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Abstract. This paper concerns the problem of optimal mon-
itoring network layout using information-theoretical meth-
ods. Numerous different objectives based on information
measures have been proposed in recent literature, often fo-
cusing simultaneously on maximum information and mini-
mum dependence between the chosen locations for data col-
lection stations. We discuss these objective functions and
conclude that a single-objective optimization of joint entropy
suffices to maximize the collection of information for a given
number of stations. We argue that the widespread notion of
minimizing redundancy, or dependence between monitored
signals, as a secondary objective is not desirable and has no
intrinsic justification. The negative effect of redundancy on
total collected information is already accounted for in joint
entropy, which measures total information net of any redun-
dancies. In fact, for two networks of equal joint entropy, the
one with a higher amount of redundant information should
be preferred for reasons of robustness against failure. In at-
taining the maximum joint entropy objective, we investigate
exhaustive optimization, a more computationally tractable
greedy approach that adds one station at a time, and we in-
troduce the “greedy drop” approach, where the full set of
stations is reduced one at a time. We show that no greedy
approach can exist that is guaranteed to reach the global op-
timum.

1 Introduction

Over the last decade, a large number of papers on
information-theory-based design of monitoring networks
have been published. These studies apply information-
theoretical measures on multiple time series from a set of

sensors, to identify optimal subsets. Jointly, these papers (Al-
fonso et al., 2010a, b; Li et al., 2012; Ridolfi et al., 2011;
Samuel et al., 2013; Stosic et al., 2017; Keum and Coulibaly,
2017; Banik et al., 2017; Wang et al., 2018; Huang et al.,
2020; Khorshidi et al., 2020) have proposed a wide variety of
different optimization objectives. Some have suggested that
either a multi-objective approach or a single objective de-
rived from multiple objectives is necessary to find an optimal
monitoring network. These methods were often compared to
other existing methods in case studies used to demonstrate
that one objective should be preferred over the other based
on the resulting networks.

In this paper, we do not answer the question “what is op-
timal?” with an optimal network. Rather, we reflect on the
question of how to define optimality in a way that is log-
ically consistent and useful within the monitoring network
optimization context, thereby questioning the widespread use
of minimum dependence between stations as part of the ob-
jectives. In fact, we argue that minimizing redundancy is a
redundant objective.

The objective of a hydrological monitoring network de-
pends on its purpose, which can usually be framed as sup-
porting decisions. The decisions can be relating to manage-
ment of water systems, as for example considered by Alfonso
et al. (2010a), or flood warning and evacuation decisions in
uncontrolled systems. Also purely scientific research can be
formulated as involving decisions to accept or reject certain
hypotheses, focus research on certain aspects, or collect more
data (Raso et al., 2018). In fact, choosing monitoring loca-
tions is also a decision whose objective can be formulated
as choosing monitoring locations to optimally support sub-
sequent decisions.
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The decision problem of choosing an optimal monitoring
network layout needs an explicit objective function to be op-
timized. While this objective could be stated in terms of a
utility function (Neumann and Morgenstern, 1953), this re-
quires knowledge of the decision problem(s) at hand and the
decision makers’ preferences. These are often not explicitly
available, for example, in the case of a government-operated
monitoring network with a multitude of users. As a special
case of utility, it is possible to state the objective of a monitor-
ing network in terms of information (Bernardo, 1979). This
can be done using the framework of information theory, orig-
inally outlined by Shannon (1948), who introduced informa-
tion entropy H (X) as a measure of uncertainty or missing in-
formation in the probability distribution of random variable
X, as well as many related measures.

Although ultimately the objective will be a more general
utility, the focus of this paper is on information-theoretical
methods for monitoring network design, which typically do
not optimize for a specific decision problem supported by the
network. Because information and utility (value of informa-
tion) are linked through a complex relationship, this does not
necessarily optimize decisions for all decision makers. Since
we do not consider a specific decision problem, the focus in
the present paper is on methods for maximization of infor-
mation retrieved from a sensor network.

In this paper, the rationale behind posing various
information-theoretical objectives is discussed in detail.
While measures from information theory provide a strong
foundation for mathematically and conceptually rigorous
quantification of information content, it is important to pay
attention to the exact meaning of the measures used. This
paper is intended to shed some light on these meanings in
the context of monitoring network optimization and provides
new discussion motivated in part by recently published liter-
ature.

We present three main arguments in this paper. Firstly, we
argue that objective functions for optimizing monitoring net-
works can, in principle, not be justified by analyzing the re-
sulting networks from application case studies. Evaluating
performance of a chosen monitoring network would require
a performance indicator, which in itself is an objective func-
tion. Case studies could be helpful in assessing whether one
objective function (the optimization objective) could be used
as an approximation of another, underlying, objective func-
tion (the performance indicator). However, from results of
case studies we should not attempt to draw any conclusions
as to what objective function should be preferred. In other
words: the objective function is intended to assess the qual-
ity of the monitoring network, as opposed to a practice in
which the resulting monitoring networks are used to assess
the quality of the objective function. Secondly, we argue that,
in purely information-based approaches, the joint entropy of
all signals together is in principle sufficient to characterize
information content and can therefore serve as a single op-
timization objective. Notions of minimizing dependence be-
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tween monitored signals through incorporation of other in-
formation measures in the objective function lack justifica-
tion and are therefore not desirable. Thirdly, we could ac-
tually argue for maximizing redundancy as a secondary ob-
jective because of its associated benefits for creating a net-
work robust against individual sensors’ failures. The reason
is that the undesirable information inefficiencies associated
with high dependency or redundancy are already accounted
for in maximizing joint entropy. Minimization of redundancy
would mean that each sensor becomes more essential, and
therefore the network as a whole would be more vulnerable
to failures in delivering information. Adding a trade-off with
maximum redundancy is outside the scope of this paper but
serves to further illustrate the argument against use of mini-
mum redundancy.

Choice of scope and role of the case study

The information-theoretical approach to monitoring network
design is not the only option, and other objective functions
have also been used for this problem. Examples are cost, geo-
graphical spread, and squared-error-based metrics. Some ap-
proaches use models describing spatial variability with cer-
tain assumptions, e.g., Kriging (Bayat et al., 2019). In the
case of network expansion to new locations, models are al-
ways needed to describe what could be measured in those
locations. These could vary from simple linear models to full
hydrodynamic transport models, such as those used in Aydin
et al. (2019), who compared performance of the sensor place-
ment in a polder network based on a simple low-order PCA
(principal component analysis) model and a detailed hydro-
dynamic and salt transport model.

In this paper, our main focus is to discuss the formula-
tion of information-theoretical objective functions and pre-
vious literature. Therefore, we restrict our scope to those
information-theory-based objective functions based on ob-
served data on one single variable in multiple locations.
Keeping this limited scope allows us to discuss the interpreta-
tion of these objective functions for monitoring network de-
sign, which formalize what we actually want from a network.
Furthermore, we investigate whether the desired optimum in
the objective function can be found by greedy approaches or
whether exhaustive search is needed to prevent a loss of op-
timality.

