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Abstract. Forecast uncertainties are unfortunately inevitable
when conducting a deterministic analysis of a dynamical sys-
tem. The cascade of uncertainty originates from different
components of the forecasting chain, such as the chaotic na-
ture of the atmosphere, various initial conditions and bound-
aries, inappropriate conceptual hydrologic modeling, and the
inconsistent stationarity assumption in a changing environ-
ment. Ensemble forecasting proves to be a powerful tool to
represent error growth in the dynamical system and to cap-
ture the uncertainties associated with different sources. In
practice, the proper interpretation of the predictive uncertain-
ties and model outputs will also have a crucial impact on risk-
based decisions. In this study, the performance of evolution-
ary multi-objective optimization (i.e., non-dominated sorting
genetic algorithm II – NSGA-II) as a hydrological ensem-
ble post-processor was tested and compared with a conven-
tional state-of-the-art post-processor, the affine kernel dress-
ing (AKD). Those two methods are theoretically/technically
distinct, yet share the same feature in that both of them relax
the parametric assumption of the underlying distribution of
the data (the streamflow ensemble forecast). Both NSGA-II
and AKD post-processors showed efficiency and effective-
ness in eliminating forecast biases and maintaining a proper
dispersion with increasing forecasting horizons. In addition,
the NSGA-II method demonstrated superiority in communi-
cating trade-offs with end-users on which performance as-
pects to improve.

1 Introduction

Hydrologic forecasting is crucial for flood warning and mit-
igation (e.g., Shim and Fontane, 2002; Cheng and Chau,
2004), water supply operation and reservoir management
(e.g., Datta and Burges, 1984; Coulibaly et al., 2000;
Boucher et al., 2011), navigation, and other related activi-
ties. Sufficient risk awareness, enhanced disaster prepared-
ness in the flood mitigation measures, and strengthened early
warning systems are crucial in reducing the weather-related
event losses. Hydrologic models are typically driven by dy-
namic meteorological models in order to issue forecasts over
a medium-range horizon of 2 to 15 d (Cloke and Pappen-
berger, 2009). These kinds of coupled hydrometeorological
forecasting systems are used as effective tools to issue longer
lead times. Inherent in the coupled hydrometeorological fore-
casting systems are some predictive uncertainties, which are
inevitable given the limits of knowledge and available infor-
mation (Ajami et al., 2007). In fact, those uncertainties occur
all along the different steps of the hydrometeorological mod-
eling chain (e.g., Liu and Gupta, 2007; Beven and Binley,
2014). These different sources of uncertainty are related to
deficiencies in the meteorological forcing, misspecified hy-
drologic initial and boundary conditions, inherent hydrologic
model structure errors, and biased estimated parameters (e.g.,
Vrugt and Robinson, 2007; Ajami et al., 2007; Salamon and
Feyen, 2010; Thiboult et al., 2016).

Many substantive theories have been proposed in order to
quantify and reduce the different sources of cascading fore-
cast uncertainties and to add good values to flood forecasting
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and warning. Among them, the superiority of ensemble fore-
casting systems in quantifying the propagation of predictive
uncertainties (over deterministic systems) is now well estab-
lished (e.g., Cloke and Pappenberger, 2009; Palmer, 2002;
Seo et al., 2006; Velázquez et al., 2009; Abaza et al., 2013;
Wetterhall et al., 2013; Madadgar et al., 2014). Numerous
challenges have been well tackled; for example, (1) meteoro-
logical ensemble prediction systems (M-EPSs) (e.g., Palmer,
1993; Houtekamer et al., 1996; Toth and Kalnay, 1997) are
refined and operated worldwide by the agencies such as
the European Centre for Medium-Range Weather Forecasts
(ECMWF), the National Center for Environmental Predic-
tion (NCEP), the Meteorological Service of Canada (MSC)
and more. (2) The forecast accuracy is highly improved by
adopting higher-resolution data collection and assimilation.
Sequential data assimilation techniques, such as the particle
filter (e.g., Moradkhani et al., 2012; Thirel et al., 2013) and
the ensemble Kalman filter (EnKF; e.g., Evensen , 1994; Re-
ichle et al., 2002; Moradkhani et al, 2005; McMillan et al.,
2013) provide an ensemble of possible re-initializations of
the initial conditions, expressed in the hydrologic model as
state variables such as soil moisture, groundwater level, and
so on. (3) Forecasting skills of the coupled hydrometeorolog-
ical forecasting systems are also improved by tracking pre-
dictive errors using the full uncertainty analysis. Multimodel
schemes were proposed to increase performance and deci-
pher the structural uncertainty (e.g., Duan et al., 2007; Fisher
et al., 2008; Weigel et al., 2008; Najafi et al., 2011; Velázquez
et al., 2011; Marty et al., 2015; Mockler et al., 2016). Thi-
boult et al. (2016) compared many hydrologic ensemble pre-
diction systems (H-EPSs), accounting for the three main
sources of uncertainties located along the hydrometeorolog-
ical modeling chain. They pointed out that EnKF probabilis-
tic data assimilation provided most of the dispersion for the
early forecasting horizons but failed in maintaining its effec-
tiveness with increasing lead times. A multimodel scheme
allowed for sharper and more reliable ensemble predictions
over a longer forecast horizon. (4) The statistical hydrologic
post-processors, which have been added in the H-EPS for
rectifying biases and dispersion errors (i.e., too narrow or
too large) are numerous, as reviewed by Li et al. (2017). It
is noteworthy that many hydrologic variables, such as dis-
charge, follow a skewed distribution (i.e., low probability
associated to the highest streamflow values), which compli-
cates the task. Usually, in a hydrologic ensemble prediction
system (H-EPS) framework (e.g., Schaake et al., 2007; Cloke
and Pappenberger, 2009; Velázquez et al., 2009; Boucher et
al., 2012; Abaza et al., 2017), the post-processing procedure
over the atmospheric input ensemble is often referred to as
pre-processing. By correcting the bias and adjusting the dis-
persion based on a comparison with past observations, statis-
tical post-processing generally leads to a more accurate and
reliable hydrologic ensemble forecast.

However, another challenge still remains, namely how to
improve the human interpretation of probabilistic forecasts

and the communication of integrated ensemble forecast prod-
ucts to end-users (e.g., operational hydrologists, water man-
agers, local conservation authorities, stakeholders and other
relevant decision-makers). Buizza et al. (2007) emphasized
that both functional and technical qualities are supposed to
be assessed for evaluating the overall forecast value of hy-
drological forecasts. Ramos et al. (2010) further note that
the best way to communicate probabilistic forecast and in-
terpret its usefulness should be in harmony with the goals of
the forecasting system and the specific needs of end-users.
Ramos et al. (2010) reported similar achievements from two
studies obtained from a role play game and another survey
during a workshop (Thielen et al., 2005). During the work-
shop, they explored the users’ risk perception of forecasting
uncertainties and how they dealt with uncertain forecasts for
decision-making. The results revealed that there is still space
for enhancing the forecasters’ knowledge and experience on
bridging the communication gap between predictive uncer-
tainties quantification and effective decision-making.

Hence, in practice, which forecast quality impacts a given
decision the most? Different end-users share their unique
requirements. Crochemore et al. (2017) produced the sea-
sonal streamflow forecasting by conditioning climatology
with precipitations indices (SPI3 – standardized precipitation
index over 3 months). Forecast reliability, sharpness (i.e., the
ensemble spread), overall performance, and low-flow event
detection were verified to assess the conditioning impact. In
some cases, the reliability and sharpness could be improved
simultaneously, while, more often, there was a trade-off be-
tween them.

Here, two hydrological post-processors, namely the affine
kernel dressing (AKD) and the evolutionary multi-objective
optimization (non-dominated sorting genetic algorithm II –
NSGA-II), were explored. Compared to conventional post-
processing methods, such as AKD, NSGA-II opens up the
opportunity of improving the forecast quality in harmony
with the forecasting aims and the specific needs of end-users.
Multiple objective functions (i.e., here, verifying scores) for
evaluating the forecasting performances of the H-EPSs are
selected to guide the optimization process. The mechanisms
of these two statistical post-processing methods are com-
pletely different. However, they share one similarity from an-
other perspective, which is that they can estimate the proba-
bility density directly from the data (i.e., ensemble forecast)
without assuming any particular underlying distribution. As a
more conventional method, Silverman (1986) first proposed
the kernel density smoothing method to estimate the distri-
bution from the data by centering a kernel function K that
determines the shape of a probability distribution (i.e., ker-
nel) fitted around every data point (i.e., ensemble members).
The smooth kernel estimate is then the sum of those kernels.
As for the choice of bandwidth h of each dressing kernel, Sil-
verman’s rule of thumb finds an optimal bandwidth h by as-
suming that the data are normally distributed. Improvements
to the original idea were soon to follow. For instance, the
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improved Sheather–Jones (ISJ) algorithm is more suitable
and robust with respect to multimodality (Wand and Jones,
1994). Roulston and Smith (2003) rely on the series of best
forecasts (i.e., best member dressing) to compute the ker-
nel bandwidth h. Wang and Bishop (2005) and Fortin et al.
(2006) further improved the best member method. The lat-
ter advocated that the more extreme ensemble members are
more likely to be the best member of raw, under-dispersive
forecasts, while the central members tend to be more precise
for the over-dispersive ensemble. They proposed the idea that
different predictive weights should be set over each ensem-
ble member, given each member’s rank within the ensemble.
Instead of standard dressing kernels that act on individual
ensemble members, Bröcker and Smith (2008) proposed the
AKD method by assuming an affine mapping between en-
semble members and observation over the entire ensemble.
They approximate the distribution of the observation given
the ensemble.

