
Hydrol. Earth Syst. Sci., 26, 1019–1041, 2022
https://doi.org/10.5194/hess-26-1019-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Simultaneous assimilation of water levels from river gauges
and satellite flood maps for near-real-time flood mapping
Antonio Annis1,2, Fernando Nardi1,3, and Fabio Castelli2
1WARREDOC, University for Foreigners of Perugia, Perugia, Italy
2DICEA, University of Florence, Florence, Italy
3Institute of Water and Environment, Florida International University, Miami, USA

Correspondence: Antonio Annis (antonio.annis@unistrapg.it)

Received: 3 March 2021 – Discussion started: 8 April 2021
Revised: 26 October 2021 – Accepted: 27 January 2022 – Published: 22 February 2022

Abstract. Hydro-meteo hazard early warning sys-
tems (EWSs) are operating in many regions of the world
to mitigate nuisance effects of floods. EWS performances
are majorly impacted by the computational burden and
complexity affecting flood prediction tools, especially for
ungauged catchments that lack adequate river flow gauging
stations. Earth observation (EO) systems may integrate the
lack of fluvial monitoring systems supporting the setting up
of affordable EWSs. But, EO data, constrained by spatial
and temporal resolution limitations, are not sufficient alone,
especially at medium–small scales. Multiple sources of
distributed flood observations need to be used for managing
uncertainties of flood models, but this is not a trivial task
for EWSs. In this work, a near-real-time flood modelling
approach is developed and tested for the simultaneous assim-
ilation of both water level observations and EO-derived flood
extents. An integrated physically based flood wave genera-
tion and propagation modelling approach, that implements
an ensemble Kalman filter, a parsimonious geomorphic
rainfall–runoff algorithm (width function instantaneous unit
hydrograph, WFIUH) and a quasi-2D hydraulic algorithm, is
proposed. An approach for assimilating multiple stage gauge
observations is proposed to overcome stability issues related
to the updating of the quasi-2D hydraulic model states.
Furthermore, a methodology to retrieve distributed observed
water depths from satellite images to update 2D hydraulic
modelling state variables is implemented. Performances of
the proposed approach are tested on a flood event for the
Tiber River basin in central Italy. The selected case study
shows varying performances depending on whether local
and distributed observations are separately or simultaneously

assimilated. Results suggest that the injection of multiple
data sources into a flexible data assimilation framework
constitutes an effective and viable advancement for flood
mitigation to tackle EWS uncertainty and numerical stability
issues. Specifically, our findings reveal that the simultaneous
assimilation of observations from static sensors and satellite
images led to an overall improvement of the Nash–Sutcliffe
efficiency (NSE) between 5 % and 40 %, the Pearson corre-
lation up to 12 % and bias reduction up to 80 % with respect
to the open-loop simulation. Moreover, this combined
assimilation allows us to reduce the flood extent uncertainty
with respect to the disjoint assimilation simulations for
several hours after the satellite image acquisition.

1 Introduction

Floods represent one of the most costly and deadly natu-
ral disasters (EM-DAT, 2016), affecting annually on aver-
age more than 21 million people and producing economic
loss greater than USD 100 billion (Desai et al., 2015). The
ability to understand and predict floods represents a cru-
cial aspect of river basin management strategies (Knight and
Shamseldin, 2005). Numerical simulations of flood scenarios
are used for proper design of structural (e.g. levees, diver-
sion channels and dams) and non-structural mitigation mea-
sures (e.g. land use regulations, flood zoning, flood proofing,
flood forecasting and warning, disaster prevention, prepared-
ness and response; Thampapillai and Musgrave, 1985). Early
warning systems (EWSs) are nowadays increasingly used for
the timely detection of flood events (Kundzewicz, 2013).
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EWSs generally require integrated geospatial modelling
of floodplain domains supporting integrated topographic–
hydrologic–hydraulic modelling chains to produce inunda-
tion predictions (Krzhizhanovskaya et al., 2011). Digital ter-
rain models (DTMs) and rainfall and runoff observations
are required by EWSs for flood nowcasting and forecasting
(Grimaldi et al., 2016). In the case of medium-term fore-
cast (i.e. days/weeks ahead), rainfall and runoff observations
are not sufficient, and numerical weather prediction (NWP)
models are required, especially for basins whose concentra-
tion time is limited so that emergency measures, such as
evacuation, cannot be properly applied on time (Hopson and
Webster, 2010). In this regard, recent advances in NWP mod-
els in weather forecasting were developed to adopt ensem-
ble prediction systems (EPSs) (Buizza et al., 2005) as in-
puts of hydrological and hydraulic models. Flood models are
computer- and data-intensive applications with input data re-
quirements (i.e. accuracy and distribution) that are often un-
met, especially river flow observations (Wing et al., 2020).
As a result, EWSs suffer from several occurring uncertainties
associated with boundary conditions, numerical parametriza-
tions and discretizations of floodplain features and processes
(Demeritt et al., 2007). The calibration and validation of
flood models for data-scarce regions constitute, thus, a signif-
icant challenge for flood modellers who are often compelled
to understand and manage parameter and output uncertain-
ties (Moradkhani et al., 2005; Hostache et al., 2011; Liu and
Gupta, 2007).

Data assimilation (DA) methods represent effective means
of reducing these uncertainties (Cloke and Pappenberger,
2009). DA improves EWS performances by adjusting flood
model parameters, input, output or state variables using avail-
able observations. DA models are used both in NWP and
hydrologic–hydraulic modelling.

Advances in EPS approaches and increasing of compu-
tational power allowed the accuracy of NWP models to be
improved as inputs of flood forecasting systems (Yu et al.,
2016). Successful examples of advanced EPS approaches in
NWP models for flood forecasting services at large scale are
the EPS-ECMWF, from the European Centre for Medium-
Range Weather Forecasts (De Roo et al., 2003), and the
COSMO-LEPS, from the Consortium for Small-Scale Mod-
elling – Limited-area Ensemble Prediction System (Marsigli
et al., 2005).

Flood models can be updated in DA approaches by in-
gesting outputs of NWP models or direct rainfall–runoff ob-
servations. Stream gauge observations are the most used for
updating hydrologic (McLaughlin, 2002; Moradkhani et al.,
2005; Liu and Gupta, 2007) and hydraulic (Madsen and
Skotner, 2005; Neal et al., 2007) model variables. How-
ever, single (or sparse) gauging stations generally fail to
provide accurate flow observations during extreme events
due to the distributed complex nature of flood processes
(e.g. split flows, tributary junctions, overbank flow condi-
tions and bridge overtopping). This is particularly critical for

EWSs covering secondary ungauged river networks (Bianca-
maria et al., 2011; Mason et al., 2012). Moreover, we are ob-
serving a global decrease of the gauging stations in the river
network (Stokstad, 1999; Sivapalan et al., 2003; Schumann
et al., 2015).

To tackle these issues, in the last 10 years, Earth obser-
vation (EO) data have been used to inject water altimetry
observations in DA frameworks for updating flood models,
usually adopting radar synthetic aperture radar (SAR) tech-
nologies and 1D (Matgen et al., 2007; Neal et al., 2009;
Matgen et al., 2010; Giustarini et al., 2011) or 2D (An-
dreadis et al., 2007; Hostache et al., 2010; Mason et al., 2012;
García-Pintado et al., 2013; Andreadis and Schumann, 2014)
hydraulic routing algorithms. One of the critical issues of
the model state updating is the persistence of the improve-
ments of the model performances. Regardless of the DA al-
gorithm (e.g. direct insertion, particle filter (PF), EnKF), the
assimilation of the model states in real and synthetic scenar-
ios caused more accurate predictions immediately after the
updating step, and they quickly decrease, depending on the
specific case study, a few hours or even a few minutes af-
ter the state updating, going back to the same performances
of the open-loop model realization (Andreadis et al., 2007;
Matgen et al., 2010; García-Pintado et al., 2013; Andreadis
and Schumann, 2014). Some of these studies demonstrated
that the updating of inflow boundaries can increase the per-
sistence of the error reductions between the observations in
both 1D (Matgen et al., 2010) and 2D (Andreadis et al., 2007;
García-Pintado et al., 2013) hydraulic models. Other studies
investigated the spatial weighting of remote-sensing-derived
water level observations in DA approaches (Grimaldi et al.,
2016). For example, Giustarini et al. (2011) found significant
benefits in a local weighting procedure of assimilating unbi-
ased, very precise water levels observations, while a global
weighting procedure is recommended for water level obser-
vations in ungauged basins. However, if the local weight-
ing is combined with poorly spatially distributed field data,
the model updating can lead to an over-correction that could
even decrease the overall model performances. In fact, the
frequency of the model corrections seems to be effective
mostly during the rising limb of the flow hydrograph, while
it seems not to be significant efficient during the recession
limb (Giustarini et al., 2011; García-Pintado et al., 2013).
García-Pintado et al. (2015) proposed a novel methodology
to test the performance of a global formulation, a traditional
local formulation and their own novel local formulation of
the EnKF model to improve the forecast of a 2D hydraulic
model assimilating SAR-derived water levels. Their novel lo-
cal formulation of the EnKF was able to remove the unphysi-
cal relationships and spurious correlations that characterized
the global filter. The authors also proved that the updating
of the 2D hydraulic model friction and channel bathymetry
seems to have a second-order effect, with respect to the in-
flow updating, in flood inundation models applied to grad-
ually varied flow in large rivers. Andreadis and Schumann
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(2014) applied a local EnKF for assimilating synthetic SAR-
derived water levels, inundation width and flood extent in a
2D hydraulic model, partitioning the Ohio River (516 km) in
reaches of equal lengths. The authors obtained similar results
for reach lengths varying from 5 to 50 km.