Only after it is agreed on what is wanted from a network
and this is captured as an optimization problem do other is-
sues such as the solution or approximation of the solution to
the problem become relevant. The numerical approach to this
solution and calculation of information measures warrants
independent discussion, which is outside our current scope
and will be presented in a future paper. Our discussion is
numerically illustrated by a case study using data from Bra-
zos River in Texas, as presented in Li et al. (2012), to allow
for comparisons. However, as we argue, the case study can
only serve as an illustration and not be used for normative

https://doi.org/10.5194/hess-25-831-2021



H. Foroozand and S. V. Weijs: Objective functions for optimal monitoring networks 833

arguments for use of a particular objective function. Such an
argument would be circular, as the performance metric will
be one of the objective functions.

In this paper, since we are discussing the appropriate
choice of objective function, there is no experimental setup
that could be used to provide evidence for one objective ver-
sion vs. the other. Rather, we must make use of normative
theoretical reasoning and shine light on the interpretation of
the objectives used and their possible justifications. The prac-
tical case studies in this paper therefore serve as an illustra-
tion but not as evidence for all the conclusions advocated in
this paper, some of which are arrived at through interpreta-
tion and argumentation in the Results and discussion section.

The paper is organized as follows. In the following
Methodology section, we introduce the methods used to in-
vestigate and illustrate the role of objective functions. In
Sect. 3, we discuss the case study on the streamflow monitor-
ing network of Brazos River. Section 4 introduces the results
for the various methods and then discusses the need for mul-
tiple objectives, the interpretation of trade-offs between re-
dundancy and total information, and the feasibility of greedy
algorithms reaching the optimum. The article concludes with
summarizing the key messages and raising important ques-
tions about the calculation of the measures to be addressed
in future research.

2 Methodology
2.1 Information theory terms

Shannon (1948) developed information theory (IT) based on
entropy, the concept that explains a system’s uncertainty re-
duction as a function of added information. To understand
how, consider a set of N events for which possible outcomes
are categorized into m classes. Uncertainty is a measure of
our knowledge about which outcome will occur. Once an
event is observed, and it is identified which of the m classes it
belongs to, our uncertainty about the outcome decreases to 0.
Therefore, information can be characterized as the decrease
of an observer’s uncertainty about the outcome (Krstanovic
and Singh, 1992; Mogheir et al., 2006; Foroozand and Weijs,
2017; Foroozand et al., 2018; Konapala et al., 2020). For
monitoring networks, we are interested in the information
content of the observations from all stations. The information
content is equal to the uncertainty about the observations be-
fore measuring. The uncertainty is quantified through prob-
ability distributions that describe the possible observations,
based on the data.

In monitoring network design, IT has been applied in the
literature to evaluate data collection networks that serve a
variety of purposes, including rainfall measurement, water
quality monitoring, and streamflow monitoring. These eval-
uations are then used to optimize the placement of sensors.
In the monitoring network optimization literature, three ex-
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pressions from IT are often used in monitoring network de-
sign: (1) entropy (H), to estimate the expected information
content of observations of random variables; (2) mutual in-
formation, often called transinformation (7°), to measure re-
dundant information or dependency between two variables;
and (3) total correlation (C), a multivariate analogue to mu-
tual information, to measure the total nonlinear dependency
among multiple random variables.

The Shannon entropy H(X) is a nonparametric measure,
directly on the discrete probabilities, with no prior assump-
tions on data distribution. It is also referred to as discrete
marginal entropy, to distinguish it both from continuous en-
tropy and from conditional entropy. Discrete marginal en-
tropy (Eq. 1), defined as the average information content of
observations of a single discrete random variable X, is given

by
H(X) ==Y p(x)logp(x), 1)

xeX

where p(x)(0<p(x)<1) is the probability of occurrence of
outcome x of random variable X. Equation (1) gives the en-
tropy in the unit of “bits” since it uses a logarithm of base 2.
The choice of the logarithm’s base for entropy calculation is
determined by the desired unit — other information units are
“nats” and “Hartley” for the natural and base 10 logarithms,
respectively. For monitoring network design, the logarithm
of base 2 is common in the literature since it can be inter-
preted as the necessary number of answers to a series of bi-
nary questions and allows for comparisons with file sizes in
bits; see, e.g., Weijs et al. (2013a). Joint entropy (Eq. 2), as
an extension of entropy beyond a single variable, measures
the number of questions needed to determine the outcome of
a multivariate system.

H(X1, X)) ==Y Y plx1,x2)log,p(x1,x2), )

x1eX1x€X2

where p(x1,x3) is the joint probability distribution of ran-
dom variable X; and X,. For a bivariate case, if two ran-
dom variables are independent, then their joint entropy,
H(X1, X2), is equal to the sum of marginal entropies
H(X1)+ H(X3). Conditional entropy (Eq. 3), H(X1]|X>2),
explains the amount of information X delivers that X, can
not explain.

p(x1,x2)
H(X|X3)=— p(x1, x2)logy—— 3)
Z);X;( > p(x2)
0<H(X1|X2)<H (X)) 4)

H(X1|X2) can have a range (Eq. 4) between zero when
both variables are completely dependent and marginal en-
tropy H(X1) when they are independent. Mutual informa-
tion, in this field often referred to as transinformation (Eq. 5),
T (X1, X»), explains the level of dependency and shared in-
formation between two variables by considering their joint
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distribution.
T(X1;X2) =
(x1,x2)
-2 > px1.x)log, L2 ®)
x1eX1xeX> p(xl)*p(XZ)

where p(x1) and p(x;) constitute the marginal probability
distribution of random variable X and X3, respectively; and
p(x1,x2) form their joint probability distribution. The as-
sessment of the dependencies beyond three variables can be
estimated by the concept of total correlation (Eq. 6) (pro-
posed by McGill, 1954 and named by Watanabe, 1960).

C(X1,X2,...,Xn) = [Z H(X,»):|

i=1
- Xn) (6)

Total correlation (C) gives the amount of information shared
between all variables by taking into account their nonlinear
dependencies. C can only be non-negative since the sum of
all marginal entropies cannot be smaller than their multivari-
ate joint entropy, though in the special case of independent
variables, C would become zero.

—H(X1,Xo,..

2.2 Single-objective optimization

In this paper, we argue for the maximum joint entropy
(maxJE) objective for maximizing the total information col-
lected by a monitoring network. This is equivalent to the GR3
objective proposed by Banik et al. (2017), as part of six other
objectives (see Appendix B for more detail) proposed in the
same paper, which did not provide preference for its use. In
the discussion, we argue that a single-objective optimization
of the joint entropy of all selected sensors leads to a maxi-
mally informative sensor network, which minimizes total re-
maining uncertainty about the outcomes at all potential lo-
cations. Also, it should be noted that the maxJE objective
function already penalizes redundant information through its
network selection process, which aims to find a new station
that produces maximum joint entropy when it is combined
with already selected stations in each iteration. When ap-
plied in a greedy search, adding one new station at a time,
this approach ranks stations based on growing joint informa-
tion as quickly as possible. This is mathematically equivalent
to adding to the selection, in each iteration, the new station
Fc that provides maximum conditional entropy H (Fc|S) on
top of an already selected set (S) of stations (see Fig. 1 for
visual illustration).

