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Abstract. Nitrate (NO3
−) excess in rivers harms aquatic

ecosystems and can induce detrimental algae growths in
coastal areas. Riverine NO3

− uptake is a crucial element of
the catchment-scale nitrogen balance and can be measured
at small spatiotemporal scales, while at the scale of entire
river networks, uptake measurements are rarely available.
Concurrent, low-frequency NO3

− concentration and stream-
flow (Q) observations at a basin outlet, however, are com-
monly monitored and can be analyzed in terms of concen-
tration discharge (C–Q) relationships. Previous studies sug-
gest that steeper positive log(C)–log(Q) slopes under low
flow conditions (than under high flows) are linked to bi-
ological NO3

− uptake, creating a bent rather than linear
log(C)–log(Q) relationship. Here we explore if network-
scale NO3

− uptake creates bent log(C)–log(Q) relationships
and when in turn uptake can be quantified from observed
low-frequency C–Q data. To this end we apply a parsimo-
nious mass-balance-based river network uptake model in 13
mesoscale German catchments (21–1450 km2) and explore
the linkages between log(C)–log(Q) bending and different
model parameter combinations. The modeling results show
that uptake and transport in the river network can create bent
log(C)–log(Q) relationships at the basin outlet from log–
log linear C–Q relationships describing the NO3

− land-to-
stream transfer. We find that within the chosen parameter
range the bending is mainly shaped by geomorphological pa-
rameters that control the channel reactive surface area rather
than by the biological uptake velocity itself. Further we show
that in this exploratory modeling environment, bending is

positively correlated to percentage of NO3
− load removed

in the network (Lr.perc) but that network-wide flow veloci-
ties should be taken into account when interpreting log(C)–
log(Q) bending. Classification trees, finally, can successfully
predict classes of low (∼ 4 %), intermediate (∼ 32 %) and
high (∼ 68 %)Lr.perc using information on water velocity and
log(C)–log(Q) bending. These results can help to identify
stream networks that efficiently attenuate NO3

− loads based
on low-frequency NO3

− and Q observations and generally
show the importance of the channel geomorphology on the
emerging log(C)–log(Q) bending at network scales.

1 Introduction

Transport and transformation of nitrate (NO3
−) in river net-

works are major controls of downstream exports to receiv-
ing lakes, reservoirs and coastal systems (Alexander et al.,
2000; Billen et al., 1991; Peterson et al., 2001; Seitzinger
et al., 2002; Seybold and McGlynn, 2018). Increased NO3

−

concentrations in surface waters can induce detrimental algae
growths (Beusen et al., 2016; Canfield et al., 2010; Galloway
et al., 1995), compromise river ecosystem health and jeop-
ardize drinking water supplies. Since the beginning of the
20th century, human activities such as agricultural expansion
and fossil fuel burning have mobilized additional reactive
nitrogen (N), initiating and later exacerbating this problem
(Seitzinger et al., 2002). In arable landscapes, which include
large parts of Europe, the efficient management of aquatic
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NO3
− at network scales is complicated by the spatiotempo-

ral variability in loading patterns and hydrologic regimes as
well as the lack of understanding of nutrient pathways, con-
nected transit times and removal processes from input to ex-
port. Nevertheless, nitrate concentration and load variability
can be predicted at catchment scales when relying on detailed
process understanding regarding transport and biogeochem-
ical processing (Alexander et al., 2009; Schlesinger et al.,
2006; Wollheim et al., 2008). Moving beyond small-scale
variability and characterizing nitrate processing at the catch-
ment scale however remains a challenge (McDonnell et al.,
2007; Li et al., 2020).

Within river reaches and streams, reactive solutes like
NO3

− are affected by complex interactions of physical, bi-
ological and chemical processes. Physical transport is driven
by local discharge and channel geomorphology and dic-
tates the NO3

− residence time in a reach, thus influencing
the timescales at which biogeochemical processing can take
place (Kirchner et al., 2000; Runkel and Bencala, 1995; Zar-
netske et al., 2011). NO3

− is removed and transformed by
denitrifying bacteria in the anoxic river sediment (Birgand
et al., 2007; Peterson et al., 2001); ammonified; or retained
through assimilation processes in the oxic or anoxic river
compartments by bacteria, fungi and primary producers such
as algae and macrophytes, potentially entering higher trophic
levels. In the latter case, N in the form of DON (dissolved
organic nitrogen) and more commonly DIN (dissolved inor-
ganic nitrogen), together with phosphorus (P), may be re-
leased to the water column later on (Durand et al., 2011;
Vanni, 2002; Vanni and McIntyre, 2016). The nutrient spiral-
ing model (Newbold et al., 1981; Stream Solute Workshop,
1990) that formally describes these processes has been used
to quantify and compare NO3

− transport and uptake (the net
result of all removal and release processes) in river reaches
(Peterson et al., 2001; Mulholland et al., 2008; Hall et al.,
2009) and stream networks (Ensign et al., 2006; Doyle, 2005;
Marce and Armengol, 2009). Quantifying in situ NO3

− up-
take is labor-intensive and may involve local nutrient addi-
tions, potentially altering the ambient uptake rate (Hensley
et al., 2014; Mulholland and Tank, 2002). Other methods
require high-frequency measurements (Jarvie et al., 2018;
Kunz et al., 2017) that are mostly limited to small spa-
tial scales (i.e., reach scale) and can vary considerably be-
tween measuring points (Boyer et al., 2006). At the scale
of entire river networks contrarily, uptake measurements are
rarely available (but see Wollheim et al., 2017), and models
are applied instead to predict spatiotemporal uptake patterns
(Boyer et al., 2006; Yang et al., 2018). These models account
for the spatial configuration of the stream network, an impor-
tant aspect for stream biogeochemistry that is often ignored
in small-scale experimental approaches (Fisher et al., 2004).
Spatially distributed models, however, require calibration of
uncertain spatiotemporal parameters and may not reflect the
essential features of the system despite fitting observed data
well (Klemes, 1986).

River networks link terrestrial source zones to coastal ar-
eas and integrate biogeochemical and hydrological catch-
ment functions across scales (Bouwman et al., 2013; Helton
et al., 2018). Small streams (usually headwaters) are known
to influence the export signal disproportionally because of
their overall (high) contribution to total stream length and
effective NO3

− removal capacity (Alexander et al., 2000;
Horton, 1945), explained by high sediment-surface-to-water-
volume ratios. Generally, high removal efficiencies have
been reported for river network areas with lower specific
discharges (Hall et al., 2009; Hensley et al., 2014) under
favorable circumstances such as high light availability and
heavy in-stream vegetation (Hensley et al., 2014; Rode et al.,
2016) as well as for streams with a high capacity for lateral
and hyporheic exchange (Gomez-Velez et al., 2015; Kiel and
Cardenas, 2014). The scaling of in-stream uptake processes
beyond the river reach has been approached by combined
experimental-modeling studies with defined explicit scaling
relationships (e.g., Basu et al., 2011; Aguilera et al., 2013;
Bertuzzo et al., 2017; Lindgren and Destouni, 2004) and the-
oretical frameworks explaining how the river network capac-
ity regulates solute export (e.g., Wollheim et al., 2018). Ab-
bott et al. (2018) shows how spatially heterogeneous patterns
of water chemistry stabilize while the temporal variability in
nutrient concentrations persists when moving downstream,
facilitating the temporal scaling of headwater measurements.
Nevertheless, insights into linking the interplay of nitrate re-
moval processes at the network scale to downstream export
patterns in space and time are largely missing.

Concentrations (C) for in-stream solutes such as carbon,
major ions, particulates and nutrients are commonly moni-
tored concurrently with discharge (Q) at the basin outlet. C–
Q relationships integrate the effect of biogeochemical and
hydrological processes within the catchment and have mainly
been discussed in terms of land–stream transfer and source
configuration in catchments as well as subsurface retention
processes (Godsey et al., 2009; Musolff et al., 2017; Bieroza
et al., 2018). The shape of long-term (multiple years) C–
Q relationships in the log–log space is typically described
by the slope of a linear regression model (Godsey et al.,
2009). Here, three archetypes have been distinguished: (i) a
positive log(C)–log(Q) slope, indicating enrichment, occurs
when an increasing discharge additionally mobilizes solutes;
(ii) a negative C–Q slope or dilution pattern is commonly
linked with source limitations; and (iii) a neutral or chemo-
static slope implies low variability in in-stream concentra-
tions across a high range of discharges, a pattern observed for
example for solutes derived from weathering bedrock (Ameli
et al., 2017; Godsey et al., 2009). The potential information
loss associated with linear and monotonic NO3

− log(C)–
log(Q) analysis was addressed by Moatar et al. (2017) and
Minaudo et al. (2019) for more than 200 French catchments
and by Diamond and Cohen (2018) for 44 rivers in Florida,
USA. These studies identified distinct linear low-flow and
high-flow NO3

− log(C)–log(Q) regression slopes for a ma-
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jority of the cases using low-frequency monitoring data.
Moatar et al. (2017) found that stronger positive slopes under
low-flow conditions correlate positively with chlorophyll a
concentrations (associated with biological processes) and at-
tributed this condition to biological NO3

− concentration me-
diation in the stream. This is consistent with the findings of
Hall et al. (2009) and Hensley et al. (2014) among others that
in-stream uptake is more efficient under low-flow than under
high-flow conditions. Furthermore, Wollheim et al. (2017)
illustrate non-linear NO3

− C–Q relationships conceptually
for storm flow dynamics in a river network, showing high re-
tention capacities in the headwater catchments that decrease
under increasing flows, changing the slope of C–Q relation-
ships from dilution to enrichment. Based on these studies we
hypothesize that the magnitude (or efficiency) of in-stream
NO3

− uptake is encoded within observedC–Q relationships,
and their analysis therefore can improve our understanding
of in-stream uptake processes by providing an alternative to
elaborate fieldwork and modeling work aimed at quantifying
NO3

− removal in stream networks. Low-frequency NO3
−

observations are widely available (e.g., biweekly to monthly
grab sampling; Ebeling et al., 2020; Minaudo et al., 2019;
Moatar et al., 2017), but if and how these data can be utilized
to characterize catchment-scale in-stream processing has yet
to be investigated.