Beside satellite-derived altimetry, in the last years SAR-
derived inundation extent mapping techniques have been
tested to provide spatially distributed information to support
near-real-time flood detection services (Martinis et al., 2015;
Pierdicca et al., 2009).

There are recent examples of DA research proving the
value of assimilating satellite images for diverse purposes. In
this regard, several aspects have been investigated to assim-
ilate flood extent observations in a flood forecasting frame-
work, such as the relation between the flood extent and the
model state variable, the updating of the model inflows and
parameters, the impact of the typology, the timing, the lo-
cation and the frequency of the satellite-derived flood ex-
tent observations on the performances of the DA perfor-
mances. Lai et al. (2014) applied a variational data assimila-
tion (4D-Var) method for updating the friction (i.e. Manning
the values) of a 2D hydraulic model based on shallow wa-
ter equations proposing a novel cost function able to relate
the satellite-derived flood extent to indirectly observed flood
depths. Revilla-Romero et al. (2016) proposed an EnKF ap-
proach for updating the streamflow values and the param-
eters of a global rainfall–runoff (LISFLOOD) model using
flood extent observations gathered from the Global Flood
Detection System (GFDS). Hostache et al. (2018) proposed a
PF approach for updating a high-resolution hydraulic model
directly using ENVISAT ASAR-derived water extents for
near-real-time flood forecasting. The authors analysed im-
proved performances of EWSs in reducing water level es-
timation errors when compared to open-loop (OL) simula-
tions (i.e. not updating flood state variables with observa-
tions). Hostache et al. (2018) underlined opportunities of
SAR images, overcoming visibility issues of optical sensors
due to clouds, but also stressed some limitations of water al-
timetry approaches. In particular, the need of high-resolution
topographic data, challenging preprocessing and hydraulic
modelling development make SAR-derived DA approaches
hard to replicate and to be applied at varying scales (Ma-
son et al., 2012; Wood et al., 2016). Dasgupta et al. (2021b)
proposed a novel mutual-information-based likelihood func-
tion for assimilating SAR-derived flood extents in a high-
resolution 2D hydraulic model adopting a PF approach. Das-
gupta et al. (2021a) investigated the timing, the positioning
and the frequency of the SAR-derived flood extents, in the
performances of the PF assimilation of a 2D hydraulic model,
finding that the optimal strategy for the image acquisition de-
pends on the river morphology and flood wave arrival timing.
Moreover, it was found that the number of observations to
significantly improve the performances of the DA model in-
creases with the narrowing of the floodplain valley.

Despite the remarkable progress in the integration of re-
motely sensed observations in DA frameworks, there are
still major challenges (Grimaldi et al., 2016). For exam-
ple, an approach able to assimilate heterogeneous observa-
tions from both local and distributed datasets coming from
different sources (i.e. traditional stage gauges and remotely
sensed flood extents) is still missing. Moreover, quasi-2D
and 2D hydraulic models can be sensitive to different simul-
taneous local state updating (i.e. water level corrections at
specific time steps) because contiguous channel–floodplain
cells can be characterized by different elevations, geometry
and roughness; therefore instability issues can rise during
the model state corrections with standard localization tech-
niques. Another critical issue is that large-scale flood fore-
casting models need to provide timely predictions, but their
spatial resolution can limit the effectiveness of the assimi-
lation of satellite-derived flood extents if limited changes of
water depths do not imply significant changes in flood ex-
tension and if the model does not have a sufficient resolution
(Hostache et al., 2018).

In this work, a DA framework supported by heterogeneous
observations coming from both local water level observa-
tions (i.e. stage gauges) and spatially distributed informa-
tion gathered from satellite images is proposed and tested.
This research seeks to develop a more flexible DA scheme
that may value all available sources of observations for dis-
tributed flood modelling updates. The aim of this work is
to mitigate flood prediction uncertainties by combining het-
erogeneous data and an integrated topographic–hydrologic–
hydraulic modelling approach while maintaining inundation
forecasting robustness, scalability and numerical stability. In
achieving this goal, novel scientific advances and technical
challenges of EO-driven DA approaches for flood predic-
tion are investigated, in particular, a methodology for updat-
ing the state variable from multiple local stage gauge (SG)
observations, propagating the state variable corrections in-
stead of applying localization in a hydraulic model for dis-
tributed flood routing in floodplain domains, and the gather-
ing of spatially distributed water level observations by means
of flood extension processing and detection from satellite im-
ages, also adopting GIS-based algorithms for overcoming the
issues of the different resolutions between the ensembles of
the flood extents retrieved from the satellite-derived images
and the ones generated from the hydraulic model simula-
tions. This work conceptualizes and tests a framework for up-
dating state variables of a quasi-2D hydraulic model adopting
the ensemble Kalman filter (EnKF) method to take advantage
of observations gathered from heterogeneous sources. The
Tiber River basin in central Italy is selected as a case study
that was recently the subject of flood events at the mesoscale
level (approximately 100 km2 of flood-prone domain) to in-
vestigate on improved flood modelling performances.

The paper is organized as follows: Sect. 2 describes the
adopted hydrologic, hydraulic and DA modelling method-
ologies. Section 3 illustrates the case study, the available
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data and the proposed DA implementation procedure. Sec-
tion 4 discusses case study results, while Sect. 5 provides
conclusive remarks underlining advantages, limitations and
suggested future developments of this research.

2 Methods

2.1 Hydrologic and 2D hydraulic modelling

The physically based quasi-2D hydraulic model (FLO-2D;
O’brien et al., 1993) was selected for flood wave routing
and propagation. In fact, the regular grid mesh of its com-
putational domain and the open format of the input and out-
put files mean that the model can be integrated into a data
assimilation framework. The model solves the differential
form of the dynamic wave approximation of the de Saint
Venant equations with a central, finite difference numerical
scheme. The numerical solution is applied along the river
flow path for in-channel 1D flood wave routing and for out-
of-channel unconfined flood propagation considering eight
potential flow directions in a bidimensional (2D) domain.
Channel and floodplain grid cells are assigned an absolute
elevation, defining the floodplain and channel top surface
topography. Channel conveyance capacity is considered by
assigning a cross section to each cell with top banks asso-
ciated with the corresponding floodplain cell elevation. The
channel–floodplain flow exchange is simulated to take into
account over-bank and return flows within the riverine sys-
tem. River and floodplain bridges, culverts, levees and any
obstruction within the simulation domain are simulated in
FLO-2D by means of rating curve, width and areal reduction
factors. Two main boundary conditions were defined for the
application of the quasi-2D model: (a) the floodplain domain
extent and (b) the hydrologic forcing from upstream for both
the main river stem (i.e. source node) and for the tributaries.

The upstream and tributary flow boundary conditions (b)
are derived by stage gauge observations (where available) or
from the application of a rainfall–runoff model (considering
rainfall observations are available at river basin scale). A par-
simonious hydrological model tailored for ungauged basins
was selected to simulate the hydrologic forcing following
Grimaldi et al. (2012) approach. This rainfall–runoff ap-
proach is based on the application of the geomorphic charac-
terization of the instantaneous unit hydrograph (IUH) adopt-
ing the WFIUH (width function IUH) method (Mesa and
Mifflin, 1986). In the WFIUH, the shape of the river basin re-
sponse to the rainfall forcing is associated with rainfall drop
residency time distribution. The width function (WF) distri-
bution may be expressed by estimating the flow paths and,
associated with each flow path, the travel time to reach the
outlet (Rodriguez-Iturbe and Rinaldo, 1997). The WFIUH
distribution is, thus, estimated by applying channel (vc(x))
and hillslope (vh(x)) velocities to their corresponding flow
paths Lc(x) and Lh(x):

WFIUH(t)=
Lc(x)

vc(x)
+
Lh(x)

vh(x)
. (1)

The WFIUH distribution can be estimated using the DTM
as main input information and applying terrain analysis al-
gorithms for river basin hydrologic processing (pit removal,
Jenson and Domingue, 1988; flow direction and flow accu-
mulation; Tarboton et al., 1991) to estimate flow paths at the
basin scale. Channel velocities are considered constant ac-
cording to Grimaldi et al. (2012). The hillslope velocity dis-
tributions vh are calculated according to NRCS (1997) as a
function of the local slope and land use (Haan et al., 1994;
McCuen, 2009). The adopted runoff modelling approach also
considers distributed rainfall input and related infiltration
losses using the SCS-CN method (Cronshey, 1986). Input
rain gauge observations are interpolated using the Thiessen
polygon methodology to properly assess distributed rainfall
input for the hydrologic model (Thiessen, 1911).