Given the single-model H-EPSs studied here, the hydro-
logic ensemble is generated by activating the following two
forecasting tools: the ensemble weather forecasts and the
EnKF. Henceforth, enhancing the H-EPS forecasting skill by
assigning different credibility to ensemble members becomes
preferred rather than reducing the number of members. The
post-processing techniques, like the non-dominated sorting
genetic algorithm II (NSGA-II), are now common (e.g., Li-
ong et al., 2001; De Vos and Rientjes, 2007; Confesor and
Whittaker, 2007). Such techniques are conceptually linked to
the multi-objective parameter calibration of hydrologic mod-
els using Pareto approaches. Indeed, formulating a model
structure or representing the hydrologic processes using a
unique global optimal parameter set proves to be very sub-
jective. Multiple optimal parameter sets exist with satisfy-
ing behavior, given the different conceptualizations, although
they are not identical Beven and Binley (1992). For example,
Brochero et al. (2013) utilized the Pareto fronts generated
with NSGA-II for selecting the best ensemble from a hydro-
logic forecasting model with a pool of 800 streamflow pre-
dictors in order to reduce the H-EPS complexity. Here, the
expected output of the NSGA-II method is a group of solu-
tions, also known as Pareto front, that identify the trade-offs
between different objectives, subject to the end-users’ needs
and requirements.

In this study, the daily streamflow ensemble forecasts is-
sued from five single-model H-EPSs over the Gatineau River
(province of Québec, Canada) are post-processed. Details
about the study area, hydrologic models, and hydrometeo-
rological data are described in Sect. 2. Section 3 explains
the methodology and training strategy of AKD and NSGA-II
methods in parallel with the scoring rules that evaluate the
performance of the forecasts. Specific concepts associated
with those scores are also introduced in this section. A pre-
dictive distribution estimation based on the five single-model
H-EPS configurations, which lack accounting for the model
structure uncertainty, is presented in Sect. 4. The comparison

Figure 1. The five sub-catchments of the Gatineau River. The red
thunder strike symbols locate the dams, while the original ECMWF
grid points, before downscaling, are marked using black asterisks.

of both statistical post-processing methods in improving the
forecasting quality and enhancing the uncertainty communi-
cation are discussed and analyzed as well. The conclusion
follows in Sect. 5.

2 The H-EPSs

Figure 1 illustrates the study area, which is the Gatineau
River located in the southern Québec province, Canada. It
drains 23 838 km2 of the Outaouais and Montreal hydro-
graphic region and experiences a humid continental climate.
The river starts from Sugar Loaf Lake (47◦52–54 N, 75◦30–
43 W) and joins the Ottawa River some 400 km later. The av-
erage daily temperature is about −3 ◦C in winter, while the
temperature spectrum is 10–22 ◦C in summer (Kottek et al.,
2006). The hydrologic regime of the study area is generally
wet, cold, and snow covered. The largest flood typically ap-
pears in spring or early summer (i.e., from March to June)
from snowmelt and rainfall. Autumnal rainfall often leads to
a lesser peak between September and November (Fig. 2).

For operational hydrologic modeling, reservoir operation,
and hydroelectricity production, the whole catchment has
been divided up into the following five sub-catchments:
Baskatong, Cabonga, Chelsea, Maniwaki, and Paugan (iden-
tified by different colors in Fig. 1). The sub-catchments are
modeled independently from one another in order to inform
a decision model operated by Hydro-Québec (e.g., Movahe-
dinia, 2014). All hydroclimatic time series to the project were
made available by Hydro-Québec, who carefully constructed
them for their own hydropower operations. Dams are identi-
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Figure 2. Hydrograph of the daily streamflow (millimeters per day;
hereafter mm d−1) averaged over each month during 33 years from
1985 to 2017.

Table 1. Hydroclimatic characteristics of five sub-catchments of the
Gatineau River.

Name Lat. Long. Catchment Mean annual
area (km2) Q (mm)

Cabonga 47.21 −76.59 2665 1.35
Baskatong 47.21 −75.95 13 057 1.49
Maniwaki 46.53 −76.25 4145 1.24
Paugan 46.07 −76.13 2790 1.29
Chelsea 45.70 −76.01 1142 1.27

fied in Fig. 1 as red thunder strike symbols. The two upper-
most ones allow for the existence of large headwater reser-
voirs, while the other three are run-of-the-river installations.
The daily streamflow (in cubic meters per second; hereafter
m3 s−1) time series entering the reservoirs were constructed
by the electricity producer from a host of local information
and made available to the study, along with spatially aver-
aged minimum and maximum air temperature (degrees Cel-
sius) and precipitation (millimeters) for each sub-basin. Ta-
ble 1 summarizes the various hydroclimatic characteristics
of the Gatineau River sub-catchments. Potential evapotran-
spiration is calculated from the temperature-based Oudin et
al. (2005) formulation.

The HydrOlOgical Prediction LAboratory (HOOPLA;
Thiboult et al., 2020, https://github.com/AntoineThiboult/
HOOPLA) provides a modular framework to perform cali-
bration, simulation, and streamflow prediction using multiple
hydrologic models (up to 20 lumped models; Perrin, 2002;

Seiller et al., 2012). The empirical two-parameter model, Ce-
maNeige (Valéry et al., 2014), simulates snow accumulation
and melt. In this study, five representative models were se-
lected from HOOPLA as typical examples. Their main char-
acteristics are summarized in Table 2.

The original observational time series extends from Jan-
uary 1950 to December 2017, while, in terms of the in-
put of HOOPLA, the observational period was limited to 33
years (1985–2017) to avoid the increased bias and variability
caused by missing values within the record. The meteoro-
logical ensemble forecasts were retrieved from the European
Center for Medium-Range Weather Forecasts (ECMWF;
Fraley et al., 2010). The time series extends from Jan-
uary 2011 to December 2016. The meteorological ensem-
ble forecast used the reduced Gaussian transformation for the
latitude–longitude system during the THORPEX Interactive
Grand Global Ensemble (TIGGE) database retrieving by us-
ing bilinear interpolation (e.g., Gaborit et al., 2013). The hor-
izontal resolution was downscaled during the retrieval from
the 0.5◦ ECMWF grid resolution to a 0.1◦ grid resolution.
This study resorts to the 12:00 UTC (universal coordinated
time) forecasts only, aggregated to a daily time step over a
7 d horizon. All data are aggregated at the catchment scale,
averaging the grid points located within each sub-catchment.
All of the time series were split in two, following the split-
sample test (SST) procedure of Klemeš (1986), with 1986–
2006 for calibration and 2013–2017 for validation. In both
cases, 3 prior years were used for the spin-up period. Jan-
uary 2011–December 2016 is committed to hydrologic fore-
casting.

Initial condition uncertainties within each H-EPS are
accounted for by a 100-member Ensemble Kalman Fil-
ter (EnKF) that adjusts the distribution function of the
model states given observational distributions. Meteorolog-
ical uncertainties are quantified by providing the 50-member
ECMWF ensemble forcing to the H-EPSs. The resulting en-
semble streamflow forecasts thus consist of 5000 members.
This setup is similar to the one described in more details by
Thiboult et al. (2016). The EnKF hyperparameters selection
follows the work of Thiboult and Anctil (2015). Streamflow
and precipitation uncertainties are assumed to be propor-
tional; they are set to 10 % and 50 %, respectively. Tempera-
ture uncertainty is considered constant; it amounts to 2 ◦C. A
Gaussian distribution describes the streamflow and tempera-
ture uncertainty, and a gamma law represents the precipita-
tion uncertainty.

3 Methodology

This study was conducted on the base of 1–7 d ensemble
streamflow forecasts issued from five single-model H-EPSs
and their realizations. Both AKD and NSGA-II methods are
utilized in this study as the statistical post-processing or so-
called ensemble interpretation method (Jewson, 2003; Gneit-
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Table 2. Main characteristics of the hydrologic models (Seiller et al., 2012).