In this paper, it is postulated that network-scale uptake
effects can be inferred from the degree of non-linearity or
the amount of bending of low-frequency, multi-annual con-
centration (C) and discharge (Q) observations. To test this
hypothesis, we apply a parsimonious river network model
(similar to Bertuzzo et al., 2017; Helton et al., 2018, 2010;
and Mulholland et al., 2008) in 13 German catchments to
explore the catchment-scale transport and uptake processes
that influence downstream log(C)–log(Q) patterns. The spe-
cific objectives are to (i) introduce the maximum curvature
(Curvmax) as a robust metric to quantify bending of low-
frequency C–Q time series in the log–log space, (ii) explore
the sensitivity of Curvmax to hydrological and in-stream bio-
geochemical parameters (e.g., channel shape, water veloc-
ity and biological NO3

− uptake velocity), (iii) explore how
C–Q bending is linked to network-scale in-stream uptake,
and (iv) provide guidelines if and under what circumstances
the C–Q bending can offer conclusive information on effec-
tive in-stream uptake. In this proof-of-concept exploratory
study, we demonstrate how (existing) low-frequency moni-
toring data can be effectively utilized to quantify nitrate up-
take in river networks and show how small-scale uptake pro-
cesses shape emerging patterns at catchment scales.

2 Methods

2.1 Maximum curvature – Curvmax

The shape of log(C)–log(Q) relationships is often described
as linear (Bieroza et al., 2018; Godsey et al., 2009; Mu-
solff et al., 2017) or segmented linear (Meybeck and Moatar,
2012; Moatar et al., 2017; Marinos et al., 2020), implying
a limit on the possible log(C)–log(Q) shapes (Tunqui Neira
et al., 2020) and setting assumptions such as “fixed breaking
points”. Here, we introduce the concept of maximum curva-
ture (Curvmax) to quantify rather than describe the shape of
“broken-stick” log(C)–log(Q) relationships without the as-
sumption of a fixed form. In a strict geometrical sense the
curvature (−∞; +∞) is the instantaneous rate of change
in direction of a point that moves on a curve. A straight
line for example has a curvature of zero, and a large circle
has a lower absolute curvature than a small circle (Press-
ley, 2001). Here, Curvmax identifies the magnitude and direc-
tion of the log(C)–log(Q) section with the largest instanta-
neous change. To calculate Curvmax for an observed (noisy)
log(C)–log(Q) relationship, a smoothed spline, f , is itera-
tively fitted with increasing degrees of freedom (df) to cap-
ture the general log(C)–log(Q) shape accurately but avoid
overfitting (Fig. B1). Initially, df= 3, and the log(Q) region
of the largest instantaneous change is identified asQm±0.05,
with Qm = argmaxlogQ|f

′′
|. Then, df is increased until, at

df= i, the log(Q) corresponding to the largest instantaneous
change is not within the initial Qm region anymore. Conse-
quently, Curvmax is calculated for a smoothed spline fit, f ,
with

df= i− 1 as


max
logQ

f ′′ if
∣∣∣max
logQ

f ′′
∣∣∣≥ ∣∣∣min

logQ
f ′′
∣∣∣

min
logQ

f ′′ if
∣∣∣max
logQ

f ′′
∣∣∣< ∣∣∣min

logQ
f ′′
∣∣∣ .

The Curvmax metric, computed for a log(C)–log(Q) relation-
ship, could be considered to be a complementary metric to
the slope of the linear regression model (Godsey et al., 2009)
and could serve as an alternative for segmented linear regres-
sion fits (Meybeck and Moatar, 2012; Moatar et al., 2017;
Marinos et al., 2020) (Fig. S1 in the Supplement) as it quan-
tifies the degree of non-linearity as the amount of bending.

We assume here that a multi-annual (6 to 15 years) low-
frequency (biweekly to monthly) C–Q relationship with-
out temporal (significant) trends in a given station has one
Curvmax. To verify this assumption in a realistic setting,
Curvmax was computed for observed nitrate (C) and Q data
(1995–2010) of French water quality stations with biweekly
to monthly sampling frequencies (Dupas et al., 2019). Fol-
lowing the removal of C outliers (falling outside of µ±3.5σ
in the log space, with µ and σ representing the sample mean
and standard deviation, respectively), 444 stations were se-
lected that satisfy the following four criteria: (i) the sta-
tion should have at least 70 coupled C and Q observations
(the maximum number of samples within one station was
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402), (ii) a minimum of 6 years of data are represented, (iii)
there is no bias in the intra-annual distribution of the data
(i.e., never less than 10 % of the C–Q observations in one
season, Fig. S2 in the Supplement), and (iv) the station C ob-
servations had no significant temporal trends (Mann–Kendall
test, p value> 0.05) (Ebeling et al., 2021). We then assessed
the robustness of Curvmax to the low-frequency C–Q obser-
vations in a time series by selecting different subsamples of
C–Q data from the entire available time series for a given sta-
tion. More specifically, 100 random time series subsamples
(each with a minimum length of 70) without replacement but
with overlap were taken for each station, with the subsamples
passing the four criteria above, and Curvmax was calculated
for each subsampled time series. On average, the subsamples
represented nearly 80 % of the complete time series for a sta-
tion.

2.2 Network model

In this work an explorative grid-based (100m×100 m) mass
balance network model (comparable to Bertuzzo et al., 2017;
Helton et al., 2018, 2010; and Mulholland et al., 2008; con-
ceptually shown in Fig. B2) was used to simulate in-stream
nitrate transport and biological removal on a daily basis. The
model was developed in R (R Core Team, 2013).

2.2.1 Stream network and hydrological properties

Following Bertuzzo et al. (2017) and Helton et al. (2018),
each river network node (i.e., grid cell) i (1≤ i ≤N ) has a
drainage area Ai [m2] that is calculated as the sum of the
total upstream drainage area

∑
jWjiAj [m2] and the direct

drainage area ai [m2] (e.g., laterally contributing drainage
area) to grid cell i (Eq. 1):

Ai =
∑

j
WjiAj︸ ︷︷ ︸

Upstream drainage areas

+ ai︸︷︷︸
Direct drainage area

, (1)

where Wji [–] is an element in the connectivity matrix W
(N ×N ) such that Wji = 1 if j is directly neighboring and
flowing into i, and Wji = 0 otherwise. Aj [m2] is the total
drainage area to node j .

It is the spatially varying contribution of the total upstream
and direct drainage area to each river network node that cre-
ates the spatial variability in the river network. The temporal
variability in the river network is driven by the time-varying
but spatially homogeneous specific discharge Qt.sp [m3 s−1],
calculated as the ratio of the daily discharge at the catch-
ment outlet and the total number of catchment grid cells.
The total local discharge Qi [m3 s−1] at a given grid cell
i is thus proportional to the total drainage area at that grid
cell, Ai , (following Bergstrom et al., 2016, and Bertuzzo et
al., 2017) (Eq. 2). It is Qi , which in turn dictates the down-
stream and at-a-station hydraulic geometry relationships of
river geomorphic parameters channel width, (wi ; m) and av-
erage channel depth (di ; m) (Leopold and Maddock, 1953)

(Eqs. 2a and b). The local velocity in a grid cell vi [ms−1] is
calculated according to Eq. (2c), and the corresponding travel
time, Ti [d], is computed in Eq. (2d):

Qi =Qt.sp ·Ai (2)
wi =Kw ·Q

aw
i (2a)

di =Kd ·Q
ad
i (2b)

vi =
Qi

wi · di
(2c)

Ti =
li

vi
, (2d)

where the flow length through a grid cell i, li [m], equals 100
or 100

√
2 m for horizontal and vertical or diagonal flow di-

rections, respectively. Parameters aw [–] and Kw [–] are the
respective exponent and coefficient parameters in the river
width–discharge relationship (Eq. 2a), while ad [–] and Kd
[–] compose the exponent and coefficient parameters of the
depth–discharge relationship (Eq. 2b), respectively. The ra-
tio of ad to aw corresponds to a parameter r [–] ∈ R+, which
prescribes the cross-section geometry relation such that a
triangular channel cross-section is represented by r = 1, a
parabolic channel cross-section by r = 2, and channel cross-
sections with progressively flatter bottoms and steeper banks
by increasing values of r (Dingman, 2007). The width–
discharge relation in Eq. (2a) is conceptually illustrated in
Fig. B3 for two sets of aw and Kw, where a low aw corre-
sponds to the width of a channel that does not change much
with varying discharge, while a high aw can result in highly
varying channel widths.

2.2.2 Nitrate uptake

Similar to Eq. (1) the incoming load, Lin,i [mgs−1], to a
river network grid cell i is composed as the sum of upstream
load contributions Lin.up,i [mgs−1] and direct land-to-stream
loading Lin.ls,i [mgs−1], given that L= CQ (Eq. 3). The
contribution of direct land-to-stream loading concentration
can be expressed as a power law (Musolff et al., 2017) with
the exponent b [–], the slope in the log(C)–log(Q) relation-
ship that is an indicator of the C–Q archetype (Godsey et al.,
2009) and coefficient c [–]. Here, b is assumed to be con-
stant over the seasons, which considers that NO3

− loading
is transport-limited rather than source-limited as explicitly
shown for agricultural catchments (Basu et al., 2011; Win-
ter et al., 2021). Following Jawitz and Mitchell (2011), the
coefficient c is calculated to yield the long-term mean in-
stream input concentration Cmean [mgL−1] (Eq. A1). Addi-
tional NO3

− sources such as the load resulting from NO3
−

release within the stream network and point sources are not
considered here (similar to Bertuzzo et al., 2017, and Woll-
heim et al., 2006). This assumption is supported by large-
scale assessments in France (Moatar et al., 2017) and Ger-
many (Ebeling et al., 2021), where it was found that, with the
exception of pure urban catchments, diffuse sources rather
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than point sources control the C–Q shape in typical Euro-
pean mixed-land-use settings. Also, we do not consider other
loading processes that may create bending at the catchment
outlet (e.g., shifts in transport pathways and solute sources;
Marinos et al., 2020).

Lin,i = Lin.up,i︸ ︷︷ ︸
Upstream loads

+ Lin.ls,i︸ ︷︷ ︸
Direct land-to-stream loading

=

∑
j

WjiLj + c · (Qt.sp · ai)
b+1 (3)

The modeled in-stream NO3
− uptake follows first-order re-

moval kinetics (Alexander et al., 2000; Boyer et al., 2006;
Ensign and Doyle, 2006), such that the outgoing load from
grid cell i Li [mgs−1] is a fraction of the incoming load Lin,i
(Eq. 4), and the absolute removed load Lr,i [mgs−1] can be
described as (Eq. 5). Here, Lr,i is influenced by separate hy-
drological (Pi · li/Qi) and biological (vf) components (simi-
lar to Bertuzzo et al., 2017).