2.2 Data assimilation (DA) framework

A scheme of the whole DA framework with the reference
of the related sections is illustrated in Fig. 1. The ensem-
ble Kalman filter method (EnKF; Evensen, 2003) was se-
lected for DA application on the proposed 2D hydraulic mod-
elling approach. EnKF, widely used in literature for DA,
was selected for its efficiency in dealing with the significant
non-linear flood dynamics (Reichle et al., 2002). The EnKF
model is a sequential DA method that estimates the model
state at time t+1 (ht+1) based on the observations at the time
steps in which they are available. The DA process is charac-
terized by two steps: the forecast step and the updated step,
whose variables will be represented by the superscript − for
forecasting and + for updating. The method is based on en-
semble generations: the forecast (a priori) state error covari-
ance matrix P−t+1 is approximated propagating the ensemble
of the model states, according to the model errors expressed
as a noise termwt+1, from the previous time step; at the same
time, an ensemble of observations yt+1 at each update time
is generated according to their error distribution introducing
the noise term ηt+1. The updated probability density func-
tion (pdf) of the model states is given by a combination of
data likelihood and forecast pdf of the model states by means
of Bayesian update. Specifically, the posterior estimate of the
i element of the ensemble hi+t+1 is calculated using the obser-
vation yit+1, performing a linear correction with the Kalman
filter to the forecast state ensemble members:

hi+t+1 =h
i−
t+1+Kt+1

[
yit+1−

(
H
(
hi−t+1,θ

)
+ vit+1

)]
Kt+1 =

P−t+1H
T
t+1

Ht+1P
−

t+1H
T
t+1+R

y

t+1
, (2)

where Kt+1 is the Kalman gain matrix,H(. . .)t+1 is a propa-
gator relating the state variables to the measured variables
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Figure 1. Scheme of the data assimilation (DA) framework.

and providing the expected value of the output given the
model state, vit+1 is the sample of the observation errors and
R
y

t+1 is the variance of the observation error.
The performance of the ensemble forecast is influenced

by the spread of the ensemble Murphy (1988) and Anderson
(2001) but also by the ensemble size. The size has to be suf-
ficiently large to represent a statistically significant sample,
but at the same time it has to be computational efficient con-
sidering the purpose of the application (e.g. near-real-time
updating of a flood model). In this work, the approach pro-
posed by Anderson (2001) was selected. Therefore, the opti-
mal ensemble size was selected to reach a normalized RMSE
ratio (NRR) equal to 1.

The EnKF method application for the proposed quasi-2D
distributed hydraulic model was developed as follows. The
state variable ht+1 is associated with the water depth in a spe-
cific point of the computational floodplain domain. In case
the observation is a stage gauge measurement, the state vari-
able position is determined by identifying the closest channel
cell. The correction is then also applied to the closest flood-
plain cells and propagated upstream and downstream as illus-
trated in Sect. 2.2. In the case that the observation is gathered
from a satellite image, the EnKF method is applied to both
the channel and the floodplain cells for the entire computa-
tional domain as illustrated in Sect. 2.2.3, “Errors related to
satellite image observations”. The model error wt+1 is esti-

mated considering the uncertainties related to the input forc-
ing It+1 and the model parameters as explained in Sect. 2.2.
The observation yt+1 is a water depth value gathered indi-
rectly by the sensor. For this reason, the observation transi-
tion operation H introduced in Eq. (2) is an identity matrix,
showing a direct relationship between state variables and ob-
servations.

2.2.1 Model updating

Stage gauge observations

The application of the EnKF adopting one or more point
measurements as observations for updating the state vari-
ables of a physical model has been studied in depth in sci-
entific literature. Localization is a widespread method aimed
to both reduce/avoid spurious (unphysical) forecast error cor-
relations and reduce the dimension of the state vector (thus
reducing the computational time) in computationally heavy
models (Anderson, 2007; Hunt et al., 2007). Many localiza-
tion methods include distance-based approaches for speci-
fying the area of influence of an observation with a user-
specified distance (Ott et al., 2004; Sakov and Bertino, 2011).
Alternatively, there are adaptive localization methods (An-
derson, 2007; Bishop and Hodyss, 2009) aimed to remove
spurious correlations if distance-based localization is criti-
cal because of the model structure (Rasmussen et al., 2015),
for example using a “hierarchical ensemble filter”, where a
portion of ensemble filters is used to detect sampling error
(Anderson, 2007). Localization can be applied by assimilat-
ing independent local sub-domains (domain localization; Ott
et al., 2004) or multiplying the covariance of the forecast er-
ror by a Gaussian shaped correlation, which can be devel-
oped with a distance-based method (covariance localization;
Houtekamer and Mitchell, 1998), allowing observations to
be assimilated “serially” (Tippett et al., 2003). Alternatively,
observation localization (Hunt et al., 2007) applies the in-
verse of the above-mentioned distance-based correlation to
the covariance of the observation error and is demonstrated
to have a better performance than the covariance localization
in some applications (Whitaker and Hamill, 2002). García-
Pintado et al. (2015) are among the few cases in scientific lit-
erature in which localization (specifically observation local-
ization) is applied to a 2D hydraulic model. The authors took
into account the physical connectivity of flows proposing a
novel distance-based metric approach that considers chan-
nel network distance (instead of only Euclidean distance) for
weighting the covariance of the observation error and im-
proving their model forecast skill with respect to the global
filter and the traditional observation localization filter based
on the Euclidean distance weight. Observation localization
can be applied considering absolute water levels (with re-
spect to the average sea level) or water depths (with respect
to the terrain elevation). However, river water depths can dra-
matically change among contiguous cells of the hydraulic
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domain, for example, moving from a channel to a floodplain
cell or because of changes of the local geometry (e.g. cross
section shape). In fact, usually, stage gauge measurements
are located under hydraulic structures such as bridges, where
the geometry of the cross section (that can be reshaped to
be adapted to the bridge geometry) can have large differ-
ences with respect to the surrounding natural cross sections.
Therefore, the localization techniques should be better ap-
plied to absolute water levels. For this work, an observation
localization technique (García-Pintado et al., 2015) applying
a weight to the error covariance (i.e. a distance metric also
based on a channel network distance) was implemented. A
fifth-order polynomial along-channel distance-based weight-
ing function (Gaspari and Cohn, 1999) to correct the observa-
tion error covariance matrix corresponding to a local analysis
domain was applied. However, even by changing the scale
length of the correlation function, instability issues were en-
countered when updating the water levels far from the obser-
vation location, especially in those areas with a higher chan-
nel slope, because the of the changes of terrain elevation from
upstream to downstream. Therefore we proposed a simplified
methodology that aimed to assimilate observations at stage
gauge locations and propagate water depths correction (the
difference between the posterior and the forecast state vari-
ables) for the surrounding channel and floodplain cells. The
along-channel upstream and downstream water level correc-
tion is performed, applying a distance-based gain function by
adopting an approach similar to Madsen and Skotner (2005):

g (xk)= A · exp

(
−

1
2

(
g′ (xk)

1/3

)2
)
, (3)

where g(xk) is the gain assigned to the k cell, A is the gain
amplitude (assumed equal to 1), and the g′(xk) term is ex-
pressed as

g′ (xk)=

{
xobs−xk
xobs−xuc

, xuc ≤ xk ≤ xobs
xk−xobs
xdc−xobs

, xobs ≤ xk ≤ xdc
, (4)

where xobs, xk , xuc and xdc are the linear coordinates along
the channel of the cell with the observation, the k cell to be
updated, and the upstream and downstream bounds for the
gain function, respectively. The last two terms allow us to
consider how far the updating could be inferred to correct the
flood water profile. The gain function also allows more than
one observation to be injected into the DA for the same time
step. The bounds of the gain for a k cell are limited by the
position of the closest stage gauge cells. Figure 2 provides a
scheme of the adopted channel and floodplain model updat-
ing, depicting the propagation of the gain function upstream
and downstream with respect to the observation point. The
same correction at the k cell is then assigned to the flood-
plain cells closest according to a distance measure along the
flow path. Furthermore, in order to properly assimilate more
than one stage gauge observation, the channel segment (and

its floodplain) that falls between two different simultaneous
stage observations is updated, weighting the observation val-
ues by a multiplying factor, expressed as the inverse of the
distance between the observation and target channel cells.
The water level correction for the k cell 1H(xk) is given
by the following expression:

1h(xk)