Model No. of optimized No. of Model derived from
parameters reservoirs

M01 6 3 BUCKET (Thornthwaite and Mather, 1955)
M02 4 2 GR4J (Perrin et al., 2003)
M03 9 3 HBV (Bergström et al., 1973)
M04 7 3 IHACRES (Jakeman et al., 1990)
M05 9 5 SACRAMENTO (Burnash et al., 1973)

ing et al., 2005) to transform the raw ensemble forecast into
a probability distribution.

3.1 Affine kernel dressing (AKD)

Rather than adopting the ensemble mean and the standard
deviation and approximate the distribution of the raw en-
semble (Wilks, 2002), the principal insight of this method-
ology is that the probability distribution could be fitted of the
observation when given the ensemble (Bröcker and Smith,
2008). The AKD method interprets the ensemble by ap-
proximating the distribution of the observation when given
the ensemble forecasts. The ordering of the ensemble mem-
bers is not taken into account (i.e., ensemble members are
considered exchangeable here). Here, we denote the en-
semble forecasts with m members over time t by X(t)=
[x1(t),x2(t), . . .,xm(t)] and the observation by y(t). The
mean and the variance of the raw ensemble forecasts are then
as follows:

µ(X)=
1
m

∑
i

xi (1)

υ (X)=
1
m

∑
i

[xi −µ(X)]2. (2)

In a general form, the probability density function of
p(y;X,θ) defines the interpreted ensemble (i.e., kernel-
dressed ensemble), given the original ensemble with free pa-
rameter vector θ , as follows:

p(y;X,θ)=
1
bh

∑
i

K

(
y− axi − b

h

)
, (3)

for which the interpreted ensemble can be seen as a sum
of probability functions (kernels) around each raw ensem-
ble member. xi represents the ith ensemble member, and y is
the corresponding observation. Hence, axi + b identifies the
center of each kernel using the scale parameter a and offset
parameter b. h is the positive bandwidth of each kernel. Note
that various distributions could be adopted as kernels (Silver-
man, 1986; Roulston and Smith, 2003; Bröcker and Smith,
2008). We opted for the standard Gaussian density function
with zero mean and unit variance for its computational con-

venience, as follows:

K (·)=
1
√

2π
exp

(
−

1
2
(·)

)2

. (4)

The mean and the variance of the interpreted ensemble can
be defined as follows:

µ′ (X)= b+ a ·
1
m

∑
i

xi = b+ a ·µ(X) (5)

υ ′ (X)= h2
+ a2
·

1
m

∑
i

[xi −µ(X)]2
= h2
+ a2
· υ (X). (6)

The mapping parameters of a, b, and h are determined
from the raw ensemble. The updated mean µ′ (X) of the
kernel-dressed ensemble is a function of the raw ensemble
mean µ(X), which is scaled and shifted using a and b. The
variance υ ′ (X) of the kernel-dressed ensemble is a function
of the initial ensemble variance υ (X), which is scaled and
shifted using a2 and h2. Detailed derivations of these equa-
tions are given by Bröcker and Smith (2008).

AKD provides the solutions for determining the parame-
ters of a, b, and h, which are determined as functions of X,
as follows:

b = r1+ r2 ·µ(X) (7)

h2
= h2

S ·
[
s1+ s1 · a

2
· υ (X)

]
(8)

hS = 0.5 ·
[
4/(3m)

]1/5
. (9)

Here, hS is Silverman’s factor (Silverman, 1986). Techni-
cally, we can use some scores (e.g., mean square error) to se-
lect the optimal bandwidth h for a kernel density estimation,
yet this would be difficult to estimate for general kernels.
Hence, the first rule of thumb proposed by Silverman gives
the optimal bandwidth h which is the standard deviation of
the distribution. And in this case, the kernel is also assumed
to be Gaussian. The parameters θ = [a,r1, r2, s1, s2] are free
parameters, and usually r1 = 0, r2 = 1, s1 = 0 and r2 = 1 are
rational initial selections (Bröcker and Smith, 2008). Once
the optimal free parameter vector θ = [a,r1, r2, s1, s2] is ob-
tained, the interpreted ensemble can be set to the following:
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p(y;X,θ)=
1
bh

∑
i

K

(
y− axi − b

h

)
=

1
bh

∑
i

K

(
y− zi

h

)
(10)

zi = axi + r2 ·µ(X)+ r1 (11)

h2
= h2

S · [s1+ s2 · υ (X)] , (12)

where Zi is the resulting kernel-dressed ensemble based on
the raw ensemble X and fitted parameters a, r1, and r2.
Bröcker and Smith (2008) stressed that this AKD ensemble
transformation works on the whole ensemble rather than on
each individual member. Finally, the mean and variance of
the interpreted ensemble shown in Eqs. (5) and (6) can be
rewritten as follows:

µ′ (X)= b+ a ·µ(X)= r1+ (a+ r2) ·µ(X) (13)

υ ′ (X)= h2
+ a2
· υ (X)= h2

S · s1+ a
2
·

(
h2

S · s2+ 1
)

· υ (X). (14)

3.2 Non-dominated sorting genetic algorithm II
(NSGA-II)

Multi-objective optimization problems are common and typ-
ically lead to a set of optimal options (Pareto solution set)
for users to choose from. Exploiting a genetic algorithm to
find out all Pareto solutions from the entire solution space
have been proposed and improved since the publication of
the vector evaluated genetic algorithm (VEGA) around 1985
(Schaffer, 1985).

There exist two main standpoints for dealing with multi-
objective optimization problems, namely to (1) define a new
objective function as the weighted sum of all desired ob-
jective functions (e.g., MBGA, migrating-based genetic al-
gorithm, and RWGA, random weighted genetic algorithm)
or to (2) determine the Pareto set or its representative sub-
sets for a selected group of objective functions (e.g., SPEA
(strength Pareto evolutionary Algorithm), SPEA-II, NSGA,
and NSGA-II). The first approach is more trivial as it re-
duces to a single-objective optimization problem. Yet, the
needed weighting strategy is difficult to set accurately as a
minor difference in weights may lead to quite different so-
lutions. On the other hand, Pareto ranking approaches have
been devised in order to avoid the problem of converging to-
wards solutions that only behave well for one specific ob-
jective function. Users still have to select objective functions
that are pertinent to the problem and that are not heavily cor-
related to one another. Readers may refer to the review by
Konak et al. (2006) for more details.

Similar ideas can be utilized in this study, as the goal is
to achieve a good forecast. Various efficiency criteria are

needed when we verify whether an H-EPS is competent at
issuing accurate and reliable forecasts. Accuracy might be
the first idea that crosses our mind and indicates that there
is a good match between the forecasts and the observations.
Since here we are focused on probabilistic streamflow fore-
cast, the accuracy could be measured by computing the dis-
tances between the forecast densities with the observations
(Wilks, 2011). Usually, hydrologists could rely on the Nash–
Sutcliffe efficiency criterion (NSE; Nash and Sutcliffe, 1970)
for measuring how well forecasts can reproduce the observed
time series. Transforming the time series beforehand allows
one to specialize it (i.e., NSEinv, NSEsqrt) for specific needs
(e.g., Seiller et al., 2017). NSE is dimensionless and varies
on the interval of [−∞,1]. NSE is attained by dividing the
mean square error (MSE) by the variance of the observations
and then subtracting that ratio from 1.

NES= 1−
MSE

var(y)
= 1−

∑T
t=1(xt − yt )

2∑T
t=1(yt − y)

2
, (15)

where xt and yt are the forecasted and observed values at
time step t , respectively. y and var(y) represent the mean and
variance of the observations. A perfect model forecast output
would have an NSE value that equals to one.

Meanwhile, bias, also known as systematic error, refers
to the correspondence between the average forecast and the
average observation, which is different from accuracy. For
example, systematic bias exists in the streamflow forecasts
that are consistently too high or too low. Hence, NSE and bias
are utilized here as objective functions, which is to say that
they are seeking to minimize the bias and maximize the NSE
simultaneously. This brings us a multi-objective optimization
question to solve.

Technically, inserting the elitism in the multi-objective op-
timization algorithms is not compulsory. However, it would
have a strong influence if the algorithms could preserve the
best individuals (i.e., elites) that were found during the search
process and then incorporate the elitism back into the evolu-
tionary process (Groşaelin et al., 2003). A classic, fast, and
elitist multi-objective genetic algorithm, the non-dominated
sorting genetic algorithm II (NSGA-II; Deb et al., 2002) is
adopted for searching for the Pareto solution set. NSGA-II
offers three specific advantages over previous genetic algo-
rithms. (1) There is no need to specify extra parameters such
as the niche count for the fitness sharing procedure, (2) it re-
duces complexity over alternative GA implementations, and
(3) elite individuals are well maintained, and hence, the ef-
fectiveness of the multi-objective genetic algorithm is largely
improved.