Li = Lin,i · e
−
vf·Pi ·li
Qi (4)

Lr,i = Lin,i −Li = Lin,i ·
(

1− e−
vf·Pi ·li
Qi

)
, (5)

where Pi is the wetted perimeter of the cross-section calcu-
lated from the Manning equation (using the bed slope Si and
assuming a fixed roughness coefficient = 0.03 [mm−1]) in
open channels (Eq. A2). The uptake velocity parameter vf
[md−1] refers to the vertical movement of NO3

− molecules
from the water column towards the biofilm at the pelagic–
benthic interfaces and the sediments, where the in-stream
processing chiefly occurs with vf = kidi , and ki is the first-
order removal constant (Ensign and Doyle, 2006; Wollheim
et al., 2006; Marcé et al., 2018). The parameter vf accounts
for the processes altering the rate and form of downstream
NO3

− delivery (Doyle, 2005) (therefore it is not limited to
denitrification only). We assume that vf is independent of the
in-stream NO3

− concentration Cmean (Pennino et al., 2014;
O’Brien et al., 2007) such that the areal uptake rate U =
vf ·Cmean [mgm−2 d−1] is tightly linked with Cmean in a first-
order relationship. Others (e.g., Hensley et al., 2014; Mulhol-
land et al., 2008; O’Brien et al., 2007) contrarily found ex-
plicit scaling relationships, where vf decreases non-linearly
for increasing Cmean (10−4–101 mgL−1) when considering
distinct catchments. However, in Germany, the NO3

− con-
centration range across a range of catchments is small (10−1–
101 mgL−1 according to Ebeling et al., 2021), and rivers
generally have minor longitudinal concentration variability
(Hensley et al., 2014; Ensign and Doyle, 2006), which sug-
gests independent definitions of vf and Cmean.

The Damköhler number Da [–] is calculated as the ratio
between transport (τT) and reaction (τR) (Eq. 6) timescales
and is often used to characterize the relative importance
of hydrological and biogeochemical processes in hydrolog-
ically connected systems (Oldham et al., 2013; Kumar et al.,
2020):

Da=
τT

τR
=

TT
k−1 , (6)

where τT represents the effective travel time, TT [d], or the
exposure timescale under advective conditions. We estimated
the catchment-wide TT as the spatiotemporal median of the
sum of all downstream Ti (Eq. 2d) for a grid cell in the net-
work (

∑Out
i Ti) (similar to Bergstrom et al., 2016), whereas

τR represents the reactive timescale of biological processes.
It is approximated as k−1 [d−1], with the effective catchment-
wide k estimated as the spatiotemporal median of the grid-
scale first-order reaction constant ki = di/vf.

2.3 Exploring Curvmax with Monte Carlo simulations

Monte Carlo simulations are performed to explore how
Curvmax evolves from a range of model input parameter
combinations in a variety of catchments (Sect. 2.3.1 be-
low). These simulations utilize the same ensemble of 11 107
unique parameter combinations in each of the individual
study catchments with distinct observed discharge time se-
ries to account for the differences one parameter combina-
tion may have in each of the catchments. The unique parame-
ter combinations are generated by Latin hypercube sampling
from uniform parameter ranges that are set according to lit-
erature values (Table 1). Some physical constraints were also
imposed such that the channel geometry parameters aw and
ad must obey continuity principles (aw+ad < 1 and aw > ad,
following Leopold and Maddock, 1953). Similar to Bertuzzo
et al. (2017) the chosen parameter combination is kept con-
stant in time and uniform in space for simplicity during one
model run. The simulated variables are (i) Curvmax [–], de-
duced from simulated log(C)–log(Q) relationships when a
minimum of 80 % of the C data are above the “detection
limit” of 0.002 mgL−1 NO3

−; (ii) the network-wide per-
centage of load removed Lr.perc [%], which is calculated as
the median of the ratio between the daily absolute removed
load and the daily absolute incoming load in the river net-
work; (iii) the median network travel time, TT [d]; (iv) the
Damköhler number Da [–]; (v) the slope of the linear re-
gression fit of the log(C)–log(Q) relationship at the catch-
ment outlet, bout [–]; and (vi) the median concentration at the
catchment outlet, Cout [mgL−1], and the median water ve-
locity, v [ms−1]. While all outputs can be spatially and tem-
porally explicit on a daily time step, Curvmax is examined
at the catchment outlet, integrating both spatial and tempo-
ral aspects. The Monte Carlo results are subsequently sub-
jected to a global sensitivity analysis with the PAWN method
(Pianosi and Wagener; 2015) to elucidate influential model
parameters. Furthermore a correlation analysis is conducted
to explore how these influential parameters impact simulated
Curvmax. Finally, a classification and regression tree algo-
rithm (CART; Breiman et al., 1984) allowed us to visualize
parameter interactions as detailed in Sect. 2.3.2 below.
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Table 1. Network model parameter ranges for the Monte Carlo simulations.

Parameter Unit Description Range References

vf md−1 Uptake velocity 10−4; 0.25 Marce et al. (2018)a

b – Slope b linear regression log(C)–log(Q) −1.5; 1.5 Musolff et al. (2017); Ebeling (2020b)
Cmean mgL−1 Land-to-stream concentration 10−4; 20 Ebeling (2020b)
Kw L1−3·aw · T−aw Coefficient width–Q relationship (Eq. 2a) 2.6; 20.2 Andreadis et al. (2013)
aw – Exponent width–Q relationship (Eq. 2a) 0.01; 0.54 Andreadis et al. (2013); Dingman (2007)
Kd L1−3·ad · T−ad Coefficient depth–Q relationship (Eq. 2b) 0.12; 0.63 Andreadis et al. (2013)
ad – Exponent depth–Q relationship (Eq. 2b) 0.28; 0.667 Andreadis et al. (2013); Dingman (2007)

a For vf, the selected range is an order of magnitude smaller than the one proposed by Marce et al. (2018) as we focus the analysis on the lower vf, where most of the bending
happens (Sect. 3.3).

2.3.1 Catchment selection

The river networks of 13 mesoscale catchments across Ger-
many (areas between 21 and 1450 km2; Ebeling, 2020a; Ta-
ble 2) are extracted together with the corresponding daily
discharge data at the outlet (uninterrupted for ∼ 10 years
between 1995 and 2010; Musolff, 2020) as inputs for the
exploratory river network model. The selected catchments
include three nested sub-catchments for the Selke as well
as the Holtemme river system, both part of the Bode, a
well-studied river system near the Harz mountains in central
Germany (Fig. 1; Ehrhardt et al., 2019; Rode et al., 2016;
Winter et al., 2021; Mueller et al., 2018). All catchments
have distinct geophysical settings as stream order, median
discharge and catchment shape (quantified with the Horton
form factor; Horton, 1945; Table 2), which is needed to ob-
tain a realistic range of simulated Curvmax using the explo-
rative network model in the Monte Carlo mode. The selected
catchments were delineated in ArcMap (ESRI, 2011) from a
100m× 100 m digital elevation model (DEM) (EEA, 2013;
Ebeling et al., 2021). A flow direction, flow accumulation
and valley slope grid in the same resolution were established.
The channel threshold drainage area for the network delin-
eation was set to 150 grid cells (1.5 km2), which agreed well
with the observed river network, resulting in a tree-shaped
river network with N grid cells or nodes.

2.3.2 Model evaluation

To verify the network model’s ability to reproduce realistic
concentration time series and Curvmax, the observed monthly
nitrate concentrations and the simulated time series were
compared in 1 of the 13 selected catchments, the Selke catch-
ment (at Meisdorf gauging station, 282 km2; Table 2; Winter
et al., 2021), where extensive field campaigns and modeling
studies have been conducted related to in-stream processes
(Rode et al., 2016; Dupas et al., 2017; Yang et al., 2019,
2018). Note that such a model validation was performed only
in the Selke Meisdorf catchment as the model aim is to ex-
plore how certain input parameter combinations may result in
log(C)–log(Q) bending at the catchment outlet rather than to

reproduce catchment-specific concentrations by performing
parameter calibration. This explorative approach is compara-
ble to Bertuzzo et al. (2017) and Helton et al. (2018), who ap-
plied a similar model in synthetic river networks but did not
validate the model structure in a realistic setting. The Meis-
dorf catchment is a relatively homogeneous upstream part
of the Selke, consisting of forest and cropland, and is char-
acterized by constant export regimes (Winter et al., 2021).
For an input parameter combination set to reasonable values
for this catchment (Table C1; Rode et al., 2016), the land-
to-stream NO3

− inputs averaged 1.2 kgNd−1 km−2, which
is similar to the 1.9 kgNd−1 km−2 reported by Winter et al.
(2021) for the Selke river (Meisdorf), and it is well within
the general 0.001 to 100 kgNd−1 km−2 range established by
Mulholland et al. (2008). The simulated flow velocity had
a spatiotemporal median value of 0.47 ms−1, which is also
comparable with measured flow velocities (Risse-Buhl et al.,
2017). Additionally, the Selke catchment was used to gain an
insight into how the interplay of transport and uptake pro-
cesses at every network grid cell can result in a curved C–Q
pattern at the catchment outlet for one parameter combina-
tion, while in the other catchments the network model out-
puts were only considered at the catchment outlet for the
entire range of input parameter combinations in the Monte
Carlo approach. Finally, the simulated range of Curvmax, ob-
tained from applying the network model in the 13 different
catchments with > 10000 input parameters, was compared
to a range of observed Curvmax computed from the C–Q re-
lationships of 444 French catchments (Dupas et al., 2019;
Sect. 2.1). Other Monte Carlo simulation outputs, such as
ranges of Lr.perc and Da, were compared to literature values
for validation purposes.

2.3.3 PAWN sensitivity analysis and correlation
analysis

We performed a global sensitivity analysis (GSA) using the
moment-independent PAWN method (Pianosi and Wagener,
2015). The method allowed for estimating the effect of the
parameter inputs on the entire model output distribution and
can be applied to rank the inputs and identify the uninfluen-
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Table 2. Catchment properties summary: catchment area, median elevation, slope and topographical wetness index (TWI), maximum Strahler
stream order, Horton form factor, drainage density, median discharge at the basin mouth over time (Q) with the corresponding runoff (area
specific discharge) between brackets, and the coefficient of variation in the discharge in time (CV Q). The latter variable CV Q integrates
the frequency of runoff events and the differences in recession constant (so the catchment’s “flashiness” in response to rainfall) (Botter et al.,
2013).