=

1h
(
xobs,u

)
· g
(
xk,u

)
·

1
xk−xobs,u

+1h
(
xobs,d

)
· g
(
xk,d

)
·

1
xobs,d−xk

1
xobs,d−xobs,u

, (5)

where 1h(xobs,u) and 1h(xobs,d) are the water level updates
in the upstream and downstream stage gauges respectively,
g(xk,u) and g(xk,d) are the gains relative to the upstream
and downstream observation respectively, and xobs,u and
xobs,d are the linear coordinates along the channel of the
upstream and downstream cells of the observation respec-
tively. When the gain function is propagated upstream, and
the water level correction is positive, a water profile counter-
slope may be inferred, causing a numerical instability issue
in the hydraulic model. To avoid this issue, a further con-
dition was imposed: the absolute water level in the channel
cell h+abs(xk), cannot be lower than the adjacent downstream
channel cell h+abs(xk+1):

h+abs (xk)=

{
h−abs (xk)+1h(xk) , h+abs (xk)≥ h

+

abs (xk+1)

h+abs (xk+1) , h+abs (xk) < h
+

abs (xk+1)
. (6)

The proposed simplified updating approach allows the di-
mension of the state vector to be remarkably reduced, con-
sidering only the locations with observations; therefore it
is expected to avoid filter convergence issues while pursu-
ing acceptable computational efficiency. The model updating
procedure is invoked at each time step when one or more
observations become available. The hydraulic simulation is
stopped, saving distributed floodplain water levels and vol-
ume conservation to binary files. Then, the EnKF is applied,
and the water depth corrections are applied to update model
states in the binary files.

Satellite image observations

The assimilation of flow depths derived from satellite image
processing is developed following three main steps:

1. flood detection from satellite image(s);

2. comparison of the flood extent detected from the satel-
lite image with the ensemble of flood extents simulated
by the hydraulic model;

3. derivation of the water depth distribution related to the
satellite image starting from the ensemble of the water
elevation distributions of the hydraulic model.
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Figure 2. Scheme of the cells updating in the channel and floodplain
domain adopting a gain function that assimilates the stage gauge
measurements.

1. The proposed methodology aims to be applicable to
both multispectral and SAR images to take advantage of
all available satellite observations of a flood event. Con-
sidering multispectral images suffer from significant
limitations due to cloud cover and light conditions, the
modified normalized difference water index (MNDWI)
proposed by Xu (2006) is applied. The MNDWI is ex-
pressed as

MNDWI=
ρbg− ρbm

ρbg+ ρbm
, (7)

where ρbg and ρbm are the reflectance indices of the
green and mid-infrared (MIR) bands respectively. For
SAR images, the image histogram thresholding method-
ology is implemented following Brivio et al. (2002).

2. The satellite-detected water extension is, then, com-
pared with the flood extension ensemble simulated by
the hydraulic model (HM) at the time step of the satellite
image’s acquisition date. In order to avoid the impact of
resolution issue on the comparison, the simulated flood
raster is downscaled at the same resolution of the satel-
lite image by following this procedure:

– The water surface elevation is interpolated at the
satellite image resolution by applying the Krig-
ing method (Matheron, 1969; Oliver and Webster,
1990) using the maximum floodplain extent poly-
gon.

– The interpolated water surface elevation (WSE) is
intersected with a high-resolution DTM to flag pos-
itive values as potentially flooded.

The two raster flood maps (water extension from SI and
from HM) are, then, quantitatively compared by ap-
plying the measure-of-fit F index (Horritt and Bates,
2001):

F =
A

A+B +C
. (8)

For the generic k cell pertaining to the hydraulic mod-
elling domain, the satellite-derived indirectly observed
water depth hko,t at the time t is expressed as

hko,t = h
k
m,i1,t ·

Fi1

Fi1 +Fi2
+hkm,i2,t ·

Fi2

Fi1 +Fi2
, (9)

where Fi1 and Fi2 are the two best-fitting flood maps
from the ensemble of the HM compared to the flood ex-
tent from the SI, and hkm,i1,t and hkm,i2,t are their related
the flow depths of the k cell at time t .

2.2.2 Model errors

The uncertainty related to model errors is numerically man-
aged within the proposed DA by perturbing the following:

– the hydrologic forcing input given by the upstream
static sensors and the rainfall–runoff modelling output;

– the hydraulic model parametrization associated with
channel roughness, expressed by the distributed Man-
ning coefficients.

In both cases, the flow discharge values at time t of the s in-
put for the i element of the ensemble are expressed using a
similar approach to García-Pintado et al. (2013). The matrix
of inflow errors is expressed as the composition of a tem-
porally correlated error and a heteroscedastic error, whose
variance is proportional to the flow value at time t . The
temporally correlated error for the i ensemble member, qis,t ,
evolves individually according to the expression proposed by
Evensen (2003):

qis,t = ρt · q
i
s,t−1+

√
1− ρ2

t N (0,Rs) , (10)

where ρs,t is a temporal autocorrelation coefficient, and
N(0,Rs) is a white noise with a given variance Rs. The tem-
poral autocorrelation coefficient between two time steps t
and t +1t is imposed as a function of 1t and a specified
time decorrelation length τ (Evensen, 2003) as follows:

ρt = e
−
1t
τ . (11)

The variance Rs of the white noise is imposed equal to 1
(Evensen, 2003). This spatially independent value is reason-
able for SG-derived flows which should not include spatial
correlation errors, since errors and uncertainties in SG mea-
surements should not depend on the gauge position. On the
other hand, the variance RI related to an input derived from
the hydrological model should depend on the distance be-
tween the locations of the other inflows, considering that
the precipitation field is the main input forcing of the hy-
drologic model and one of the most impacting factors in
flood mapping uncertainties for hydrologic–hydraulic mod-
elling (Annis et al., 2020). Therefore, the spatial correla-
tion Rx,yI between two inflow errors x and y, i.e. expressed
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with a Gaussian-decay correlation model (García-Pintado
et al., 2009), is

R
x,y
I = e

−
1
2
dx,y
θ , (12)

where dx,y is the distance between the x and y locations, and
θ is a spatial correlation coefficient.

As proposed by García-Pintado et al. (2013), the matrix
of the heteroscedastic error is obtained as the element-wise
product of the above-mentioned temporally correlated error
with the following factor:

σ is,t =

√(
αs ·Q

os
s,t
)b (13)

where Qos
s,t is the SG-derived or simulated streamflow value

by the s input at time t , αs is the coefficient of variation
related to the uncertainty of the discharge and b is a het-
eroscedasticity factor. Equation (13) infers the intuitive prin-
ciple that high discharge values are more uncertain than low
values. The resulting heteroscedastic error is then applied to
the term γQos

s,t , where γ is a multiplicative bias factor.
The uncertainty related to discharge observations gath-

ered from static sensors (SG) is the sum of two components
(Clark et al., 2008): the estimation of the water level from the
static sensor reading (EWL) and the conversion of the wa-
ter level into discharge using the fluvial cross section rating
curve (ERC). In this work, the coefficient of variation related
to the static sensor was set to αSG = 0.1, where αEWL = 0.1
(Weerts and El Serafy, 2006; Clark et al., 2008; Rakovec
et al., 2012b), and αERC is considered negligible with respect
to the αEWL (Di Baldassarre and Montanari, 2009). The co-
efficient of variation related to the input provided by the hy-
drologic model (αI) can be derived from a validation analysis
of the hydrologic model that calculates the distribution of the
simulated flow errors. For both uncertainties related to SG
and I , γ and b values were set equal to 1.

In addition to the uncertainty due to the hydrologic forc-
ing, the uncertainty related to the channel roughness is also
considered as follows (Clark et al., 2008; McMillan et al.,
2013):

pis = ps+U
(
−εp ·ps,+εp ·ps

)
, (14)

where pis is the perturbed model parameter for the i element
of the ensemble, ps is the calibrated model parameter and
εp is the fractional parameter error.

To avoid potential systematic underestimation of the
model covariance error due to the limited ensemble size
(overconfidence in prior estimates), the inflation method
(Anderson, 2001) was implemented. The percentage of in-
crement of the ensemble forecast anomalies can be consid-
ered as constant (Anderson and Anderson, 1999; Whitaker
and Hamill, 2002) or time-variant (Ott et al., 2004), such
as a ratio between a user-defined standard deviation with
respect to the forecast standard deviation error (Rasmussen
et al., 2015), or between the forecast and the updated forecast

standard deviation (García-Pintado et al., 2015). In this work
we adopted the first approach where, according to Evensen
(2003), each i element of the forecast state variable hi−t is
expressed as follows:

hi−t = λ
(
hi−t −h

−
t

)
+h−t , (15)

where λ is an input inflation parameter imposed equal to 1.01
(Evensen, 2003), and h−t is the average value of the state vari-
able ensemble at time t .

