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Abstract. Assessing the relationship between the intensity,
duration, and frequency (IDF) of extreme precipitation is re-
quired for the design of water management systems. How-
ever, when modeling sub-daily precipitation extremes, there
are commonly only short observation time series available.
This problem can be overcome by applying the duration-
dependent formulation of the generalized extreme value
(GEV) distribution which fits an IDF model with a range of
durations simultaneously. The originally proposed duration-
dependent GEV model exhibits a power-law-like behavior of
the quantiles and takes care of a deviation from this scaling
relation (curvature) for sub-hourly durations (Koutsoyiannis
et al., 1998). We suggest that a more flexible model might be
required to model a wide range of durations (1 min to 5 d).
Therefore, we extend the model with the following two fea-
tures: (i) different slopes for different quantiles (multiscal-
ing) and (ii) the deviation from the power law for large du-
rations (flattening), which is newly introduced in this study.
Based on the quantile skill score, we investigate the perfor-
mance of the resulting flexible model with respect to the ben-
efit of the individual features (curvature, multiscaling, and
flattening) with simulated and empirical data. We provide
detailed information on the duration and probability ranges
for which specific features or a systematic combination of
features leads to improvements for stations in a case study
area in the Wupper catchment (Germany). Our results show
that allowing curvature or multiscaling improves the model
only for very short or long durations, respectively, but leads
to disadvantages in modeling the other duration ranges. In
contrast, allowing flattening on average leads to an improve-
ment for medium durations between 1 h and 1 d, without af-
fecting other duration regimes. Overall, the new parametric
form offers a flexible and enhanced performance model for

consistently describing IDF relations over a wide range of
durations, which has not been done before as most existing
studies focus on durations longer than 1 h or day and do not
address the deviation from the power law for very long dura-
tions (2–5 d).

1 Introduction

The number of heavy precipitation events has increased sig-
nificantly in Europe (Kundzewicz et al., 2006; Tank and Kön-
nen, 2003) and worldwide (Hartmann et al., 2013). Such
events are related to flooding and other hazards which can
cause severe damage to agriculture and infrastructure (Bré-
mond et al., 2013). The impact of extreme precipitation de-
pends on the temporal scale of the event. Short, intense con-
vective precipitation exhibits different characteristic conse-
quences than long-lasting, mostly stratiform, precipitation.
Examples for events on different timescales of minutes to
hours, days, and weeks are pluvial or flash floods (Brauns-
bach, Germany, May 2016), river flooding (Elbe, Germany,
2013), and groundwater flooding (Leicestershire, UK, March
2017), respectively.

The definition of precipitation extremes is based on the
occurrence probability and is quantified using quantiles (re-
turn levels) and associated occurrence probabilities, often ex-
pressed as return periods in a stationary interpretation. Quan-
titative estimations of quantiles and associated probabilities
mostly follow one of two popular methods, namely (1) block
maxima and their description with the generalized extreme
value (GEV) distribution – a heavy-tailed and asymmetric
distribution – or (2) threshold exceedances and a description
with the generalized Pareto distribution (GPD; e.g., Coles,
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2001). Typically, annual precipitation maxima of different
timescales are used to describe extreme rainfall events. Both
GEV and GPD can be used to model the extreme precipi-
tation of a certain timescale. A common problem for short
timescales, i.e., the scarce availability of data with high mea-
surement frequency, can be overcome by modeling several
timescales at once. Different timescales can be represented
as durations over which the precipitation rate is aggregated
and averaged. Most frequently, daily precipitation sums are
reported but hourly or 5 min aggregation are also common.

A way to describe the characteristics of extremes for var-
ious durations (timescales) are intensity–duration–frequency
(IDF) curves, which describe the relationship between ex-
treme precipitation intensities, their duration (timescale), and
their frequency (occurrence probability or average return pe-
riod). These relations have been known since the mid-20th
century (Chow, 1953) and have become popular among hy-
drologists and meteorologists. In estimating these curves,
one tries to exploit the assumption of a smooth intensity–
frequency relationship across different durations. This helps
for interpolating between durations, and it can also improve
the estimation for short durations, as shorter time series are
often available for those.

Historically, a set of GEV distributions is sought individ-
ually for a set of durations (e.g., 5 min, 1 h, 12 h, 24 h, and
48 h) leading to quantile (return level) estimates for specified
probabilities (return periods) for all durations considered. In
a second step, for a given probability a smooth function is
estimated by interpolating associated quantiles across dura-
tions (García-Bartual and Schneider, 2001). However, by us-
ing a duration-dependent extreme value distribution (d-GEV)
(see the first examples in Nguyen et al., 1998, and Menabde
et al., 1999), IDF estimation can be carried out in one step
within a single model. To achieve this, GEV parameters are
defined as functions of duration. This approach prevents the
crossing of quantiles across durations and is, thus, consid-
ered consistent. Moreover, the data are used more efficiently,
which simplifies the extension of the model, e.g., the inclu-
sion of large-scale covariates at a later stage. This will enable
first insights into physical effects beyond the pure statistical
evaluation of precipitation.

It is widely agreed that precipitation intensities for
given exceedance probabilities follow a power-law-like func-
tion (scaling) across duration (Gupta and Waymire, 1990;
Veneziano and Furcolo, 2002; Burlando and Rosso, 1996),
with higher intensities for short durations. For a range of
very short durations (d ≤ 1 h), the scaling assumption does
not hold because maxima from different durations often orig-
inate from the same event. This leads to a curvature of IDF
curves, where intensity no longer follows a power law with
decreasing duration. Bougadis and Adamowski (2006) ap-
proached this issue by using two different duration expo-
nents for small durations and for other durations. A more
smooth transition can be achieved by including the curvature
as a duration offset in the parameters of the GEV distribution

without explicitly distinguishing between short and long du-
rations. Koutsoyiannis et al. (1998) used a model with five
parameters to describe the complete IDF relation for differ-
ent probabilities (return periods) and across durations. The
underlying idea is based on a reparameterization of the GEV
and its three characteristic parameters of location µ, scale σ ,
and shape ξ . While shape ξ is held constant for all dura-
tions d, it is further assumed that the ratio between location
and scale µ/σ remains constant across duration d (for de-
tails, see Sect. 2.3).

