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Abstract. The previous comparative studies on watersheds
were mostly based on the comparison of dispersive char-
acteristics, which lacked systemicity and causality. We pro-
posed a causal structure-based framework for basin compar-
ison based on the Bayesian network (BN) and focus on the
basin-scale water–energy–food–ecology (WEFE) nexus. We
applied it to the Syr Darya River basin (SDB) and the Amu
Darya River basin (ADB), of which poor water management
caused the Aral Sea disaster. The causality of the nexus was
effectively compared and universality of this framework was
discussed. In terms of changes in the nexus, the sensitive fac-
tor for the water supplied to the Aral Sea changed from the
agricultural development during the Soviet Union period to
the disputes in the WEFE nexus after the disintegration. The
water–energy contradiction of the SDB is more severe than
that of the ADB, partly due to the higher upstream reser-
voir interception capacity. It further made management of the
winter surplus water downstream of the SDB more contro-
versial. Due to this, the water–food–ecology conflict between
downstream countries may escalate and turn into a long-term
chronic problem. Reducing water inflow to depressions and
improving the planting structure prove beneficial to the Aral
Sea ecology, and this effect of the SDB is more significant.

The construction of reservoirs on the Panj River of the up-
stream ADB should be cautious to avoid an intense water–
energy conflict such as the SDB’s. It is also necessary to pro-
mote the water-saving drip irrigation and to strengthen the
cooperation.

1 Introduction

The Aral Sea disaster has warned us of the terrible impact
of unsustainable water use on the ecosystem. Recently, with
the growing focus on the water–energy–food (WEF) nexus
(Biggs et al., 2015; Cai et al., 2018; Conway et al., 2015;
Espinosa-Tasón et al., 2020; Sadeghi et al., 2020; Yang and
Wi, 2018) in integrated water resource management, we have
come to realize that a harmonious and optimized water–
energy–food–ecology (WEFE) nexus may be the key to ef-
fective cross-border water management of the Aral Sea basin
(Jalilov et al., 2016, 2018; Lee and Jung, 2018; Ma et al.,
2020; Sun et al., 2019), with “ecology” added to the WEF
nexus because ecology is usually more concerned in the Aral
Sea basin. The latter mainly includes the Syr Darya River
basin (SDB) and the Amu Darya River basin (ADB). Due to
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the similarity in the natural geographical conditions and man-
agement approaches, these two basins are generally consid-
ered to be very similar. The rapid melting of glaciers, drought
disasters, excessive irrigation water use, increasing food de-
mand, contradictions on water for the energy production and
irrigation between the upstream and downstream countries,
soil salinization and poor water quality are the common prob-
lems the two basins are facing nowadays (Immerzeel et al.,
2020; Micklin, 2010). However, there seems to be a lack of
attention to the quantitative differences on the characteristics
of the interactions of the WEFE nexus between the two river
basins. We want to understand the differences and their levels
and think about what experience can be gained from it. The
practice of an integrated watershed management often draws
on the experience and lessons of other watersheds with simi-
lar natural conditions, such as management concepts, hydro-
logical model applications and climate change risk assess-
ments (Grafton et al., 2012; Immerzeel et al., 2020; Joetzjer
et al., 2013; Ladson and Argent, 2002; Syed et al., 2005; Vet-
ter et al., 2017; Wang et al., 2020; Zawahri, 2008). Most of
these previous studies investigated the differences of disper-
sive or individual characteristics between the river basins but
lacked attention to the systemicity and causality (Fig. 1) in
the changing water systems at the basin scale, which may be
able to more directly provide new experience and knowledge
for practical watershed management. In the SDB and ADB,
this kind of comparison might be more practical and mean-
ingful on the application level (based on a higher similarity
in the natural conditions and management history). Learn-
ing from each other’s successes and failures could reduce
the trial-and-error costs in the water use management. For
example, the seasonal runoff pattern and its impact on the
water use of the SDB nowadays with a low glacier cover
might be considered a reference for the water use manage-
ment of the ADB, if most glaciers would melt in a warmer
future (Sorg et al., 2012). Analogously, such comparisons are
focusing on the detailed differences under a general similar-
ity and might also be helpful for understanding the WEFE
nexus and a better assignment of the detailed responsibilities
of countries regarding transboundary watershed cooperation
and management.

When studying the water system and the WEFE nexus in
the Aral Sea basin, we found that the first main source of
uncertainty might include the fact that it is difficult for us to
accurately predict the runoff amount from the mountainous
areas. In the arid regions of central Asia, most of the avail-
able water resources originate from the precipitation, melt-
ing snow and glaciers of the water towers in the alpine ar-
eas. However, the observations of the water resources in the
mountainous areas of this region have been greatly restricted
(Chen et al., 2017), especially after the collapse of the Union
of Soviet Socialist Republics (USSR), and some gauging sta-
tions were abandoned. It has restricted the implementation of
the physics-based and statistical models for the runoff predic-
tion, although remote-sensing technology proved helpful in

the estimation of the alpine precipitation and glacier melting
(Guo et al., 2017; Pohl et al., 2017) as forcing data. In addi-
tion, the weak prediction capacity of incoming water might
propagate the uncertainty in the downstream water use, food
production, energy production, ecology and their interactions
in the WEFE nexus. Facing the uncertainty of the amount
of incoming water and some other exogenous sources such
as climate change and population growth, some models con-
cerning the WEF nexus that are commonly used now may not
work well. Previous studies focused more on the WEF nexus
in integrated water resource management (IWRM) (Cai et
al., 2018) and many current WEF nexus studies applied the
system analysis or integrated process-based model methods
(Daher and Mohtar, 2015; Jalilov et al., 2018; Kaddoura and
El Khatib, 2017; Lee et al., 2019, 2020; Payet-Burin et al.,
2019; Zhang and Vesselinov, 2017). However, in order to pa-
rameterize these models, we found that many empirical pa-
rameters or factors need to be set (Feng et al., 2016; Ravar et
al., 2020), which could mask the shortcomings of an insuffi-
cient understanding of uncertain and complex processes. For
example, empirical coefficients were used to determine the
conversion coefficient of electricity demand for pumping wa-
ter from different depths and energy demand coefficients of
various water sectors (Ravar et al., 2020), including the driv-
ing functions of water supply, power generation and hydro-
ecology (Feng et al., 2016). The effectiveness depends on
our judgements of the values of each parameter under vari-
ous conditions, but we might ignore the dynamic influence of
the probability distribution of some remotely related causal
variables. In order to improve this, we considered a longer
causal chain matching of the uncertainty propagation process
and to obtain details on the possibility distributions of the
parameters’ values under various combinations of multiple
conditions. Therefore, we realized that the Bayesian network
might prove to be an effective tool for these two problems.

The Bayesian network (BN) is based on Bayesian the-
ory and graph theory (Friedman et al., 1997; Pearl, 1985).
It can simulate complex causal relationships, integrate ex-
pert knowledge from multiple fields and has shown its ad-
vantages in water resource research and management (Chan
et al., 2010; Fienen et al., 2013; Giordano et al., 2013; Hines
and Landis, 2014; Hunter et al., 2011; Nash and Hannah,
2011; Pagano et al., 2014; Quinn et al., 2013; Taner et al.,
2019; Xue et al., 2017). In our previous study, the WEFE
nexus in the single SDB was simulated based on a BN (Shi
et al., 2020), which also demonstrated its advantages in terms
of uncertainty quantification. Based on this, we try to explore
the framework significance and portability of this method
when applied to other watersheds for comparing watershed
systemic behaviours focusing more on the global causality,
which aimed at obtaining the universal evolution law and
discovering the specific differences of the basin-wide WEFE
nexus.

The research goals of this paper mainly include (1) propos-
ing a causal structure-based framework to compare the basin-
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Figure 1. Previous comparative studies focusing on local or individual aspects (a), and more attention should be directed to the identification
and comparison of causality and systemicity between river basins (b).

wide WEFE nexus and applying it to the SDB and ADB
with the BN method, (2) comparing the differences in his-
torical and current causality of the WEFE nexus and water
use between the SDB and ADB within the new framework
and (3) proposing a comprehensive optimization proposal of
the WEFE nexus management.