2.2.3 Observation errors

Errors related to stage gauge observations

The errors associated with observations of the SG within the
floodplain domain are considered by performing a perturba-
tion of the observed value using a similar approach adopted
for perturbing the input flow from stage gauges, as a combi-
nation of a temporally correlation error (Eq. 10) and a het-
eroscedastic error expressed as

σ iSG,t =

√(
αSG ·h

obs
SG,t

)b
, (16)

where hobs
SG,t is the observed water level value by the static

sensor at time t . In this case, there is no error due to the rating
curve application, considering the water level observations
are directly compared to the simulated ones; therefore the
coefficient of variation αSG is assumed to be equal to 0.02 m
(Schmidt, 2002; Pappenberger et al., 2006).

Errors related to satellite image observations

The procedure adopted for deriving water depth distributions
from satellite images is affected by a series of errors that must
be taken into account and in particular the following:

– Error in the water surface detection from satellite im-
ages. This error is due to the water detection technique
that could overestimate or underestimate the flood ex-
tension. Both multispectral and SAR image process-
ing for water extent mapping require a threshold to
apply in the water index and the backscatter coeffi-
cient respectively. Literature values of these threshold-
ing values could lead to inaccuracies considering opti-
mal threshold values are usually case-study- or event-
specific; therefore, a perturbation of the threshold value
is performed by adopting a normal distribution with
zero mean and a standard deviation derived from litera-
ture values (Pierdicca et al., 2009).

– Error of the water surface extraction from the simulated
WSE of the hydraulic model. This error is mainly due to
the vertical error of the DTM that is used in the water
surface elevation interpolation procedure. The generic
i-DTM of the ensemble is perturbed by generating a
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vertical error with a normal distribution characterized
by a zero mean and a variance that is uniformly dis-
tributed between 0 and 0.3 m, U(0,0.3), according to
literature values (Hodgson and Bresnahan, 2004; Leon
et al., 2014; Brouwer et al., 2017). Considering the pro-
posed normally distributed independent errors do not
take the spatial continuity of the elevation data into ac-
count (Raaflaub and Collins, 2006; Heuvelink et al.,
2007), a GIS algorithm for inferring spatially auto-
correlated errors is applied. A correlation distance er-
ror (CDE) equal to 100 m is applied according to Li
et al. (2011), Livne and Svoray (2011), Mudron et al.
(2013) and Leon et al. (2014). The above-mentioned
GIS algorithm includes the following steps: (1) gen-
eration of a raster (NR) of random values with a nor-
mal Gaussian distribution (µ= 0, s = 1) for the entire
extension of the DTM, (2) generation of a raster (SR)
with the average of the NR values within a neighbour-
hood equal to CDE, (3) creation of a error distribution
raster (Err) that divides the SR raster by its spatially av-
eraged standard deviation and multiplies the result for
the adopted variance U(0,0.3) and (4) addition of the
Err raster to the original DTM.

– Error of the water depths derived from the ensemble
of hydraulic modelling. Equation (9) assumes a lin-
ear relationship between water depth values of two hy-
draulic profiles and the weight associated with their rel-
ative F indexes, expressing the comparison with the ob-
served water extension from SI. The application of this
weighted mean of the simulated water depths could lead
to an inaccuracy in the vertical estimation of the water
depths, especially at the boundaries of the two different
simulated flood extents. The perturbation error due to
the profile derivation for the i element of the ensemble
and the generic k cell is expressed as a random uniform
noise:

erri,kPD = U
(
c ·1hk12,+c ·1h

k
12

)
, (17)

where 1hk12 is the water level difference at the k cell
of the two best-fitting hydraulic simulations (see Eq. 9),
and c is a coefficient ranging between 0 and 1, consider-
ing that the gentle terrain slopes in floodplains limit the
error of water depths derivation in an interval smaller
than 1hk12.

3 Case study: available data and DA implementation

3.1 The Tiber River in central Italy

The selected case study is represented by the Tiber River up-
stream of the city of Rome (Fig. 3). The fluvial transect goes
from the village of Orte Scalo to the northern boundary of
the city of Rome corresponding to the Castel Giubileo dam.

Figure 3. Map of the study basin with the contributing lateral river
basins, the model boundaries and the reference gauge stations.

The entire floodplain domain of the Tiber Orte–Castel Giu-
bileo transect has an extension of 5881 km2, with a main
tributary represented by the Nera River (drainage area of
4180 km2) and 15 minor ungauged tributaries draining into
the selected fluvial domain. The Tiber river at the upstream
Orte boundary section has a drainage area of 8400 km2,
while at the downstream end of Castel Giubileo the drainage
area is 14 850 km2 (total Tiber River basin catchment area
at the Tyrrhenian sea outlet is approximately 17 400 km2).
The floodplain domain is mostly characterized by agricul-
tural use, but major road and railway infrastructures were de-
veloped to connect several urbanized areas along the Tiber
floodplain with the four main towns of Orte Scalo, Fiano
Romano, Monterotondo and the northern part of the city
of Rome that have been subject to frequent floods in Jan-
uary 2014, November 2012, November 2010 and Novem-
ber 2005, causing damage to buildings, roads and bridges.
This floodplain domain also has a strategic importance for
the flood risk mitigation of the city of Rome, considering
flood volume accumulation in this domain determines a sig-
nificant flood peak attenuation that propagates through the
historical city centre. Understanding, monitoring and pre-
dicting flood scenarios in this fluvial domain is crucial for
protection of the socio-economic and cultural assets of the
Italian capital city. The city of Rome EWS strictly relies on
the flood modelling predictions of the selected area.

3.2 Parametrization of the flood forecasting model

3.2.1 Topography and hydrologic modelling

Topographic data to represent the morphology of the se-
lected Tiber river subbasin domain were gathered from the
TINITALY 10 m resolution DTM (Tarquini et al., 2012) for
supporting the hydrologic modelling. Rainfall time series
for rainfall–runoff modelling were gathered from 94 rain
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gauges with a temporal frequency ranging from 1 to 15 min.
SCS infiltration method parametrization used fourth-level
CORINE Land Cover dataset gathered from the Istituto Su-
periore per la Protezione e la Ricerca Ambientale (ISPRA)
repository, with ancillary data for the lithology and per-
meability layers gathered from Autorità di Bacino Distret-
tuale dell’Appennino Centrale. The river basin terrain anal-
ysis procedure needed to provide WFIUH hydrologic mod-
elling input parameters used a value of 1 km2 to define stream
network source cells, a constant parameter that adequately
matched the fluvial network extension observed from aerial
images of the basin. WFIUH kinematic parameters were
calibrated using four small gauged basins (Naja, Niccone,
Puglia, Sovara) estimating channel flow velocities equal to
2 m s−1 and distributed hillslope flow velocities in the range
0.01 to 0.1 m s−1.

3.2.2 2D hydraulic modelling

The bathymetry needed to represent the channel conveyance
capacity in the hydraulic model was derived by interpo-
lating available surveyed cross sections. The continuity of
the channel–floodplain topographic domain was obtained us-
ing the available high-resolution lidar DTM (1 m resolu-
tion), gathered from Ministero dell’Ambiente e della Tutela
del Territorio e del Mare, that covers most of the selected
Tiber river floodplain area. Where lidar was not available,
the 5 m resolution DTM from Regione Lazio was used. The
floodplain grid cell resolution used for 2D flood unconfined
flow routing was set equal to 150 m to produce computa-
tionally efficient model runs. The consistency of the coarse-
resolution hydraulic model was validated by matching flood
simulations with available observations from three recent in-
undation events (November 2005, November 2010, Novem-
ber 2012). Available flood observations were also used to
calibrate the roughness parametrization. A constant Man-
ning coefficient for the channel equal to 0.04 m−1/3 and vari-
able Manning parameters for the floodplain, classified using
CORINE Land Cover classes, were calibrated. The 2D hy-
draulic model validation was performed by comparing sim-
ulations with available flood stage time series from seven
gauges that were used as floodplain control sections. This
also allowed the consistency of the numerical representation
of major urban features of the study domain to be verified.
Flow and stage rating tables available for the main bridges
and weirs gathered from the Centro Funzionale regionale del
Lazio were used to finalize the 2D hydraulic model valida-
tion.

3.3 DA implementation

The ensemble size for the application of the EnKF model
was defined, according to Anderson (2001), by analysing the
available stage gauges and the selected flood events. The op-
timal ensemble size was set equal to 40.

To define the temporal autocorrelation error (Eq. 11), a
time decorrelation length τ equal to 3 d was imposed, while a
spatial correlation coefficient θ was assumed equal to 60 km.
García-Pintado et al. (2013) considered these values as repre-
sentative of a spatially distributed or semi-distributed model
that ingests continuous rainfall field inputs after being cali-
brated with previous flood events.