2.3 Multi-objective optimization

Our research compares and contrasts a variety of objective
functions from literature. Information-theory-based multi-
objective optimization methods for monitoring networks
have gained significant attention recently. Maximizing net-
work information content, through either the sum of marginal
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entropy or joint entropy, is the common theme among exist-
ing methods (Alfonso et al., 2010b; Li et al., 2012; Samuel
et al., 2013; Keum and Coulibaly, 2017; Wang et al., 2018;
Huang et al., 2020). However, there is no consensus on
whether to use total correlation or transinformation mea-
sures to minimize redundant information. Table 1 gives an
overview of the large number of objectives and combinations
of objectives used in the last decade. On the one hand, the
water monitoring in polders (WMP) method (Alfonso et al.,
2010a) and joint permutation entropy (JPE) method (Stosic
et al., 2017) used normalized transinformation to minimize
redundant information, while, on the other hand, the multi-
objective optimization problem (MOOP) method (Alfonso
et al.,, 2010b), combined regionalization and dual entropy
multi-objective optimization (CRDEMO) method (Samuel
et al., 2013), multivariable hydrometric networks (MHN)
method (Keum and Coulibaly, 2017), and greedy-rank-based
optimization (GR 5 and 6) method (Banik et al., 2017)
adopted total correlation to achieve minimum redundancy.
Interestingly, both C and 7 were used as competing ob-
jectives in the maximum information minimum redundancy
(MIMR) method proposed by Li et al. (2012). They argued
that transinformation between selected stations in the optimal
set and non-selected stations should be maximized to account
for the information transfer ability of a network. Meanwhile,
recently proposed methods in the literature have attempted to
improve monitoring network design by introducing yet more
other additional objectives (Huang et al., 2020; Wang et al.,
2018; Banik et al., 2017; Keum and Coulibaly, 2017). These
additional objectives are further discussed in Appendix B.

2.4 Exhaustive search vs. greedy add and drop

Apart from the objective function, the optimization of mon-
itoring networks is also characterized by constraints. These
constraints can either be implemented for numerical reasons
or for the reflection of practical aspects of the real-world
problem. The majority of existing literature listed in Table 1
often implicitly imposed a constraint by treating stations’
selection as greedy optimization. Greedy optimization adds
one station to the selected stations each time, without recon-
sidering the set’s already selected stations. A practical rea-
son for this is numerical efficiency; an exhaustive search of
all subsets of k stations out of n possible stations will need
to consider a large number of combinations, since the search
space grows exponentially with the size n of the full set of
sensors (2" combinations of sensors need to be considered).

In this paper, for the maximization of joint entropy that
we advocate, we consider and compare three cases for con-
straints with a large influence on computational cost, with the
purpose of investigating whether these influence the results.
We also interpret the constraints as reflections of placement
strategies. Firstly, the “greedy add” strategy is the commonly
applied constraint that each time the network expands, the
most favorable additional station is chosen, while leaving the
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redundant info added by candidate sensor
new info added by candidate sensor
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Figure 1. Venn diagram illustrating the relations between the relevant information measures. In the legend, the joint and marginal
information-theoretical quantities (joint) entropy H (X), conditional entropy H (X|Y), and transinformation 7 (X; Y) for the variable from
sets of already selected sensors S, not yet selected sensors F', and the current candidate sensor F are represented by the surfaces in the Venn
diagram. For the three basic circle colors (first three circles in the legend), “free” gives the quantity represented by the non-covered part, and
“full” gives the quantity represented by the entire circle surface. The joint entropy that is proposed to be maximized in this paper is the area
enclosed in the thick red line.

Table 1. Various information-theoretical objectives used by methods proposed in recent literature.

Method Reference Objective function
H(Fc) SBM  H(S,Fc) C(S) T(Fc;S) C(Fc;S) PE(Fc;S) H(Q|P) Others

WMP1 Alfonso et al. (2010a) max Wy
WMP2 Alfonso et al. (2010a) max Wy
WMP3 Alfonso et al. (2010a) max W3
MOOP Alfonso et al. (2010b) max min
minT Ridolfi et al. (2011) max Ist min
MIMR Li et al. (2012) A —(I=x)) A
CRDEMO  Samuel et al. (2013) max min
JPE Stosic et al. (2017) min max
MHN Keum and Coulibaly (2017) max min max
GR1 Banik et al. (2017) minD
GR2 Banik et al. (2017) maxR
GR3 Banik et al. (2017) max
GR4 Banik et al. (2017) minD and maxR
GRS Banik et al. (2017) max min
GR6 Banik et al. (2017) max min minD and maxR
DNEF Wang et al. (2018) A —(1=x1) X maxRDI
ISA Huang et al. (2020) A —(I—=x1) M maxSI and maxA
maxJE this paper max

WMP objectives: Wy = Y57 (Sj; FO)s Wo = X5 Topid e, Wy = ¥, g Tple)

The table shows whether an objective is maximized (max) or minimized (min) or forms part of a weighted objective function that is maximized with weights ;. SBM stands for the constraint whereby only stations
are considered that are below the median score of all potential stations for that objective. D is detection time, and R is reliability. RDI stands for the ranking disorder index. SI is spatiotemporality information, and A
is accuracy. WMP is the water monitoring in polders method, MOOP the multi-objective optimization problem, min7" minimum transinformation, MIMR the maximum information minimum redundancy method,
CRDEMO the combined regionalization and dual entropy multi-objective optimization, JPE the joint permutation entropy, MHN the multivariable hydrometric networks method, GR the greedy rank, DNEF the
dynamic network evaluation framework, ISA the information content, spatiotemporality, and accuracy method, and maxJE the maximum joint entropy.
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already chosen network intact. The optimal network for k
stations is found by expanding one station at a time. This ap-
proach can for example be useful in Alpine terrain, where
relocating a sensor requires significant effort (Simoni et al.,
2011). Secondly, “greedy drop” is the reverse strategy, not
previously discussed in the literature, where the starting point
is the full network with all n stations. The optimal network
for k stations is found by reducing the full network one step at
a time, each step dropping the least informative station. Since
all of the discussed monitoring design strategies use recorded
data and hence discuss networks whose stations are already
established, network reduction is perhaps the more realistic
application scenario for information-based design methods.
Thirdly, “exhaustive search” is the strategy in which the opti-
mal network of & stations is found by considering all subsets
of k stations out of n. This unconstrained search is far more
computationally expensive and may not be feasible in larger
networks for computational reasons. It can therefore be seen
as an optimality benchmark. Because all options are consid-
ered, this is guaranteed to find the optimal combination of
selected sensors for each network size, given the objective
function.