2 A generalized causal structure-based framework for
comparing the basin-wide
water–energy–food–ecology nexus

We propose a new framework (Fig. 2) for comparing the
basin-wide WEFE nexus and watershed management repre-
senting the causal structure based on combining the similar
causal structure and data differences. Under different levels
of similarity, similar causal structures generated by expert
knowledge are combined with the observation and statistical
datasets of different river basins. The elements of the WEFE
nexus can be adjusted to a water–energy nexus, water–food–
ecological nexus (Fig. 2), etc., according to the dynamic re-
search aims and similarity levels among the specifically in-
vestigated river basins.

The steps of the workflow of the framework are as follows.

1. We conduct a preliminary screening of the basin. Such
a screening can be based on a similar geographic re-
gion, landform, climate type, etc., which reflect the ba-
sic natural conditions. Based on other factors such as
whether the river is transboundary, whether the country
that manages the basin is economically developed, etc.,
we further filter the selected basins.

2. We construct a same WEFE nexus causality structure
for the river basins selected in the previous step, which
can be represented by a directed graph model such as the
Bayesian network. In this step, we need to balance the

degree of refinement of the causal relationship structure
and its universality in the selected river basins. The con-
ceptual structure constructed should be reviewed by a
panel of experts and revised if necessary. This feedback
can help to identify key variables or processes that have
been overlooked so as to correct errors in the conceptual
structure. In some cases, it may be appropriate to build a
conceptual structure with stakeholder groups, especially
if the model will be used as a management tool and the
results will affect stakeholders (Chan et al., 2010; Chen
and Pollino, 2012). At the same time, the availability of
actual expert knowledge and data should also be consid-
ered to avoid constructing a causal structure that is too
detailed so that the available expert knowledge and data
are not enough to fill it or too rough that the causal rela-
tionship is underfitted so as to avoid underutilization of
knowledge and data (Chen and Pollino, 2012; Marcot et
al., 2006). Including insignificant variables will increase
the complexity of the network and reduce the sensitivity
of the model output to important variables, unnecessar-
ily spending extra time and effort, and will not add value
to the entire model (Chen and Pollino, 2012).

3. In this step, we combine the causal structure represent-
ing expert knowledge from multiple fields with actual
statistics and observation data to update the initial un-
derstanding of causality (Cain, 2001; Chan et al., 2010;
Chen and Pollino, 2012; Marcot et al., 2006). Expert
judgment based on past observations, knowledge and
experience can be used to provide an initial estimate
of the probability, which can then be updated with the
available observation data (Chen and Pollino, 2012).
The ability to use expert opinions to parameterize the
BN model is an advantage, especially for environmen-
tal systems that have few quantitative data required for
statistical modelling methods (Smith et al., 2007). In
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Figure 2. The new generalized basin-wide water–energy–food–ecology nexus comparison framework based on combining the similar causal
structure and data differences. The upper tree structure shows the a priori classification of river basins, and the arid/semi-arid branch is
more subdivided. The lower left part illustrates the operation mode of the new basin comparison framework: combining the similar causal
structure determined by experts and the multi-dimensional observation dataset containing differences. The red boxes marked with a–e contain
elements identified by the 1–12 serial numbers on the right that measure similarities at different levels. Numbers 8–10 show the different
water–energy–food–ecology-related nexus types adjusted according to boxes a–e. River basins in the same red box can be compared by a
specific structure of causality generated by the elements the box contains. The bottom part shows the significance of the application under
this new framework.

this way, the conditional probability table of the orig-
inal causal structure is updated with actual data, and the
originally scattered actual data are closely connected by
the causal structure.

4. Based on the quantified new causal structure in the pre-
vious step, we can explore its value in practical applica-
tions within the new framework, including discovering
the common evolutionary law of the nexus, discovering
the differences in the responses of various nodes to the
same management scenario by synchronizing the oper-

ations of BNs of different river basins, analysing differ-
ences of the causality of the historical nexus changes,
incorporating previous unsystematic and local studies
on water resources, agriculture, ecology, etc., into the
new causal framework such as incorporating the up-
stream multi-source causal factors into the downstream
soil salinization studies, sharing experience and reflect-
ing on the failure cases of the historical management,
optimizing the current nexus, and incorporating causal-
ity and uncertainty into the decision-making and the fu-
ture risk assessment (Chan et al., 2010).
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3 Application of the framework in the SDB and the
ADB

3.1 Location of the selected SDB and ADB

The Aral Sea basin is located in central Asia (Fig. 3) with a
total area of 1549 million km2 and is one of the largest en-
dorheic river basins in the arid regions worldwide. The two
major rivers, the Syr Darya and the Amu Darya, originate
from the West Tien-Shan and Pamir Plateau as a part of the
central Asian water tower. They flow through five countries
in central Asia which were once part of the USSR. The sur-
face water resources of the basin mainly stem from the pre-
cipitation, snow melting and ice in the mountainous area. The
lower part of the basin is very dry, and most areas are deserts.
The large-scale agricultural production here is highly depen-
dent on the irrigation, and large amounts of water are con-
sumed by a high evapotranspiration and leakage during the
water diversion.

3.2 A priori and general mode of the
water–energy–food–ecology (WEFE) nexus of the
SDB and ADB

Since the 1960s, the WEFE nexus in the Aral Sea basin has
been suffering from increasing pressure (Fig. 4). In addition
to the population growth, climate change, ecological degra-
dation and other problems, the issue of the transboundary
water and energy disputes in this region has intensified with
the collapse of the USSR. Therefore, this basin-wide trans-
boundary WEFE nexus has unique characteristics on spatial
and chronological scales. In this study, according to the spa-
tial characteristics of the transboundary management, the wa-
tershed is divided into upstream and downstream areas. In re-
sponse to the impact of the collapse of the USSR, the water
resource management period was divided into four periods,
namely 1970–1980, 1980–1991, 1991–2005 and 2005–2015.
This is mainly based on the WEFE nexus change between the
upstream and downstream areas in different periods, which
are applicable to both the SDB and ADB as a priori and gen-
eral modes.

1. The agricultural development stage (1970–1980): dur-
ing this period, large-scale land development was car-
ried out, mainly planting cotton with high water con-
sumption and by means of flood irrigation. During this
period, large-scale reservoirs, irrigation and drainage
canals and other hydraulic irrigation projects were built.
With serious leakage and a low efficiency, a large
amount of water resources was being consumed before
going to the farmlands and the water amount entering
the Aral Sea had already begun to decrease (Micklin,
1988).

2. Cultivated land development reaches the highest level
and agricultural production continued to be high-

load (1980–1991): during this period, because the Aral
Sea basin was regarded as the main agricultural pro-
duction area of the USSR, the agricultural demand
was extremely large. When the agricultural products
were ready, they were handed over to Moscow, where
they were uniformly distributed to other regions of the
USSR. The scale of the agricultural development had
reached its peak and was relatively stable. The water
amount entering the lake from the Aral Sea was reduced
further (Micklin, 2007, 2010). In some years, even river
depletion occurred. The agricultural water in the down-
stream area was given priority and the gap in the up-
stream power generation needs was compensated for by
free fossil energy from the downstream area. The op-
eration mode of the reservoir in the upstream mountain
area was close to the natural mode. When the summer
streamflow was large, the reservoir outflow was also
high in order to ensure the agricultural water use in the
lower part.