In this study, the population is denoted by X(t). Specific
steps for NSGA-II are briefly introduced here.

1. Layer the whole population by using the fast non-
dominated sorting approach. i is initially set to 1, while
zi represents the ith solution among the m ones. We
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compare the domination and non-domination relation-
ship between the individuals zi and zj for all the j =
1,2, . . .,m, and i 6= j . zi is the non-dominated solution
as long as no zj dominates it. This process is repeated
until all the non-dominated solutions are found and have
composed the first non-dominated front of the popula-
tion. Note that the selected individuals of the first front
can be neglected when searching for subsequent fronts
(i.e., marked as krank).

2. Find the crowding distance for each individual in each
front. Deb et al. (2002) pointed out that the basic idea of
the crowding distance calculated in the NSGA-II is “to
find the Euclidian distance between each individual in a
front based on their m objectives in the m-dimensional
hyper space. The individuals in the boundary are always
selected since they have infinite distance assignment.
The large average crowding distance will result in better
diversity in the population”. This step ensures the diver-
sity of the population. For example, for the first front,
sort the values of the objective functions in an ascend-
ing order. The boundary solutions (i.e., maximum and
minimum solutions) are then the value at infinity. The
crowding distance for other individuals can be assigned
as follows:

kdistance =

m∑
k=1


∣∣∣∣∣∣∣
j+1∫
n

−

j−1∫
n

∣∣∣∣∣∣∣
 , (16)

where kdistance represents the value for the kth individ-
ual, and f j+1

n and f j−1
n are the values of the nth objec-

tive function at j + 1 and j − 1, separately. Thereafter,
the crowding comparison operator can be utilized based
on krank and kdistance. Individual zi will be assumed su-
perior to zj if kirank < k

j

rank, or kidistance > k
j

distance, when
their Pareto front ranks are equal.

3. Elitism strategy is introduced in the main loop. Off-
spring populationQt is firstly generated from the parent
population Pt after mutation and gene crossover. Then
the abovementioned non-dominated sorting and crowd-
ing distance assignment are conducted on the composed
population Rt that contain both Qt and Pt with the size
of 2 m. The first-rate non-dominated solutions will be
assign to the new parent population Pt+1. Outputs after
the whole evolutionary search are the un-repeated non-
domination solutions, and a weight matrix can also be
extracted from the solutions. Specifically, in this study,
the population size is set to 50, the number of objective
functions equals to 2, the boundary is from 0 to 1, the
mutation probability and crossover rate are 0.1 and 0.7,
respectively, and the maximum evolution runs are 430
times.

3.3 Verifying metrics

The performance of the post-processed forecast distributions,
mostly in terms of accuracy and reliability, is assessed us-
ing scoring rules. Except for bias and NSE described above,
seven other verifying scores are applied to both the raw and
post-processed forecast distributions.

The overall accuracy and reliability of the probabilistic
forecast can be evaluated using the continuous ranked prob-
ability score (CRPS; Matheson and Winkler, 1976; Hers-
bach, 2000; Gneiting and Raftery, 2007). Hersbach (2000)
decomposed the CRPS into two parts, i.e., reliability and res-
olution. In practice, The mean continuous ranked probabil-
ity score (MCRPS) is the average value of CRPS over the
whole time series T and is calculated using empirical dis-
tributions. Besides, MCRPS is negatively oriented, and the
optimal MCRPS value is 0, as follows:

MCRPS=
1
T

T∑
t=1

+∞∫
−∞

(
P fcst
t (y)−H

(
yt ≥ y

obs
t

))2
dy, (17)

where y is the predictand, and yobs
t represents the corre-

sponding observations. P fcst
t (y) is the cumulative distribu-

tion function of the forecasts at time step t . The Heaviside
function H equals 0 (or 1) when yt < yobs

t (or yt ≥ yobs
t ).

As for the deterministic metrics, we adopt the mean abso-
lute error (MAE) and root mean squared error (RMSE; e.g.,
Brochero et al., 2013) to verify the average forecast error of
the variable of interest. Both MAE and RMSE are negatively
oriented and range from 0 to +∞. More accurate forecasts
lead to lower MAE and RMSE. Note that the RMSE score
tends to penalize the large errors more than MAE. In some
cases, where the variance corresponding to the frequency dis-
tribution is higher, the RMSE will have larger increase while
the MAE remains stable.

RMSE has the benefit of penalizing large errors more, so
it can be more appropriate in some cases.

The Kling–Gupta efficiency (KGE; Gupta et al., 2009)
also allows for a comprehensive performance assessment of
the deterministic forecasts. KGE’, a slightly modified version
of KGE (Kling et al., 2012), avoids any cross-correlation be-
tween the bias and the variability ratios. It is defined as fol-
lows:

KGE′ =
√
(r − 1)2+ (β − 1)2+ (γ − 1)2 (18)

β =
µy

µo
(19)

γ =
CVy

CVo
=
σy/uy

σo/uo
. (20)

The correlation coefficient r represents the linear associa-
tion between the deterministic forecast and the observations.
µy (µo) and σy (σo) are the mean and the standard deviations
of the forecasts (here it is the ensemble mean) and obser-
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vation, respectively. CV is the dimensionless coefficient of
variation.

The reliability diagram (Stanski et al., 1989) is a graphi-
cal representation of the reliability of an ensemble forecast.
It contrasts the observed frequency against the probability of
ensemble forecasts over all quantiles of interest. The prox-
imity from the diagonal line indicates how closely the fore-
cast probabilities are associated to the observed frequencies
for selected quantiles. The 45◦ diagonal line thus represents
perfect reliability, i.e., when the ensemble forecast probabili-
ties equals the observation ones. When the plotted curve lies
above the 45◦ line, the predictive ensemble is over-dispersed.
It is otherwise under-dispersed. In addition, a flat curve rep-
resents that the forecast has no resolution (i.e., climatology).

The spread skill plot (SSP or later simply referred to as
spread; Fortin et al., 2014) assesses the ensemble spread and
identifies an ensemble forecast with poor predictive skill and
large dispersion that would be positively assessed by a relia-
bility diagram. Fortin et al. (2014) stresses that the ensemble
spread should match the RMSE of the ensemble mean when
the predictive ensemble is reliable. Thus, the SSP comple-
ments the spread component with an accuracy aspect.

3.4 Experimental setup

Establishing and analyzing both AKD and NSGA-II predic-
tive models to interpret single-model hydrologic ensemble
forecasts for uncertainty analysis can be summarized in three
steps.

1. Determine the training period. Subject to the dataset
used in this study, it can be considered to have two
components, namely the observations/forecasts that last
from January 2011 to December 2016 and the target
ensemble for interpretation with a forecasting horizon
that extends from day 1 to 7. Here, a common calibra-
tion/validation procedure was conducted on the second
component of the dataset. We conducted the calibration
on the day 4 forecast and then tested it on other lead
times to assess the robustness of the predictive mod-
els. The skill of hydrologic forecasts fades away with
increasing lead time. The 4 d ahead ensemble forecasts
issued from each single-model H-EPSs and their corre-
sponding observations are chosen as a training dataset,
since they are located in the middle of the forecast hori-
zon. The validation dataset then consists of the remain-
ing forecasts, i.e., 1–3 and 5–7 d ahead raw forecasts
issued from the associated H-EPSs. The procedure was
selected as a specific example. Yet, one may decide oth-
erwise, such as implementing the calibration/validation
procedures separately for each day.

2. AKD mapping between the ensemble and observation
over the training dataset. The observation time se-
ries are used to identify the free parameter vector θ =
[a,r1, r2, s1, s2], thereby minimizing the MCRPS to ob-

tain the kernel-dressed ensemble. Note that AKD acts
on the entire ensemble rather than on each individual
member.

3. Evaluate the Pareto fronts (i.e., non-dominated solu-
tions that minimize/maximize the bias and the NSE) and
the weight matrix by applying NSGA-II over the train-
ing dataset. Sloughter et al. (2007) mentioned that the
training period should be specific for each dataset or re-
gion. Here, a 30 d moving window is selected so that it
contains enough training samples with coherent consis-
tency, which is to say that the NSGA-II post-processors
were trained using only the past 30 d and day 4 fore-
cast data and then re-trained for every following day.
From the operational perspective, a monthly moving
window is especially more coherent and efficient in the
real world, with a limited length for the time series.

A general flowchart of the streamflow input, AKD and
NSGA-II frameworks, and expected outputs is illustrated in
Fig. 3.