Ulrich et al. (2020) built on the approach of Koutsoyian-
nis et al. (1998) and extended it to a spatial setting with
covariates for the d-GEV parameters. Although using both
consistent modeling and spatial pooling improves model per-
formance, the need for more flexibility of the IDF curves in
longer durations is emphasized and will be addressed in the
present study. Therefore, we aim to look for new parame-
terizations of the IDF curve’s duration dependence by com-
bining the existing approaches of multiscaling and duration
offset and also extending it by a new parameter, namely the
intensity offset.

The commonly used variant of the d-GEV with five pa-
rameters (Koutsoyiannis et al., 1998) might not be flexible
enough for a wide range of durations from minutes to several
days. A first approach for extending the d-GEV addresses the
simple scaling relation. This model assumes a scaling that
is independent of the exceedance probability (return period).
However, relaxing this assumption leads to so-called multi-
scaling, which allows for different scaling-like behavior for
different exceedance probabilities (return periods). This is
achieved by introducing another parameter η2, as in Eqs. 8
and 10 in Sect. 2.3. Then, the ratio between location and
scale is not constant anymore. Multiscaling is found to be
effective for durations longer than 1 h (Veneziano and Fur-
colo, 2002; Burlando and Rosso, 1996). Van de Vyver (2018)
employs the multiscaling approach in a Bayesian setting. On
a global scale, different scale parameters have been inves-
tigated by Courty et al. (2019). None of the named studies
combine multiscaling with curvature for short durations but
focus on only one of these aspects, while our study is aiming
for a combination and analysis of three different features.

In this study, we compare different ways to parameterize
IDF curves, including the features of multiscaling and dura-
tion offset. In addition, we present a new d-GEV parameter,
the intensity offset, which accounts for the deviation from
the power law and the flattening of IDF curves for long du-
rations. To our knowledge, this comprehensive analysis of
different features has not been conducted before. Section 2
lists the data sources and introduces the different features and
their modeling equations, as well as the verification meth-
ods, to analyze modeling performance. In Sect. 3, the cross-
validated verification results of all features are shown with
respect to modeling performance of different return periods
and durations. For verification, we perform a case study us-
ing rainfall gauge data from a catchment in Germany. IDF
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curves that include all analyzed features are presented for se-
lected stations.

2 Data and methods

We use precipitation measurements in an area in and around
the catchment of the river Wupper in western Germany. In
order to compare different models for the d-GEV, we use
the quantile skill index (QSI) introduced in Ulrich et al.
(2020) within a cross-validation setting. For the resulting
IDF curves, we obtain confidence intervals using a bootstrap-
ping method and test their coverage with artificial data with
known dependence levels in a simulation study. The data and
all necessary methods are explained in the following section.

2.1 Station-based precipitation data

Precipitation sums for the minute, hour, and day are provided
by Wupperverband and the German Meteorological Service.
Rain gauges are located in and around the catchment of the
river Wupper in North Rhine–Westphalia, Germany. In total,
115 stations are used. Data from two measuring devices with
a distance below 250 m are combined into one station each in
order to obtain a longer time series, thus resulting in a total
of 92 grouped stations. However, in cases where measure-
ment series are grouped together, it is common to have mea-
surements from both instruments for a certain period of time.
Thus, when merging, we decided to use only the observations
with the higher measuring frequency for the analysis. For
example, when combining two time series with hourly and
daily data, respectively, the time series of all aggregation lev-
els (durations) are obtained from the hourly data for the over-
lapping period. This choice is made because 24 h values from
an hourly measurement frequency might show higher inten-
sities since the 24 h window is shifted hour by hour in order
to find the annual maximum. On the other hand, 24 h val-
ues from the daily measurement frequency are recorded for
a fixed day block, i.e., from 08:00 to 07:59 LT (local time).
A test of robustness was performed (not shown) to assess
how the estimated IDF curves are affected by the choice of
measurement frequency which is preserved during the time
of overlap when merging the time series. For this purpose,
two IDF curves were created, i.e., (1) choosing the maxima
from a higher measurement frequency and (2) choosing the
maxima from a lower measurement frequency. In most cases,
there was no relevant difference between both methods.

Years with more than 10 % of missing values are disre-
garded. Some years contain measurement artifacts, where
identical rainfall values were repeated over several time
steps. After consulting the data maintainers, these years are
removed before the analysis. The data exhibit heterogeneity
in terms of the temporal frequency and the length of the re-
sulting time series. Figure 1 presents the availability of data
over time (left) and space (right) for three possible temporal

resolutions. More specifically, minute data have been avail-
able since 1968, whereas daily records range back to 1893.

Time series for different durations are obtained from an
accumulation over a sample of durations as follows:

d ∈ {1min,4min,8min,16min,32min,1h,2h,4h,8h,

16h,24h,48h,72h,96h,120h}, (1)

respectively, as done by Ulrich et al. (2020). In the following,
numerical values are presented in hours. We use only the an-
nual maxima of these time series to model the distribution
of extreme precipitation. The original precipitation time se-
ries are accumulated with the R package IDF (Ulrich et al.,
2021b). The data set with annual maxima can be found online
and supports the findings of this study (Fauer et al., 2021).

The set of durations d is chosen such that small durations
are presented with smaller increments than larger durations.
In a simulation study, we tested whether using a different
set of durations with a stronger focus on short durations af-
fects the results, but no such effect could be found (see Ap-
pendix C).

Minute measurements might be less accurate when only a
small number of rain drops is recorded and measured inten-
sity is affected by sampling uncertainty. However, for events
that are identified as annual maxima, we expect the rain
amount to be large enough so that a higher sampling uncer-
tainty compared to larger measurement accumulation sums
can be neglected.