The hydrologic model is affected by different sources
of uncertainties: the structural uncertainties, given by the
simplification of the modelled physical processes (e.g. we
adopted a WFIUH approach, neglecting groundwater flow,
mud and debris flow), the input uncertainties (given by the
rainfall values and antecedent soil moisture conditions) and
parametric uncertainties due to the inaccuracy of the model
calibration). These sources of uncertainty should be consid-
ered separately. For example, input rainfall uncertainty from
rain gauges can be estimated considering quantitative precip-
itation ensembles (Clark and Slater, 2006), such as sequen-
tial Gaussian simulations (Goovaerts, 1997; Rakovec et al.,
2012a). Precipitation ensembles generated with NWPs can
then be coupled with hydrologic models to improve flood
forecasting (Jasper et al., 2002; Sorooshian et al., 2008).
In this work we adopted a simplified procedure taking into
account all the modelling uncertainties considering the fre-
quency distribution of the errors between the observed and
simulated flow values obtained by the calibration and valida-
tion of four small tributaries of the Tiber River basin in past
flood events.

From the validation of the hydrologic model, the fre-
quency distribution of the relative flow errors was character-
ized by a mean equal to zero and a standard deviation equal
to 0.28 ·Qos; thus αI = 0.28 (Eq. 13).

The application of Eq. (14) to consider channel rough-
ness parametrization uncertainties resulted in a ps =

0.04 m−1/3 s−1 (according to the hydraulic model calibra-
tion), with εp assumed equal to 0.125. This limits the Man-
ning channel value variations between a minimum of 0.035
and a maximum of 0.45 m−1/3 s−1. The floodplain roughness
uncertainty was considered less significant considering that
the governing factor for the Tiber floods in the selected do-
main is the volume, while minor specific urban features and
singularities characterized the selected flood events. It is also
noted that, for the selected events, the flow is conveyed by
the channel for most of the simulation time.

A Landsat 7 image (acquisition date: 14 November 2012
– 09:43 LT) was processed using Eq. (7) to extract the ob-
served flood extension. Landsat 7 products are affected by
minor corruptions due to a failure of the satellite scan line
corrector (Scaramuzza and Barsi, 2005) that creates a data
void (i.e. empty stripes) in the water mask. These irregulari-
ties were analysed and interpolated, allowing us to overcome
this issue and define a correct delineation of the flood ex-
tension, clearly visible from the available Landsat 7 image.
Figure 4 shows the resulting flood detection map. The Land-
sat 7 image extension covers only a portion of the selected
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Figure 4. Extension of the water detected from the Landsat 7 image (acquisition date: 14 November 2012 – 09:43 LT) in the computational
hydraulic domain with the position of the Landsat acquisition time compared to the time series of the water depths in Nazzano and Ponte del
Grillo gauge stations.

study domain. The satellite image acquisition time is con-
sistent with peak flow conditions within these two gauging
stations (Fig. 4). A threshold value equal to 0 for MNDWI
was chosen (Xu, 2006). To apply the EnKF method, the vari-
ance of the random noise related to the threshold value of
MNDWI was set equal to 0.2.

4 Results and discussion

Three sets of DA scenarios were selected: (1) stage gauge ob-
servations, (2) satellite image observations, and (3) both SG
and SI. In the case of assimilation from SG-derived obser-
vations, two sub-scenarios were implemented: the simul-
taneous assimilation of four stage gauges (ASS 4SG) and
the assimilation of one upstream stage gauge, Ponte Felice
(ASS 1SG). These latter scenarios were introduced to anal-
yse how the model performance varies downstream far from
the observation location.

The 2005, 2010 and 2012 floods were selected for apply-
ing the DA framework using stage gauge observations. In the
case of scenarios 2 and 3, the Landsat 7 image, described in
Sect. 3, was assimilated for the 2012 flood event.

4.1 Assimilation of stage gauge observations

Figure 5 shows the comparison of observed and simulated
water level time series at Stimigliano, Nazzano and Ponte
del Grillo stations (16.6, 48.2 km and 59.1 km away from
the upstream Ponte Felice station respectively) for the 2005,
2010 and 2012 flood events. The first two flood events are
characterized by multiple peaks, whose rising and recession
curves are not properly represented by the open-loop (OL)
simulation. This limitation is probably due to the coarse res-
olution of the flood model. In fact, wetting and drying phe-
nomena along preferential flow pathways are usually influ-
enced by the microtopography of the domain and are bet-
ter represented in higher resolution models (Nicholas and
Mitchell, 2003; Neal et al., 2011). The simultaneous assim-
ilation of four stage gauges (ASS 4SG) is able to overcome
this issue, and the spread of assimilated ensemble at each
stage gauges is much lower than the one of the OL simu-
lation because of the small error associated with the stage
gauge observation as illustrated in Sect. 2.2.3, “Errors related
to stage gauge observations”. On the other hand, the assim-
ilation of the single upstream stage gauge (ASS 1SG) pro-
vides a slight benefit, with respect to the OL simulation, at
the closest stage gauge (Stimigliano), mostly for high values
of flow depths (e.g. at the peak of the 2012 flood event), while
it does not imply any substantial changes downstream, where
local inflow conditions and terrain geometry completely at-
tenuate the upstream water level corrections. Table 1 shows
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Table 1. NSE, R and bias for open-loop (OL), four stage gauges (A 4SG) and one stage gauge (A 1SG) data assimilation at Ponte Felice,
Stimigliano, Nazzano and Ponte del Grillo stations for the 2005, 2010 and 2012 flood events.

Event Station NSE R Bias

OL ASS 4SG ASS 1SG OL ASS 4SG ASS 1SG OL ASS 4SG ASS 1SG

Nov 2005

Ponte Felice 0.9 0.951 0.95 0.978 0.985 0.985 1.038 1.007 1.002
Stimigliano 0.617 0.92 0.62 0.955 0.969 0.956 0.978 0.997 0.978
Nazzano 0.306 0.442 0.304 0.893 0.889 0.893 1.014 0.993 1.014
Ponte del Grillo 0.482 0.688 0.479 0.895 0.926 0.894 1.022 1.004 1.023

Nov 2010

Ponte Felice 0.875 0.976 0.974 0.981 0.989 0.989 1.06 1.005 1.011
Stimigliano 0.553 0.924 0.553 0.94 0.968 0.941 0.963 0.994 0.964
Nazzano 0.674 0.9 0.672 0.884 0.952 0.885 1.036 0.994 1.036
Ponte del Grillo 0.386 0.835 0.385 0.795 0.924 0.796 1.104 0.989 1.105

Nov 2012

Ponte Felice 0.912 0.958 0.958 0.971 0.979 0.979 1.007 0.997 0.994
Stimigliano 0.85 0.94 0.869 0.965 0.974 0.968 0.953 0.993 0.957
Nazzano 0.688 0.849 0.688 0.841 0.927 0.844 1.018 1.005 1.021
Ponte del Grillo 0.641 0.832 0.638 0.826 0.925 0.829 1.037 1.016 1.046

the performance indexes for OL, ASS 4SG and ASS 1SG
simulations considering the stage gauge observations as true
values, given their low uncertainty. Bias is expressed as the
ratio of the sum of the observed and simulated water levels.
The scenario ASS 4SG improves the prediction of the wa-
ter levels in terms of Nash–Sutcliffe efficiency (NSE), R and
bias performance indexes (Table 1), while the performances
related to the scenario ASS 1SG decrease gradually down-
stream with respect to the assimilated gauge observation.
Note that the ASS 1SG performances are even slightly worse
than OL in Nazzano and Ponte del Grillo. This is due to the
fact that propagation of corrections related to faraway obser-
vation locations can be counterproductive (Giustarini et al.,
2011). Bias for OL and both ASS simulations tends to in-
crease above 1 in the downstream stage gauges because of
their overestimation of the water levels, especially in the re-
cession limb (that is less important for EWS). For the same
reason, for all the simulations, the further the flow is from
the upstream inflow, the more the R coefficient tends to de-
cay, but in the case of the ASS 4SG simulation, this decay is
mitigated.

Figure 6 shows the channel water depth profiles for three
different time steps (correspondent to three different posi-
tion of the peak flow along the channel) for ASS 4SG (left
panels), ASS 1SG (right panels) and OL (both right and left
panels) simulations for the November 2012 flood event. The
ASS 4SG scenario shows improvements in terms of reduc-
tion of ensemble spread in most of the channel domain with
respect to the OL simulation, even if the adopted gain func-
tion illustrated in Eq. (3) attenuates the correction mostly in
the downstream part of the domain, far from the flow ob-
servations. Note the assimilated water depths right upstream
of the Stimigliano stage gauge (second black dot from left)
because of the propagation of the water depth correction of
the upstream stage gauge (Ponte Felice). In the ASS 1SG

Figure 5. Water level time series at Stimigliano, Nazzano and Ponte
del Grillo stations (16.6, 48.2 km and 59.1 km away from the up-
stream Ponte Felice station respectively) for the 2005, 2010 and
2012 flood events: observations (black, Obs), open-loop simulations
(blue, OL), assimilation at four stage gauges (red, ASS 4SG) and
assimilation at one single upstream stage gauge (grey, ASS 1SG).
Observations are assimilated every 15 min.

scenario, the corrections of the water depths a respect to the
OL simulation are almost negligible in the downstream part
of the domain.