ID River Area Median Median Median Stream Network Horton Drainage Median Q CV Q

elevation slope TWI order length form factor density
[km2] [m] [◦] [–] [–] [km] [–] [kmkm−2] [m3 s−1] [–]

(mmd−1)

1 Dahme 20.9 105 1.50 10.08 2 11 0.67 0.52 0.02 (0.07) 1.13
2 Kraichbach 422.5 164 2.84 9.45 4 228 0.23 0.54 0.85 (0.17) 0.47
3 Wertach 658.1 833 4.30 9.17 4 391 0.14 0.59 10.60 (1.39) 0.96
4 Ammer 713.7 858 8.34 8.80 4 416 0.29 0.58 14.98 (1.81) 0.84
5 Modau 88.6 272 5.61 8.47 3 47 0.42 0.53 0.52 (0.51) 0.80
6 Leine 993.2 276 4.40 8.95 4 525 0.45 0.53 6.22 (0.54) 0.85
7 Speyerbach 142.0 187 3.58 9.84 3 104 0.17 0.73 0.66 (0.40) 0.64
8 Stör 1452.2 25 0.90 10.63 5 905 0.46 0.62 14.10 (0.84) 0.76
9 Holtemme 272.5 258 3.58 9.49 4 145 0.17 0.53 1.04 (0.33) 1.01
10 Selke Silberhütte 94.5 456 4.02 8.72 3 49 0.27 0.51 0.56 (0.51) 1.34
11 Selke Meisdorf 282.1 342 3.94 9.03 3 160 0.35 0.57 0.70 (0.21) 1.34
12 Selke Hausneindorf 460.1 263 2.90 9.60 4 256 0.37 0.56 0.65 (0.12) 1.50
13 Schleuse 263.2 597 9.12 7.92 4 139 0.79 0.53 2.88 (0.95) 1.07

Figure 1. Germany DEM with the location and outline (shape) of selected catchments, along with their drainage networks (in blue) and
outlet location (red triangle). See Table 2 for catchment IDs and properties.

tial ones. The resulting PAWN sensitivity indices were es-
timated from generic input–output samples created with the
numerical approximation strategy proposed by Pianosi and
Wagener (2018). With this strategy, the range of variation in
each input xi is partitioned into a number ni of equally prob-
able “conditioning” intervals (Ii,k , k = 1, . . .,ni); i.e., each

interval contains the same number of data points. Given a
scalar model output y (here Curvmax), the PAWN method
compares the output cumulative distribution function (CDF)
(Fy(y)), computed by concurrently varying all the inputs,
and the ni conditional CDFs for that input (Fy|xi (y|xi ∈
Ii,k)). Each conditional CDF is obtained by varying all in-

https://doi.org/10.5194/hess-25-6437-2021 Hydrol. Earth Syst. Sci., 25, 6437–6463, 2021



6444 J. Dehaspe et al.: Bending of the concentration discharge relationship

puts within their entire range except for xi , whose values
are contained within one of the ni conditioning intervals.
The Kolmogorov–Smirnov statistic (KS) is then calculated
as the maximum vertical distance between the conditional
and unconditional CDFs, while the PAWN sensitivity index
(Si) for input xi aggregates the results over all conditional
CDFs through a summary statistic as presented in Eq. (7):

Si = stat
k=1...ni

KS(Ii,k), (7)

where KS(Ii,k)=maxy |Fy(y)−Fy|xi (y|xi ∈ Ik,i)|.
In this study, we applied Eq. (7) using ni = 10 condition-

ing intervals for each input parameter and used the maxi-
mum KS value, KSmax (ranging from 0 to 1), as a summary
statistic, which is appropriate for screening non-influential
input parameters. For a given parameter, the highest value of
KSmax of 1 would indicate a direct dependence of the model
output (in this case Curvmax) on that parameter, while a value
of KSmax of 0 would mean that the parameter is completely
non-influential. We estimated confidence intervals of the sen-
sitivity indices using 15 000 bootstrap resamples and checked
the robustness of the results. The PAWN analysis was carried
out using the Python version of the SAFE toolbox for global
sensitivity analysis (Pianosi et al., 2015).

To explore the direction of change in the C–Q bending at
the catchment outlet resulting from variations in the model
parameters and the catchment in-stream uptake, a Spearman
rank correlation analysis was performed including all the
simulated catchment responses and parameter combinations.
These correlations were visualized in a correlation matrix us-
ing the “corrplot” package in R (Wei and Simko, 2017).

2.3.4 Identify parameter and model output
interactions with classification tree

Finally, we aim to determine if, within this modeling frame-
work, C–Q bending at the catchment outlet (specifically
Curvmax) informs about the network-wide in-stream uptake.
Thereto, a recursive modeling approach is proposed, us-
ing the classification and regression trees algorithm (CART;
Breiman et al., 1984), which allows for the identification of
non-linear synergistic interactions among model parameters
and output variables. This non-parametric method segregates
classes for a response variable by progressively splitting se-
lected predictor variables in a binary way. The resulting de-
cision tree is intuitive to interpret and can facilitate the fast
characterization of river networks. The response variables in-
clude the effective catchment-wide removal efficiencyLr, the
Damköhler number Da and the uptake velocity vf, while the
predictors are Curvmax, the median network velocity v and
all of the model input parameters except for vf (Table 1).
For each response variable, three classes are defined repre-
senting low, intermediate and high ranges found in the liter-
ature (Table 3) that each contain 5 % of the simulation out-
puts (obtained by distributing the non-missing model simu-
lations over 20 percentiles). The overall CART accuracy for

each response variable is assessed by attributing 80 % of the
simulation outputs in the low, intermediate and high classes
to a training sample and assigning the remaining 20 % to a
test sample. The training sample is then used to construct the
classification tree, while the test sample is needed to assess
the prediction accuracy and calculate the performance statis-
tics for each class. The CART analysis was performed using
the “caret” package in R with the Gini impurity measure as a
splitting criterion (Kuhn, 2020).

3 Results and discussion

3.1 Empirical Curvmax

The estimated Curvmax for the French observed NO3
−

log(C)–log(Q) data (Dupas et al., 2019) ranges between
−5.25 and 3.88 (median is −0.23; Fig. B4), and 77 % of the
stations are characterized by Curvmax ≤ 0 or a linear or con-
cave shape (similar to Moatar et al., 2017). The time series
subsamples for each station generally had a small Curvmax
variability (interquartile range, IQR, for a given station below
1) for 93 % of the stations, with some exceptions demonstrat-
ing a larger IQR up to 8. This indicates that Curvmax quantifi-
cation for most low-frequencyC–Q time series is robust. The
Spearman rank correlation (ρ = 0.53, p value< 2.2×10−16)
between the absolute observed Curvmax and IQR for each
station is significant and positive, implying that C–Q re-
lationships with a higher absolute Curvmax have a higher
uncertainty when quantifying the C–Q bending. However,
Curvmax variability (IQR) in the subsamples for each station
has no significant correlation with the number of data points
available for one station. This implies that Curvmax tends
to be temporally robust when the C–Q data obey the four
criteria in Sect. 2.1 so that the length of the low-frequency
time series does not impact the estimated Curvmax. Overall,
the proposed Curvmax metric is suitable to quantify bending
in multi-annual, temporally stable log(C)–log(Q) relation-
ships.

3.2 Model evaluation in the Selke river (Meisdorf)

To evaluate the network model performance in a realistic
setting, we implemented the model with a fixed parameter
combination (Table C1) in the Selke catchment and aimed
to capture C–Q dynamics at the basin outlet. The simulated
NO3

− concentration time series (simulated C with uptake)
for the Meisdorf station in Fig. 2a shows a seasonal pattern
that follows the observation concentration data reasonably
well (Nash–Sutcliffe efficiency, NSE= 0.50; percent bias,
pbias=−0.4%). This seasonality is also reflected in simu-
lated daily percentage of load removed (the ratio between the
daily total removed load and the daily total incoming load in
the river network) and ranges from almost 0 % to 3.4 % in
this case, with the median Lr.perc value equal to 0.41 %. The
highest removal efficiencies are simulated in fall and sum-
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Table 3. Classes containing low, medium and high values for response variables vf (uptake velocity), Lr.perc (percentage of load removed)
and Da (Damköhler number) are used for the CART training and testing samples. Similar classes are obtained for model output Curvmax.
These classes stem from distributing the non-missing simulation data over 20 percentiles and selecting the percentiles corresponding to low,
medium and high literature values, with the respective percentile number (1–20) indicated in brackets. This was done to ensure that for one
variable, each class contains the same number of simulation data points. The training sample for constructing the CART model was then
allocated 80 % of this data and the test sample 20 %.

Variable Units Low Medium High References

vf md−1 10−4–0.01 (1) 0.10–0.11 (10) 0.23–0.24 (20) Birgand et al. (2007); Marce and Armengol (2009)
Lr.perc % 3.8–5.2 (7) 28.7–35.1 (15) 63.0–75.3 (19) Birgand et al. (2007)
Da – 0.17–0.25 (3) 0.88–1.02 (10) 3.25–4.19 (18) Oldham et al. (2013)
Curvmax – −0.70, −0.51 (3) −0.25, −0.22 (9) −0.03, −0.01 (18) Dupas et al. (2019)

mer and coincide with low simulated NO3
− concentrations

at the catchment outlet. The conservative NO3
− concentra-

tion (simulated C no uptake) is stable around 3 mgL−1. The
observed nitrate concentrations generally show an enrich-
ment export pattern in the log(C)–log(Q) space (bout = 0.40,
R2
= 0.56) and a Curvmax of −0.35, which agrees well with

the simulated Curvmax of−0.28 (Fig. 2b) and deviates signif-
icantly from the conservative scenario of simulated C with-
out uptake (b = 0.014; Table C1). The observed low nitrate
concentrations coincide with low discharges in fall and sum-
mer, while high concentrations occur mainly in winter, when
discharges are higher.

Within the Selke Meisdorf river network the simulated
Curvmax is largely contained within −1.12 to −0.29 (10th
and 90th quantiles, respectively) for the given parameter
combination (Table C1, Fig. 3). Low Curvmax (<−1.12) is
found exclusively at grid cells with a low total drainage area
(Ai < 9km2), and Curvmax stabilizes at higher values with
increasing drainage areas (inset Fig. 3, Fig. S3 in the Supple-
ment). The incoming (Lin.ls and Lin.up; Eq. 3), removed (Lr;
Eq. 5) and outgoing absolute load (Li ; Eq. 4 with L= CQ)
as a function of Q in the log–log space are shown in Fig. 3
for three selected grid cells on the main river stem with low
(C), intermediate (B) and high (A) drainage areas. The corre-
sponding log(C)–log(Q) relationship for the outgoing load
(Li) at the outlet (A) is presented in Fig. 2b for simulated
and observed values. Note that Curvmax is calculated from
log(C)–log(Q) relationships rather than log(L)–log(Q). The
loads in grid cell A, B and C generally increase with dis-
charge, while the load removal efficiency decreases with dis-
charge. The highest removal efficiencies are found in the
headwater grid cell C (39 % for low discharge), followed by
mid-stream grid cell B (3 % for low discharge) and the outlet
A (0.5 % for low discharge). The total absolute load removed
(Lr, sum per year per grid cell) is largest for first-order grid
cells (average 24.1 kgNyr−1) that represent 55 % of the river
network, followed by second- and third-order grid cells (av-
eraging both around 20 kgNyr−1) that represent 20 % and
25 % of the network (inset Fig. 3). Finally, the total yearly
incoming load (Lin.ls+Lin.up, sum per year per grid cell) in-

creases with stream order from 1329 kgNyr−1 on average in
a first-order grid cell to 5128 and 42 124 kgNyr−1 in second-
order and third-order river cells.