2.2 Generalized extreme value distribution

One of the most prominent ideas of extreme value statistics
is based on the Fisher–Tippett–Gnedenko theorem, which
states that, under suitable assumptions, maxima drawn from
sufficiently large blocks follow one of three distributions.
These distributions differ in their tail behavior. The GEV dis-
tribution comprises all three cases in one parametric family
and is widely used in extreme precipitation analysis as fol-
lows (Coles, 2001):

G(z)= exp
{
−

[
1+ ξ

(
z−µ

σ

)]−1/ξ}
. (2)

Here, the non-exceedance probability G for precipitation
intensity z depends on the parameter location µ, scale σ > 0,
and shape ξ 6= 0, with z restricted to 1+ ξ(z−µ)/σ > 0.
The non-exceedance probability can be expressed as a re-
turn period, e.g., for an annual block size T (z)= 1/(1−
G(z)) years. Consequently, return values for a given non-
exceedance probability 0< p < 1 can be calculated by solv-
ing Eq. (2) for z, as follows:

z= ([− log{p}]−ξ − 1)
σ

ξ
+µ. (3)

Water management authorities and other institutions rely
on return values for different durations. However, the GEV
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Figure 1. (a) Number of stations according to the temporal resolution. (b) Station location (circles) with data availability (circle area size)
by temporal resolution (color). The red line within the map of Germany indicates the Wupper catchment boundary.

distribution in the form of Eq. (2) is limited to one selected
duration at a time. One way to account for that need is to
model each duration separately and then, in an independent
second step, interpolate the resulting quantiles (return lev-
els) across duration d, as done in the KOSTRA atlas (DWD,
2017) of the German Meteorological Service (DWD). One
huge disadvantage of this method is that quantile cross-
ing can occur, meaning that quantiles (intensities) associ-
ated with smaller exceedance probabilities can have higher
values than quantiles from larger exceedance probabilities
in some duration regimes. To solve this problem, Nguyen
et al. (1998), Koutsoyiannis et al. (1998), and Menabde et al.
(1999) proposed a distribution with parameters depending on
duration d; there is thus only one single model required to ob-
tain consistent (i.e., non-crossing) duration dependent quan-
tiles (return values). Another advantage is the involvement
of data from neighboring durations in the estimation of GEV
parameters. For the modeling of short-duration rainfall, often
very little data are available than for longer durations d ≥ 24
(1 d). Thus, in this setting, information from long durations
has the potential to increase modeling performance for short
durations as well.

2.3 Duration dependence

There are multiple empirical formulations for the relation-
ship between intensity z and duration d. Koutsoyiannis et al.
(1998) proposed a general form with five parameters for IDF
curves. Therefore, a reparameterization and extension of the
GEV is needed with the following:

σ(d)= σ0(d + θ)
−η (4)

µ(d)= µ̃σ (d) (5)
ξ = const. (6)

G(z)= exp
{
−

[
1+ ξ

(
z

σ0(d + θ)−η
− µ̃

)]−1/ξ}
. (7)

Here, µ̃ is the rescaled location parameter, θ is the duration
offset, and η the duration exponent. Scale σ follows a two-
parameter power law (scaling relation) of duration d , with
scale offset σ0 being constant for all durations. For d � θ , it
is justified to disable the duration offset feature by setting du-
ration offset θ = 0. The resulting IDF curves (Fig. 2a) have
two main features. (1) The curves follow a power law for a
wide range of durations d > 1 (1 h), and the power law ex-
ponent (slope in a double logarithmic plot) is described by a
duration exponent η and is equal for all probabilities. (2) The
deviation from the power law (or curvature) for d < 1 (1 h)
is described by the duration offset θ .

When applying the GEV separately to every duration out
of a set of durations and interpolating in a second indepen-
dent modeling step, the number of parameters equals three
GEV parameters times the number of selected durations plus
at least three parameters for interpolating every quantile. For
the set of durations chosen here, and for evaluating five quan-
tiles, this implies estimating 15× 3+ 5× 3= 60 parameters.
For the consistent approach, estimation is reduced to only
five d-GEV parameters, i.e., µ̃, σ0, ξ , θ , and η. A smaller pa-
rameter set is less likely to overfit the data and enables us to
better investigate underlying physical processes.

Models can be further improved by adding the multiscal-
ing feature (Gupta and Waymire, 1990; Burlando and Rosso,
1996; Van de Vyver, 2018) which introduces different slopes,
depending on the quantile (or associated probability). Fig-
ure 2b presents how this feature affects the IDF curves. In
order to highlight the effect of the multiscaling, we set θ = 0,
resulting in no deviation from a power law (curvature) for
short durations. The multiscaling feature is added at the cost
of one additional parameter η2 (second duration exponent) in
the model, as follows:

σ(d)= σ0d
−(η+η2) (8)

µ(d)= µ̃σ0d
−η. (9)
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Figure 2. IDF curve examples showing the visualization of different IDF curve features. (a) Curvature for short durations. (b) Multiscaling.
(c) Curvature for short durations, flattening for long durations, and multiscaling.

Using only the curvature feature, Ulrich et al. (2020) re-
ported decreasing performance in consistent modeling for
longer durations d ≥ 24 (1 d) when compared to using sep-
arate GEV models for each duration. Our attempt aims at
more flexibility in the IDF curve in the long-duration regime.
Therefore, we combine both features, curvature (duration
offset) and multiscaling (second duration exponent), and add
a new parameter τ , the intensity offset, which allows for a
slower decrease of intensity for very long durations d � 24
(Fig. 2c). This effect will be called flattening in the follow-
ing:

σ(d)= σ0(d + θ)
−(η+η2)+ τ, (10)

µ(d)= µ̃(σ0(d + θ)
−η
+ τ). (11)

Summarizing this section, the following three different
features were presented: (1) curvature, described by the du-
ration offset parameter θ , (2) multiscaling, using a second
duration exponent η2, and (3) flattening with the intensity
offset τ , which is introduced in this study. In the following,
we use the notation IDFc for a model including only the cur-
vature feature, i.e., η2 = 0 and τ = 0, IDFm for a model in-
cluding only the multiscaling feature, i.e., θ = 0 and τ = 0,
and IDFf for a model including only the flattening feature,
i.e., θ = 0 and η2 = 0. Feature combinations are denoted as,
e.g., IDFcmf for all features. The plain duration-dependent
model without curvature, multiscaling, and flattening is de-
noted as IDF.