Spatial covariances of the assimilated flow depths (rep-
resented in Fig. 7 for a portion of the computational do-
main) increase with simulation time during the rising limb
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Figure 6. Plot of the channel water depth profiles for the open-loop simulations (blue, OL), assimilation at four stage gauges (red, ASS 4SG)
and assimilation at the one single upstream stage gauge (grey, ASS 1SG) at three different time steps. Event: November 2012.

for both assimilation scenarios (ASS 4SG and ASS 1SG),
but ASS 4SG shows lower values of covariance with respect
to the ASS 1SG simulation, especially close to the down-
stream SG location. This confirm that the quasi-2D hydraulic
model is able to improve its performances mostly if multiple
stage gauge observations are assimilated, since propagation
of corrections is attenuated by downstream inflows and local
geometry.

Figure 8 shows the impact of water level updating model
ASS 4SG on the simulated flood extent. In Fig. 8b a simu-
lated flood extension subset is shown considering the mean
levels of the OL and ASS 4SG simulations for the Novem-
ber 2012 event. The ASS SG flood extent simulations are on
average 6.5 km2 larger than the OL simulations. Major dif-
ferences are located in the flat areas where flood extents are
very sensitive to flow depth variations. In this figure, the res-
olution of the flood extension of the hydraulic model was
increased interpolating the water surface elevation at the 5 m
resolution DTM by applying the Kriging method and filter-
ing out the cells with lower resolution a respect to the 5 m
resolution DTM. This method can be, thus, accepted in the
case of long persistence (e.g. several hours) of water levels
at the same location, as in the selected case study. Inaccu-
rate flood extent mapping is expected for small basins with
low flood persistence. The application of this methodology
for smaller basins should require a higher flood model and
DTM resolution.

4.2 Assimilation of the satellite-derived flood extent
observations

Figure 9 shows the observed and simulated flood hydro-
graphs at Stimigliano, Nazzano and Ponte del Grillo stations
for both the OL and ASS models for the 2012 flood event.
The updated mean water levels at the SI acquisition time are
slightly higher and stay higher than the OL simulation for a
few hours. The spread of the ensemble of the ASS simulation
is significantly reduced in correspondence of the SI observa-
tion. This reduction is gradually damped until it completely
disappears in approximately 8 h. The improvement of simu-
lation NSE and bias for the SI assimilation case is not sig-
nificant (Table 2), considering that the updating persists for
only few hours, as shown in Fig. 9.

Figure 10a shows the reduction of the water level uncer-
tainty and the correction of the mean value along the chan-
nel profile at the SI acquisition time. Note that the proposed
methodology for gathering the indirectly observed satellite-
derived water depths allowed observations to be made at each
cell; therefore the EnKF is applied serially to the whole do-
main with positive depths values instead of only at the SG lo-
cations, thus avoiding increase of the water depth ensem-
ble spread in cells far from the SG locations as shown in
Fig. 6. Reduction of the spatial covariances right after the
SI acquisition time with respect to the OL simulation are
shown in Fig. 10b and c. Covariances for OL are much lower
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Figure 7. Map of spatial covariances for the assimilation of four stage gauges, ASS 4SG (a–c), and one stage gauge, ASS 1SG (d–f), at three
different time steps. Event: November 2012.

Table 2. NSE, R and bias for open-loop and SI assimilation simulations at Ponte Felice, Stimigliano, Nazzano and Ponte del Grillo stations
for the 2012 flood event.

Station NSE R Bias

Obs ASS SI Obs ASS SI Obs ASS SI

Ponte Felice 0.912 0.913 0.971 0.971 1.007 1.009
Stimigliano 0.85 0.853 0.965 0.965 0.953 0.954
Nazzano 0.688 0.691 0.841 0.843 1.018 1.019
Ponte del Grillo 0.641 0.643 0.826 0.828 1.037 1.039

than ASS SI, mostly along the channel cells. Covariances of
ASS SI simulation are also lower than the ones generated by
the ASS 4SG and ASS 1SG observations at the same step
(see the right panels of Fig. 7), especially far from the SG lo-
cations. The adopted updating procedure allows the flood ex-
tent of 4 km2 to be increased at the time of the SI acquisition
(see an inset of the flood extension in a flat area of the flood-
plain domain in Fig. 11), leading the false negative rate to be
reduced by 7 % and the false positive rate to be increased by
only 1 %. Note that the satellite-derived flood extent is con-
sidered a true flood map. Despite the smaller water level ob-
servation errors given by the stage gauge observations with
respect to the SI, the overall change of the mean flood ex-
tent between the OL and ASS SI simulations (14 %) does not
show significant differences as respect the stage gauge DA
(9 %).

Figure 12 shows the variability of bias, root mean square
errors (RMSEs) and standard deviation of the ensembles cal-
culated, starting from the time of the acquisition of the satel-
lite image and comparing OL and ASS modelling results
at Stimigliano, Nazzano and Ponte del Grillo stations. Im-
provements in terms of bias and RMSE are significant for
20 h after the SI acquisition, while the uncertainty reduction
(i.e. the difference in the ensemble amplitude between the
OL and ASS SI simulations) persists for 8 h. This behaviour
suggests that observations right after the SI assimilation step
(e.g. the SG observations) could benefit from the reduction of
the model uncertainty for the whole computational domain.
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Table 3. NSE, R and bias for open-loop and both SG and SI assimilation (ASS TOT) simulations at Ponte Felice, Stimigliano, Nazzano and
Ponte del Grillo station for the 2012 flood event.

Station NSE R Bias

Obs ASS TOT Obs ASS TOT Obs ASS TOT

Ponte Felice 0.912 0.955 0.971 0.977 1.007 0.995
Stimigliano 0.85 0.936 0.965 0.973 0.953 0.987
Nazzano 0.688 0.839 0.841 0.924 1.018 1.01
Ponte del Grillo 0.641 0.825 0.826 0.922 1.037 1.019

Figure 8. (a) Location of Fig. 8b area compared to the extension of
the computational domain (in purple). (b) Flood extension related to
the average water levels for open-loop (OL) and stage observation
assimilation (ASS 4SG) at the time of the satellite image acquisi-
tion. Note that OL flood extension also includes ASS 4SG flood
extension. (c) Box plot of the flood extension considering each ele-
ment of the two ensembles. Event: November 2012.

Figure 9. Water level time series at Stimigliano, Nazzano and Ponte
del Grillo stations for the 2012 flood event: observations (black),
open-loop simulations (blue) and assimilation of the indirect obser-
vations from the satellite image (red).

4.3 Assimilation of both stage gauge and satellite
observations

At the positions where the channel flow gauges are located,
it is reasonable to expect that stage gauge observations sup-
port better model performances as compared to the model
updated based on satellite observations (see Figs. 5 and 9).
However satellite image observations provide spatially dis-
tributed information that is important for flood wave routing
in a complex domain, especially when flooding impacts large
unconfined domains. Obtaining multiple stage gauge obser-
vations and satellite images constitutes the optimal support
for DA application for EWSs.

To investigate the potential benefit of taking advantage
of multiple heterogeneous distributed data sources of flood
observations, we simulated the simultaneous assimilation
of the four SG observations and the SI-derived flood ex-
tent (ASS TOT). As expected, the water level time series at
the stage gauge locations are similar to the ones of the dis-
joint ASS 4SG simulation (bottom panels of Fig. 5) in terms
of mean and spread of the ensemble (therefore plots of hydro-
graphs at SG are not shown for the joint assimilation simu-
lation). Specifically, improvements in performances with re-
spect to the OL simulation are observed in terms of increase
of NSE (5 %–40 %), increase of Pearson correlation (up to
12 %) and bias reduction up to 80 % (see Table 3).

Conversely, differences with respect to the 4SG assimila-
tion are found far from the SG locations in terms of ensem-
ble spread of channel water levels and spatial covariances
(Fig. 13) at the SI the acquisition time (Fig. 13a and c) and 2 h
later (Fig. 13b and d). The spread of the ensemble of the wa-
ter levels along the channel profile is reduced with respect to
both the ASS 4SG assimilation and the ASS SI assimilation.
Moreover, covariance values of ASS TOT are smaller with
respect to the ones of ASS SI and ASS SG simulations for the
same time step (see Figs. 7c, 10c and 13c). In fact, the combi-
nation of the model pdf right before the SI acquisition (that is
already narrowed by the previous SG assimilation) with the
pdf of the SI-derived observed water depths allows a water
depth ensemble to be generated with a lower spread with re-
spect to both the disjoint SI and SG assimilations. The joint
assimilation of SG and SI observations (ASS TOT) also has
a positive impact on the flood extent uncertainty (see Fig. 14)
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Figure 10. (a) Plot of the channel water depth profile for the open-loop (OL) and satellite image data assimilation (ASS SI) simulations at
the SI acquisition time. Panels (b) and (c) are the maps of covariances at the SI acquisition time of the OL and ASS SI simulations. Event:
November 2012.