In this comparison, we investigate whether the exhaustive
optimization yields a series of networks where an increase in
network size may also involve relocating stations. This may
not always be practically feasible or desired in actual place-
ment strategies, where networks are slowly expanded one
station at a time. Occurrence of relocation in the sequence of
growing subsets would also show that no greedy algorithm
could exist that guarantees optimality.

2.5 Understanding and visualizing the measures of
information

In this paper, we argue that, due to the additive relations of in-
formation measures (Eq. 6), the proposed objective functions
in the literature are unnecessarily complicated, and a single-
objective optimization of the joint entropy of all selected sen-
sors will lead to a maximally informative sensor network.
The additive relations between some of the information mea-
sures discussed in this paper are illustrated in Fig. 1. In this
figure and later is this paper, we use a shorthand notation: we
use the sets of stations directly in the information measures,
as a compact notation for the multivariate random variable
measured by that set of stations. Various types of information
interactions for three variables are conceptually understand-
able using a Venn diagram (Fig. 2a. Although a Venn diagram
can be used to illustrate information of more than three vari-
ables when they are grouped in three sets (Fig. 1), it cannot
be used to illustrate pairwise information interactions beyond
three variables. A chord diagram, on the other hand, can be
useful to better understand pairwise information interaction
beyond three variables. Figure 2 provides a simple template
to interpret and compare Venn and chord diagrams.

Hydrol. Earth Syst. Sci., 25, 831-850, 2021

There are two important caveats with these visualizations.
In the general Venn diagram of three-variate interactions,
the “interaction information”, represented by the area where
three circles overlap, can become negative. Hence, the Venn
diagram ceases to be an adequate visualization. For similar
reasons, in the chord diagram, the sector size of outer arc
lengths should not be interpreted as total information trans-
ferred (Bennett et al., 2019). Information that can contribute
to interactions is a combination of unique, redundant, and
synergistic components (Goodwell and Kumar, 2017; Weijs
et al., 2018; Franzen et al., 2020). Their information entan-
glement is an active area of research in three or more dimen-
sions. In this paper, the total size of the outer arc lengths is
set to represent the sum of pairwise information interactions
(used in Alfonso et al., 2010a) and conditional entropy of
each variable. This size may be larger than the total entropy
of the variable and does not have any natural or fundamental
interpretation.

In this paper, we use Venn diagrams to illustrate informa-
tion relations between three groups of variables. Group one is
the set of all sensors that are currently selected as being part
of the monitoring network, which we denote as S. Group two
is the set of all sensors that are currently not selected, de-
noted as F, and group 3 is the single candidate sensor that
is currently considered for addition to the network, Fc; see
Appendix A for an overview of notation. Since group 3 is a
subset of group 2, one Venn circle is contained in the other,
and there are only five distinct areas vs. seven in a general
three-set Venn diagram. In this particular case, there is no
issue arising from negative interaction information.

2.6 Objective functions used in comparison for this
study

For the purpose of illustrating the main arguments of this
study, we compare maxJE objective function (Eq. 7) with
three other (sets of) objective functions from previously pro-
posed methods: MIMR (Eq. 8), WMP (Eq. 9), and minT
(Eq. 10). These methods were chosen since they are highly
cited methods in this field, and more importantly, recent new
approaches in the literature have mostly been built on one
of these methods with additional objectives (Alfonso et al.,
2010a, b; Ridolfi et al., 2011; Li et al., 2012; Samuel et al.,
2013; Stosic et al., 2017; Keum and Coulibaly, 2017; Banik
et al., 2017; Wang et al., 2018; Huang et al., 2020).

Objective function (maxJE) :=
maximize H ((Xs,, Xs,, ..., Xs5.). X ) (7)

https://doi.org/10.5194/hess-25-831-2021
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(a) Sample Venn diagram

(b) Sample chord diagram

Figure 2. Template illustrations of information interactions with (a) a Venn diagram and (b) a chord diagram. The green and red areas in
both diagrams show a graphical representation of conditional entropy and mutual information respectively. The solid line circles in the Venn
diagram depict single-variable entropy. *II is information interaction between three variables. The sector size in the outer circle in the chord
diagram is composed of arcs whose relative lengths correspond to the sum of pairwise information interactions and conditional entropy of

each variable and are best not interpreted.

Objective function (MIMR) :=
maximize H((Xs1 . A ng), XFC)
maximize Y 7| T ((Xs,, Xs,..... X5, ). XF;)
minimize C ((Xs,, Xs,..... Xs.), Xrc) ®)
.. ¥ integrated format ¥
maximize A (H ((Xs,, Xs,..... X5, ). Xre) + 20y
T((Xs5). X500 X5 ). X5 ) = (A= ADC (X5 Xy X ) X pe)

Objective function (WMP) :=

maximize H (F¢)
: T(SisFo) 9
subject to ZTS,)C < SBM €))
ieS
Objective function(minT') :=

maximize first H (F¢)

minimize T ((Xs,, Xs,..... Xs.), Xrc)’ (o

where (X P G, ¢ Sk) refers to selected stations in the
previous iterations. X r. and H (Fc) denote the variable at
the current candidate station and its marginal entropy, respec-
tively. Fc is the station considered for addition to the current
set in a greedy add approach. This formulation was chosen to
allow for a uniform presentation between methods. The ob-
jectives for methods maxJE and MIMR can easily be modi-
fied to consider Fc as part of S, so that the objective function
evaluates the entire network rather than one candidate station
for addition. This allows for greedy add, greedy drop and
exhaustive search methods. A is information-redundancy
trade-off weight (Li et al., 2012). SBM (“select below me-
dian”) stands for the constraint whereby only stations are
considered that are below the median score of all potential
stations for that objective. m is equal to the number of non-
selected stations in each iteration (m + k = n total number
of stations). For the multi-objective approaches used in the
case study, we used the same weights as the original authors
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to identify a single solution. It can be seen that a large num-
ber of different combinations of information-theoretical mea-
sures are used as objectives.

3 Study area and data description

In previous studies, the focus of the research has been on
finding an optimal network for the subject case study with
only little discussion on the theoretical justification of ap-
plying a new methodology. For this reason, the primary goal
of this paper is critically discussing the rationale for use of
several objective functions in monitoring network design. To
illustrate differences between the methods, we decided to ap-
ply our methodology to the Brazos River streamflow network
(Fig. 3) since this network was the subject of study for the
MIMR method. This network is under-gauged, according to
the World Meteorological Organization density requirement.
However, using the exact same case study eliminates the ef-
fect of other factors besides the objective function on the
comparison. Such factors could be initial network density,
temporal variability, and spatial variability. To isolate our
comparison from those effects, as well as from methodolog-
ical choice such as resolution, time period considered, and
quantization method, we used the same data period and floor
function quantization (Eq. 11) proposed by Li et al. (2012).

xqzanJraJ (11)

2a

Here, a is the histogram bin width for all intervals except the
first one, for which the bin width is equal to 7. x is the sta-
tion’s streamflow value, and xg is its corresponding quantized
value; and | | is the conventional mathematical floor function.