2.4 Parameter estimation

Parameters of the d-GEV distribution are estimated by max-
imizing the likelihood (maximum likelihood estimation –
MLE) under the assumption of independent annual maxima.
Jurado et al. (2020) showed that independence is a reason-
able assumption in many cases, especially for long durations.
Their study was performed on an earlier version of the same
data set that was used in this study. Moreover, Rust (2009)

showed that in strongly dependent time series convergence
towards the GEV distribution is slower. But, assuming an ap-
propriate choice of model, dependence does not play a large
role. We use the negative log-likelihood L, to avoid using
products of small numbers, as follows:

L(µ̃,σ0,ξ,θ,η,η2,τ | Z)

=

N∑
n=1

∑
d∈D

− log
(
G(zn,d ,d | µ̃,σ0,ξ,θ,η,η2,τ )

)
, (12)

with the number of data points N , the duration set D, data
points for each duration zn,d , and the characteristic param-
eters of the modified d-GEV µ̃,σ0,ξ,θ,η,η2,τ . The sum
of L over all data points Z is minimized with the R pack-
age optim() function (R Core Team, 2020). The R pack-
age IDF (Ulrich et al., 2021b), which was already used for
the accumulation, also provides functions for fitting and plot-
ting IDF curves. Its functionality was extended in the context
of this study and now provides options for both multiscaling
and flattening in IDF curves.

Finding reasonable initial values for d-GEV parameters
in the optimization process was a major challenge during
parameter estimation because optimization stability strongly
depends on the choice of initial values. Details about this pro-
cedure can be found in Appendix A.

2.5 Quantile skill index

After estimating GEV parameters, quantiles q (return lev-
els) can be predicted for a chosen non-exceedance probabil-
ity p (or return period T , with T = 1/(1−p)), using Eq. 3.
To verify how well a modeled quantile q of a given prob-
ability p represents extremes in the data, we use the quan-
tile score (QS) as follows (Koenker and Machado, 1999;
Bentzien and Friederichs, 2014):

QS(p)=
N∑
n

ρp(zn− q), (13)
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with a small score indicating a good model. Here, ρp is the
tilted absolute value function, also known as the so-called
check function.

ρp(u)=

{
pu ,u > 0

(p− 1)u ,u≤ 0,
(14)

with u= zn− q. For high non-exceedance probabilities p, it
leads to a strong penalty for data points that are still higher
than the modeled quantile (zn > q). Using this approach,
the QS allows for detailed verification for each probability p
and duration d separately by predicting a quantile intensity
for a given p and d and comparing it with data points zn,d of
duration d.

To compare different IDF models in terms of the QS,
we require another verification measure. The quantile skill
score QSS compares the quantile score QSM of a new IDF
model M with the quantile score QSR of a reference IDF
model R as follows:

QSSM|R = 1−QSM/QSR. (15)

The QSS takes values −∞< QSS≤ 1 with QSS= 1 for
a perfect model. Positive values QSSM|R > 0 are associated
with an improvement of M over R. In case the model M is
outperformed by the reference R, the resulting QSS is neg-
ative QSSM|R < 0. In this case, its value is not easily inter-
pretable. This issue is acknowledged by the quantile skill in-
dex (QSI) suggested by Ulrich et al. (2020). In the case of
QSSM|R < 0, reference R and model M are exchanged and
−QSSR|M is used for negative values of the QSI, as follows:

QSI=

{
1−QSM/QSR ,QSM ≤ QSR
QSR/QSM − 1 ,QSM > QSR.

(16)

The QSI has a symmetric range and indicates either (1) a
good skill over the reference when leaning clearly towards 1,
(2) little or no skill when being close to 0, or (3) worse perfor-
mance than the reference when leaning clearly towards −1.

In this study, the quantile score was calculated in a cross-
validation setting. For each station, the available years with
maxima are divided into ncv non-overlapping blocks of 3
consecutive years. Then, for each cross-validation step i, one
block is chosen as testing set, and all the other blocks are
used as training data set. For the remaining cross-validation
steps, this procedure is repeated with another block chosen as
testing set in each step until all blocks have been used as test-
ing sets exactly once. The cross-validated QS is obtained by
averaging the score of all cross-validation steps as follows:

QScv
=

1
ncv

ncv∑
i=1

QSi . (17)

Then, the QSI is derived from the averaged cross-validated
QS of the model, QScv

M , and the averaged cross-validated QS

of the reference, QScv
R , according to Eq. (16). If a year was

assigned to the training or testing data set, then all available
accumulation durations are used for training or testing, re-
spectively, to avoid dependence between the test and valida-
tion set.

In order to compare individual model features, we will use
the mentioned models without this specific feature as a refer-
ence in the following.

2.6 Bootstrapping and coverage

To provide an estimate of the uncertainty of the intensity
quantile estimates in IDF curves, we obtain 95 % confidence
intervals using a bootstrapping method. To account for de-
pendence between annual maxima of different durations,
we apply the ordinary non-parametric bootstrap percentile
method (Davison and Hinkley, 1997) as follows.

Please note that, in this paragraph, the empirical quantiles
used for the confidence intervals should not be confused with
the intensity quantiles, which describe the return level and
are referred to as quantiles as well. For each station, we draw
a sample of years (with replacement) from the set of years
with available data. This way, for a chosen year, all max-
ima from this year are used, and we expect that sampling in
this way maintains the dependence structure of the data. We
then estimate the parameters of the d-GEV, which is used to
calculate the intensity quantile that is connected to a certain
non-exceedance probability (see Eq. 3). We obtain a distri-
bution of the estimated intensity quantiles by repeating this
process 500 times. From this distribution, we use the empir-
ical 0.025 and 0.975 quantiles to obtain the upper and lower
bounds of the 95 % confidence interval of intensity quantiles.

We conduct a simulation study to examine whether the de-
rived confidence intervals provide reasonable coverage de-
spite the dependence between the annual maxima of different
durations. Therefore, we simulate 500 samples of data, each
with a size of n= 50 years, with a known dependence be-
tween durations. In a first case, samples with no dependence
between durations are obtained by drawing random values
from a d-GEV distribution. Further details on the simulated
data can be found in Appendix Sect. B. In a second case, to
obtain data with dependence between durations, we use the
R package SpatialExtremes to simulate values from a
Brown–Resnick simple max-stable process with known de-
pendence parameters. We use the range and smooth parame-
ter (ρ,α) ∈ {(1,0.2), (120,1), (60,1)} for (1) a weak depen-
dence, (2) a strong dependence, and (3) a dependence found
for Wupper catchment (Jurado et al., 2020), respectively. We
transform the simulated data from having Fréchet margins to
d-GEV margins with the chosen parameters, as done by Ju-
rado et al. (2020), and adjust them to the hourly scale used in
this study. Then, for the artificial data, confidence intervals
are obtained by bootstrapping with 500 repetitions, as de-
scribed above. For better understanding, this results in a total
of 500× 500× 50 data points and 500 confidence intervals.
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The ratio of samples in which the confidence intervals cover
the true intensity z and the total number of samples (500)
is called the coverage. It can be calculated for each duration
and probability separately.