3. The stage of economic stagnation after the collapse of
the USSR (1991–2005): politics in the newly born cen-
tral Asian countries remained unstable during this pe-
riod, and there was social and economic stagnation. The
cotton production scale of the previous USSR period
was far greater than the actual demand of the five new
countries. The area of agricultural land decreased. How-
ever, due to population growth and the new countries’
own food security needs, the proportion of food crops
grown increased. The downstream area no longer sup-
plied energy to the upstream area for free. The upstream
region had an energy crisis and the demand for elec-
tricity was not met, especially in the cold winter during
the peak in electricity consumption. In order to ensure
the electricity supply in winter, the upstream countries
increased the interception water with reservoirs in the
high mountains during summer and released more wa-
ter in winter so as to generate electricity. This resulted
in a downstream agricultural water shortage in summer
and flood risk during winter (Micklin, 2007, 2010). The
long-term flood irrigation caused serious salinization
and decreased the fertility of the farmland soil down-
stream. Pesticides and salt in the return flow of irrigation
entered the river, causing the downstream water quality
to decline. The exposed Aral Sea lake bed increased the
frequency of the sand and salt dust storms, threatening
the health of the residents, and the Aral Sea crisis devel-
oped further as a result.

4. The stage of socioeconomic recovery (2005–2015):
Kazakhstan and Turkmenistan were rich in fossil en-
ergy, have a certain foundation for industrial develop-
ment, and have experienced rapid economic develop-
ment. Relatively wealthy, Kazakhstan built large reser-
voirs so as to prevent floods and to regulate the irriga-
tion, alleviating its own disadvantages in the water re-
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Figure 3. Location of the Aral Sea basin and the water resource variation. Panel (a) shows the location of the Aral Sea basin; the two main
rivers are the Syr Darya and Amu Darya. This map is made with ArcGIS and the layers come from the public layers in the ESRI base map
and ArcGIS online. Panel (b) demonstrates the annual runoff variation of the Syr Darya river total runoff and the Amu Darya river main
stream at the Atamyrat cross section upstream the Karakum Canal.

source competition. Turkmenistan withdraws more wa-
ter, along with the economic development and popula-
tion growth. The energy disputes between the upstream
and downstream areas have become increasingly fierce.
For example, the amount of natural gas exported from
Uzbekistan to the upstream region was greatly reduced.
The power satisfaction and living standards of the up-
stream countries have only improved little. The Aral Sea
continued to shrink, and by 2010, only 10 % of the area
was left compared to the 1960s (Micklin, 2010).

3.3 A general Bayesian network (BN) structure with
macro spatial information within the new
framework applied to the SDB and ADB

We separated the upstream area, downstream area and the
Aral Sea as geographically discrete regions and introduced
the elements in the WEFE nexus joint to these regions into
the BN as different variables (Fig. 5). Each variable repre-
sents a certain element in the WEFE nexus of a certain re-

gion. The BN could be divided into six modules, including
the natural water resources, upstream, downstream, Aral Sea
and target variables, and a causal structure has been estab-
lished based on the expert experiences (Fig. 6). We estab-
lished this common framework as a prerequisite for estab-
lishing a joint probability table, and at the same time we tried
to adapt the SDB and ADB so as to keep each variable uni-
versal, although the specific meaning of the variables should
be different in the two river basins. The responsibility for ex-
ploring the differences between the two river basins mainly
relies on the input observation data.

3.4 Compiling and evaluation of the BN

A BN describes the joint probability distribution of the set
of nodes. For a BN in which nodes represent random vari-
ables (X1, . . . ,Xn), its joint probability distribution P(X) is
given as (Pearl, 1985)
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Figure 4. The a priori and general basin-wide WEFE nexus mode of the SDB and ADB and its temporal change during the past 50 years (a)
shows the sources of the exogenous stress on the WEFE nexus dominated by water in the Aral Sea basin. Panel (b) illustrates the hydrologic
uncertainty spread from the alpine area to the lower part through a typical “mountain–oasis–desert–lake” system. The elements of the WEFE
nexus are represented by circles in four colours and the relevant uncertainty items are tagged with these icons as a classification by respective
roles in the WEFE nexus. Panel (c) demonstrates the specific changes in the elements in the WEFE nexus during the past 50 years and the
influence from the collapse of the USSR in 1991.

P(X)= P (X1,X2, . . ., Xn)=

n∏
i=1
P (Xi |pa(Xi)) , (1)

where pa(Xi) are the values of the parents of Xi
and X1, . . . ,Xn are variables in the WEFE nexus structure.
Based on the expert knowledge, we initially gave values to

the corresponding conditional probability table for each node
of the BN. We discretized the value range of nodes to reduce
computational requirements (Table 1). The discretized inter-
val also has a certain extension to ensure the robustness of
the later prediction function and to prevent cases from easily
exceeding the boundary. According to the differences in the
political and economic backgrounds at different stages, we
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Figure 5. Integrate expert knowledge into Bayesian networks to simulate the WEFE nexus. The geographical area is divided into the upstream
and downstream regions and the surrounding area of the Aral Sea. The lower part contains the factors that can be considered in the framework,
and the underlined ones are actually used in this study.

divided the development process during the past 50 years into
four stages, 1970–1980, 1980–1991, 1991–2005 and 2005–
2015, based on the assumption that the WEFE nexus shows a
relative stability under similar political and economic back-
grounds. Next, in order to integrate actual observations and
statistical data, the expectation–maximization (EM) algo-
rithm (Moon, 1996) function of the Netica software is used
to iteratively calculate the joint probability distribution of the
BN. In the Netica software, the “experience” variable is used
to indicate the reliability of a priori knowledge, and the “de-
gree” variable is used to indicate the training times of the
observation data. By combining these two variables, we can
dynamically adjust and balance the weights of a priori knowl-

edge and the actual data in the probability distribution up-
date. In this study, we initially set “experience”< 0.3 “de-
gree” to ensure that the weight of the information represented
by the actual data is sufficient.

To assess the degree of agreement between the parame-
terization of the BN and the actual situation, we used the
sensitivity analysis of the BN (Castillo et al., 1997; Laskey,
1995; Marcot, 2012). The index variance of belief (VB) and
the index mutual information (MI) based on the change in
information entropy (Barton et al., 2008; Marcot, 2012) are
applied to evaluate the change in strength and uncertainty of
the causal relation between the nodes. They respectively rep-
resent the reduction in variance and entropy of the probabil-

Hydrol. Earth Syst. Sci., 25, 901–925, 2021 https://doi.org/10.5194/hess-25-901-2021
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Table 1. Discretization and description of variables.

Variables Status discretization Unit Explanation

Runoff 280–360, 360–440, 440–650 (SDB) 108 m3

300–500, 500–700, 700–900 (ADB)

D PDSI −8 to −4, −4 to 0, 0–6 (SDB)
−8 to −4, −4 to 0, 0–4 (ADB)

D precipitation 170–190, 190–210, 210–230 (SDB) mm
80–100, 100–120, 120–150 (ADB)

U reservoir storage 0–6, 6–12, 12–20 (SDB) km3 Toktogul reservoir (SDB)
5–8, 8–10 10–12 (ADB) Nurek reservoir (ADB)

Outflow of the reservoir in summer 1800–2800, 2800–3800, 3800–4800 (SDB) 106 m3

4000–7000, 7000–12 000, 12 000–15 000 (ADB)

Outflow of the reservoir in winter 3500–3800, 3800–4200, 4200–4500 (SDB) 106 m3

2000–3000, 3000–4000, 4000–5000 (ADB)

Energy import from D 0–1, 1–2, 2–3 (SDB) 109 m3 Natural gas export from D to U
0–0.5, 0.5–1, 1–3 (ADB)

U hydropower generation 0.3–0.8, 0.8–1.2, 1.2–1.5 (SDB) 1010 kW h−1

0.5–1, 1–1.4, 1.4–2 (ADB)

D cotton production 1100–2200, 2200–3300, 3300–4400 (SDB) 103 t
2000–2500, 2500–3000, 3000–3500 (ADB)

D cotton cropland 700–750, 750–800, 800–850 (SDB) 103 ha
1100–1250, 1250–1400, 1400–1600 (ADB)

D grain crop area 1000–1100, 1100–1200, 1200–1300 (SDB) 103 ha
1300–1500, 1500–1700, 1700–2000 (ADB)