In Li et al. (2012), 12 USGS stream gauges on the Bra-
zos River were selected for the period of 1990-2009 with
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Table 2. Resulting maximum joint entropy (bits) for the different network sizes found with different methods for the Brazos River case study

(JE used exhaustive optimization).

Method Multivariate dimensions

1 2 3 4 5 6 7 8 9 10 11 12
MIMR 247 284 287 321 323 323 323 332 333 352 393 4.1
WMP1/2 247 307 321 336 338 338 338 338 338 352 382 4.1
minT 247 253 269 272 276 289 3.06 3.08 333 352 393 4.1
maxJE 247  3.07 3.5 3.7 3.88 4.02 4.09 4.1 4.1 4.1 4.1 4.1

Note that MIMR’s trade-off weight (1] = 0.8) is based on the recommendation of Li et al. (2012) for this dataset.

Table 3. Optimal gauge orders found with different methods for the Brazos River case study.

Method Station ranking in multivariate dimensions

1 2 3 4 5 6 7 8 9 10 11 12
MIMR 12 6 1 § 2 3 4 7 5 9 10 11
WMP1/2 12 9 7 6 5 4 3 2 1 8 11 10
minT 12 1 2 3 4 5 7 6 8 9 10 11
maxJE 12 9 10 11 8 5 7 2* 1* 3% 4* ¢6*

Note that for the last five stations, indicated with *, multiple optimal orders are possible.

monthly temporal resolution; some statistics of the data are
presented in Fig. 4. For the discretization of the time series,
they used a binning approach whereby they empirically opti-
mized parameter a to satisfy three goals. (1) It must be guar-
anteed that all 12 stations have distinguishable marginal en-
tropy. (2) To keep spatial and temporal variability of stations’
time series, the bin width should be fine enough to capture
the distribution of the values in the time series while being
coarse enough so that enough data points are available per bin
to have a representative histogram. (3) To prevent rank fluc-
tuation due to the bin-width assumption, sensitivity analysis
must be conducted. They carried out the sensitivity analysis
and proposed a = 150m3s~! for this case study; the result-
ing marginal entropy for each station is illustrated in Fig. 4.

4 Results and discussion

4.1 Comparison of the objectives for the Brazos River
case

As indicated in the Introduction, we should not attempt to
gauge the merits of the objective functions by the intuitive
optimality of the resulting network. Rather, the merits of the
networks should be gauged by the objective functions. Still,
the case study can provide insight into some behaviors re-
sulting from the objective functions.

To assess and illustrate the workings of the different ob-
jectives in retrieving information from the water system, we
compared three existing methods with a direct maximization
of the joint entropy of selected sensors, H (S, F¢), indicated

Hydrol. Earth Syst. Sci., 25, 831-850, 2021

with maxJE in the results, such as Tables 2 and 3. The joint
entropy results in Table 2 indicate that maxJE is able to find
a combination of 8 stations that contains joint information
of all 12 stations ranked by other existing methods. Figure 5
displays spatial distribution of the top eight stations chosen
by different methods. Before any interpretation of the place-
ment, we must note that the choices made in quantization
and the availability of data play an important role in the op-
timal networks identified. Whether the saturation that occurs
with eight stations has meaning for the real-world case study
depends on whether the joint probability distribution can be
reliably estimated. This is highly debatable and merits a sep-
arate detailed discussion which is out of the scope of this
paper. We present this case study solely to illustrate behavior
of the various objectives.

The most notable difference between maxJE and the other
methods is the selection of all three of the stations located
most downstream. While other methods would not select
these together due to high redundancy between them, maxJE
still selects all stations because despite the redundancy, there
is still found to be enough new information in the second-
most and third-most downstream station. This can be in part
attributed to the quantization choice of equally sized bins
throughout the network, leading to higher information con-
tents downstream. While this quantization choice is debat-
able, it is important, in our opinion, to not compensate arti-
facts from quantization by modifying the objective function,
even if the resulting network may seem more reasonable, but
rather to address those artifacts in the quantization choices
themselves. To repeat the key point: an objective function
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Figure 3. Brazos streamflow network and USGS stream gauges’ locations.
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should not be chosen based on whether it yields a “reason-
able network™ but rather based on whether the principles that
define it are reasonable.

Though already necessarily true from the formulation of
the objective functions, we use the case study to illustrate
how other methods with a separate minimum redundancy ob-
jective lead to the selection of stations with lower new infor-
mation content (green area in Fig. 6). Reduction of the yel-
low area in each iteration (i.e., the information loss compared
to the full network) in Fig. 6 corresponds to the growth of
joint entropy values in Table 2 for each method. maxJE (by
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-1

definition) has the fastest and minT the slowest rate of re-
duction of information loss. Methods’ preference for reach-
ing minimum redundancy or growing joint information (red
area in Fig. 6) governs the reduction rate of information loss.
Also, Fig. 7 provides auxiliary information about the evo-
Iution of pairwise information interaction between already
selected stations X1, X7, ..., X;—1 in the previous iterations
and new proposed station X;. Figure 7 illustrates the con-
trast between the choice of the proposed stations in the first
six iterations by different methods. For instance, the minT
method aims to find a station that has minimum mutual in-
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Figure 5. Spatial distribution of the top eight streamflow gauges ranked by different objectives.

formation (red links in Fig. 7) with already selected stations.
In contrast, the maxJE method tries to grow joint entropy,
which translates to finding a station that has maximum condi-
tional entropy (green segments in Fig. 7). Other methods opt
to combine two approaches by either imposing a constraint
(WMP) or having a trade-off between them (MIMR).

4.2 Is minimization of dependence needed?

The existing approaches considered above have in common
that they all involve some form of dependence criterion to be
minimized. For example, the total correlation gives a mea-
sure of total redundant information within the selected set.
This is information that is duplicated and therefore does not
contribute to the total information content of the sensors,
which is given by the joint entropy. Focusing fully on mini-
mizing dependence, such as what is done in the minT objec-
tive optimization, makes the optimization insensitive to the
amount of non-duplicated information added. This results in
many low-entropy sensors being selected. It is important to
note that the joint entropy already accounts for duplicated
information and only quantifies the non-redundant informa-
tion. This is exactly the reason why it is smaller than the sum
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of individual entropies. In terms of joint entropy, two com-
pletely dependent stations are considered to be exactly as in-
formative as one of them. This means that the negative effect
that dependency has on total information content is already
accounted for by maximizing joint entropy only.