With uniform, constant parameters the network model
does not account for a spatiotemporal parameter variability.
Nevertheless, it successfully (see NSE and pbias) reproduces
the seasonality of the observed concentrations over the 2000–
2010 period for the Selke Meisdorf catchment (Fig. 2a). For
comparison, Yang et al. (2018) found a similar performance
(NSE= 0.47, pbias=−3.35 %) when applying a fully dis-
tributed model with 16 calibrated parameters in this catch-
ment between 1997 and 2009. The uptake velocity vf for our
simulation was set to 0.098 md−1 to closely match the ob-
served (assimilatory) uptake range of 0.009 to 0.103 md−1

for the Selke Meisdorf river network (Rode et al., 2016);
the median annual percentage of load removed equals 4.7 %,
which is within a comparable range reported in prior stud-
ies (Rode et al., 2016, and Yang et al., 2018, found annual
means of 4.8 % and 7.6 %, respectively). Note that the an-
nual percentage of load removed accounts for load taken up
throughout the entire river network, which may be higher in
the headwaters (15 t) than in downstream locations (7 and
5 t for second- and third-order stream sections; inset Fig. 3).
Yang et al. (2018) reported very high uptake efficiencies
(up to 75 %) for summer seasons that were caused by low
NO3

− concentrations (0.21 mgNL−1) and load (L= CQ),
which are not represented in our model simulation (the low-
est simulated NO3

− concentration equaled 0.4 mgNL−1).
Additionally, due to the parsimonious structure of the pro-
posed model, we did not account for the temporally changing
effects of environmental factors like temperature and light
availability that might (seasonally) influence uptake efficien-
cies in the river network (Kadlec and Reddy, 2001). Nev-
ertheless, these high uptake efficiencies under low flows in
summer are not a main contributor to the annual percentage
of load removed that is dominated by high flows, generally
recorded during winter. Thus for the Monte Carlo simula-
tions we calculated Lr.perc as the median of the daily percent-
age of load removed rather than the total removal efficiency
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Figure 2. (a) Simulated and observed NO3
− concentrations at the Selke Meisdorf gauging station for a 10-year simulation period (2000–

2010; NSE= 0.50). One data point (C ∼ 5 mgL−1) is not shown here. The simulated median percentage of load removed in the stream
network (blue line) is given during the same time period as well as the simulated C with no uptake (vf = 0). (b) The observed NO3

−

concentrations and Q are log-transformed and plotted together with the simulated C–Q data for 2000–2010. A smoothed spline is fitted to
the observed and simulated C–Q data (described as observed smooth fit and simulated C, respectively, in the legend), and Curvmax values
of −0.35 and −0.28 are calculated at the respective discharges of 1.72 and 0.92 m3 s−1, indicating the smoothed spline inflection points.

Figure 3. Spatial distribution of simulated Curvmax in the Selke river network (Meisdorf) for a selected parameter set (see Table C1). Three
representative grid cells covering low (A), intermediate (B) and high (C) total drainage areas show the incoming land-to-stream load as
Lin.ls (Eq. 3), the incoming load from upstream as Lin.up (Eq. 3), the absolute removed load as Lr (Eq. 5) and the outgoing load as Li
(Eq. 4) in the log(L)–log(Q) space. The load removed as a percentage of the incoming load is presented on the secondary axis. Note that the
corresponding Curvmax values for these grid cells are calculated from the log(C)–log(Q) relationships rather than log(L)–log(Q). The insets
show the distribution of Curvmax and Lr for each grid cell within a certain stream order. In Fig. 2a the observed and simulated concentrations
are compared at point A.
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for the entire simulated time period to better represent an ef-
fective long-term network-wide removal capacity.

The interplay of incoming, removed and outgoing load at
each network grid cell shapes the log(L) and log(C)–log(Q)
relationships and consequently Curvmax at the catchment
outlet (Fig. 3). Land-to-stream loading (Lin.ls) that varies lin-
early with direct incoming discharge at a given grid cell in
the log space (Eq. 3 with L= CQ; Curvmax = 0) can lead
to a bent outgoing log(C)–log(Q) relationship where con-
centration or load (Li) varies non-linearly with discharge
(Curvmax 6= 0). The onset of a bent log(C)–log(Q) pattern
(Curvmax =−0.37) is illustrated in the headwater grid cell C
in Fig. 3, where Lin.ls is the only incoming load (upstream
incoming load, Lin.up, equals 0 in this case). The absolute
removed load in a grid cell is higher under increasing Q,
while the percentage of load removed is lower, which ex-
plains observed C–Q patterns with higher log(C)–log(Q)
slopes for low flows than for high flows (Moatar et al., 2017;
Wollheim et al., 2008, 2017; Doyle, 2005; Basu et al., 2011).
This decreased NO3

− load removal efficiency in the down-
stream direction (spatial scale) or during events (temporal
scale) can arise because stream morphology characteristics
such as depth and water velocity that correlate with varying
discharge constitute higher surface-to-volume ratios at low
flows (generally in the headwaters) than at higher flows (at
the outlet) (Peterson et al., 2001; Hensley et al., 2014). The
uptake and land-to-stream loading at the downstream grid
cells (B and A in Fig. 3) have a decreasing local impact on
the outgoing load due to the large upstream load contribu-
tions that increase in the downstream direction (see explicit
scaling relationship for input flux in Bertuzzo et al., 2017).
This is also explained by Wollheim et al. (2018), who sug-
gest that the river network saturates as supply exceeds bi-
ological “demand”, causing the log(C)–log(Q) relationship
to approach the slope of the loading function (presented as
the simulated C without uptake in Fig. 2b). Dupas et al.
(2017) on the other hand show how NO3

− uptake effects are
decreasingly visible in C–Q observations downstream, and
concentrations largely matched those estimated by a conser-
vative mixing model. The saturation effect with the accumu-
lation of large load is reflected in the Curvmax converging to
a constant value when moving from upstream to downstream
or from a lower-order to a higher-order river reach (Figs. 3
and S3). This also corroborates the recent findings of Abbott
et al. (2018), who found that the temporal variability (here
reflected in the C–Q relationship) in nutrients is preserved
moving downstream in a river network. Overall the Selke
example shows that the network model can realistically re-
produce the bending of observed NO3

− C–Q relationships
that evolve from the decreasing removal efficiency at higher
discharges.

3.3 Monte Carlo simulation results

The overview of the model outputs for each of the 13 study
catchments in Table 4 shows that catchments 1, 5 and 11
display the lowest 10th quantile Curvmax values of −1.61,
−1.40 and −1.24 (more bending), while the catchments
4 and 6 registered higher (less bending) and less variable
Curvmax (10th quantiles at −0.31 and −0.35) (Fig. B5).
Catchments 3, 4 and 8 are characterized by high runoff and
Q (Table 2) at the catchment outlet and demonstrate low per-
centages of load removed, Lr.perc (90th quantile at 29.8 %,
32.1 % and 19.3 %, respectively). The highest Lr.perc values
are found in catchments 1 and 10 (98.4 % and 95.1 % for
the respective 90th quantiles). The regression slope of the
log(C)–log(Q) relationship at the basin outlet, bout, is pos-
itively skewed for all the catchments (most positive slopes
found in catchment 5), while the slope b of the land-to stream
loading function had no positive or negative preference (Ta-
ble 1, Eq. 3). The distribution of the concentrations at the
catchment outlet, Cout, are generally similar across all catch-
ments (10th and 90th percentiles within 0 to 6.2 mgL−1) and
are significantly less variable than the land-to-stream incom-
ing concentration (parameter Cmean) that varied from 10−4

to 20 mgL−1 across all the simulations (Table 1). The high-
est Cout values are found in catchment 8, the largest catch-
ment. The median water velocity v (Eq. 2c) is between 0.01
and 0.5 ms−1 for the 10th and 90th quantiles of all the study
catchments, and the largest v is simulated for catchments
3 and 4, which also have the highest discharge. The me-
dian river network travel time, TT, for all simulations and
catchments ranges from 0.1 to 4 d between their respective
10th and 90th quantiles and remarkably has no clear rela-
tionship with catchment properties such as the total river net-
work length (Table 2). Finally, the Damköhler number, Da
(Eq. 6), is variable around 1 with the highest values, indicat-
ing reaction-driven conditions, found for catchments 2 and
12 (respective ranges from 0.6 to 10.3 and 0.7 to 10.8 for
the 10th and 90th quantiles). The lowest Da values are found
for catchments 4 and 10 (90th quantile < 2), implying more
transport-driven conditions.

The Monte Carlo output in Table 4 shows reasonable
values for the different variables, taking into account that
the goal of this modeling exercise was not to reproduce
catchment-specific conditions but rather to explore how
NO3

− uptake influences C–Q bending for a range of pa-
rameter combinations that represent a spectrum of possible
catchment conditions. The simulated Curvmax values for all
13 German study catchments and parameter combinations
(80 % of the values between −0.70 and −0.012; Table 4 and
Fig. B5) are comparable with the range of Curvmax from
NO3

− log(C)–log(Q) relationships in the French catch-
ments (80 % of the values between −0.41 and −0.067;
Fig. B4) (Dupas et al., 2019). Simulated Curvmax is always
smaller than or equal to zero as explained in Sect. 2.2.2. For
the model output Lr.perc, a wide range of uptake efficiencies
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Table 4. The 10th, 50th and 90th quantiles of model outputs Curvmax, percentage of load removed, (Lr.perc) Damköhler number (Da),
regression slope of the log(C)–log(Q) relationship at the basin outlet (bout), the median concentration at the basin outlet (Cout), the median
water velocity (v) and median river network travel times (TT) for each of the 13 German catchments.