4 Results and discussions

4.1 Ensemble member exchangeability

The issue of member interchangeability is central to this
study, since, for AKD, each raw ensemble will be consid-
ered as a whole (i.e., indistinguishable members), whereas
for NSGA-II a weight matrix is sought, which implies that
different weights are assigned to each candidate members.

Interchangeability is here assessed visually, by simulta-
neously looking at the individual RMSE values of all 5000
members, seven daily forecast horizons, and five H-EPSs.
Figure 4 displays the (typical) values for day 500 and Baska-
tong sub-catchment. The animation screenshots covering the
different stages along the full time series are available in the
Supplement. For each H-EPS forecast horizon box, horizon-
tal lines consist of 100 EnKF members and vertical lines with
50 meteorological members. Mosaics with redder colors rep-
resent higher values of the RMSE. The decreasing predictive
skill of the H-EPSs with lead time is, hence, shown as an
increasingly red mosaic.

Figure 4 displays the hydrologic forecasts built upon the
50-member ECMWF ensemble forecasts. The basic idea be-
hind Fig. 4 (and its accompanying video) is to visually assess
if the initial interchangeability of the weather forecasts holds
for the hydrologic forecasts (i.e., horizontal lines), while
the interchangeability of the probabilistic data assimilation
scheme is assessed in parallel (vertical lines). One can no-
tice that, in Fig. 4, colorful horizontal lines within each box
start to appear from day 3 onwards, revealing a distinguish-
able character with longer lead times. At the same time, no
obvious vertical lines are present in the same figure. These
results suggest that the hydrologic forecasts produced in this
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Figure 3. Schematic of the experimental setup flowchart.

Figure 4. Illustration of the RMSE values (mm d−1) of the indi-
vidual members of the forecast issued by the five H-EPSs for the
Baskatong sub-catchment on day 500. There are seven daily fore-
cast horizons. Each box consists of 5000 members, including 100
EnKF members (horizontal lines) and 50 meteorological members
(vertical lines).

study are fully interchangeable with respect to EnKF but less
so with respect to the weather, with the latter being nonlin-
early transformed by the hydrologic models. This opens up
the possibility of assigning weights to the hydrologic fore-
casts associated to the ECMWF members.

For practical reasons, as the 100-member data assimilation
ensemble was deemed to be fully interchangeable, this com-
ponent is randomly reduced to 50 members from now on in
this document. This procedure simplifies the implementation
of the AKD and NSGA-II post-processing computations, the
results of which are presented next.

4.2 NSGA-II convergence

The NSGA-II Pareto front drawn in Fig. 5 (model M01
over the Baskatong catchment) is quite typical. In this

Figure 5. NSGA-II Pareto fronts of the model M01 over the Baska-
tong catchment. Horizontal and vertical axis are NSE and bias, sep-
arately.

multi-objective evolutionary search, 35 (non-dominated)
Pareto solutions are identified. No objective can be im-
proved more without the sacrifice of another. The optimal
NSE is inevitably accompanied with the highest bias (e.g.,
NSE= 0.84594; bias= 0.034055) or vice versa. The solu-
tions in the elbow region of the Pareto front are the com-
promise between both two objective functions. Pareto fronts
with different numbers of solutions can be attained daily via
setting the sliding window. Therefore, rather than choosing
only one fixed position in the front, we opted to pick the so-
lution randomly to respect and explore the diversity within.
Figure 6 confirms the NSGA-II convergence.
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Figure 6. NSGA-II dynamical performance plots for both objective functions vs. the number of evaluations for model M01 over Baskatong
catchment.

Figure 7. Forecasting reliability of the raw, AKD, and NSGA-II forecasts on the calibration dataset (4 d ahead forecast) for five single-model
H-EPSs over each individual catchment (January 2011–December 2016).

Hydrol. Earth Syst. Sci., 26, 1001–1017, 2022 https://doi.org/10.5194/hess-26-1001-2022



J. Xu et al.: Exploring hydrologic post-processing of ensemble streamflow forecasts 1011

Figure 8. Accuracy performance assessment of the raw, AKD, and NSGA-II forecasts (4 d ahead forecast) for five single-model H-EPSs
over each sub-catchment of the Gatineau catchment (January 2011–December 2016).
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4.3 AKD and NSGA-II performance comparison

The reliability of the raw, kernel-dressed, and NSGA-II pre-
dictive distributions with different lead times are displayed in
the reliability diagrams of Fig. 7. Both post-processing meth-
ods improve over the raw ensemble, especially the NSGA-
II, as it achieves the best reliability. Over-dispersion exists
mainly over the Baskatong catchments for NSGA-II.

The relevant accuracy performances of the raw, AKD, and
NSGA-II predictive models are summarized using radar plots
in Fig. 8. We can notice that the kernel-dressed ensemble fails
in decreasing the forecast bias. However, it adjusts the en-
semble dispersion properly. As for the NSGA-II, the post-
processed ensemble has an obvious improvement on both
bias and ensemble dispersion. Accordingly, it demonstrates
a very reliable performance, as shown in the reliability dia-
gram.

The trained optimal free parameter vector θ =

[α,r1, r2, s1, s2] or weight estimates are obtained over
the 4 d ahead ensemble forecasts. They are then applied to
the validation dataset. It comprises the 1, 3, 5, and 7 d ahead
raw forecasts issued from the associated H-EPSs. Figure 9
shows the reliability diagrams for raw, kernel-dressed,
and NSGA-II forecasts for the validation dataset over five
individual catchments. Therefore, there are 15 lines shown
in each sub-diagram. Again, raw forecasts (i.e., blue lines)
display a severe under-dispersion, revealing that error growth
is not maintained well in a single-model H-EPS. In general,
the other two statistical post-processing methods succeed
in improving the forecast reliability, with the curves closer
to the bisector lines. The NSGA-II (i.e., red curves) espe-
cially demonstrates its superior ability for maintaining the
reliability with the lead time. The over-dispersion appears
with most of the AKD transformed ensembles (i.e., yellow
lines), especially at shorter lead times. The ensemble spread
tends to a proper level as the lead time increases. Note that
there is one special case where the predictive distributions of
the kernel-dressed ensemble are the most reliable for model
M05 over almost all individual catchments.

Figure 10 demonstrates the ensemble spread with different
forecasting horizons on the x axis and shows the changing
performance trend. Clearly, both the kernel-dressed ensem-
ble and NSGA-II predictive forecasts have increased disper-
sion for all models over all catchments and result in more
reliable predictive distributions. Figure 10 also provides an
intuitive reference of the accuracy performance of the raw,
AKD, and NSGA-II interpreted ensemble forecasts in terms
of the MAE, MCRPS, and the ensemble dispersion for differ-
ent forecasting horizons, showing the evolution of forecast-
ing performance. Clearly, both the kernel-dressed ensemble
and NSGA-II forecasts have increased dispersion compared
to raw forecasts for all models and over all catchments. This
results in more reliable predictive distributions, as shown in
Fig. 9.

5 Conclusions

Hydrologic post-processing of streamflow forecasts plays an
important role in correcting the overall representation of un-
certainties in the final streamflow forecasts. Both the ker-
nel ensemble dressing and the evolutionary multi-objective
optimization approaches are tested in this study to estimate
the probability density directly from the data (i.e., daily
ensemble streamflow forecast) over five single-model hy-
drologic ensemble prediction systems (H-EPSs). The AKD
method provides an affine mapping between the entire en-
semble forecast and the observations without any assumption
of the underlying distributions. The Pareto fronts generated
with NSGA-II relax the parametric assumptions regarding
the shape of the predictive distributions and offer trade-offs
between different objectives in a multi-score framework.

The single-model H-EPSs explored in this study account
for both forcing uncertainty and initial conditions uncer-
tainty by using ensemble weather forecasts (ECMWF) and
data assimilation (EnKF). Hydrologic post-processing with
AKD and NSGA-II rely on very different assumptions and
methodology. However, they both transform the raw ensem-
bles into probability distributions. Results show that the post-
processed forecasts achieve stronger predictive skill and bet-
ter reliability than raw forecasts. In particular, the NSGA-
II post-processed forecasts achieve the most reliable perfor-
mances, since this method improves both bias and ensem-
ble dispersion. However, over-dispersion may exist occasion-
ally over the Baskatong catchment for NSGA-II. The kernel-
dressed ensemble succeeds in adjusting the ensemble disper-
sion properly but bias increases. Note that, here, we cali-
brated the models on day 4 and then tested them on the other
days to assess the robustness of the procedure. The results
show that both AKD and NSGA-II predictive models could
offer an efficient post-processing skill, and the procedure is
quite robust as well. Others may try alternatives such as im-
plementing the models separately on other lead times.