Mishra and Coulibaly (2009) stated that “the fundamental
basis in designing monitoring networks based on the entropy
approach is that the stations should have as little transinfor-
mation as possible, meaning that the stations must be inde-
pendent of each other”. However, no underlying argument
for this fundamental basis is given in the paper. The question
is then whether there is another reason, apart from informa-
tion maximization, why the total correlation should be mini-
mized. In three of the early papers (Alfonso et al., 2010a, b;
Li et al., 2012) introducing the approaches that employed or
evaluated total correlation, no such reason was given other
than the one by Mishra and Coulibaly (2009). Also in later
citing research (Huang et al., 2020; Wang et al., 2018; Keum
and Coulibaly, 2017; Stosic et al., 2017; Fahle et al., 2015),
no such arguments have been found, except for effective-
ness, which we argue is covered by looking at the total non-
redundant information the network delivers. Traditional rea-
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Figure 6. Approximately proportional Venn diagrams showing the
evolution of information measures when progressively (going down
the rows) selecting stations (selected station for each step indi-
cated by the numbers) using four different methods (in the different
columns). The interpretation of the color-coded areas representing
the information measures is the same as in Fig. 1. All methods se-
lect station 12 as the initial station (entropy given by pink circle in
row 1). As can be seen from the diagram on the bottom right, the
method maximizing joint entropy leaves almost no information un-
measured (yellow part) with just six stations, while the other meth-
ods still miss capturing this information. Exact numbers behind the
Venn diagram can be found with the code available with this paper.

sons for minimizing redundancy are reducing the burden of
data storage and transmission, but these are not very rele-
vant in monitoring network design, since those costs are of-
ten negligible compared to the costs of the sensor installa-
tion and maintenance (see Barrenetxea et al., 2008; Nadeau
et al., 2009; Simoni et al., 2011). Moreover, information the-
ory tells us that, if needed, redundant information can be re-
moved before transmission and storage by employing data
compression (Weijs et al., 2013b, a). The counter-side of
minimal redundancy is less reliability, a far more relevant
criterion for monitoring network design. Given that sensors
often fail or give erroneous values, one could argue that re-
dundancy (total correlation) should actually be maximized,
given a maximum value of joint entropy. We might even want
to gain more robustness at the cost of losing some informa-
tion. One could for example imagine placing a new sensor
directly next to another to gain confidence in the values and
increase reliability, instead of using it to collect more infor-
mative data in other locations.
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The Pareto front that would be interesting to explore in this
context is the trade-off between maximum total correlation
(robustness) vs. joint entropy (expected information gained
from the network), indicated by the red line in Fig. 8. Dif-
ferent points on this Pareto front reflect different levels of
trust in the sensors’ reliability. Less trust requires more ro-
bustness and leads to a network design yielding more redun-
dant information. Previous approaches, such as the MOOP
approach proposed by Alfonso et al. (2010b), explore the
Pareto front given by the dashed black line, where mini-
mum total correlation is conflicting with maximizing joint
entropy. As argued in this section, this trade-off is not funda-
mental in information-theoretical terms. Still, it results from
the fact that there is usually redundant information as a by-
product of new information, so highly informative stations
also carry more redundant information. This redundant in-
formation does not reduce the utility of the new information
so does not need to be included as a minimization objective
in the optimization.

In summary, the maximization of joint entropy while mini-
mizing redundancy is akin to maximizing effectiveness while
maximizing a form of efficiency (i.e., bits of unique informa-
tion/bits collected). However, bits do not have any significant
associated cost. If installing and maintaining a monitoring lo-
cation has a fixed cost, then efficiency should be expressed
as unique information gathered per sensor installed, which
could be found by maximizing joint entropy (effectiveness)
for a given number of stations, as we suggest in this paper.

4.3 Greedy algorithms vs. exhaustive optimization of
maximum joint entropy

Different search strategies have been adopted in the literature
for monitoring network design. The most commonly used
greedy algorithms impose a constraint on exhaustive search
space to reduce computational effort. We investigated three
different search strategies to obtain the optimal network in
the context of using maxJE as an objective function. We dis-
cuss the advantages and limitations of each search strategy in
terms of optimality of the solution and computational effort.

The exhaustive optimization tests all possible new combi-
nations, not restricted to those combinations containing the
already selected set in a smaller network. Since the joint en-
tropy of a set of locations does not depend on the order in
which they are added, the number of possible combinations
is (1) (i.e., n choose k), where n is the number of potential
stations in the pool, and & is the number of selected stations.
The computational burden is therefore greatest when about
half of the stations are selected. For a number of potential
sensors under 20, this is still quite tractable (4 min on nor-
mal PC, implemented — by a hydrologist — in MATLAB),
but for larger numbers, the computation time increases very
rapidly. When considering all sub-network sizes, the number
of combinations to consider is 2", so an exponential growth.
We could make an optimistic estimate, only considering the
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Figure 7. Evolution of pairwise information interaction between already selected stations in the previous iterations and new proposed station.
Green and red links represent proportional conditional entropy and mutual information, respectively. Links with black border emphasize the

information interactions with the new proposed station in each iteration.

scaling from station combinations to evaluate but not consid-
ering the dimensionality of the information measures. For 40
stations, this estimate would yield a calculation time of more
than 5 years, unless a more efficient algorithm can be found.
Regardless of potential improvements in implementation, the
exponential scaling will cause problems for larger systems.
Greedy approaches might be candidates for efficient algo-
rithms. For the proposed joint entropy objective, we tested
the optimality of greedy approaches against the benchmark
of exhaustive optimization of all possible station combina-
tions. For the Brazos River case study, both the “add” and
“drop” greedy selection strategies resulted in the global op-
timum sets, i.e., the same gauge order and resulting joint en-
tropy as was found by the exhaustive optimization. These re-
sults can be read from the last row of Tables 2 and 3. There-

Hydrol. Earth Syst. Sci., 25, 831-850, 2021

fore, for this case, the greedy approaches did not result in
any loss of optimality. For the last few sensors, multiple dif-
ferent optimal sets could be identified, which are detailed in
Table 4. Results in Table 4 show that multiple network lay-
outs with equal network size and joint information exist. For
this case, network robustness could be an argument to prefer
the network with maximum redundancy.