Catchment Curvmax [–] Lr.perc [%] Da [–] bout [–] Cout [mgL−1] v [ms−1] TT [d]

ID 10th 50th 90th 10th 50th 90th 10th 50th 90th 10th 50th 90th 10th 50th 90th 10th 50th 90th 10th 50th 90th

1 −1.61 −0.32 −0.01 2.6 61.0 98.4 0.3 1.8 6.4 −0.65 0.81 2.22 < 10−4 0.06 4.68 0.01 0.06 0.25 0.1 0.5 1.8
2 −1.04 −0.21 −0.01 0.9 19.4 78.5 0.6 3.5 10.3 −0.42 0.95 2.31 < 10−4 0.08 2.36 0.02 0.08 0.29 0.6 1.7 3.9
3 −0.43 −0.21 −0.02 0.2 3.5 29.8 0.2 0.9 2.8 −0.54 0.72 1.96 0.01 0.42 5.27 0.07 0.17 0.48 0.5 1.4 3.3
4 −0.33 −0.18 −0.01 0.2 4.2 32.1 0.1 0.5 1.5 −0.60 0.63 1.85 0.03 0.52 5.56 0.07 0.17 0.50 0.3 0.8 1.9
5 −1.40 −0.20 −0.01 1.3 25.6 85.1 0.1 0.7 2.0 −0.49 0.93 2.43 0.01 0.22 3.76 0.04 0.12 0.38 0.2 0.6 1.5
6 −0.35 −0.12 −0.02 0.5 9.7 54.6 0.3 1.5 4.3 −0.58 0.61 1.84 0.02 0.27 3.75 0.04 0.11 0.36 0.4 1.2 2.7
7 −0.44 −0.17 −0.01 0.8 14.3 72.6 0.2 1.3 3.6 −0.52 0.79 2.09 0.01 0.29 4.4 0.04 0.12 0.38 0.4 1.2 2.8
8 −0.63 −0.26 −0.01 0.1 2.9 19.3 0.2 1.4 4.1 −0.71 0.48 1.70 0.07 0.65 6.24 0.05 0.13 0.39 0.5 1.3 3.0
9 −0.68 −0.24 −0.01 0.8 15.0 70.4 0.3 1.9 5.3 −0.53 0.73 1.99 0.01 0.22 3.43 0.04 0.11 0.35 0.5 1.4 3.1
10 −0.79 −0.25 −0.01 1.9 36.8 95.1 0.1 0.7 1.9 −0.45 0.91 2.33 0.01 0.16 3.88 0.04 0.11 0.36 0.2 0.5 1.2
11 −1.21 −0.19 −0.01 1.6 26.1 85.6 0.5 2.6 7.4 −0.48 0.91 2.35 < 10−4 0.13 2.41 0.03 0.09 0.32 0.5 1.5 3.5
12 −0.97 −0.22 −0.01 1.5 29.0 83.2 0.7 3.7 10.8 −0.49 0.79 2.07 < 10−4 0.08 2.43 0.02 0.08 0.29 0.5 1.6 4.1
13 −0.46 −0.16 −0.01 1.3 18.3 72.9 0.1 0.5 1.5 −0.72 0.48 1.69 0.05 0.47 4.35 0.05 0.14 0.42 0.2 0.6 1.4

were captured from almost 0 % to near to 100 % for some
simulations and a median value of 14.4 % across simulations.
This simulated range exceeds the proposed range by Birgand
et al. (2007) of 10 % to 70 % of N removal for agricultural
drainage networks at annual timescales. High removal per-
centages (median over the simulated time period of daily
percentage of load removed in the network exceeding 95 %)
are registered for 3.4 % of all simulations, while very limited
load removal (Lr.perc < 5 %) occurred for 32.1 % of all the
simulations. Other simulation outputs such as the effective
velocity v surprisingly rendered similar distributions across
the catchments (Table 4) given that the median Q varied for
almost 3 orders of magnitude at the basin outlet (Table 2).
Their specific discharges (Sect. 2.2.1) however are similar,
and by taking the spatiotemporal median v as an effective
catchment value for each simulation the (more numerous)
headwater grid cells were better represented than the grid
cells close to the basin outlet. A similar effect is found for
the range of the effective travel time TT. Generally these sim-
ilar v and TT distributions from model simulations between
catchments align with the notion of Langbein and Leopold
(1964) that drainage networks evolve naturally to transport
water (and sediment) most efficiently such that an equilib-
rium between channel form and water and sediment load
is imposed (Leopold and Maddock, 1953). Also Damköh-
ler numbers Da exhibited realistic ranges, mostly distributed
around 1 (Fig. S3; Oldham et al., 2013; Ocampo et al., 2006),
with 36.5 % of the simulations< 0.8 % and 50.8 %> 1.2, in-
dicating that more simulations are reaction-driven than trans-
port driven. Finally, other variables such as the range of the
modeled river widths are found to be reasonable to a large
degree (Fig. S4 in the Supplement).

As for the simulations, the same> 10000 parameter input
sets are applied in each catchment, differences between the
catchments result from the different network structures and
hydrological regimes that control transport and uptake pro-
cesses for each parameter input set in each catchment. From

Tables 4 and 2 it is clear that differences in model outputs
(i.e., Curvmax, Lr.perc and Da) between the catchments can-
not be attributed to a single catchment property such as total
network length or basin area. For example Curvmax has the
highest variability between simulations in the catchment 1,
the smallest catchment, compared to the other catchments,
which could be attributed to the variability in local loading
and uptake patterns in the network (driven by Q) that are
still visible at the catchment outlet. Following the simulated
Selke Meisdorf example in Sect. 3.1 (Figs. 3 and S3), we
show that Curvmax tends to converge to a constant value with
increasing drainage areas (similar to Abbott et al., 2018, for
nutrient concentrations; Dupas et al., 2017, for nutrient up-
take; and Bertuzzo et al., 2017, for DOC removal). Drainage
area is however not the only catchment property influenc-
ing Curvmax at the outlet. For example, catchment 6 is the
second-largest catchment (Table 2) and has the least bent
(and least variable) log(C)–log(Q) relationships. The net-
work structure could possibly play a role here as the largest
catchment, catchment 8, has some large tributaries near the
basin outlet (Fig. 1), which could bypass removal and trans-
port high load during events, introducing a more variable
Curvmax (Mineau et al., 2015; Helton et al., 2018). The per-
centage of load removed, Lr.perc, is notably lower for catch-
ments with high runoff or Q – like 3, 4 and 8 (Table 4) –
which corresponds with findings in Sect. 3.1 that uptake ef-
ficiency decreases with increasing Q because of increasing
loads to the system (Wollheim et al., 2018; Mulholland et
al., 2008) and that increasing Q results in less efficient up-
take within the reactive surface area (Peterson et al., 2001;
Hensley et al., 2014). The high Lr.perc in small catchments 1
and 10 could then be attributed to their low Q; however why
the small catchment 5 does not have similar uptake perfor-
mance is not evident. Generally the model output variability
between the catchments (as a result of different network and
discharge properties) is minor compared to the output vari-
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ability within the catchments (due to the effect of the chosen
input parameter set).

3.4 Curvmax sensitivity analysis and model parameter
correlation

The PAWN sensitivity index KSmax in Fig. 4 and Table C2
shows that across all catchments Curvmax is most sensitive
to the exponents in the width–Q relation aw (KSmax = 0.62)
and depth–Q relation ad (KSmax = 0.51). Here, there is lit-
tle variability between the catchments (KSmax has a low co-
efficient of variation, CV, of 0.06 and 0.22, respectively).
Overall, the slope of the linear loading function, b, is least
important in shaping Curvmax (KSmax = 0.14). Nevertheless,
a high variability in KSmax is observed (CV= 0.76) that is
caused by larger sensitivities for catchments 1 and 12 (KSmax
near 0.45). Curvmax is equally sensitive to vf and Cmean
(KSmax 0.18 and 0.19), but vf exhibits higher variability in
KSmax than Cmean (CV of 0.59 and 0.47). Furthermore, over
all the catchments Curvmax is sensitive to the median veloc-
ity v and the Damköhler number Da (KSmax equals 0.64 and
0.31, respectively; CV of 0.26 and 0.38). When considering
the catchments individually, basin 1, with the smallest dis-
charge, has the highest median KSmax (0.59) across all input
parameters, while catchment 4, which has the highest dis-
charge, exhibits the lowest median KSmax (0.13). Addition-
ally, Curvmax is very sensitive to the velocity v in catchment
1 (KSmax = 0.95), while it is least sensitive to v in catch-
ment 4. Nevertheless, the other catchments show no clear or-
der in Curvmax sensitivity according to catchment properties
such as Q. For example in nested catchments 10, 11 and 12
(Fig. 1), the largest catchment, catchment 12, has the highest
KSmax (0.50) and lowest CV (0.26) over all the input param-
eters, indicating that here Curvmax is more sensitive to the
input parameters than in the smaller sub-catchments 10 and
11.

In a next step the estimated Curvmax across all simulations
is correlated to the model input parameters as well as to out-
put variables like the percentage of load removed (Lr.perc)
the log(C)–log(Q) slope at the catchment outlet (bout), the
median concentration at the basin outlet (Cout) and the up-
take constant (k) to identify the strength and direction of
their relationship. The resulting Spearman correlation matrix
(Fig. 5) reflects the PAWN sensitivity findings, with the high-
est Curvmax correlation found with parameters aw (ρ = 0.68)
and ad (ρ = 0.56) and input variable v (ρ = 0.57). Curvmax is
independent of vf (ρ =−0.04) but shows a negative correla-
tion with Lr.perc (ρ =−0.36), suggesting that lower Curvmax
(more bending) can be related to a higher Lr.perc. Further-
more, Curvmax is negatively correlated to the log(C)–log(Q)
regression slope at the catchment outlet bout (ρ =−0.28)
such that higher bending coincides with more positive bout.
The variable v is additionally strongly negatively correlated
with Lr.perc (ρ =−0.87), so a high percentage of load re-
moved occurs at low velocities. Da on the other hand is pos-

itively correlated to Lr.perc (ρ = 0.58), which indicates that
higher Da values are occurring together with higher load re-
moved. Da thereby seems to be controlled more tightly by
variation in k−1 (ρ =−0.71) than by TT (ρ = 0.48). Finally
Cout is negatively correlated with Lr.perc (ρ =−0.82) and Da
(ρ =−0.61).