In the operational field, not only quantifying but also com-
municating the predictive uncertainties in probabilistic fore-
casts will become an essential topic. As mentioned in the
introduction, another challenge that remains is how we can
bridge the communication gap between the forecasters’ and
the end-users’, such as the operational hydrologists, local
conservation authorities, and some other relevant stakehold-
ers, interpretation about probabilistic forecasts. What fac-
tor may have the strongest impact on decision-making? The
different end-users may have their unique preferences and
demands. For instance, the reliability and sharpness (i.e.,
spread) could be improved simultaneously, or there could be
a trade-off between them.

In this paper, the performance of the NSGA-II method is
compared with a conventional post-processing method, i.e.,
the AKD. NSGA-II demonstrated its superior ability in im-
proving the forecast performance and communicating trade-
offs with end-users on which performance aspects to improve
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Figure 9. Comparison of the reliability of the raw, kernel-dressed, and NSGA-II forecasts on the validation dataset (i.e., 1–3 and 5–7 d ahead
forecasts) for five singe-model H-EPSs over all catchments (January 2011–December 2016).

Figure 10. Comparison of the MAE, MCRPS, and ensemble dispersion of the raw, AKD, and NSGA-II forecasts (i.e., 1–3 and 5–7 d ahead
forecasts) for five singe-model H-EPSs over all catchments (January 2011–December 2016). The x axis for each sub-plot represents different
horizons.
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most. As the selected objective functions here, neither NSE
nor bias could be improved more without negatively impact-
ing the other. The use of NSGA-II opens up opportunities to
enhance the forecast quality in line with the specific needs
of the end-users, since it allows for setting multiple specific
objective functions from scratch. This flexibility should be
considered as a key element for facilitating the implementa-
tion of H-EPSs in real-time operational forecasting.
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Groşan, C., Mihai, O., and Mihaela, O.: The role of elitism in
multiobjective optimization with evolutionary algorithms, Acta
Univ. Apulensis Math. Inform., 83–90, available at: https://www.
researchgate.net/publication/265834177_The_role_of_elitism_
in_multiobjective_optimization_with_evolutionary_algorithms
(last access: 6 February 2022), 2003.

Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decom-
position of the mean squared error and NSE performance criteria:
Implications for improving hydrological modeling, J. Hydrol.,
377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.

Hersbach, H.: Decomposition of the Continuous Ranked Prob-
ability Score for Ensemble Prediction Systems, Weather
Forecast., 15, 559–570, https://doi.org/10.1175/1520-
0434(2000)015<0559:DOTCRP>2.0.CO;2, 2000.

Houtekamer, P. L., Lefaivre, L., Derome, J., and Ritchie, H.:
A system simulation approach to ensemble prediction, Mon.
Weater. Rev., 124, 1225–1242, https://doi.org/10.1175/1520-
0493(1996)124<1225:ASSATE>2.0.CO;2, 1996.

Jakeman, A. J., Littlewood, I. G., and Whitehead, P. G.: Com-
putation of the instantaneous unit hydrograph and identifiable
component flows with application to two small upland catch-
ments, J. Hydrol., 117, 275–300, https://doi.org/10.1016/0022-
1694(90)90097-H, 1990.

Jewson, S.: Comparing the ensemble mean and the ensemble stan-
dard deviation as inputs for probabilistic medium-range temper-
ature forecasts, Cornell University, available at: https://arxiv.org/
pdf/physics/0310059.pdf (last access: 16 February 2022), 2003.

https://doi.org/10.5194/hess-26-1001-2022 Hydrol. Earth Syst. Sci., 26, 1001–1017, 2022

https://books.google.ca/books?hl=en&lr=&id=aQJDAAAAIAAJ&oi=fnd&pg=PR2&dq=A+generalized+streamflow+simulation+system:+conceptual+modeling+for+digital+computers,+Technical+Report,+Joint+Federal+and+State+River+Forecast+Center&ots=4tSaTg69cs&sig=sVb7nFZmMBgqy2p3oPmJYuztR6c&redir_esc=y#v=onepage&q&f=false
https://books.google.ca/books?hl=en&lr=&id=aQJDAAAAIAAJ&oi=fnd&pg=PR2&dq=A+generalized+streamflow+simulation+system:+conceptual+modeling+for+digital+computers,+Technical+Report,+Joint+Federal+and+State+River+Forecast+Center&ots=4tSaTg69cs&sig=sVb7nFZmMBgqy2p3oPmJYuztR6c&redir_esc=y#v=onepage&q&f=false
https://books.google.ca/books?hl=en&lr=&id=aQJDAAAAIAAJ&oi=fnd&pg=PR2&dq=A+generalized+streamflow+simulation+system:+conceptual+modeling+for+digital+computers,+Technical+Report,+Joint+Federal+and+State+River+Forecast+Center&ots=4tSaTg69cs&sig=sVb7nFZmMBgqy2p3oPmJYuztR6c&redir_esc=y#v=onepage&q&f=false
https://books.google.ca/books?hl=en&lr=&id=aQJDAAAAIAAJ&oi=fnd&pg=PR2&dq=A+generalized+streamflow+simulation+system:+conceptual+modeling+for+digital+computers,+Technical+Report,+Joint+Federal+and+State+River+Forecast+Center&ots=4tSaTg69cs&sig=sVb7nFZmMBgqy2p3oPmJYuztR6c&redir_esc=y#v=onepage&q&f=false
https://books.google.ca/books?hl=en&lr=&id=aQJDAAAAIAAJ&oi=fnd&pg=PR2&dq=A+generalized+streamflow+simulation+system:+conceptual+modeling+for+digital+computers,+Technical+Report,+Joint+Federal+and+State+River+Forecast+Center&ots=4tSaTg69cs&sig=sVb7nFZmMBgqy2p3oPmJYuztR6c&redir_esc=y#v=onepage&q&f=false
https://books.google.ca/books?hl=en&lr=&id=aQJDAAAAIAAJ&oi=fnd&pg=PR2&dq=A+generalized+streamflow+simulation+system:+conceptual+modeling+for+digital+computers,+Technical+Report,+Joint+Federal+and+State+River+Forecast+Center&ots=4tSaTg69cs&sig=sVb7nFZmMBgqy2p3oPmJYuztR6c&redir_esc=y#v=onepage&q&f=false
https://books.google.ca/books?hl=en&lr=&id=aQJDAAAAIAAJ&oi=fnd&pg=PR2&dq=A+generalized+streamflow+simulation+system:+conceptual+modeling+for+digital+computers,+Technical+Report,+Joint+Federal+and+State+River+Forecast+Center&ots=4tSaTg69cs&sig=sVb7nFZmMBgqy2p3oPmJYuztR6c&redir_esc=y#v=onepage&q&f=false
https://doi.org/10.1145/2463372.2463538
https://doi.org/10.5194/adgeo-29-85-2011
https://doi.org/10.1016/j.jhydrol.2011.11.042
https://doi.org/10.1016/j.envsoft.2003.12.004
https://doi.org/10.1016/j.jhydrol.2009.06.005
https://doi.org/10.1111/j.1752-1688.2007.00080.x
https://doi.org/10.1016/S0022-1694(00)00214-6
https://doi.org/10.1016/S0022-1694(00)00214-6
https://doi.org/10.5194/hess-21-1573-2017
https://doi.org/10.1029/WR020i009p01167
https://doi.org/10.1109/4235.996017
https://doi.org/10.1029/2007WR006734
https://doi.org/10.1016/j.advwatres.2006.11.014
https://doi.org/10.1016/0167-2789(94)90130-9
https://doi.org/10.1175/2009MWR3046.1
https://doi.org/10.1016/j.rse.2007.06.025
https://doi.org/10.1256/qj.05.167
https://doi.org/10.1175/JHM-D-14-0008.1
https://doi.org/10.1175/JHM-D-14-0008.1
https://doi.org/10.1002/hyp.9509
https://doi.org/10.1198/016214506000001437
https://doi.org/10.1175/MWR2904.1
https://www.researchgate.net/publication/265834177_The_role_of_elitism_in_multiobjective_optimization_with_evolutionary_algorithms
https://www.researchgate.net/publication/265834177_The_role_of_elitism_in_multiobjective_optimization_with_evolutionary_algorithms
https://www.researchgate.net/publication/265834177_The_role_of_elitism_in_multiobjective_optimization_with_evolutionary_algorithms
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2
https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2
https://doi.org/10.1175/1520-0493(1996)124<1225:ASSATE>2.0.CO;2
https://doi.org/10.1175/1520-0493(1996)124<1225:ASSATE>2.0.CO;2
https://doi.org/10.1016/0022-1694(90)90097-H
https://doi.org/10.1016/0022-1694(90)90097-H
https://arxiv.org/pdf/physics/0310059.pdf
https://arxiv.org/pdf/physics/0310059.pdf


1016 J. Xu et al.: Exploring hydrologic post-processing of ensemble streamflow forecasts

Jing, X.: Code for hess-2020-238 (v1.0.1), Zenodo [code],
https://doi.org/10.5281/zenodo.6113443, 2022.