D grain production 1500–2500, 2500–3500, 3500–4500 (SDB) 103 t
4500–5000, 5000–5500, 5500–6500 (ADB)

Number of D livestock 7–10, 10–13, 13–16 (SDB) 106 Cattle and sheep
10–20, 20–30, 30–40 (ADB)

D irrigation quantity per ha 9500–10 000, 10 000–10500, 10 500–11 000 (SDB) m3 ha−1

11 000–13 000, 13 000–15 000, 15 000–17 000 (ADB)

D water use 33–35, 35–37, 37–40 (SDB) km3

45–50, 50–55, 55–60 (ADB)

Inflow to the Aral Sea 0–4, 4–7, 7–10 (SDB) km3

0–7, 7–14, 14–21 (ADB)

Volume of the Aral Sea 10–100, 100–200, 200–300 km3

Inflow to depression 1.5–4.5, 4.5–6.5, 6.5–8.5 (SDB) km3 Water entering the Aydar lake (SDB)
2.5–5, 5–7, 7–9 (ADB) Water entering the Sarykamysh lake (ADB)

D agricultural production 2–4, 4–6, 6–8 (SDB) USD 109

2–4, 4–7, 7–10 (ADB)

D GDP 10–30, 30–50, 50–70 (SDB) USD 109

10–40, 40–60, 60–80 (ADB)

D population 14–16, 16–18, 18–20 (SDB) 106

16–18, 18–20, 20–22 (ADB)

D desertification 14–16, 16–18, 18–20 (ADB) 104 km2 Including the Aralkum Desert
10–20, 20–30, 30–40 (SDB)

Sand and salt storm 0–30, 30–60, 60–100 Day per year Frequency

D water mineralization 0–0.5, 0.5–1, 1–3 g L−1 Kyzylorda (SDB)
Nukus (ADB)

Soil salinization Low, medium, high Soil salinity near Kyzylorda (SDB)
Soil salinity near Khorezm (ADB)

D life expectancy 64–66, 66–68, 68–70, 70–72 Age

Note: D stands for “downstream” and U stands for “upstream”.
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Figure 6. The Bayesian network structure shared by the ADB and SDB when simulating the water–energy–food–ecology nexus. D stands
for “downstream” and U stands for “upstream”.

ity distribution of child nodes caused by the determination of
the state of the parent nodes. As the value range of the parent
node is reduced, the variance or entropy of its distribution is
usually reduced. The greater the variance or entropy of the
distribution of child nodes that can be further caused by this
reduction, the more sensitive the child node is to the parent
node, which also reflects the stronger causality. These two
indicators are as follows:

MI=H(Q)−H(Q|F)

=

∑
q

∑
f

P(q,f )log2

(
P(q,f )

P (q)P (f )

)
, (2)

VB= V (Q)−V (Q|F)=
∑
q

P(q)

[
Xq −

∑
q

P(q)Xq

]2

−

∑
q

P(q|f )

[
Xq −

∑
q

P(q|f )Xq

]2

, (3)

where H stands for the entropy, V stands for the variance,
Q stands for the target node, F stands for other nodes and
q and f stand for the status of Q and F . Xq is the true value
of the status q.

3.5 A BN-based analysis of the historical factors in the
water entering the Aral Sea, the post-test
probability prediction and multi-criteria evaluation
with the Markov chain–Monte Carlo sampling

We used the index VB that is utilized in the sensitivity anal-
ysis to analyse the factors that affect the water entering the
Aral Sea in the four stages during the past 50 years. It is
mainly significant to form a quantified understanding that
was originally only qualitative. Quantifying and updating the
past knowledge can help us to better understand the impact
and differences of the water resource development and the
WEFE nexus change at different stages in the SDB and ADB,
because the difference in the current status of the two rivers
may have been accumulated from the historical differences in
the water–land–energy development during the past 50 years.

We utilized the posterior probability prediction function
of the BN so as to support the decision optimization. Assum-
ing that the values of some variables have been determined,
the posterior probability prediction of the BN might be em-
ployed to infer the possible effect on the variables we are
concerned about. The prediction function is usually used to
infer and predict how one node (D) is likely to change with
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the distribution of its parent node (A) determined. All nodes
that have dependencies between A andD should be included
in the calculation. For example, suppose we have the simple
Bayesian network for discrete variables with the structures A
and D connected through a dependency of D on C, C on B
and B on A, and we can use the following formula (Heck-
erman and Breese, 1996) to calculate the probability of D
when the state of A is given.

P(D|A)=
P(A,D)

P (D)
=

∑
B,C

P(A,B,C,D)∑
A,B,C

P(A,B,C,D)

=

P(A)
∑
B

P(B|A)
∑
C

P(C|B)P (D|C)∑
A

P(A)
∑
B

P(A)P (B|A)
∑
C

P(C|B)P (D|C)
(4)

Parent nodes are regarded as the independent variables; child
nodes are regarded as the objectives. When the state of a
parent node is given, the beneficial probability distribution
change in the child node can be regarded as our optimization
goal. We formulated a change measure (1P ) (Robertson et
al., 2009; Xue et al., 2017) to assess the impact of a manage-
ment scenario compared to a base case:

1Plow = P(Xi |e)low−P(Xi)low, (5)
1Phigh = P(Xi |e)high−P(Xi)high, (6)

where e represents the determination of the state of the parent
node (management scenario) in the form of hard evidence
specifying a definite finding, P(Xi |e)low is the probability of
the lowest state for the management scenario, P(Xi)low is the
probability of the lowest state for the base case and 1Plow is
calculated as the change. The meanings of these variables are
the same for the subscripts “high”.

The goal of the above optimization only contains a single
variable; to test whether they seemed beneficial under mul-
tiple comprehensive criteria, we selected the scenarios with
a good effect (“reducing the water inflow to the depression”
and “improving the planting structure”) for the multi-criteria
(combination of the above single target variables) assess-
ment. Based on the Markov chain–Monte Carlo (MCMC)
(Neal, 1993) sampling of the BN, we explore its role in multi-
criteria assessment and optimization based on previous stud-
ies (Farmani et al., 2009; Molina et al., 2011; Shi et al., 2020;
Watthayu and Peng, 2004). The point or solution set obtained
from MCMC sampling matches the high-dimensional joint
probability distribution of BN nodes, which encompasses the
causality of the system (Neal, 1993). This will be applied so
as to determine the size of the uncertainty behind the opti-
mization effect of the scenario and to verify the ability of
the BN to manipulate the multi-dimensional uncertainty in
the decision-making. When the states of some nodes in the
BN are determined, the joint probability distribution of the
posterior changes, and the distribution of the point set in

the multi-criteria space also changes accordingly. The dis-
tribution of this point set is constrained by the causality con-
structed by the BN. If the Pareto solutions obtained by con-
ventional system optimization analysis are far outside the
distribution range of this point set, then these optimization
solutions may actually not meet the true causality constraints
as an overestimated optimized solution that does not conform
to the reality. In addition, this process could be seen as a test
of the robustness of the optimization solutions. The degree in
dispersion of the optimization cases in the three-dimensional
criterion space could visually illustrate the size of its uncer-
tainty, which is helpful for the decision-making with intu-
itively displaying a high-dimensional joint probability. The
three indicators, the reliability (REL) (Cai et al., 2002), to-
tal benefit (TB) and degree of cooperation (DC) (Shi et al.,
2020), used for multi-criteria evaluation are as follows:

REL= β
HA

A
+ (1−β)

WECO
TWECO

, (7)

where HA is the planted area, A represents the area suitable
for planting, WECO determines the ecological flow calcu-
lated as the water entering the Aral Sea, TWECO is the target
flow and 0≤ β ≤ 1 is an adjustable weight.

