Supplement of

Long-term water stress and drought assessment of Mediterranean oak savanna vegetation using thermal remote sensing

María P. González-Dugo et al.

Correspondence to: María P. González-Dugo (mariap.gonzalez.d@juntadeandalucia.es)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
SUPPLEMENTARY MATERIAL

In the following, the Figures S1 to S4 are presented:

Figure S1. Monthly histograms of ET and relative ET for the dehesa area of the Iberian Peninsula and the period 2001-2018.

Figure S2. (a) Relationship between annual run-off measured at the Sta.Clo catchment reservoir and the annual aridity index (Budyko, 1974) estimated for the same catchment and (b) Relationship between run-off coefficient measured at the Sta.Clo catchment and the annual aridity index. The budyko model represented in (b) was derived using Zhang et al. (2008) eq 9 with an adjusted value for α parameter equal to 0.54.

Figure S3. Comparison of ET/ET$_o$, ET and f_c anomalies at seasonal scale

Figure S4. Relationships of ET/ET$_o$ and ET anomalies at monthly and seasonal scales (left figures) and ET/ET$_o$ and ET anomalies at monthly and seasonal scales (right figures).

References:

Figure S1. Monthly histograms of ET and relative ET for the dehesa area of the Iberian Peninsula and the period 2001-2018.
Figure S2. (a) Relationship between annual run-off measured at the Sta.Clo catchment reservoir and the annual aridity index (Budyko, 1974) estimated for the same catchment and (b) Relationship between run-off coefficient measured at the Sta.Clo catchment and the annual aridity index. The budyko model represented in (b) was derived using Zhang et al. (2008) eq.9 with an adjusted value for α parameter equal to 0.54

References:

Figure S3. Comparison of ET/ETo, ET and fc anomalies at seasonal scale

Figure S4. Relationships of ET/ETo and ET anomalies at monthly and seasonal scales (left figures) and ET/ETo and ET anomalies at monthly and seasonal scales (right figures).