Figure 11. (a) Location of Fig. 11b area compared to the extension
of the computational domain (in purple). (b) Flood extension re-
lated to the average water levels for open-loop (OL) simulation and
assimilation of the satellite image (ASS SI) at the time of the satel-
lite image acquisition. Note that OL flood extension also includes
ASS SI flood extension. (c) Box plot of the flood extension consid-
ering each element of the two ensembles. Event: November 2012.

when compared with the OL and disjoint SG and SI assimila-
tion. Specifically, the ASS TOT simulation led to a reduction
of the maximum flood extent variability for several hours af-
ter the SI acquisition with respect to the ASS SG and ASS SI
simulations. Figure 14 also shows a consistent difference of
the flood extent ensemble spread between the ASS 1SG and
the ASS 4SG simulations, confirming that the propagation of
the assimilation of a single stage gauge has a spatially lim-
ited effect (only for the cells around the SG location), while
the joint SG and SI assimilation improves the performances
after the SI acquisition time for almost 15 h.

4.4 Pros and limitations

The proposed modelling chain approach is affected by some
limitations but also advantages that are summarized in this
section. Firstly, the adopted hydraulic model has a coarse
spatial resolution (150 m cell size), and its performance can
be considered acceptable for high-magnitude flood events;
however some limitations could arise in representing the flow
patterns for low-magnitude events, where microtopography
can have an important role in the flow propagation (Bates,
2012). Further tests considering a smaller domain with a
higher resolution 2D hydraulic model are needed to verify
the stability of the model updating, when water level cor-
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.

Figure 12. Performance indexes (bias, RMSE and variance of the ensemble spread) with the lead time after the acquisition time of the
SI observation at Stimigliano, Nazzano and Ponte del Grillo stations. Event: November 2012

rections are applied to cells characterized with smaller di-
mensions. Moreover, the model uncertainty can be consid-
ered quite large during the peak flows of the selected flood
events with an amplitude of the ensemble of the water levels
even equal to 2 m (see Figs. 9 and 10). More accurate models
could not benefit from the assimilation of the satellite image
if the indirect water level distribution derivation is affected
by uncertainties larger than the ones related to the forecast-
ing model. Tables 1–3 also show some bias in the hydraulic
model, mostly prominent in the recession limb of the hydro-
graphs. This is a limitation, since the optimality of the DA
techniques is realized if the observations and the models are
not biased (Dee, 2005; Liu et al., 2012). Bias reductions and
further improvement of the simulation can be done by up-
dating the model inputs (i.e. the inflow hydrographs) and pa-
rameters (e.g. the roughness) using an augmented state vector
approach in the EnKF framework (Montzka et al., 2012).

The simplified rainfall–runoff modelling allowed input
flow hydrographs to be generated very quickly according to

the needs of a near-real-time flood modelling purpose. How-
ever, the model can only be considered appropriate for small
basins characterized by an impulsive response, for which
the groundwater component can be neglected and complex
topography and flow control structures are absent to avoid
equifinality issues during the calibration/validation analysis
(Beven, 2006). Furthermore the application of the SCS-CN
model at sub-daily timescale (Grimaldi et al., 2013) is a
strong limitation, and more advanced models should be pre-
ferred to reduce the model uncertainties.

Despite the several measures adopted to prevent instability
issues, instability can occur during the updating of the wa-
ter levels from the stage gauges. For this reason, the model
is tailored to remove the critical elements causing instabil-
ity from the ensemble and to generate new elements in or-
der to keep the sample size constant. This measure can slow
down the model, that should be as fast as possible for a
proper near-real-time application. The instability issues that
sometimes can occur could be due to the fact that the FLO-
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Figure 13. Channel water depth profiles and spatial covariances at the time of the SI acquisition (a, c) and 2 h later (b, d).

Figure 14. Maximum flood extent variability versus time for open-
loop (OL), assimilation of four (ASS 4SG) and one (ASS 1SG)
stage gauge(s), SI assimilation (ASS SI) and both 4SG and SI as-
similation (ASS TOT). The vertical dashed black line indicates the
time of the SI acquisition. Event: November 2012.

2D model does not allow the flow velocities to be updated,
rather only the flow depths. This limitation also does not en-
able control of the volume conservation, which is an impor-
tant factor to verify the accuracy of the model simulation.
The need of updating the model states each time the stage
gauge observations are available can affect the efficiency of
the model in terms of computational performance. The pro-
posed model requires averagely 3.7 min for each simulation

hour with a standard laptop (processor: 4 core with 180 GHz
each and 8 GB RAM). Alternative approaches such as the
asynchronous ensemble Kalman filter (AEnKF; Sakov et al.,
2010), allowing past observations to be ingested over a time
window to update model state at a specific time step, could
help to reduce the time when the model is updated, even if
each model updating requires slightly higher costs concern-
ing the computational time and storage requirements.

A methodology for indirectly deriving the distribution of
the water depths from the water footprint gathered from a
satellite image was proposed; this methodology is affected by
a series of errors that were taken into account for assigning a
proper reliability to the observation related to the satellite im-
age. This reliability is numerically lower than the one related
to stage gauge observations but, at the same time, provides
distributed information instead of the observations given by
the static sensors. The derivation of the water depths from the
flood extent gathered by the satellite image was performed
with a linear combination of the values given by the ensemble
of the results provided by the hydraulic forecasting model.
Since the latter has to be updated by an observation that is
indirectly derived by the model itself, this approach can be
considered disputable; however, practically it was demon-
strated not to cause instability issues during the model up-
dating, since the distribution of the flow depths is coherent
with the model state variable, and it has been demonstrated
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to slightly improve the model performance. This approach
can be considered as a hybrid methodology of two litera-
ture approaches that consider prognostic and diagnostic vari-
ables for assimilating satellite-derived information (Hostache
et al., 2018), taking advantage of the rapid flood detection al-
gorithms adopted for direct assimilating the flood extent and,
at the same time, directly retrieving the water levels that are
prognostic variables, thus more straightforward to assimilate
than the flood extent (Hostache et al., 2018).

During a flood event, the adoption, as an observation, of
a multispectral image, potentially corruptible by the cloud
covering and sunlight, is much less likely than a SAR im-
age; however, the proposed approach for the model updating
can be applicable, regardless of the type of image as input
observation. The satellite revisit time of the current satel-
lite missions is still a strong limitation, since it can be much
higher than the travel time of small basins. Furthermore, usu-
ally multispectral SAR images require time to be processed.
However, new satellite missions and also the combination
of more constellations will considerably reduce the revisit
time in the near future, allowing different images to be made
for the same area with a temporal frequency higher than the
persistence of the model correction (8 h). Moreover, recent
automatic satellite image techniques for extracting the flood
extension have been implemented in real-time services for
flood mapping (Martinis et al., 2015).

5 Conclusive remarks and future work

The proposed DA framework investigated the opportunities
and challenges of assimilating multiple sources of observa-
tions for improving the performances of near-real-time flood
predictions in the case of some real flood events selected as
case studies. Specifically, stage gauge water level readings
and satellite-derived flood extents were used for testing the
proposed DA framework. We infer the following main con-
clusions:

– The assimilation of multiple (four) stage gauges signifi-
cantly improved the flood model performances in terms
of NSE and R bias and also reduced simulated inunda-
tion extent uncertainties; however the spatial influence
of assimilation is limited if only one SG observation is
adopted.

– The assimilation of distributed flood depths, indirectly
retrieved from satellite-derived flood extent, provided
slightly better modelling performances only a few hours
after the SI acquisition and allowed the water level and
flood extent uncertainties to be reduced for the whole
computational domain.

– The simultaneous assimilation of SG and SI observation
enabled a reduction of the water level and flood extent
uncertainty for several hours with respect to the disjoint
SI and SG assimilation after the SI acquisition time.

Future tests are needed that take advantage of the increas-
ing availability of satellite-derived flood extents at higher
temporal and spatial resolution, to discover the effective ca-
pacity of the proposed flexible multi-source DA framework
and to value a larger EO data availability.

Moreover, the flexibility of the proposed model to assim-
ilate local and distributed observations suggests the suitabil-
ity of using other data sources, also gathered from informal
observation systems. In particular, future work will allow us
to investigate the use of crowdsourced observations to apply
the proposed flood prediction framework in ungauged basins.
Crowdsourcing has already proved to be an effective means
to improve hydrologic (Mazzoleni et al., 2017) and hydraulic
(Annis and Nardi, 2019) modelling performances, but fur-
ther work is needed to test the use of crowdsourced data in
real-time flood modelling approaches. Significant improve-
ments are expected in the near future for improved weather
predictions by valuing all data sources, especially affordable
citizen-driven observations for developing countries that are
the most vulnerable to hydro-extremes (Alley et al., 2019).

Code availability. FLO-2D modelling software is available at
https://flo-2d.com/ (FLO-2D, 2022).
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L.: Modelling the Uncertainty of Slope Estimation from a Lidar-
Derived Dem: a Case Study from a Large-Scale Area in the
Czech Republic/Modelovanie Neistoty Vo Vpočte Sklonov Z Li-
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