TB= Pa ×AP+Pe×EB+Ph×HP, (8)
DC= HP/AP, (9)

where HP indicates the benefits of hydroelectric power gen-
eration from upstream dams. EB is the benefit of downstream
ecological flow entering the Aral Sea, which is calculated as
a linear function of WECO in this paper. AP indicates the
agricultural production in downstream countries. Pa , Ph and
Pe are the prices or weights which can be adjusted accord-
ing to the actual market price in the international trade when
it comes to cross-border cooperative management in which
different types of benefits (such as upstream hydropower and
downstream agricultural products) may need to be weighted
and summed. It may be more reasonable to use the universal
price of various benefits in the international market to deter-
mine the weight. The value of ecological flow can be calcu-
lated as the value of the ecosystem services it provides. As
a simplified calculation, we normalized the three indicators
to 0–1 and sum them with equal weights.

3.6 Data

We collected data on the WEFE nexus from 1970 to 2015 in
the Aral Sea basin (Table 2). They will be entered into the BN
along with expert knowledge. For the SDB, the upstream area
includes Kyrgyzstan and the downstream area covers Kyzy-
lorda and Shymkent in Kazakhstan and Namangan, Andi-
jan, Fergana, Jizzakh, Syrdarya and Tashkent in Uzbekistan.
Regarding the ADB, the upstream region includes Tajik-
istan and the downstream region comprises Surxondaryo,
Qashqadaryo, Samarqand, Bukhara, Navoiy, Khorezm and
Karakalpakstan in Uzbekistan and the entire Turkmenistan.
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Table 2. Data description and sources.

Data Source Description Years of
duration

Discharge/ CA WATER info Streamflow 1970 to 2015
runoff http://www.cawater-info.net/water_quality_in_ca/amu_e.htm gauging

(last access: 1 October 2020), stations, daily
http://www.cawater-info.net/water_quality_in_ca/syr_e.htm and yearly
(last access: 1 October 2020),
Global Runoff Data Centre (GRDC)
http://www.bafg.de/GRDC/EN/Home/homepage_node.html
(last access: 1 October 2020)

Water intake CA WATER info – Regional Information System on Water and Province and 1970 to 2015
and Land Resources in the Aral Sea Basin (CAWater-IS) country scale,
consumption http://www.cawater-info.net/data_ca/?action=login_ICWC yearly

(last access: 1 October 2020),
http://sic.icwc-aral.uz/reports_e.htm
(last access: 1 October 2020),
http://www.icwc-aral.uz/pdf/67-en.pdf
(last access: 1 October 2020)

Precipitation National Climate Data Centre (NCDC) Meteorological 1970 to 2000,
http://www.ncdc.noaa.gov/ station, daily 2010 to 2015
(last access: 1 October 2020)

Palmer Google Earth Engine 0.04◦ grid, daily 1979 to 2015
Drought https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_PDSI
Severity Index (last access: 1 October 2020)
(PDSI) (Abatzoglou et al., 2018)

Water budgets CA WATER info – Database of the Aral Sea Annual scale 1970 to 2015
of the Aral http://www.cawater-info.net/aral/data/index_e.htm
Sea (last access: 1 October 2020)

Ecological- CA WATER info Sample site 1980 to 2010
and http://www.cawater-info.net/4wwf/pdf/khamraev_e.pdf scale, annual
environmental- (last access: 1 October 2020),
scale
indicators http://www.cawater-info.net/water_quality_in_ca/files/analytic_report_en.pdf

(last access: 1 October 2020),
http://www.cawater-info.net/water_quality_in_ca/syr_e.htm
(last access: 1 October 2020)
(Micklin, 1988, 2007, 2010)

Energy CEIC Country scale, 1991 to 2015
https://www.ceicdata.com yearly
(last access: 1 October 2020),
IEA
https://www.iea.org/data-and-statistics
(last access: 1 October 2020)

Operation of T. Siegfried (Siegfried and Bernauer, 2007) Monthly 1974 to 2015
reservoirs CA WATER info – Regional Information System on Water and

Land Resources in the Aral Sea Basin (CAWater-IS)
http://www.cawater-info.net/data_a/?action=login
(last access: 1 October 2020),
http://www.cawater-info.net/projects/peer-amudarya/pdf/report_2-2_2-5_en.pdf
(last access: 1 October 2020),
ICWC
http://sic.icwc-aral.uz/reports_e.htm
(last access: 1 October 2020),
http://www.icwc-aral.uz/pdf/67-en.pdf
(last access: 1 October 2020)
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Table 2. Continued.

Data Source Description Years of
duration

Social CA WATER info – Regional Information System on Water and Province scale, 1970 to 2015
economy Land Resources in the Aral Sea Basin (CAWater-IS) yearly

http://www.cawater-info.net/data_ca/?action=login
(last access: 1 October 2020),
Statistical data online
https://stat.uz/uz
(last access: 1 October 2020),
http://www.stat.kg
(last access: 1 October 2020),
https://data.worldbank.org.cn
(last access: 1 October 2020),
http://stat.gov.kz
(last access: 1 October 2020),
FAO
http://www.fao.org/statistics
(last access: 1 October 2020),
Soviet National Economic Statistics Yearbook,
Commonwealth of Independent States Statistical Committee
database

4 Results

4.1 Model evaluation

We input the collected data and expert knowledge into
the BN and compiled it with the EM algorithm in the Netica.
In this study, we selected four nodes as target variables for a
sensitivity analysis (Fig. 7). We found that VB and MI have
similar trends, and when VB is larger, MI is also larger. This
indicates that the correlation and uncertainty between nodes
are synchronized in response to changes in the parent node.
The upstream power generation of the two basins is sensitive
to the hydropower and imported energy. The downstream wa-
ter use is more sensitive to agricultural water and living wa-
ter use. The downstream agricultural production is very sen-
sitive to crop production, animal husbandry production and
soil salinization. The water inflow to the Aral Sea is sensitive
to runoff, water use and reservoir operation. The ranking of
these sensitivity factors matches our knowledge and experi-
ence about the Aral Sea basin well. Since the impact of the
other variables in the BN gradually decreases as the num-
ber of intermediate variables increases, these sensitivity re-
sults match well with expert and stakeholder perspectives. A
strong pseudo-causality was not found between two variables
with no obvious a priori causality. In general, the variables
with a strong causality are directly connected in the network.
This indicates that the established a priori causal structure
has withstood the test of the actual data.

4.2 Comparing the WEFE nexus of the SDB and ADB
during the past 50 years

We applied the sensitivity analysis to the node “water inflow
to the Aral Sea” of the SDB and ADB at different historical
stages (Fig. 8). During the period 1970–1980, there was no
significant difference between the influencing factors of the
two river basins, and the related variables of the increased
agricultural development contributed greatly. With the com-
pletion of the upstream reservoirs, the rising reservoir stor-
age also had a certain contribution in both river basins. In
this period, the variability of the natural runoff of the Syr
Darya River was significantly larger than the Amu Darya
River’s, and the contribution of the natural runoff was higher.
During the period 1980–1991, the contribution of most vari-
ables declined, which may be related to the normalization
of the maximized agricultural production, leaving only the
natural runoff as the main variation contribution. During the
period 1991–2005, for the SDB, the contribution of the wa-
ter inflow into the depression rose significantly. In both river
basins, the reservoir storage and summer release contribution
also augmented largely, with the SDB even higher, and the
support of the upstream energy import from the downstream
area also increased. During the period 2005–2015, for the
SDB, the contributions of the agricultural water and down-
stream crop area rose significantly and the output of the water
inflow to the depression decreased.

In general, before the collapse of the USSR, the differ-
ence was mainly sourced from the runoff variability and the
proportion of the upstream reservoir interception to the to-
tal natural runoff. The runoff proportion of the Naryn River
tributary (about 35 % of the total runoff of the Syr Darya
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Figure 7. Sensitivity analysis of some variables. VB stands for “variance of belief” and MI stands for “mutual information”. D stands for
“downstream”; correspondingly, U stands for “upstream”.