In a further test, using artificially generated data, we exper-
imentally falsified the hypothesis that greedy approaches can
guarantee optimality. For this test, we generated a correlated
random Gaussian dataset for 12 stations, based on the covari-
ance matrix of the data from the case study. We increased the
number of generated observations to 860 time steps, to get a
more reliable multidimensional probability distribution. Ta-
ble 5 shows the resulting orders for 12 stations for the three
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Figure 8. The resulting total correlation and joint entropy for all 924 possible combinations of 6 out of 12 sensor locations. In some past
approaches, a Pareto front in the lower right corner is given importance. In this paper, we argue that this trade-off is irrelevant, and information
can be maximized with the horizontal direction only. If a trade-off with reliability needs to be considered, the Pareto front of interest is in the
top-right corner instead of the lower right corner that is previously recommended in the literature.

different approaches. Note how for the exhaustive optimiza-
tion in this example, in some instances, one or two previ-
ously selected gauges are dropped in favor of selecting new
stations. The resulting joint entropies for the selected sets are
shown in Table 6. This means no greedy approach can exist
that finds results equivalent to the exhaustive approach.
Based on our limited case study, the questions remain
open: (1) whether faster algorithms can be formulated that
yield guaranteed optimal solutions, and (2) in which cases
the greedy algorithm provides a close approximation. It is
also possible to formulate modified greedy methods with the
ability of replacing a limited number of stations instead of
just adding stations. This leads to a significantly reduced
computational burden while reaching the optimum more of-
ten than when adding stations one at a time. In Table 5, it
can be seen that allowing a maximum number of two relo-
cated stations would already reach the optimal configurations
for this specific case. Another limitation of this comparison
is that we did not consider metaheuristic search approaches
(Deb et al., 2002; Kollat et al., 2008), which fall in between
greedy and exhaustive approaches in terms of computational
complexity and could serve to further explore the optimality
vs. computational complexity trade-off. It would be interest-
ing to further investigate what properties in the data drive the
suboptimality of greedy algorithms. Synergistic interactions
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(Goodwell and Kumar, 2017) are a possible explanation, al-
though our generated data example shows that even when
moving from one to two selected stations, a replacement oc-
curs. Since there are only pairs of variables involved, synergy
is not needed in the explanation of this behavior. Rather, the
pair with maximum joint entropy does not always include the
station with maximum entropy, which could perhaps be too
highly correlated with other high entropy variables.

5 Conclusions

The aim of this paper was to contribute to better understand-
ing the problem of optimal monitoring network layout using
information-theoretical methods. Since using resulting net-
works and performance metrics from case studies to demon-
strate that one objective should be preferred over the other
would be circular, the results from our case study served as
an illustration of the effects but not as arguments supporting
the conclusions we draw about objective functions. We in-
vestigated the rationale for using various multiple-objective
and single-objective approaches and discussed the advan-
tages and limitations of using exhaustive vs. greedy search.
The main conclusions for the study can be summarized as
follows:

Hydrol. Earth Syst. Sci., 25, 831-850, 2021
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Table 4. All optimal combinations of sensors for the joint entropy objective. For number of sensors above 7, multiple optimal combinations
can be found due to saturation of joint entropy. Black squares are selected sensors.
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Table 5. Resulting station selections for the artificially permuted dataset with 860 data points.

Method Station selection for various network sizes
1 2 3 4 5 6 7 8 9 10 11 12
Exhaustive  added 3 ;12 6 57,11 2,6 9,712 3 10 5 8 4 11
removed*® 3 6; 12 5 11
Greedy add 3 11 1 7 6 9 2 10 5 8 12 4
Greedy drop 1 12 6 7 2 9 3 10 5 8 4 11

* means a previously selected station is removed from the optimal set of selected stations.

— The purpose of the monitoring network governs which mize retrieved information, assuming that this joint en-
objective functions should be considered. When no ex- tropy can be properly quantified.
plicit information about users and their decision prob-
lems can be identified, maximizing the total information — We argued that the widespread notion of minimizing re-
collected by the network becomes a reasonable objec- dundancy, or dependence between monitored signals, as
tive. Joint entropy is the only objective needed to maxi- a secondary objective is not desirable and has no intrin-

sic justification. The negative effect of redundancy on
total collected information is already accounted for in
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Table 6. Resulting joint entropy for the artificially permuted dataset with 860 data points.

Method Number of stations

1 2 3 4 5 6 7 8 9 10 11 12
Exhaustive 1.538 3.003 4.225 5058 5732 6.172 6515 6.695 6832 6933 7.024 7.083
Greedy add 1.538 2.898 4.164 5043 5681 6.111 6486 6.646 6789 6.899 6.996 7.083
Greedy drop 1.530 3.003 4.225 5.041 5.724 6.172 6.515 6.695 6.832 6.933 7.024 7.083

joint entropy, which measures total information net of
any redundancies.

— When the negative effect on total information is already
accounted for, redundant information is arguably ben-
eficial, as it increases robustness of the network infor-
mation delivery when individual sensors may fail. Max-
imizing redundancy as an objective secondary to maxi-
mizing joint entropy could therefore be argued for, and
a trade-off between these objectives could be explored
depending on the specific case.

— The comparison of exhaustive and greedy search ap-
proaches shows that no greedy approach can exist that
is guaranteed to give the true optimum subset of sensors
for each network size. However, the exponential compu-
tational complexity, which doubles the number of sen-
sor combinations to evaluate with every sensor added,
makes exhaustive search prohibitive for large networks,
illustrated by the following. During the COVID-19 re-
sponse in March 2020, Folding@home, currently the
world’s largest distributed computing project, broke the
exaFLOP barrier (10'® floating point operations per sec-
ond). Even with that computational power, it would take
more than 10 years to evaluate a network of 90 poten-
tial stations, under the impossibly optimistic assumption
that evaluating one network were possible in one FLOP.
The complexity of the greedy approach is quadratic in
the number of locations and therefore feasible for large
search spaces.

— The constraints on the search space imposed by the
greedy approach could also be interpreted as a logistical
constraint. In a network expansion scenario, it disallows
the replacement of stations already selected in the pre-
vious iteration.

— We introduced the “greedy drop” approach that starts
from the full set and deselects stations one by one.
We have demonstrated that the two types of greedy ap-
proaches do not always lead to the same result, and nei-
ther approach guarantees the unconstrained true opti-
mal solution. Synergistic interactions between variables
may play a role, although this is not the only possi-
ble explanation. In our case study, the suboptimality of
greedy algorithms was not visible in original data, but
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we demonstrated its existence with artificially gener-
ated data. In our specific case studies, differences be-
tween exhaustive and greedy approaches were small,
especially when using a combination of the greedy add
and greedy drop strategy. It remains to be demonstrated
in further research how serious this loss of optimal-
ity is in a range of practical situations and how results
compare to intermediate computational complexity ap-
proaches such as metaheuristic algorithms.

Further work

In this paper, we focused on the theoretical arguments for jus-
tifying the use of various objective functions and compared a
maximization of joint entropy to other methods while using
the same dataset and quantization scheme. Since the major-
ity of previous research used greedy search tools to find op-
timal network configurations, we compared greedy and ex-
haustive search approaches to raise awareness in the scien-
tific community that greedy optimization might fall into a
local optimum, though its application can be justified con-
sidering the computation cost of the exhaustive approach.
Banik et al. (2017) compared computation cost for greedy
and metaheuristic optimization (Non-dominated Sorting Ge-
netic Algorithm II). They reported that the greedy approach
resulted in drastic reduction of the computational time for
the same set of objective functions (metaheuristic computa-
tion cost was higher 58 times in one trial and 476 times in
another). We recommend further investigation of these three
search tools in terms of both optimality (for the maxJE ob-
jective) and computation cost.