Klemeš, V.: Operational testing of hydrological sim-
ulation models, Hydrolog. Sci. J., 31, 13–24,
https://doi.org/10.1080/02626668609491024, 1986.

Kling, H., Fuchs, M., and Paulin, M.: Runoff condi-
tions in the upper Danube basin under an ensemble
of climate change scenarios, J. Hydrol., 424, 264–277,
https://doi.org/10.1016/j.jhydrol.2012.01.011, 2012

Kulturel-Konak, S., Smith, A. E., and Norman, B. A.:
Multi-objective search using a multinomial probabil-
ity mass function, Eur. J. Oper. Res., 169, 918–931,
https://doi.org/10.1016/j.ejor.2004.08.026, 2006.

Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.:
World Map of the Köppen-Geiger climate classification up-
dated, Meteorol. Z., 15, 259–263, https://doi.org/10.1127/0941-
2948/2006/0130, 2006.

Li, W., Duan, Q., Miao, C., Ye, A., Gong, W., and Di, Z.:
A review on statistical postprocessing methods for hydrom-
eteorological ensemble forecasting, Wires Water, 4, e1246,
https://doi.org/10.1002/wat2.1246, 2017.

Liong, S. Y., Khu, S. T. and Chan, W. T.: Derivation of
Pareto front with genetic algorithm and neural network, J.
Hydrol. Eng., 6, 52–61, https://doi.org/10.1061/(ASCE)1084-
0699(2001)6:1(52), 2001.

Liu, Y. and Gupta, H. V.: Uncertainty in hydrologic modeling: To-
ward an integrated data assimilation framework, Water. Resour.
Res., 43, 1–18, https://doi.org/10.1029/2006WR005756, 2007.

Madadgar, S., Moradkhani, H., and Garen, D.: Towards improved
post-processing of hydrologic forecast ensembles, Hydrol. Pro-
cess., 28, 104–122, https://doi.org/10.1002/hyp.9562, 2014.

Marty, R., Fortin, V., Kuswanto, H., Favre, A. C., and Parent, E.:
Combining the bayesian processor of output with bayesian model
averaging for reliable ensemble forecasting, J. R. Stat. Soc. C-
Appl., 64, 75–92, https://doi.org/10.1111/rssc.12062, 2015.

Matheson, J. E. and Winkler, R. L.: Scoring Rules for Contin-
uous Probability Distributions, Manage. Sci., 22, 1087–1096,
https://doi.org/10.1287/mnsc.22.10.1087, 1976.

McMillan, H. K., Hreinsson, E. Ö., Clark, M. P., Singh, S. K., Za-
mmit, C., and Uddstrom, M. J.: Operational hydrological data
assimilation with the recursive ensemble Kalman filter, Hydrol.
Earth Syst. Sci., 17, 21–38, https://doi.org/10.5194/hess-17-21-
2013, 2013.

Mockler, E. M., O’Loughlin, F. E., and Bruen, M.: Understanding
hydrological flow paths in conceptual catchment models using
uncertainty and sensitivity analysis, Comput. Geosci., 90, 66–77,
https://doi.org/10.1016/j.cageo.2015.08.015, 2016.

Moradkhani, H., Sorooshian, S., Gupta, H. V., and Houser, P.
R.: Dual state-parameter estimation of hydrological models us-
ing ensemble Kalman filter, Adv. Water. Resour., 28, 135–147,
https://doi.org/10.1016/j.advwatres.2004.09.002, 2005.

Moradkhani, H., Dechant, C. M., and Sorooshian, S.: Evo-
lution of ensemble data assimilation for uncertainty
quantification using the particle filter-Markov chain
Monte Carlo method, Water Resour. Res., 48, 121–134,
https://doi.org/10.1029/2012WR012144, 2012.

Movahedinia, F.: Assessing hydro-climatic uncertainties on hy-
dropower generation, Université Laval, Québec city, 7 pp.,

available at: https://corpus.ulaval.ca/jspui/handle/20.500.11794/
25294 (last access: 6 February 2022), 2014.

Najafi, M. R., Moradkhani, H., and Jung, I. W.: Assess-
ing the uncertainties of hydrologic model selection in cli-
mate change impact studies, Hydrol. Process., 25, 2814–2826,
https://doi.org/10.1002/hyp.8043, 2011.

Nash, J. E. and Sutcliffe, I.: River flow forecasting through concep-
tual models. Part 1 – A discussion of principles, J. Hydrol., 10,
282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.

Oudin, L., Michel, C., and Anctil, F.: Which potential evapo-
transpiration input for a lumped rainfall-runoff model? Part 1
– Can rainfall-runoff models effectively handle detailed po-
tential evapotranspiration inputs?, J. Hydrol., 303, 275–289,
https://doi.org/10.1016/j.jhydrol.2004.08.025, 2005.

Palmer, T. N.: Extended-Range Atmospheric Pre-
diction and the Lorenz Model, B. Am. Meteo-
rol. Soc., 74, 49–65, https://doi.org/10.1175/1520-
0477(1993)074<0049:ERAPAT>2.0.CO;2, 1993.

Palmer, T. N.: The economic value of ensemble forecasts as a tool
for risk assessment: From days to decades, Q. J. Roy. Meteor.
Soc., 128, 747–774, https://doi.org/10.1256/0035900021643593,
2002.

Ramos, M. H., Mathevet, T., Thielen, J., and Pappenberger,
F.: Communicating uncertainty in hydro-meteorological fore-
casts: mission impossible?, Meteorol. Appl., 17, 223–235,
https://doi.org/10.1002/met.202, 2010.

Perrin, C.: Vers une amélioration d’un modèle global pluie-débit au
travers d’une approche comparative, Houille Blanche, 6–7, 84–
91, https://doi.org/10.1051/lhb/2002089, 2002.

Perrin, C., Michel, C., and Andréassian, V.: Improvement of a parsi-
monious model for streamflow simulation, J. Hydrol., 279, 275–
289, https://doi.org/10.1016/S0022-1694(03)00225-7, 2003.

Reichle, R., McLaughlin, D. B., and Entekhabi, D.: Hydro-
logic data assimilation with the ensemble Kalman filter,
Mon. Weather Rev., 130, 103–114, https://doi.org/10.1175/1520-
0493(2002)130<0103:HDAWTE>2.0.CO;2, 2002.

Roulston, M. S. and Smith, L. A.: Combining dynam-
ical and statistical ensembles, Tellus A, 55, 16–30,
https://doi.org/10.3402/tellusa.v55i1.12082, 2003.

Salamon, P. and Feyen, L.: Disentangling uncertainties in dis-
tributed hydrological modeling using multiplicative error models
and sequential data assimilation, Water Resour. Res., 46, 1–20,
https://doi.org/10.1029/2009WR009022, 2010.

Schaake, J., Demargne, J., Hartman, R., Mullusky, M., Welles,
E., Wu, L., Herr, H., Fan, X., and Seo, D. J.: Precipita-
tion and temperature ensemble forecasts from single-value
forecasts, Hydrol. Earth Syst. Sci. Discuss., 4, 655–717,
https://doi.org/10.5194/hessd-4-655-2007, 2007.

Schaffer, J.: Multiple Objective Optimization with Vector Evalu-
ated Genetic Algorithms, Proceedings of the First International
Conference on Genetic Algortithms, Lawrence Erlbaum Asso-
ciates. Inc., 93–100, https://www.researchgate.net/publication/
216301392_Multiple_Objective_Optimization_with_Vector_
Evaluated_Genetic_Algorithms (last access: 16 February 2022),
1985.

Seiller, G., Anctil, F., and Perrin, C.: Multimodel evaluation
of twenty lumped hydrological models under contrasted cli-
mate conditions, Hydrol. Earth Syst. Sci., 16, 1171–1189,
https://doi.org/10.5194/hess-16-1171-2012, 2012.

