/hess-20-1459-2016
https://doi.org/10.5194/hess-20-1459-2016


T. Trautmann et al.: The importance of vegetation in understanding terrestrial water storage variations 1109

cal cap mascons, J. Geophys. Res.-Sol. Ea., 120, 2648–2671,
https://doi.org/10.1002/2014JB011547, 2015.

Weiss, M., van den Hurk, B., Haarsma, R., and Hazeleger, W.:
Impact of vegetation variability on potential predictability and
skill of EC-Earth simulations, Clim. Dynam., 39, 2733–2746,
https://doi.org/10.1007/s00382-012-1572-0, 2012.

Werth, S., Güntner, A., Petrovic, S., and Schmidt, R.: In-
tegration of GRACE mass variations into a global hy-
drological model, Earth Planet. Sc. Lett., 277, 166–173,
https://doi.org/10.1016/j.epsl.2008.10.021, 2009.

Wiese, D. N., Yuan, D.-N., Boening, C., Landerer, F. W., and
Watkins, M. M.: JPL GRACE Mascon Ocean, Ice, and Hydrol-
ogy Equivalent Water Height Release 06 Coastal Resolution Im-
provement (CRI) Filtered Version 1.0, Ver. 1.0, PO.DAAC, CA,
USA, [data set], https://doi.org/10.5067/TEMSC-3MJC6, 2018.

Xu, X., Medvigy, D., Powers, J. S., Becknell, J. M., and
Guan, K.: Diversity in plant hydraulic traits explains sea-
sonal and inter-annual variations of vegetation dynamics in
seasonally dry tropical forests, New Phytol., 212, 80–95,
https://doi.org/10.1111/nph.14009, 2016.

Yang, Y., Donohue, R. J., and McVicar, T. R.: Global es-
timation of effective plant rooting depth: Implications for
hydrological modeling, Water Resour. Res., 52, 8260–8276,
https://doi.org/10.1002/2016WR019392, 2016.

Yang, Y., Anderson, M., Gao, F., Hain, C., Noormets, A., Sun, G.,
Wynne, R., Thomas, V., and Sun, L.: Investigating impacts of
drought and disturbance on evapotranspiration over a forested
landscape in North Carolina, USA using high spatiotemporal
resolution remotely sensed data, Remote Sens. Environ., 238,
111018, https://doi.org/10.1016/j.rse.2018.12.017, 2020.

Yang, Y. T., Long, D., Guan, H. D., Scanlon, B. R., Simmons, C.
T., Jiang, L., and Xu, X.: GRACE satellite observed hydrolog-
ical controls on interannual and seasonal variability in surface
greenness over mainland Australia, J. Geophys. Res.-Biogeo.,
119, 2245–2260, https://doi.org/10.1002/2014jg002670, 2014.

Yu, L., Fatichi, S., Zeng, Y., and Su, Z.: The role of vadose
zone physics in the ecohydrological response of a Tibetan
meadow to freeze–thaw cycles, The Cryosphere, 14, 4653–4673,
https://doi.org/10.5194/tc-14-4653-2020, 2020.

Zeng, Y., Su, Z., Calvet, J. C., Manninen, T., Swinnen, E., Schulz, J.,
Roebeling, R., Poli, P., Tan, D., Riihelä, A., Tanis, C. M., Arslan,
A. N., Obregon, A., Kaiser-Weiss, A., John, V. O., Timmermans,
W., Timmermans, J., Kaspar, F., Gregow, H., Barbu, A. L., Fair-
bairn, D., Gelati, E., and Meurey, C.: Analysis of current valida-
tion practices in Europe for space-based climate data records of
essential climate variables, Int. J. Appl. Earth Obs., 42, 150–161,
https://doi.org/10.1016/j.jag.2015.06.006, 2015.

Zeng, Y., Su, Z., Barmpadimos, I., Perrels, A., Poli, P., Boersma, K.
F., Frey, A., Ma, X., de Bruin, K., Goosen, H., John, V. O., Roe-
beling, R., Schulz, J., and Timmermans, W.: Towards a Traceable
Climate Service: Assessment of Quality and Usability of Essen-
tial Climate Variables, Remote Sens., 11, 1186, 2019.

Zhang, L., Dobslaw, H., Stacke, T., Güntner, A., Dill, R., and
Thomas, M.: Validation of terrestrial water storage variations as
simulated by different global numerical models with GRACE
satellite observations, Hydrol. Earth Syst. Sci., 21, 821–837,
https://doi.org/10.5194/hess-21-821-2017, 2017.

Zhuang, R., Zeng, Y., Manfreda, S., and Su, Z.: Quantifying Long-
Term Land Surface and Root Zone Soil Moisture over Tibetan
Plateau, Remote Sens., 12, 509, 2020.

https://doi.org/10.5194/hess-26-1089-2022 Hydrol. Earth Syst. Sci., 26, 1089–1109, 2022

https://doi.org/10.1002/2014JB011547
https://doi.org/10.1007/s00382-012-1572-0
https://doi.org/10.1016/j.epsl.2008.10.021
https://doi.org/10.5067/TEMSC-3MJC6
https://doi.org/10.1111/nph.14009
https://doi.org/10.1002/2016WR019392
https://doi.org/10.1016/j.rse.2018.12.017
https://doi.org/10.1002/2014jg002670
https://doi.org/10.5194/tc-14-4653-2020
https://doi.org/10.1016/j.jag.2015.06.006
https://doi.org/10.5194/hess-21-821-2017

	Abstract
	Introduction
	Methods
	Overview
	Model description
	Vegetation characteristics
	Vegetation fraction
	Plant-available soil water
	Runoff/infiltration coefficient

	Model calibration
	Model evaluation and analysis

	Results
	Model evaluation
	Calibrated parameters
	Model performance

	Importance of varying vegetation properties to TWS variability
	Local and regional scale
	Global scale


	Discussion
	Model performance
	Contribution to TWS variability

	Conclusions
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