River) intercepted by the Toktogul hydropower station was
higher than the one of the Vakhsh River tributary (about 25 %
of the total runoff of the Amu Darya River) intercepted by
the Nurek hydropower station. It also shows that the SDB’s
upstream major reservoir had a stronger streamflow control
capability than the ADB’s. After the collapse of the USSR,
the contradiction in the question “Should water be used for
the summer irrigation water of the downstream country or
the winter power generation in the upstream country?” in
both river basins escalated, but the conflict in the SDB has
become more and more intense and the Toktogul reservoir
operation in Kyrgyzstan has changed completely from the
original natural model to a winter-release-dominated mode.
However, the contribution of downstream energy supplied to
the upstream country has not augmented much. This might
be due to the fact that the changes in the energy trade agree-
ments are hard to match with the annual hydrological cy-
cle change. Receiving too much winter flow, the contribution
of the SDB’s water entering the Aydar depression increased
rapidly after the disintegration and is higher than the ADB.
The other part of the water entering the Aydar depression is
the irrigation drainage water from collectors, which is simi-
lar to the Sarykamysh Lake in the ADB. However, during the
2005–2015 period of the SDB, the sensitivity to the flow of
depressions decreased. This may be due to the increased wa-
ter storage capacity of Kazakhstan’s newly built plain reser-
voirs such as Koksaray, which reduces the risk of dam failure
of the Chardara reservoir located on the border of Uzbekistan

and Kazakhstan. As there is no provision in the basin water
distribution agreement for the discharge of water from the
Chardara reservoir to the Aydar depression, Kazakhstan may
tend to release the surplus water from the Chardara reser-
voir to Koksaray rather than the Aydar depression. This will
threaten the volume, water salinity, stability and fishery pro-
duction (Groll et al., 2016) of the Aydar depression in Uzbek-
istan and intensify the water conflict between Uzbekistan and
Kazakhstan. In addition, the contribution of some variables
(such as livestock water use) has always been very low, pos-
sibly because the livestock water consumption only accounts
for a small amount of the total runoff.

4.3 Scenario analysis and optimization of the WEFE
nexus based on the BN

Based on the Bayesian posterior probability prediction abil-
ity, we enumerated the influence of some variables on other
target nodes under different scenarios. Reducing the water
volume entering depressions (Table 3) may be the most pos-
itive and helpful to restore the ecological water entering the
Aral Sea. This implies that the efficiency of salt leaching
and irrigation should be improved. It is also effective to in-
crease the planting ratio of grain crops and reduce cotton
planting with high water consumption to ensure food secu-
rity. Increasing the energy supply from upstream to down-
stream areas and reducing the downstream irrigation quantity
per hectare may also indirectly increase the ecological water
inflow to the Aral Sea. Increasing the upstream reservoir wa-
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Figure 8. Comparison of the sensitivity analysis of the “water inflow to the Aral Sea” node of the ADB and SDB in four historical periods
from 1970 to 2015. D stands for “downstream”; correspondingly, U stands for “upstream”. VB stands for “variance of belief”.

ter storage and winter water release may increase the inflow
of salt water under high runoff conditions. The high upstream
reservoir water storage and winter water release may indicate
high runoff conditions, which may also lead to an increase in
the inflow of the Aral Sea. Increasing the industrial produc-
tion and animal husbandry may significantly increase GDP
and livestock production. Among the damages that need pre-
vention, drought is first because it has a significant effect on
the desertification, soil salinization and water mineralization.

4.4 The multi-criteria evaluation based on the MCMC
sampling of the BN

The causal constraint of the Bayesian network on the dis-
tribution range of the point set in the multi-criteria evalua-
tion space makes the decision-makers more intuitive about
the multi-dimensional uncertainty of the system (Fig. 9). We
found that the advantage of Bayesian probability theory was
effectively integrated into the multi-criteria assessment. As
one of the parent nodes, the a priori distribution of “runoff”

affects the probability distribution of child nodes (such as
benefit variables) through the transfer of joint probability
calculations (Fig. 9). After the determination of the deci-
sion nodes, the distribution of the point set changed (shifted
from the a priori joint distribution to the posterior distribu-
tion). The distribution of comprehensive benefits under dif-
ferent runoffs is obviously more regular or clustered. Unlike
the independent Monte Carlo sampling of different variables
which makes the distribution of the point set in the multi-
criteria assessment space appear disorderly or chaotic in the
previous system optimization analysis (Fig. 9), the BN-based
MCMC sampling contains the causality and dependence be-
tween sampling of different variables.

However, this phenomenon varies on the specific axis of
the two river basins. For example, for the SDB, the degree
of cooperation (DC), which is calculated as the ratio of the
upstream hydropower profit to the downstream agricultural
production, is an effective index to cluster the cases under
various runoffs. In view of the ADB, however, the DC is not a
good index for clustering, and the partial distribution pattern
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Table 3. Comparison of the BN-based scenario analysis of the SDB and ADB.

Target nodes Nodes for scenario setting

DR EI UR WR IQ DG DC DL UL DI WD

U energy value (high) Syr +5.9 −2.7 +2.6
Amu +4.4 −1.6 −1.2

D water use (low) Syr +0.2 +1.2 +1.7 −1.6 −1.8 +0.3
Amu −1.1 −1.9 −0.9 −0.6 −3.8 −5.3

U water use (low) Syr +2.5 −0.9
Amu +0.7 +1.4

D GDP (high) Syr +0.6 +0.5 +4.7
Amu +2.9 +1.4 +17.5

U GDP (high) Syr +0.3 +1.3
Amu −1.5 +3.7

D grain yield (high) Syr +0.3 −0.3 +13.6
Amu −2.7 −2.1 +19.3

D livestock production (high) Syr +5.1
Amu +10.3

Volume of the Aral Sea (high) Syr +0.6
Amu +3.1

Inflow to the Aral Sea (high) Syr +2.6 +3.6 +1.3 +2.3 +0.5 +2.6 +23.5
Amu +5.1 +3.7 +4.2 +6.1 −1.7 +3.4 +13.2

Salinization (low) Syr +5.5
Amu +11.3

Desertification (low) Syr +9.6
Amu +16.2

Water mineralization (low) Syr +1.3
Amu +8.7

Sand and salt storm (low) Syr +3.7 +0.8 +1.1
Amu +13.1 −0.4 +0.7

D life expectancy (high) Syr +0.2
Amu −0.2

Note: D stands for the downstream region and U stands for the upstream region. DR represents drought index (low), EI represents energy import from D (high), UR represents
U reservoir water storage (high), WR represents U winter water release (high), DG represents D grain crop area (high), IQ represents D irrigation quantity per hectare (low),
DC represents D cotton crop area (low), UL represents U livestock amount (high), WD represents D water inflow to depressions (low), DI represents D industry production (high)
and DL represents D livestock amount (high). The “high” and “low” respectively indicate the highest or lowest level of each node after discretization. The values in the table show the
change in the percentage probability values of the specific states of the response nodes on the left after the “high” or “low” states of the upper scenario variables are determined.

of the cases on the DC axis is hardly controlled by various
runoffs. This illustrates that in the SDB and ADB, the rela-
tionship between the DC and the annual runoff is quite dif-
ferent. The DC in the SDB driven by water–energy conflict
is more affected by annual runoff. When the nodes for op-
timization are determined (“water inflow to the depression”
and “downstream grain crop area”), in the practical decision-
making, the Pareto fronts can be solved as the optimal solu-
tion set, with no other solution than the cases which could
be found better in all three criteria in a multi-objective op-
timization. The solution sets under high, medium and low
runoff could be solved separately but, in this study, we paid

more attention to the uncertainty of the Pareto solutions. For
example, under a high runoff, the uncertainty of the Pareto
fronts of the ADB is higher than the one of the SDB, which
shows that if these two optimization measures are applied to
the ADB, the stability and robustness of the comprehensive
benefits may be lower than the SDB’s.
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Figure 9. Comparison of multi-criteria evaluation of the SDB and ADB based on the BN causality constraint-based MCMC sampling. At the
top is the multi-criteria evaluation based on random sampling with no joint probability included, in the middle is the multi-criteria assessment
containing the BN causality constraints and the bottom is based on the BN with nodes for optimization and decision determined.