Hydrol. Earth Syst. Sci., 26, 1001–1017, 2022 https://doi.org/10.5194/hess-26-1001-2022

https://doi.org/10.5281/zenodo.6113443
https://doi.org/10.1080/02626668609491024
https://doi.org/10.1016/j.jhydrol.2012.01.011
https://doi.org/10.1016/j.ejor.2004.08.026
https://doi.org/10.1127/0941-2948/2006/0130
https://doi.org/10.1127/0941-2948/2006/0130
https://doi.org/10.1002/wat2.1246
https://doi.org/10.1061/(ASCE)1084-0699(2001)6:1(52)
https://doi.org/10.1061/(ASCE)1084-0699(2001)6:1(52)
https://doi.org/10.1029/2006WR005756
https://doi.org/10.1002/hyp.9562
https://doi.org/10.1111/rssc.12062
https://doi.org/10.1287/mnsc.22.10.1087
https://doi.org/10.5194/hess-17-21-2013
https://doi.org/10.5194/hess-17-21-2013
https://doi.org/10.1016/j.cageo.2015.08.015
https://doi.org/10.1016/j.advwatres.2004.09.002
https://doi.org/10.1029/2012WR012144
https://corpus.ulaval.ca/jspui/handle/20.500.11794/25294
https://corpus.ulaval.ca/jspui/handle/20.500.11794/25294
https://doi.org/10.1002/hyp.8043
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1016/j.jhydrol.2004.08.025
https://doi.org/10.1175/1520-0477(1993)074<0049:ERAPAT>2.0.CO;2
https://doi.org/10.1175/1520-0477(1993)074<0049:ERAPAT>2.0.CO;2
https://doi.org/10.1256/0035900021643593
https://doi.org/10.1002/met.202
https://doi.org/10.1051/lhb/2002089
https://doi.org/10.1016/S0022-1694(03)00225-7
https://doi.org/10.1175/1520-0493(2002)130<0103:HDAWTE>2.0.CO;2
https://doi.org/10.1175/1520-0493(2002)130<0103:HDAWTE>2.0.CO;2
https://doi.org/10.3402/tellusa.v55i1.12082
https://doi.org/10.1029/2009WR009022
https://doi.org/10.5194/hessd-4-655-2007
https://www.researchgate.net/publication/216301392_Multiple_Objective_Optimization_with_Vector_Evaluated_Genetic_Algorithms
https://www.researchgate.net/publication/216301392_Multiple_Objective_Optimization_with_Vector_Evaluated_Genetic_Algorithms
https://www.researchgate.net/publication/216301392_Multiple_Objective_Optimization_with_Vector_Evaluated_Genetic_Algorithms
https://doi.org/10.5194/hess-16-1171-2012


J. Xu et al.: Exploring hydrologic post-processing of ensemble streamflow forecasts 1017

Seiller, G., Roy, R., and Anctil, F.: Influence of three com-
mon calibration metrics on the diagnosis of climate change
impacts on water resources, J. Hydrol., 547, 280–295,
https://doi.org/10.1016/j.jhydrol.2017.02.004, 2017.

Seo, D.-J., Herr, H. D., and Schaake, J. C.: A statistical post-
processor for accounting of hydrologic uncertainty in short-range
ensemble streamflow prediction, Hydrol. Earth Syst. Sci. Dis-
cuss., 3, 1987–2035, https://doi.org/10.5194/hessd-3-1987-2006,
2006.

Shim, K. C., Fontane, D. G., and Labadie, J. W.: Spa-
tial Decision Support System for Integrated River Basin
Flood Control, J. Water. Res. Pl.-ASCE, 128, 190–201,
https://doi.org/10.1061/(ASCE)0733-9496(2002)128:3(190),
2002.

Silverman, B. W.: Density estimation for statistics and data
analysis, Published in Monographs on Statistics and Ap-
plied Probability, CRC Press, Chapman and Hal, London, 26,
https://doi.org/10.1201/9781315140919, 1986.

Sloughter, J. M. L., Raftery, A. E., Gneiting, T., and Fraley,
C.: Probabilistic Quantitative Precipitation Forecasting Using
Bayesian Model Averaging, Mon. Weather Rev., 135, 3209–
3220, https://doi.org/10.1175/MWR3441.1, 2007.

Stanski, H. R., Wilson, L. J., and Burrows, W. R.: Sur-
vey of common verification methods in meteorology, World
Weather Watch Tech. Report 8, WMO/TD, 358, 114 pp.,
https://doi.org/10.13140/RG.2.2.26947.71208, 1989.

Thiboult, A. and Anctil, F.: On the difficulty to optimally implement
the Ensemble Kalman filter: An experiment based on many hy-
drological models and catchments, J. Hydrol., 529, 1147–1160,
https://doi.org/10.1016/j.jhydrol.2015.09.036, 2015.

Thiboult, A., Anctil, F., and Boucher, M.-A.: Accounting
for three sources of uncertainty in ensemble hydrologi-
cal forecasting, Hydrol. Earth Syst. Sci., 20, 1809–1825,
https://doi.org/10.5194/hess-20-1809-2016, 2016.

Thiboult, A., Seiller, G., and Anctil, F.: HOOPLA, GitHub [code],
available at: https://github.com/AntoineThiboult/HOOPLA (last
access: 16 February 2022), 2019.

Thiboult, A., Seiller, G., Poncelet, C., and Anctil, F.: The HOOPLA
toolbox: a HydrOlOgical Prediction LAboratory to explore en-
semble rainfall-runoff modeling, Hydrol. Earth Syst. Sci. Dis-
cuss. [preprint], https://doi.org/10.5194/hess-2020-6, 2020.

Thielen, J., Ramos, M. H., Bartholmes, J., De Roo, A., Cloke,
H., Pappenberger, F., and Demeritt, D.: Summary report of
the 1st EFAS workshop on the use of Ensemble Prediction
System in flood forecasting, European Report EUR, Ispra,
22118, available at: https://www.preventionweb.net/files/2610_
EUR22118EN.pdf (last access: 16 February 2022), 2005.

Thirel, G., Salamon, P., Burek, P., and Kalas, M.: Assimilation
of MODIS snow cover area data in a distributed hydrological
model using the particle filter, Remote. Sens., 5, 5825–5850,
https://doi.org/10.3390/rs5115825, 2013.

Thornthwaite, C. W. and Mather, J. R.: The water balance, Cen-
terton, New Jersey: Drexel Institute of Technology, Labora-
tory of Climatology, 8, 1–104, available at: https://oregondigital.
org/downloads/oregondigital:df70pr001 (last access: 16 Febru-
ary 2022), 1955.

Toth, Z. and Kalnay, E.: Ensemble Forecasting at
NCEP and the Breeding Method, Mon. Weather

Rev., 125, 3297–3319, https://doi.org/10.1175/1520-
0493(1997)125<3297:EFANAT>2.0.CO;2, 1997.

Valéry, A., Andréassian, V., and Perrin, C.: As simple as possible
but not simpler: What is useful in a temperature-based snow-
accounting routine? Part 2 – Sensitivity analysis of the Ce-
maneige snow accounting routine on 380 catchments, J. Hydrol.,
517, 1176–1187, https://doi.org/10.1016/j.jhydrol.2014.04.058,
2014.

Velázquez, J. A., Anctil, F., Ramos, M. H., and Perrin, C.:
Can a multi-model approach improve hydrological ensem-
ble forecasting? A study on 29 French catchments using
16 hydrological model structures, Adv. Geosci., 29, 33–42,
https://doi.org/10.5194/adgeo-29-33-2011, 2011.

Velázquez, J. A., Petit, T., Lavoie, A., Boucher, M.-A., Turcotte, R.,
Fortin, V., and Anctil, F.: An evaluation of the Canadian global
meteorological ensemble prediction system for short-term hy-
drological forecasting, Hydrol. Earth Syst. Sci., 13, 2221–2231,
https://doi.org/10.5194/hess-13-2221-2009, 2009.

Vrugt, J. A. and Robinson, B. A.: Treatment of uncertainty using
ensemble methods: Comparison of sequential data assimilation
and Bayesian model averaging, Water Resour. Res., 43, 1–15,
https://doi.org/10.1029/2005WR004838, 2007.

Wand, M. P. and Jones, M. C.: Kernel smoothing, Chapman
& Hall/CRC Monographs on Statistics & Applied Probabil-
ity, 60, 1–15, available at: http://matt-wand.utsacademics.
info/webWJbook/KernelSmoothingSample.pdf (last access:
16 February 2022), 1994.

Wang, X. and Bishop, C. H.: Improvement of ensemble reliability
with a new dressing kernel, Applied Meteorology and Physical
Oceanography 131, 965–986, https://doi.org/10.1256/qj.04.120,
2005.

Weigel, A. P., Liniger, M., and Appenzeller, C.: Can multi-model
combination really enhance the prediction skill of probabilistic
ensemble forecasts?, Q. J. Roy. Meteorol. Soc., 134, 241–260,
https://doi.org/10.1002/qj.210, 2008.

Wetterhall, F., Pappenberger, F., Alfieri, L., Cloke, H. L., Thielen-
del Pozo, J., Balabanova, S., Daňhelka, J., Vogelbacher, A., Sala-
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