The PAWN and correlation analysis results suggest that
the input parameters dictating the channel morphology, aw
and ad (Sect. 2.3), are controlling factors for the magnitude
of the bending in log(C)–log(Q) relationships at the catch-
ment outlet. More specifically parameters aw and ad influ-
ence the response of the wetted perimeter (Pi ; Eq. A2) in
a given reach in the network and drive the reactive surface
area (Pi · li) with changes in discharge (Eq. 2a and b, Figs. 5
and B3). The absolute load removed Lr,i (Eq. 5) can be writ-
ten with the width and depth exponents aw and ad explicitly
(Eq. A3) so that Lr,i ∼ 1/(Q1−aw−ad). When the denomina-
tor is large (small aw and ad) the effect of low and high Q’s
on the local absolute removed load increases and can lead to a
lower Curvmax (more bending; Sect. 3.1, Fig. B6). Network-
based modeling studies often set the width exponent aw to
a value of 0.5 that was found to be representative of rivers
globally (Bertuzzo et al., 2017; Rode et al., 2016; Wollheim
et al., 2018). This a priori fixed aw may, however, strongly
affect the simulated C–Q dynamics at the basin outlet as is
demonstrated here. Curvmax finally shows the lowest sensi-
tivity to the loading parameters b and Cmean that influence
the incoming load to a grid cell (Eq. 3) and thus impact the
local absolute load removed Lr,i (Eq. 5) rather than the per-
centage of removed load Lr.perc. This indicates that the con-
tribution of local incoming load in the downstream direction
has a limited impact on the log(C)–log(Q) bending at the
catchment outlet. For example in the Selke Meisdorf catch-
ment, the locally contributing Q’s are generally smaller (or
equal for the headwaters) than the total Q in a given reach
so that the influence of the loading parameters b and Cmean
on the total load decreases in downstream reaches (Sect. 3.1,
Fig. 3).

Although Curvmax only has an intermediate sensitivity to
the uptake velocity vf, and they do not correlate well, vf is an
important “boundary condition” for log(C)–log(Q) bending
at the catchment outlet. No biological demand (low vf) would
mean that none of the incoming load would be removed from
the river network. The outlet signal would in this case be
solely driven by the discharge-controlled transport processes,
and no bending would be observed (Curvmax = 0). Although
increasing vf does correlate with decreasing concentrations
(ρ =−0.34) and increasing load removed (ρ = 0.34), it does
not always lead to more bending, as illustrated in Fig. B6 for
the Selke example. Because vf is defined as a constant within
one simulation that is independent of the local nutrient con-
centration (Sect. 2.2.2), the percentage of load removed in
the network is mainly controlled by the varying hydrological
conditions here, represented by the effective network-wide
velocity v (Lr.perc and v, ρ =−0.82). This confirms that dis-

https://doi.org/10.5194/hess-25-6437-2021 Hydrol. Earth Syst. Sci., 25, 6437–6463, 2021



6450 J. Dehaspe et al.: Bending of the concentration discharge relationship

Figure 4. The KSmax sensitivity index for each of the model input parameters and each of the 13 simulated catchments. The input parameters
related to the channel geometry (ad, aw, Kd and Kw), land-to-stream loading (b and Cmean) and biogeochemistry (vf) are shown together
with two variables derived from some of the input parameters: the median velocity v and the Damköhler number Da. Each boxplot displays
15 000 bootstrapped estimates of KSmax for each of the 13 simulated catchments.

charge and channel morphology are among the most impor-
tant predictors of removal (Alexander et al., 2000; Seitzinger
et al., 2002; Wollheim et al., 2006). The role of v was further
examined in the context of restored and channelized streams
(Kunz et al., 2017) and agrees with our findings that de-
creased v influences N cycling (Peterson et al., 2001).

The PAWN and correlation analysis results show that
Curvmax is sensitive to the Damköhler number Da (KSmax =

0.31; Fig. 4, Table C2), which has a high positive correla-
tion with the percentage of load removed Lr.perc (ρ = 0.58;
Fig. 5). This indicates that high Da occurs concurrently with
more efficient removal and is in line with others (Ocampo
et al., 2006) who found sometimes almost 100 % NO3

− re-
moval in the riparian zones of an agricultural catchment with
Da exceeding 2. The transport timescale TT that makes up
Da (ρ = 0.48; Fig. 5) together with the inverse of the first-
order uptake constant k−1 (ρ =−0.71; Eq. 6) is examined
for classes of low, median and high Da (defined in Table 3)
in Fig. 6a to disentangle which values of k−1 and TT occur
together and can constitute a certain Da range (each class
contains 5 % of all simulations). It is shown here that low Da
values are driven by both low TT and high, variable k−1, im-
plying a transport-driven system with limited NO3

− removal
(median Lr.perc equals 2.4 % in Fig. 6a for low Da). High
Da values, contrarily, have high TT and low k−1, fostering
intermediate uptake percentages (median Lr.perc = 27.1%).
Although also vf clearly differentiates for classes of low,
medium and high Da in Fig. 6a, the corresponding Curvmax

values are similar in their range and mean. Nevertheless, this
does not mean that Da is not influencing Curvmax at the basin
outlet as there could be interactions with other inputs that are
not captured here (which is supported by the PAWN findings,
where Da appears to be influential).

From the Curvmax perspective (Fig. 6b) we identify model
output ranges of Lr.perc, Da and input variable vf that consti-
tute low, median and high Curvmax classes (Table 3). High
Curvmax (less bending, ∼−0.02) is thereby linked to low
Lr.perc (median 4.8 %), while low Curvmax (more bending,
∼−0.60) is connected to higher and more variable Lr.perc
(median 33.6 %), generally indicating that more bent sys-
tems are more efficient in terms of removal and vice versa.
To explore some cases when this latter statement might not
be true, we examine the input parameter ranges where more
bent simulations (Curvmax <−0.51, 13.1 % of all simula-
tions) occur concurrently with low percentage of removal
(Lr.perc < 5.2 %, 0.9 % of all simulations) on the one hand
and high percentage of removal (Lr.perc > 63.0 %, 4.9 % of
all simulations) on the other hand in Fig. B7a. Here, it is seen
that high-bending, low-uptake cases mainly occur for simula-
tions with a high effective velocity v (driven by lower values
for the channel shape parameters Kw, Kd, aw and ad). Low
aw and ad are correlated with more bending (low Curvmax),
and Curvmax is most sensitive to these parameters. However,
low aw and ad do not lead to a more efficient NO3

− up-
take if the other channel shape parameters Kw and Kd cause
relatively high velocities (median v > 0.1 ms−1) throughout
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Figure 5. Correlation matrix for the model parameter inputs: chan-
nel depth and width exponents (ad, aw) and coefficients (Kd,
Kw); slope of the land-to-stream loading (b); concentration of the
land-to-stream load (Cmean); uptake velocity (vf); and the outputs
bending of the log(C)–log(Q) relationship at the catchment outlet
(Curvmax), effective stream velocity (v), first-order uptake constant
(k), travel time (TT), Damköhler number (Da), daily percentage of
load removed (Lr.perc), and slope of the log(C)–log(Q) relation-
ship and median concentration at the outlet (bout and Cout). The
Spearman rank correlation coefficients (ρ) are given for each com-
bination.

the network. The latter case is shown to be true for a mi-
nor percentage of all simulations (0.9 %) and explains why
low Curvmax (more bending) can be connected to a wider
range of Lr.perc. Figure B7b shows that concurrent simula-
tions of less bending (Curvmax >−0.03) and high removal
(Lr.perc > 63.0 %) are even rarer (0.1 % of all simulations)
compared to concurrent less bending (Curvmax >−0.03) and
low removal (Lr.perc > 5.2 %; 7.4 % of all simulations). De-
viations from the expected high Curvmax–low Lr.perc pattern
are also here driven by (very low) v. In the latter case how-
ever, aw and ad are generally high (leading to high Curvmax),
and the different v values stem from coefficients Kw and
Kd, which are higher in high-removal simulations. Finally,
Fig. 6d illustrates that low, medium and high uptake veloci-
ties vf lead to distinct Da and Lr.perc but do not show up in
the bent signal at the catchment outlet.

3.5 Predicting in-stream processing with Curvmax

To determine if observed C–Q bending at the catchment out-
let (here Curvmax) can be utilized to quantify in-stream up-
take in the upstream river network and to visualize model
parameter interactions, a classification tree was established
for low, medium and high values (Table 3, Fig. 6) of the

response variables Lr.perc, Da and vf (Fig. 7). The predic-
tion accuracy metrics in Table C3 and the probability his-
tograms in Fig. 7 show that Lr.perc can be predicted relatively
well (overall accuracy of 0.66) compared to the other re-
sponse variables Da (accuracy 0.51) and vf (accuracy 0.40).
The fitted CART models all perform significantly better than
a random allocation of simulation results to each class for
each response variable (accuracy > no information rate,
p value< 2.2× 10−16). While the classes for Lr.perc and vf
are partitioned using only the network effective velocity v
and Curvmax, predicting Da in our case requires information
on the channel geomorphology parameters width coefficient
Kw and depth exponent ad. The histograms for each of the
response variables in Fig. 7 indicate the probability of a test
sample being of a certain class when following the partition
rules in the respective decision tree. For example, for Lr.perc
the probability that the daily percentage of load removed is
small (around 8 %) exceeds 0.95 when the effective veloc-
ity v in the catchment is larger than 0.22 ms−1, while the
probability that Lr.perc is high (around 70 %) in this case is
close to 0 (Fig. 7a). For vf the lowermost (1) and highest (20)
classes are predicted most accurately (0.58 and 0.56, respec-
tively; Table C3) and indicate that when the velocity is not
very small, and Curvmax is smaller than −0.51 (more bent),
vf is most likely high (probability 0.59). For Da, the lower
and higher classes can be predicted most accurately (0.69 and
0.68, respectively); for example, Da is small with a probabil-
ity of 0.58 when Kw is relatively low (< 6.8). When on the
other hand Kw exceeds 6.8 and ad is larger than 0.4 or when
ad is smaller than 0.4 but Curvmax is smaller than −0.45 and
v is very small (< 0.04 ms−1), it is most likely that Da is
large.

These findings demonstrate that log(C)–log(Q) bending
at the catchment outlet, together with the median velocity
and the response of the width and the depth of a channel to
discharge (parameters Kw, Kd, aw and ad) can help to clas-
sify the in-stream daily percentage of load removed Lr.perc,
the Damköhler number Da and to a certain extent the up-
take velocity vf. This conclusion depends of course on the
initial assumptions of our model setup (e.g., linear land-to-
stream loading vs. Q with a constant slope b and no dom-
inant influence of waste water sources as well as no sea-
sonality in uptake velocity vf). The velocity may be com-
puted from the channel shape, discharge (Eq. 2c) and the to-
pography with the channel shape parameters that are some-
times available from rating curve information or detectable
from high-resolution satellite pictures. The CART models
could help obtain an initial probability of NO3

− removal
efficiency in a river network, especially in a context where
network-wide uptake measurements are scarce (Wollheim
et al., 2017; Hensley et al., 2014), and physical, fully dis-
tributed models are not always feasible to apply (Boyer et
al., 2006; Klemes, 1986). Although the CART models are
developed using “only” the 13 German catchments included
in the Monte Carlo analysis, in Sect. 3.3 and Table 4 we have
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Figure 6. The corresponding simulated ranges for high, median and low values (Table 3) of the main simulation outputs: (a) Damköhler
number Da, (b) Curvmax, (c) percentage of load removed Lr.perc and (d) uptake velocity vf are shown for the same variables (in the columns).
The median travel time, TT, and the inverse of the first-order uptake constant, k−1, are given additionally for low, medium and high Da.

shown that the output variability between the catchments (as
a result of different catchment properties) is minor compared
to the output variability within the catchments (due to the
effect of the input parameter set), thus justifying the CART
model use. Nevertheless, the prediction performance of these
CART models might be influenced in unknown ways when
applied to catchments with dissimilar catchment sizes, net-
work structures or hydrological regimes.