3 Results

Results are presented in the following order: (1) modeling
performance is verified with the QSI for the three different
IDF curve features, i.e., curvature, multiscaling, and flatten-
ing. (2) IDF curves with all three features are shown for two
rain gauges. Curves are presented with a 95 % confidence
interval, as created by a bootstrapping method. (3) The trust-
worthiness of this bootstrapping method applied to the new
model with all three features is investigated with a coverage
analysis, based on simulated data.

3.1 Model validation

The QSI is used to compare the quantile score of a model
with that of a reference. In order to specifically investigate
the influence of a single model feature, we use these features
in a model and compare with a reference without this specific
feature; e.g., QSIIDFc|IDF gives the performance for a model
including only curvature against the plain reference without
curvature, or QSIIDFcmf|IDFmf gives the performance for the
full model including curvature, multiscaling, and flattening
against a reference with multiscaling and flattening and with-
out curvature (see Sect. 2.3).

Figure 3 shows the QSI for an IDF model including each
of the three features of curvature, multiscaling, and flattening
(columns) combined with no other, one other, or both other
features (rows) against a reference model which differs only
in the one feature under investigation (labels on top of the
columns). For each QSIIDF1|IDF2 , one panel is provided in
Fig. 3. Models and references are listed in Table E1 in Ap-
pendix. E. In this way, the potential performance of each fea-
ture, e.g., curvature, is analyzed and is denoted as e.g., curva-
ture skill. QSI values between−0.05 and 0.05 are considered
as being an indicator of no relevant difference between model
performances.

The curvature (duration offset θ 6= 0) for short durations
can be explained by a stronger connection between the an-
nual maxima of different durations, which tend to originate
from the same event. Usually, the most intense phase of a
heavy precipitation event lasts for several minutes, and ag-
gregated maxima do not differ much on this scale. Based
on this idea, curvature influences the IDF curve’s shape only
for very short durations below 1 h (Fig. 2a). The consistently
positive QSI values for d = 1/60 (1 min) for the curvature
skill support this theory. These results show that this duration
regime d = 1/60 is much better modeled with the curvature,
compared to models without this feature. However, the slope
for medium durations, described by the duration exponent

(see Fig. 2b), is steeper when using curvature compared to
models that do not use curvature. So, for medium and long
durations, models perform equally well or worse when cur-
vature is used than reference models without curvature, in
most cases, on average (see the blue regimes in Fig. 3a). In
the absence of multiscaling (rows 1 and 3), a further perfor-
mance increase could be found for durations between 8 h and
5 d.

Multiscaling allows for different slopes of different p
quantiles on a double logarithmic scale. Figure 3b shows
that this feature increases modeling performance mainly for
long, but also for some sub-hourly, durations when estimat-
ing quantiles for small non-exceedance probabilities. Not us-
ing curvature enables a small multiscaling skill gain for sub-
hourly durations (rows 1 and 3 in Fig. 3b). An explanation
could be that multiscaling tends to let IDF curves associated
with different return periods diverge for short durations and
converge for long durations. This behavior might interfere
with the duration offset’s introduction of curvature in short
durations. Furthermore, the presence of curvature leads to a
slightly smaller skill increase for durations longer than 16 h
(rows 2 and 4 in Fig. 3b). This effect agrees with the results
from the curvature skill verification (Fig. 3a), where it was
shown that curvature improves modeling performance only
for very short durations and has no or a negative effect on
medium and long durations.

The intensity offset τ is a new feature, first introduced in
this study, which addresses the empirically observed slower
decrease in intensity for very long durations, called flatten-
ing. In the case where curvature is enabled in both model
and reference (rows 2 and 4 in Fig. 3c), the flattening feature
improves modeling performance slightly for the shortest du-
ration of 1 min and strongly for medium durations between
2 h and 1 d. Here, the flattening might compensate for the loss
in skill that we observe for medium durations for models with
curvature. In these cases, there is a slight loss in skill for very
long durations. In cases where curvature is not used, flatten-
ing is not needed as it provides no clear skill. An explanation
for the flattening of the IDF curves in long durations could be
seasonal effects, with annual maxima of short or long dura-
tions occurring more often in the summer or winter months,
respectively. These effects are currently under further inves-
tigation.

When modeling only the durations d ≥ 1 (1 h) of all avail-
able stations, the models are rather indifferent towards pa-
rameterization (Fig. 4). Here, multiscaling and flattening
show some skill improvements for long and medium dura-
tions, respectively, similar to that in Fig. 3, but to a much
smaller extent when compared to a data set which uses the
whole range of durations from 1 min to 5 d for both training
and testing (Fig. 3).

We conclude that the choice of parameters depends on the
study purpose. When focusing on long ranges of durations,
we recommend using features like curvature, multiscaling,
and flattening. If the focus lies on long durations, or the data
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Figure 3. Quantile skill index (QSI) of the three features (columns) for four different cases (rows) where the investigated feature is combined
with no other (upper row), one other (second and third row), or both other features (lower row) in model and reference. Column titles indicate
the feature switched on in the model and switched off in the reference. The slightly opaque labels in the panels indicate which model and
reference is used (see also Table E1). Dots show whether the average length of the time series over all stations is longer than the return period
T = 1/(1−p) (here shown as probability p) and indicate the verification trustworthiness. Black lines are derived from the number of years
of the station with the longest time series. The verification for rare events (upper part of each panel) above the black line has to be treated
carefully because the data do not cover this time period. For this verification plot, only stations that provide data on a minute scale were used.

Figure 4. Quantile skill index for data with an hourly resolution. The visualization scheme follows that of Fig. 3. Here, all models were
trained and tested for durations d ≥ 1. Here, all stations were considered, regardless of the temporal resolution.

do not provide a sub-hourly resolution, simple scaling mod-
els might be sufficient. These recommendations are further
elaborated on in the discussion in Sect. 4.