5 Discussion

5.1 Effectiveness and limitations of the new framework

5.1.1 When applied to a single river basin

When applied to a single river basin, by measuring the in-
volved uncertainties with joint probability, this framework
can help decision-makers to re-examine causal and remotely
related factors that may have been overlooked before. It also
helps to update their empirical knowledge of the probabil-
ity distribution of some nodal variables because the previ-
ous empirical knowledge may not include the collaborative
consideration of the distribution of parent nodes. Compared
with process-based models, it has advantages in integrat-
ing knowledge from multi-fields and quantification of uncer-
tainty and causality caused by data limitations and disadvan-
tages in its ability to explain detailed processes or driving
mechanisms.

The main limitations of the framework may include in-
appropriate selection of nodes, mismatches in the temporal
and spatial representation of variables, and lack of consid-
eration of detailed causal processes and feedback causality.

If the selected nodes are inappropriate, it may lead to the
failure of the capture of causality. For example, it may be
inappropriate for us to select the average life expectancy in-
stead of the incidence of specific diseases caused by ecolog-
ical problems such as respiratory diseases caused by sand
and salt storms. The BN may not be suitable in cases that
require detailed spatial and/or temporal representation (Chen
and Pollino, 2012). The factors that differ from the annual
scale of hydrological information may not be modelled well.
For example, the changes in the energy supply from down-
stream to upstream might not match the variation of the an-
nual water supply from upstream to downstream, although
there is an obvious causal relation between them. In addi-
tion, the variables with cumulative values may not match the
annual variation of the hydrological information. As a cu-
mulative value, the node “the area of the Aral Sea” is not as
good as the annual water entering the Aral Sea to adapt to the
annual hydrological variation, and the node “soil salinity” is
also not as good as the node “water mineralization” in or-
der to adapt to the annual hydrological variation. Therefore,
this BN trained from the yearly data may be more suitable
for modelling variables that are sensitive to the annual hy-
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drological variation, because each hydrological year is con-
sidered to be independent in this BN. The evaluation of some
long-term variables may require a further integration of the
process models, such as the long-term trend of soil saliniza-
tion below the root zone and the long-term melting trend of
the upstream glaciers with its impacts on components and
spatiotemporal processes of the runoff in these river basins
(Liu et al., 2011; Wang et al., 2016). The lack of a more de-
tailed description of causality may cause some detailed but
important causality to be ignored, making it difficult for us
to discover the differences between river basins. Therefore,
the scale to which the structure needs to be refined and when
it needs to be refined are what we need to consider care-
fully when promoting this framework. In addition, the causal
relationship between variables in the BN is unidirectional,
which may make it difficult to quantify the complex interac-
tive feedback effects (Chen and Pollino, 2012).

5.1.2 When applied to two or multiple river basins
comparatively

In terms of comparing basins, this new BN-based framework
performs well in the SDB and ADB. Compared with previ-
ous comparison methods (Alcamo et al., 2003; Döll et al.,
2003; Grafton et al., 2012; Immerzeel et al., 2020; Joetzjer et
al., 2013; Ladson and Argent, 2002; Müller Schmied et al.,
2014; Syed et al., 2005; Vetter et al., 2017; Wang et al., 2020;
Zawahri, 2008), this framework is more systematic and pays
more attention to the description of causality. Based on the
similarity of detail causality, the comparison of the WEFE
nexus is comprehensive and meaningful in terms of histori-
cal analysis, uncertainty comparison and future system opti-
mization. A comparative application to multiple watersheds
may provide more extensive causal knowledge than appli-
cation to a single watershed only. For example, in this study,
we found that care should be taken when building large reser-
voirs on the Panj River in the upper Amu Darya to avoid dis-
putes over surplus water downstream caused by the release of
upstream reservoirs in winter. Without the lessons of the Syr
Darya, it will be difficult to evaluate the downstream conflicts
on the possible surplus water that will be caused by the fur-
ther development of the Amu Darya. This may be related to
the different levels of development in different river basins.
Some river basins have gone through the development stage
and can therefore provide lessons for the river basins that are
now being rapidly developed.

Compared to process-based models, this framework quan-
tified the actual differences between watersheds in the data-
driven approach rather than in the parameter adjustment and
calibration approach with the same process-based model,
which has shown that the issue of parameter heterogeneity
is important in the global multi-watershed comparison (Al-
camo et al., 2003; Döll et al., 2003; Müller Schmied et al.,
2014). In the comparison of the basin-wide WEFE nexus, we
need to integrate multi-field knowledge, which may cause the

problem of such parameter heterogeneity to be magnified,
and the complexity of parameter adjustment will be higher,
because more parameters are included and accuracy testing
is also no longer limited to the original single field. In ad-
dition, the flexibility and universality of comparison under
this framework may be stronger due to the use of the form of
conditional probability tables. A conditional probability table
can be constructed for each watershed as a general represen-
tation of the relationship between variables, but the form of
a certain equation or driving function in the process-based
model may not be suitable for each watershed. In addition,
in this framework, the relatively simple model structure and
the use of expert knowledge enable data-limited watersheds
located in developing countries to be simulated more effec-
tively, thereby making the modelling effects of watersheds
located in different countries comparable. In contrast, the de-
mand for observational data for complex process-based mod-
els may be too high for data-limited watersheds located in
some developing countries (Chen et al., 2017). Due to the
under-refined local parameters and processes in the data-
limited watersheds, comparisons based on the process-based
model at the fine-scale level may be unconvincing with un-
certainty.

As far as the scalability and universality of this framework
are concerned, due to the similarities between the concepts of
the WEFE nexus and integrated water resource management,
the past water resource management studies based on BNs
in some arid regions or data-limited river basins (Frank et
al., 2014; Keshtkar et al., 2013; Xue et al., 2017) may be
able to provide additional evidence for the effectiveness of
this framework. If we use this framework to compare more
river basins, we may lose a little in the details of the struc-
ture and need to consider the trade-off of structure refine-
ment and universality (Fig. 10). For example, comparing the
Aral Sea basin with the Tarim River basin may require re-
moving the water–energy conflict module, because there is
no energy conflict between the upper and lower reaches in
the non-transboundary Tarim River basin. However, this may
also lead to deviations in the attribution of some specific
downstream water system behaviours, because the difference
in upstream water–energy conflict is ignored. In addition, the
limitations of this comparison framework may include the in-
consistency of network nodes and the difference in the value
range of variables. For example, the defined location and
attributes of “depressions” are different, and the difference
in the spatial extent represented by the defined “upstream”
and “downstream” regions may also affect the effect of com-
parative research. For the same variable of different basins,
the difference in the value range and the variable status dis-
cretization operation may also bring errors to the compari-
son.
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Figure 10. The trade-off of structure refinement and universality in the new framework for comparing the basin-wide water–energy–food–
ecology nexus based on the adjustable causal structure.

5.2 The main differences between the SDB and ADB
concerning the WEFE nexus

In addition to the widely recognized differences in glacier
melting in high mountainous areas (Farinotti et al., 2015; Im-
merzeel et al., 2020; Kraaijenbrink et al., 2017; Sorg et al.,
2012), differences in interception capacity of upstream reser-
voirs in these two river basins (accounting for 47 % of total
runoff of the SDB and 13 % of the ADB) could affect the
seasonal distribution of the downstream runoff and the up-
per limit of the level of water–energy conflicts between the
upstream and downstream countries. In the ADB, although
the new Rogun dam on the Vakhsh River was brought into
operation in 2018, it has a modest impact on downstream ir-
rigation if the reservoir is operated to maximize basin-wide
benefits (Jalilov et al., 2016). We should warn that in the
future some large reservoirs may be constructed on the up-
stream Panj River, which would account for more than 40 %
of the total runoff of the Amu Darya River. If so, the water–
energy conflict between the upstream area of Tajikistan and
the downstream part of Uzbekistan might escalate just like
the SDB. One possible solution is to re-establish the comple-
mentary water–energy mechanism of the USSR period.