Another important question that needs to be addressed in
future research is to investigate how the choices and assump-
tions made (i.e., data quantization which influences proba-
bility distribution) in the numerical calculation of objective
functions would affect network ranking. What many of these
objective functions have in common is that they rely on mul-
tivariate probability distributions. For example, in our case
study, the joint entropy is calculated from a 12-dimensional
probability distribution. These probability distributions are
hard to reliably estimate from limited data, especially in
higher dimensions, since data requirements grow exponen-
tially. Also, these probability distributions and the resulting
information measures are influenced by multiple factors, in-
cluding choices about the data’s temporal scale and quanti-
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zation. To have an unbiased comparison framework of objec-
tive functions, we kept data and quantization choices from a
case study previously described in the literature. It is worth
acknowledging that these assumptions, as well as data avail-
ability, can greatly influence station selection and require
more attention in future research.

Numerically, the limited data size in the case study
presents a problem for the calculation of multivariate infor-
mation measures. Estimating multivariate discrete joint dis-
tributions exclusively from data requires quantities of data
that exponentially grow with the number of variables, i.e.,
potential locations. When these data requirements are not
met, and joint distributions are still estimated directly based
on frequencies, independent data will be falsely qualified as
dependent and joint information content severely underesti-
mated. This can also lead to apparent earlier saturation of
joint entropy, at a relatively low number of stations. For the
case study presented here, we do not recommend interpret-
ing this saturation as reaching the number of needed stations,
since it could be a numerical artifact. This problem applies to
all methods discussed in this paper. Before numerics can be
discussed, clarity is needed on the interpretation and choice
of the objective function. In other words, before thinking
about how to optimize, we should be clear on what to op-
timize. We hope that this paper helped illuminate this.
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Appendix A: Notation and definitions
S Set of indices of selected stations’ locations

F Set of indices of potential monitoring locations not yet
selected

Fc The index of the monitoring station currently under
consideration for addition

Xs,Xr,Xr. The (sets of) time series (variables) measured
at the station(s) in the respective sets

p(x1) The marginal probability distribution of random
variable X

p(x1,x2) The joint probability distribution of variable X
and X

H(Fc) A shorthand for H (X r.); in information measures,
the set is used as shorthand for variables in that set

H(XF.) The entropy of the marginal distribution of time
series in F¢

H(XF|Xs) The conditional joint entropy of variables in F,
given knowledge of variables in S

T (XF; Xs) Mutual information or transinformation be-
tween set of variables in F' and set of variables in §

C(X1,X>,...,X,) Total correlation, the amount of infor-
mation shared between all variables

A1 Information-redundancy trade-off weight

SBM “select below median”, the constraint whereby only
stations are considered that are below the median score
of all potential stations

a Histogram bin width

x Station’s streamflow value

xq Quantized value after discretization
AE Apportionment entropy

RDI Ranking disorder index

SI;(X) Local spatiotemporal information of the grid X in
local window z in the time series

p(o;) Probability distribution of the standard deviation o,
in time series

Anetwork Network accuracy
Var Kriging variance

D Detection time

https://doi.org/10.5194/hess-25-831-2021

Dy (y) The average of the shortest time among the detec-
tion times for monitoring station

R Reliability

8s Binary choice of 1 or 0 for whether the contamination is
detected or not

Appendix B: Additional objectives used in recent
literature

Recent literature has expanded the information-theoretical
objectives with additional objectives. For instance, (1) Wang
et al. (2018) proposed the dynamic network evaluation
framework (DNEF) method that follows the MIMR method
for network configuration in different time windows, and op-
timal network ranking is determined by the maximum rank-
ing disorder index (RDI) (Eq. B2), which is the normalized
version of apportionment entropy (AE). RDI was proposed
by Fahle et al. (2015) and named by Wang et al. (2018) to
analyze the uncertainty of the rank assigned to a monitoring
station under different time windows. (2) Huang et al. (2020)
proposed the information content, spatiotemporality, and ac-
curacy (ISA) method, which extends the MIMR method by
adding two objectives: maximizing spatiotemporality infor-
mation (SI) and maximizing accuracy (A). The SI (Eq. B4)
objective is introduced to incorporate the spatiotemporality
of satellite data into network design, and the A (Eq. B5) ob-
jective is proposed to maximize the interpolation accuracy
of the network by minimizing the regional Kriging variance.
(3) Banik et al. (2017) proposed six combinations (GR 1-
6) of four objectives: detection time (D) (Eq. B6), relia-
bility (R) (Eq. B7), H (Eq. 2), and C (Eq. 6) for locating
sensors in sewer systems. (4) Keum and Coulibaly (2017)
proposed to maximize conditional entropy as a third ob-
jective in dual entropy-multi-objective optimization to inte-
grate multiple networks (in their case, rain gauge and stream-
flow networks). Although maximizing conditional entropy
can indirectly be achieved with other objectives (joint en-
tropy), this new objective gives more preference to maximiz-
ing unique information that one network can provide when
another network cannot deliver. These multi-objective opti-
mization problems are solved by either finding an optimal so-
lution in a Pareto front (Alfonso et al., 2010b; Samuel et al.,
2013; Keum and Coulibaly, 2017) or by merging multiple
objectives with weight factors into a single-objective func-
tion (Li et al., 2012; Banik et al., 2017; Stosic et al., 2017).

n

ri ri
AE = — —log, — B1
;:1 0827, (B1)
AE
RDI =nAE = , (B2)
log,n

where n is the number of possible ranks that a station can
have (i.e., n is equal to the total number of stations). ’M’ ra-
tio is an occurrence probability of the outcome, where M is
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the number of ranks under different time windows, and r;
is the number of a certain ith rank. Therefore, AE takes on
its maximum value when the ranking probability of a station
has an equally probable outcome, while minimum AE hap-
pens when the station’s rank is constant. RDI ranges from 0
to 1, and higher RDI values indicate the ranking sensitivity
of a station to temporal variability of the data.

1
SL(X)==)_ p(o)logyp(or) (B3)
i=1

1 n
SInetwork(Xa VF,-) = m |:]X:; SIz (XS_/) + SIz (VF,-):| (B4)

1 1 k
Anetwork (X, V) == ;]_:] Var;, (BS)

where SI;(X) is the local spatiotemporal information of the
grid X in local window z in the time series; and p(o;) is the
probability distribution of the standard deviation o in time
series [. Slhetwork (X, YF;) 1s spatiotemporal of the network,
which is calculated by the average of spatiotemporal infor-
mation of the already selected sites SI;(Xs;) and a potential
site SI; (VF;). Anetwork (X, ¥F;) is network accuracy, and Var
is Kriging variance over time series / and number of grids k
in the study area.

1 S

D(y) =< Do) (B6)
s=1
1 S

R(y) = ggas, (B7)

where § is the total number of scenarios considered, Dgp(y)
is the average of the shortest time among the detection times
for monitoring stations, and §; is the binary choice of 1 or 0
for whether the contamination is detected or not.
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