3.2 IDF curves

Figure 5 shows IDF curves for the stations Bever and
Buchenhofen, where a long precipitation series is available
(51 years with minute resolution and 76 years with daily res-
olution in Bever and 19 and 77 years in Buchenhofen, re-

spectively). The difference in available years for different
durations has an impact on the width of 95 % confidence
intervals, with uncertainty being larger when little data are
available. Noticeably, confidence intervals for both stations
for p = 0.99 and d = 1/60 have a wide range over more
than 100 mm/h. Considering that the 100-year return level
was not observed in either station, a wide confidence inter-
val range was expected. For p ≤ 0.8 in Bever, the confidence
intervals remain narrow, even on a minute scale.
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Figure 5. IDF curves for two example stations within the Wupper catchment. Empirical quantile estimates are denoted with the plus signs
(+). Confidence intervals are obtained from a bootstrapping procedure.

3.3 Coverage

Confidence intervals in Fig. 5 are obtained from a bootstrap-
ping procedure. In the formulation of the likelihood, we as-
sume the maxima of different durations to be independent.
This assumption might not be justified especially for short
durations (see Jurado et al., 2020), and thus, this dependence
must be taken into account when estimating uncertainties.
Disregarding the dependence would result in an underesti-
mation of the uncertainty. To account for this effect, all an-
nual maxima of each year – for all considered durations – are
always included jointly into a bootstrapping sample. We as-
sume that this procedure preserves the dependence structure
between durations. To investigate this assumption, we calcu-
late the coverage of simulated data (see Appendix B) from
(1) a d-GEV distribution without dependence and a Brown–
Resnick max-stable process with (2) a typical dependence
for the Wupper station (Jurado et al., 2020) and (3) a rather
weak and (4) strong dependence between durations (Fig. 6).
In the first case without any dependence, the displayed cov-
erage does completely agree with the 95 % confidence inter-
val, without any respect to duration or frequency (probabil-
ity). When using dependence on a weak or strong level, the
coverage is smaller but still around 90 %. This can be inter-
preted as an underestimation of uncertainty, to a small extent,
by the confidence intervals in the case of a high dependence.
The true dependence of durations was not investigated in this
study and could be lower. That said, these results suggest that
bootstrapping is a suitable tool for estimating confidence in-
tervals in the presented context.

4 Discussion

In this study, we show that model performance can be in-
creased when the flattening of IDF curves in the long-
duration regime is taken into account. We assume that this
behavior arises from seasonal effects. That means that the an-

nual maxima of different durations may not follow the same
scaling process. However, this topic is currently under further
investigation (Ulrich et al., 2021a).

The analyzed features – curvature, multiscaling, and flat-
tening – were seen in the results to have a different impact on
modeling performance, depending on the duration and return
period. All features are able to improve the model for certain
regimes, but depending on the problem that is approached,
features should be chosen accordingly. If the focus is on a
small timescales of minutes, then the curvature skill is im-
portant for a good modeling result. When curvature is used
and medium to long timescales are also of importance, then
the flattening feature should be used. This helps to compen-
sate for the deterioration due to curvature over longer du-
rations. Multiscaling is a good choice if a loss in skill for
short durations can be accepted in exchange for a simultane-
ous improvement at long durations, regardless of which other
features are requested.

The skills of the features depend on another feature’s pres-
ence. This dependence is strongest for the flattening, which
can only improve the model when curvature is used. The
modeling performance of the curvature depends less on the
presence of other features. The same applies to the multiscal-
ing feature.

These suggestions hold for models that are supposed to
cover a wide range of timescales from minutes to days. For
data with hourly or more coarse temporal resolution, the skill
gain from using the features is much smaller. Here, flattening
can improve the model slightly on a daily timescale and mul-
tiscaling only improves modeling long durations a little bit
but leads to a slight reduction in skill for the hourly timescale.

Additional parameters give the model more flexibility. In-
cluding τ in the model allows one to reduce deviations be-
tween model and data points particularly for long durations.
This, in turn, opens the possibility to vary the remaining pa-
rameters such that deviations between model and data points
can be reduced in other (e.g., short) duration regimes. Con-
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Figure 6. Bootstrapping coverage. Using a Brown–Resnick max-stable process, the coverage was determined in order to investigate the
reliability of 95 % confidence intervals from bootstrapping. A total of three different levels of dependence were used.

versely, this also holds when including θ . In this way, a
parameter that changes the curve in long durations can in-
crease the modeling performance in other durations and even
slightly decrease model performance in long durations in cer-
tain cases. In Fig. 7, IDF curves for two models are compared
for a chosen station (Bever). The model that includes flatten-
ing (IDFcmf) is able to follow the empirical quantiles in long
durations as well as the model without flattening (IDFcm).
However, flattening gives the model the opportunity to better
follow the empirical quantiles in medium durations between
4 h and 1 d, which is in accordance with the results in Fig. 3c.

The parametric form of the IDF relation is based on three
modifications to a simple power law which are motivated
by our understanding of the rainfall process, namely curva-
ture (e.g., Koutsoyiannis et al., 1998) for small durations ad-
dressing limits to rainfall intensity, multiscaling (e.g., Van de
Vyver, 2018) taking care of a varying scaling behavior for
events of different strength, and flattening (suggested here)
resulting from a mixing of convective and stratiform gen-
erated precipitation extremes from different seasons in the
climate regime under study. Our contribution is to combine
these modifications into a flexible parametric form capable of
describing various effects related to rainfall processes. The
resulting model is based on empirical grounds, and it can

be shown to improve the description over simple power law
models. Other modifications are possible. To our knowledge,
there is no theoretical justification for these forms which can
be derived from first principles for rainfall processes. Since
our results might apply only to the geographical region un-
der investigation, further studies are necessary to find out
whether the found model performances of the different fea-
tures are generally applicable. The character of the shape pa-
rameter ξ with respect to duration is still unclear, since no
linear or log-linear duration dependence could be found as
with the location and scale parameters µ and σ . A possible
approach would be to let the shape parameter vary smoothly
across durations in a non-parametric manner but to penal-
ize its deviation from the median over all durations (Bücher
et al., 2021). However, the scarce data availability hampers a
more complex estimation of the shape parameter.