The water–energy conflicts between the upstream and
downstream have gradually become everyday, but new con-
flicts and changes have been generated in the middle and
lower reaches of the two rivers. In the SDB, in the face of
excessive winter water discharge from Kyrgyzstan upstream,
from 1991 to 2005, Kazakhstan could only release the sur-
plus water from the Chardara reservoir to the Aydar depres-

sion in Uzbekistan in order to reduce flooding risk. However,
after 2005, with the construction of more water conservancy
projects in Kazakhstan, such as the Koksaray reservoir built
to receive surplus water from the Chardara reservoir for ir-
rigation, the water volume of the Aydar depression was af-
fected. The current basin water distribution agreement does
not specify the amount of water that the Aydar depression
should receive from the Chardara reservoir. If this part of the
water is subtracted, the Aydar depression can only be fed by
irrigation drainage water with poor quality. These will lead
to reduced water volume, deterioration of water quality, de-
creased ecological stability and fishery production of the Ay-
dar depression. Therefore, it is necessary to pay more atten-
tion to the ecological problems of new water bodies in the
water allocation of the basin, such as determining the annual
release of Kazakhstan’s Chardara reservoir to Uzbekistan’s
Aydar depression. This is also a reference value for Turk-
menistan and Uzbekistan in the lower reaches of the ADB.
With the increase in population and economic development,
the contradictions in water use between downstream coun-
tries will gradually increase. The water–food–ecology con-
flict between downstream countries may be a chronic prob-
lem compared to the water–energy conflict with upstream
mountainous countries.

5.3 Other external measures

The Bayesian network in this study was mainly based on the
expert knowledge and data only within the Aral Sea basin.
It did not incorporate other potential external solutions in-
directly based on the framework. However, some external
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Table 4. Comparison of four river basins in the arid regions.

River basin Syr Amu Tarim Colorado
Darya Darya River River

Runoff (km3) 41 78 39 20
Population (106) 25 27 11 40
Runoff/population (km3/106) 1.64 2.89 3.45 0.50
Reservoir capacity/runoff +++ ++ ++ ++++++

Hydrological observation ++ ++ +++ ++++

Crop area (106 ha) 3.3 4.5 2.8 1.8
Runoff/crop area (km3/106 ha) 12.4 17.3 13.9 11.1
Drip or sprinkler irrigation + + +++ +++

Water market + + ++ ++++++

Ecological flow + + +++ +++

Note that the number of “+” represents the values from qualitative knowledge.

measures derived from further consideration of the analysis
of differences and optimization measures within the frame-
work may also be useful as a complement to the solutions
directly based on the framework. These external measures
can be generated from the successful management experi-
ence of other river basins if more river basins are included
in this framework. After the collapse of the USSR, the de-
cline in the agricultural demand allowed more water to flow
into the Aral Sea. However, the downstream countries in the
basin seemed to lack concern for ecological water demand
of the Aral Sea. The expansion of the water volume and de-
pression area (Fig. 11) confirms this, although part of the wa-
ter flow into the depressions is necessary for the leaching of
soil salt in the irrigation lands. These expanding water bodies
or wetlands could provide some ecosystem services such as
fish supply. Such lower water efficiency will be challenged
in the future, and saving water is the long-term solution. In
addition to the repair of channels so as to reduce leakage,
a spread and large-scale drip irrigation may reduce the to-
tal water consumption by more than 30 % and provide 20 to
30 km3 more ecological flow for the Aral Sea. It could also
lower the high-salinity groundwater levels (Fig. 11), curb the
secondary soil salinization (Zhang et al., 2014), reduce the
drainage water with pesticides and salt to rivers, and reduce
diseases caused by the poor water quality downstream. The
promotion of drip irrigation has been considered useful for
improving the irrigation efficiency in other arid regions, such
as the Tarim River basin (Zhang et al., 2014) also located
in the arid region of central Asia, of which the downstream
water use efficiency has increased during recent years after
the drip irrigation promotion. Also, reducing the water in-
flow to depressions may require stronger ability to regulate
runoff and improve the low efficiency of surplus water man-
agement perhaps caused by the lack of water market regu-
lation. Taking the Colorado River (Table 4) as an example,
the construction of water conservancy facilities in the SDB
and ADB could be improved. Enhancing the ability to regu-

late the runoff may allow a better use of the surplus water in
the high-flow years but, at the same time, it is necessary to
avoid the upstream and downstream conflicts caused by the
new large reservoirs. Building a water market as efficient as
the Colorado River in the Aral Sea basin still seems to have a
long way to go. The Tarim River basin has set prices for the
irrigation water since 2003, but in most parts of the Aral Sea
basin, the irrigation water has not been priced yet. It might
depend on the economic flexibility and a more efficient wa-
ter delivery network. It is also necessary to strengthen the
water–energy cooperation and to avoid zero-sum games be-
tween the upstream and downstream countries. This is a pre-
requisite for an optimal management of the Aral Sea basin. In
addition, strengthening the cooperation with the neighbour-
ing countries, such as Russia and China, might be helpful in
terms of the water conservancy projects, energy and agricul-
tural trade and indirectly ease the crisis in the WEFE nexus
as a result.

6 Conclusions

In this paper, we applied a new causal structure-based frame-
work to compare the WEFE nexus and applied it to the SDB
and ADB with the BN. The main conclusions are as follows.

1. The new causal structure-based framework (combined
with the support of actual data) is proved effective
when modelling and comparing the basin-wide causal
WEFE nexus under uncertainty with a lower cost in
data-limited or poorly gauged river basins. It may help
decision support mainly in the quantification of the in-
fluence of complex causality and more remotely re-
lated variables. This systematic and causal comparison
framework can be used to compare more basins based
on the different levels of similarity of the causal struc-
ture.
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Figure 11. The long-term inefficiency and risk of the irrigation-drainage system. (a) Changes in the surface water occurrence in the Aral Sea
basin. The data and information originate from the Global Water Surface Explorer (https://global-surface-water.appspot.com/, last access:
1 October 2020) (Pekel et al., 2016). S1, A1 and A2 are examples of expanded depressions, which collected the drainage and surplus water.
S1 is the Aydar Lake in the Syr Darya River basin. In the Amu Darya River basin, A1 represents the Sarykamysh Lake and A2 illustrates a
drainage depression of the Bukhara irrigation district. (b) Salinity concentration in the irrigation-drainage system of the Aral Sea basin. The
upper part stands for the salt transport and concentration at the river basin scale. The lower part shows the positive effect of drip irrigation
compared with flood irrigation on reducing the drainage water and lowering the groundwater level to reduce the secondary salinization.
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2. Before the collapse of the USSR, the water flow en-
tering the Aral Sea was sensitive to the agricultural
development of the two river basins. After the col-
lapse of the USSR, its sensitivity to the water–energy
conflicts between the upstream and downstream coun-
tries increased a lot. Compared with the Syr Darya, the
amount of water flowing into the Aral Sea from the
Amu Darya is less sensitive to the water competition
between downstream summer irrigation and upstream
winter hydropower partly due to the lower percentage
of total runoff intercepted by upstream reservoirs. It fur-
ther made the management of the surplus water in the
lower reaches of the SDB in winter more difficult and
controversial than the ADB with a large amount of wa-
ter flowing into depressions outside the river and irriga-
tion area.

3. In the short term, reducing the water inflow to depres-
sions and improving the planting structure prove ben-
eficial to the Aral Sea ecology. In the long term, the
construction of large reservoirs on the Panj River of the
upstream ADB should be cautious so as not to get an
intense water–energy conflict such as the SDB’s. More-
over, the water–food–ecology conflict between down-
stream countries may escalate and turn into a long-
term chronic problem such as between Kazakhstan and
Uzbekistan. More attention should be paid to the rea-
sonable ecological water consumption of new water
bodies such as the Aydar–Arnasay depression in the
basin-wide water allocation. It is also necessary to pro-
mote the water-saving drip irrigation and to strengthen
the cooperation between internal and external countries.
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