5 Summary and outlook

The aim of this study is to compare and suggest new para-
metric forms of consistent IDF curves that are applicable to
a large range of durations from minutes to several days and,
therefore, cover events from short-lived convective storms to
long-lasting synoptic events. The dependence on duration is

Hydrol. Earth Syst. Sci., 25, 6479–6494, 2021 https://doi.org/10.5194/hess-25-6479-2021



F. S. Fauer et al.: Flexible and consistent IDF curves 6489

Figure 7. IDF curve for Bever. A comparison of a model with flattening (IDFcmf) and a model without flattening (IDFcm). Empirical quantile
estimates are denoted with the plus signs (+).

implemented in the location and scale parameter and allows
for three features, i.e., curvature, multiscaling, and flatten-
ing. The analysis of these features enables us to understand
more about the underlying physical effects beyond the sub-
ject of return periods and provides more flexible IDF curves
that are suitable for a wide range of durations. The results
of our simulation study show that we are able to provide rea-
sonable estimates of uncertainty using bootstrapping and also
with regard to dependence between durations.

Our findings agree with Veneziano and Furcolo (2002),
who found that simple scaling was adequate for modeling
short durations, and multiscaling was adequate for long dura-
tions. Moreover, our conclusion that curvature improves the
modeling of short durations indirectly agrees with Bougadis
and Adamowski (2006), who used different slopes for dura-
tions longer or shorter than 1 h, respectively, and concluded
that linear scaling does not hold for small durations.

Consistent modeling using the d-GEV enables the use of
fewer parameters. In this way, the model can be easily ex-
tended, e.g., using physically relevant atmospheric covari-
ates. Thus, improving the parameterization of the d-GEV is
crucial to leading the path for further steps. In future studies,
we plan to include spatial covariates into the estimation of
the newly proposed d-GEV parameters, including intensity
offset, in order to use data from different locations more effi-
ciently. Also, the concept of non-stationary precipitation with
respect to IDF curves is important to consider (see Cheng
and AghaKouchak, 2014; Ganguli and Coulibaly, 2017; Yan
et al., 2021) since extremes are expected to vary due to cli-
mate change. For example, Benestad et al. (2021) found a
model that enables downscaling of 24 h measurement data
to shorter durations without assuming stationarity. However,
we think that implementing atmospheric large-scale covari-
ates (as in Agilan and Umamahesh, 2017) into the flexible

d-GEV model proposed here would allow for a better un-
derstanding of the underlying processes. We plan to use this
approach to investigate the change in characteristics of ex-
treme precipitation due to climate change in future studies.
While the choice of method depends on the study target, dif-
ferent approaches have been taken to create IDF curves, as in
Bezak et al. (2016), who used copula-based IDF curves and
reported that IDF curves might be sensitive to the choice of
method. This is important to consider when deciding on the
appropriate way to create IDF curves. Moreover, the origin
of flattening in annual maxima for long durations is currently
investigated in more detail (Ulrich et al., 2021a).

The analysis of the performance shows that the new para-
metric form of the duration-dependent GEV suggested here,
together with the bootstrap-based confidence intervals, offers
a consistent, flexible, and powerful approach to describing
the intensity–duration–frequency (IDF) relationships for var-
ious applications in hydrology, meteorology, and other fields.

Appendix A: Initial values

The estimation of d-GEV parameters was conducted with the
R base optim() function (R Core Team, 2020) and the
Nelder–Mead method. The quality of the fitted model de-
pends on the initial values passed to the function. Each op-
timization i was repeated m times with different initial val-
ues that are derived through different techniques. The sets of
initial functions, i.e., si ∈ {µ̃′,σ ′0,ξ

′,θ ′,η′,η′2, and τ ′}, were
collected as suggestions, and the individual parameters were
named with version indices (v1, v2, etc.). All suggestions
were subsequently used as initial values in the model, and the
suggestion which led to the smallest negative log likelihood
was selected. Table A1 gives an overview of the combina-
tions of initial values.
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All initial-value techniques were based on the same first
step. An individual GEV distribution was fitted to each du-
ration d separately, with moment estimators as initial values
(Coles, 2001), and the three GEV parameters of location µ,
scale σ , and shape ξ were stored for each duration. In the next
step, a function was fitted to each of the parameters with re-
spect to the duration. Since we assumed no dependence of the
shape parameter on the duration, we chose ξ ′v1 =median(ξ)
for all suggestions. According to Eqs. (4) and (5), we fitted
log(σ (d)) and log(µ(d)) as a function of log(d) in a linear
regression with a simple slope and y intercept as follows:

log(σ (d))∼−(η+ η2) log(d)+ log(σ0) (A1)
log(µ(d))∼−η log(d)+ (log(σ0)+ log(µ̃)), (A2)

with given σ(d), µ(d), and d . From this fit, we extracted
σ ′0,v1 = exp(log(σ0)) (Eq. A1), µ̃′v1 = µ̃ (combine Eqs. A1
and A2), η′v1 = η, and η′2,v1 = η2. For the most simple sug-
gestion of initial parameters, we chose θ ′v1 = 0 and τ ′v1 = 0.
In the next steps, we further elaborated the ways of finding
good initial values. Version 2 of the duration exponents η′v2
and η′2,v2 were found, using only d ≥ 1 h, because the slope
is mainly characterized by this duration regime. This is the
second set of suggestions for initial values, together with ver-
sion 1 of the other parameters.

Another initial duration offset θ ′v2 could be estimated by
fitting a nonlinear squares regression (R function nls) as
follows:

log(σ (d))∼−(η+ η2) log(d + θ)+ log(σ0) (A3)
log(µ(d))∼−η log(d + θ)+ log(σ0µ̃), (A4)

with given σ(d), µ(d), and d . The mean of both estimates
for θ was used for θ ′v2. These functions were less stable and
provided worse initial values for σ ′0 and µ̃′ than Eqs. (A1)
and (A2). That is why we used them only for estimating ini-
tial θ ′v2 in the nls function and not for estimating initial µ̃,
σ0, η1, or η2. The new initial estimate θ ′v2 was combined with
η′v1 and η′2,v1 in one set (suggestion 3) and with η′v2 and η′2,v2
in another set (suggestion 4).

The same nls function was used for an estimation of the
initial τ ′v2, taking only d ≥ 1 h and no duration offset (curva-
ture), as follows:

log(σ (d))∼ log(σ0d
−(η+η2)+ τ) (A5)

log(µ(d))∼ log(σ0µ̃d
−η
+ τ), (A6)

with given σ(d), µ(d), and d. Again, the mean of both esti-
mates of τ was used as τ ′v2. To define suggestions 5–8, this
second version of τ ′ was combined with θ ′v1, η′v1, η′2,v1 or θ ′v1,
η′v2, η′2,v2 or θ ′v2, η′v1, η′2,v1 or θ ′v2, η′v2, and η′2,v2. The differ-
ent combinations of initial value versions are listed again in
Table A1.

Table A1. Overview of initial value combinations (suggestions).
The initial values for the parameters µ̃′v1, σ ′0,v1, and ξ ′v1 are the
same in all combinations.

Suggestion no. Version

θ ′ η′1 η′2 τ ′

1 v1 v1 v1 v1
2 v1 v2 v2 v1
3 v2 v1 v1 v1
4 v2 v2 v2 v1
5 v1 v1 v1 v2
6 v1 v2 v2 v2
7 v2 v1 v1 v2
8 v2 v2 v2 v2

Appendix B: Simulated data

For the coverage analysis in Sect. 3.3 and Appendix C about
duration sample choice, we did not use the original data set
but simulated data from a d-GEV distribution. The simulated
data were drawn, according to Eqs. (3), (10), and (11), with a
random number 0< p < 1 and the parameters µ̃= 3.2, σ0 =

5.8, ξ = 0.21, θ = 0.089, η = 0.78, η2 = 0.09, and τ = 0.10.
These values were based on realistic parameter values from
station data, fitted for the features of curvature, multiscaling,
and flattening. When disabling one or more of the features,
the values of all the parameters will change. For the cover-
age analysis, the true quantile intensity z could be calculated
directly, using these parameters and Eqs. (3), (10), and (11).

Appendix C: Influence of duration sample choice

We investigate how the choice of durations that are used to
train the model influences the model performance. Since the
number of training data points is much higher for long du-
rations d ≥ 24 (1 d), there is a possibility that these duration
regimes are overrepresented in the training phase, and thus,
model performance is worse for short durations. To account
for this effect, the model is trained twice (1) with simulated
maxima (Appendix B) and the set of aggregated durations
that was used for analysis in this study (Eqs. 1 and 2) with
simulated annual maxima of a different set of durations that
focuses more on short durations (numerically in hours), as
follows:

d2 ∈ {1,2,3, . . .,15,16,18,20, . . .,30,32,33,36,39, . . .,

57min,1,2,3, . . .,6,8,10,12,15,16,18,21h,1,3,5d}.
(C1)

In this way, there is more training data for short durations
available, which might shift the model’s performance focus
to other duration regimes. However, it is important to note
that this is only an artificial increase in available data, since
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the additional data points do not contain substantial new in-
formation.

The model with the new artificial training data set (Eq. C1)
is now verified against the same model with the previously
used artificial data set (Eq. 1) with the following results: all
QSIs are below 0.05 for all durations d and all quantiles
q ∈ {0.5,0.8,0.9,0.95,0.98} (not shown). Thus, the results
do not indicate that the choice of accumulation duration sig-
nificantly influences how well the model performs for certain
duration regimes.

Appendix D: Model diagnosis

In order to evaluate whether the GEV distribution is an
appropriate choice for this analysis, we provide quantile–
quantile (QQ) plots (Fig. D1) for the stations of Bever and
Buchenhofen, as chosen in Sect. 3.2. While for Buchenhofen
all values follow the angle bisecting line, for Bever only a
few outlying events, which all correspond to higher quan-
tiles, leave the confidence intervals. However, their number
is small compared to the number of shown data points. So,
we conclude that the GEV distribution is a suitable assump-
tion in our case.

Figure D1. QQ plots for selected stations. Confidence intervals were obtained by simulating transformed Fréchet distributed values from the
model distribution and extracting a 95 % interval.

Appendix E: Overview of reference models for
verification

In Sect. 3.1, the feature skill was evaluated by comparing
models with a reference where the considered feature is dis-
abled. For clarification, Table E1 lists the models and refer-
ence models that were used in Figs. 3 and 4, together with the
parameter restriction to zero, if applied. These specifications
refer to Eqs. (10) and (11).
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Table E1. Overview of models and references for verification.

Column (title); Model features and parameters Reference features and parameters
row (number)

Curvature

1 IDFc IDF
θ 6= 0,η2 = 0,τ = 0 θ = 0,η2 = 0,τ = 0

2 IDFcm IDFm
θ 6= 0,η2 6= 0,τ = 0 θ = 0,η2 6= 0,τ = 0

3 IDFcf IDFf
θ 6= 0,η2 = 0,τ 6= 0 θ = 0,η2 = 0,τ 6= 0

4 IDFcmf IDFmf
θ 6= 0,η2 6= 0,τ 6= 0 θ = 0,η2 6= 0,τ 6= 0

Multiscaling

1 IDFm IDF
θ = 0,η2 6= 0,τ = 0 θ = 0,η2 = 0,τ = 0

2 IDFcm IDFc
θ 6= 0,η2 6= 0,τ = 0 θ 6= 0,η2 = 0,τ = 0

3 IDFmf IDFf
θ = 0,η2 6= 0,τ 6= 0 θ = 0,η2 = 0,τ 6= 0

4 IDFcmf IDFcf
θ 6= 0,η2 6= 0,τ 6= 0 θ 6= 0,η2 = 0,τ 6= 0

Flattening

1 IDFf IDF
θ = 0,η2 = 0,τ 6= 0 θ = 0,η2 = 0,τ = 0

2 IDFcf IDFc
θ 6= 0,η2 = 0,τ 6= 0 θ 6= 0,η2 = 0,τ = 0

3 IDFmf IDFm

θ = 0,η2 6= 0,τ 6= 0 θ = 0,η2 6= 0,τ = 0

4 IDFcmf IDFcm
θ 6= 0,η2 6= 0,τ 6= 0 θ 6= 0,η2 6= 0,τ = 0
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