4 Conclusions

In this study, we explore how low-frequency NO3
− log(C)–

log(Q) relationships, observed at a basin outlet, can display
bending as a result of network-scale in-stream uptake pro-
cesses. We established a parsimonious grid-based river net-
work model for 13 distinct German catchments and investi-
gated the influence of in-stream loading, transport and uptake
parameters on the bending of log(C)–log(Q) relationships.
Based on our exploratory analysis we conclude the follow-
ing.

– Noisy, multi-annual and low-frequency NO3
− log(C)–

log(Q) relationships at a basin outlet can be described
as bent, and the amount of bending can be robustly
quantified with the new Curvmax metric. Curvmax is tem-
porally stable on multi-annual timescales and can be
computed alongside existing log(C)–log(Q) descrip-
tors, such as the slope of the linear regression model.

– A bent log(C)–log(Q) relationship (Curvmax < 0) at
the basin outlet can arise from log–log linear land-to-
stream C–Q relationships if uptake is present within
the river network (vf 6= 0). This supports the hypothesis
that more positive slopes under low flow (bent log(C)–
log(Q) curves) are linked to biological NO3

− concen-
tration mediation in the stream (Moatar et al., 2017) and
connects Curvmax (as a quantitative measure) to obser-
vations of increased removal efficiency under low flows
(Wollheim et al., 2017). Our findings also stress the
need to monitor the entire discharge range and capture
low flows as well as high flows in a catchment.

– The bending at the catchment outlet is primarily shaped
by the channel geomorphological parameters aw and
ad (exponents in the respective stream width and depth
to discharge relationships, with Curvmax sensitivity in-
dices KSmax equal to 0.62 and 0.51 and Spearman cor-
relation coefficient ρ equaling 0.68 and 0.56, respec-
tively) and less by the uptake velocity vf (KSmax = 0.18,
ρ =−0.04), given that vf differs from zero. In the latter
case Curvmax would equal zero, and the log(C)–log(Q)
relationship would be solely shaped by the accumula-
tion of upstream load. Thus, the change in reactive chan-
nel bed area with discharge (mediated by aw and ad)
has a greater influence on the bending at the outlet than
the biological removal capacity (here vf). Additionally
we demonstrate that an a priori fixed aw might strongly
affect the simulated C–Q dynamics at the basin outlet.
This calls for a better representation of channel geomor-
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Figure 7. CART decision trees for the response variables Lr.perc (accuracy = 0.66), Da (accuracy = 0.51) and vf (accuracy = 0.40). The
trees are read from top to bottom, where the binary splits are followed to arrive at a histogram, illustrating the probability of a test sample
having low, medium or high values (Table 3) for a certain response variable. The variables at the binary splits differ per response variable and
consist of the median stream velocity (v; md−1) and Curvmax for response variables Lr.perc and vf, while width coefficient Kw and depth
exponent ad are identified additionally for Da. The prediction metrics for each of these classes and response variables are stated in Table C3.

phological parameters at stream networks to allow for
better modeling assessments.

– Curvmax at the basin outlet can be linked to the network-
wide removal efficiency Lr.perc (ρ =−0.36) under cer-
tain conditions, generally showing that systems with
more bending in their log(C)–log(Q) relationship are
more efficient in terms of removal and vice versa. It
is, however, clear that also cases with high bending
(Curvmax <−0.51) and low removal (Lr.perc < 5.2 %,
0.9 % of all simulations) or low bending (Curvmax >

−0.03) with high removal (Lr.perc > 63.0 %, 0.1 % of all
simulations) exist that are imposed by respective higher
and lower network-wide median velocities. This shows
how the velocity, v, (calculated from the channel shape
parameters aw, ad, Kw and Kd) may mediate the con-
nection betweenLr.perc and Curvmax and indicates that v
should be considered when interpreting log(C)–log(Q)
bending. Consequently, anthropogenic impacts in terms
of channelization of river networks might lead to lower
removal efficiencies.

– Classification trees – like CART – can be useful for pre-
dicting low, median and high classes of response vari-

ables Lr.perc, the Damköhler number Da and vf. They
provide useful insights on how catchments with low-
frequency concentration and discharge time series (that
are generally available) can reveal information on the
upstream river network uptake performance.

To evaluate the generality of the results presented here,
Curvmax should be calculated for NO3

− concentration
observations of a larger range of catchments and linked
to the respective catchment properties. Properties such
as light and stream ecological state can serve as proxies
for uptake performance, and for example topographic
gradient can be a proxy for network transport velocity.
Finally, including conservative tracers in the analysis
can be used to estimate loading scenarios. Such a data-
driven exploration would further elucidate the linkages
between nutrient uptake efficiency and low-frequencyC
and Q observations.
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Appendix A

Calculation of c is performed as follows (Jawitz and
Mitchell, 2011):

c = eµc−b·µq , (A1)

with

µq =mean(logQt.sp · ai)

µc = logmeanC−
σ 2
c

2

σc =

√
b2 · σ 2

q

σq =

√
var(logQt.sp · ai).

Stream channel wetted perimeter Pi [L] (where A is the
cross-sectional area [L2]; RH [L] is the hydraulic radius; and
wi [L], di [L] and vi [LT−1] are the local stream width,
average depth and velocity, respectively) is calculated in
Eq. (A2). Si [LL−1] is the stream bed slope, and n [–] is
the Manning roughness coefficient that is equal to 0.03 for
all simulations.

Pi =
A

RH
=
wi · di · S

3
4
i

(vi · n)
3
2

(A2)

The load removed in a grid cell (Eq. 5) with the width and
depth exponents aw and ad stated explicitly is calculated as
follows:

Lr,i = Lin,i ·

(
1− e

−
vf·(Kw·Kd)

5
2 ·S

3
4 ·n

3
2

Q
1−aw−ad
i

)
. (A3)

The velocity in a grid cell (Eq. 2c) with the width and depth
exponents aw and ad stated explicitly is calculated as follows:

vi =
Q1−aw−ad

Kw ·Kd
. (A4)
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Appendix B

Figure B1. Conceptual figure explaining Curvmax. The upper panel shows the log(C)–log(Q) relationship for Selke Meisdorf with the
smoothed spline fits to these data for different degrees of freedom (df). The corresponding colors in the lower plot show then the local
curvature values for these fitted smoothed splines. Also the log(Q) is indicated, for which the largest local curvature was found for each of
the smoothed splines. Curvmax is then calculated as the largest local curvature value for a degree of freedom of 5 in this specific case as it is
the largest degree of freedom that has the largest local curvature withinQm±0.05, withQm equal to the log(Q) of the largest local curvature
for df= 3. Note that when Curvmax < 0, the curve is concave, while for Curvmax > 0 the curve is convex.

Figure B2. Network model, illustrated for one grid cell. Here, the flow length through a grid cell i is li [L]; wi [L] and di [L] are the
respective width and average depth of the reach, and Pi [L] is the corresponding stream channel wetted perimeter. The uptake velocity
is denoted as vf. The local discharge Qi [L3 T−1] consists of upstream incoming discharge Qi−1 [L3 T−1] and land-to-stream runoff Qls
[L3 T−1]. Similarly, the local load L [MT−1] consists of upstream incoming load Lin.up [MT−1] and the land-to-stream load Lin.ls [MT−1],
where Lin. = Lin.up+Lin.ls. Finally, the local load removed is denoted as Lr,i [MT−1].

https://doi.org/10.5194/hess-25-6437-2021 Hydrol. Earth Syst. Sci., 25, 6437–6463, 2021



6456 J. Dehaspe et al.: Bending of the concentration discharge relationship

Figure B3. (a) The effect of parameters aw and Kw on the channel width illustrated for the Q time series at the Selke Meisdorf station. (b)
In the “At-a-station” panel the changes in velocity, depth and width with Q for grid cell B (Fig. 3) in the middle of the Selke network are
evaluated. The “Downstream” panel, which considers all the network grid cells, shows the channel characteristics width, depth and velocity
for a time t , with a Q of 0.70 m3 s−1 at the outlet. The values for the parameters aw, Kw, ad and Kd are the same for both scenarios
(Table C1).

Figure B4. Curvmax of nitrate log(C)–log(Q) data for 444 French monitoring stations arranged from left to right with increasing Curvmax
(green crosses). For a given station, the gray boxplot represents the temporal robustness of this metric by subsampling 100 times from the
original time series. The green boxplot indicates the range and distribution of all observed station Curvmax values.
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Figure B5. Curvmax distributions resulting from running the same 11 107 input parameter combinations in each of the 13 catchments. Panel
(a) shows the elemental cumulative distribution and (b) boxplots. None of the catchments have a normally distributed Curvmax set according
to the Kruskal–Wallis (p < 0.05) test.

Figure B6. Log(C)–log(Q) relationships and Curvmax for increasing uptake velocities (vf) resulting from network model simulations of the
Selke Meisdorf catchment. As an example, two different aw values are displayed, and vf is varied from almost 0 to 2.5 md−1 with the other
parameter values as stated in Table C1.
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Figure B7. Two specific cases of Fig. 6: (a) when Curvmax is low (high bending) and Lr.perc is low as opposed to high and (b) when Curvmax
is high (low bending) and Lr.perc is high as opposed to low.

Appendix C

Table C1. Estimated parameter values for the Selke catchment.

Parameter Selke validation value

vf 0.098
b 0.014
Cmean 3.014
Kw 2.75
aw 0.09
Kd 0.17
ad 0.49
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Table C2. PAWN sensitivity indices KSmax for all the parameters and all the catchments, together with median and coefficients of variation
(CV).

Parameter Catchment ID Median CV

1 2 3 4 5 6 7 8 9 10 11 12 13

vf 0.44 0.28 0.14 0.06 0.24 0.11 0.10 0.09 0.18 0.33 0.30 0.41 0.12 0.18 0.59
b 0.47 0.15 0.12 0.05 0.14 0.05 0.08 0.17 0.08 0.24 0.25 0.42 0.05 0.14 0.76
Cmean 0.46 0.21 0.25 0.13 0.16 0.18 0.18 0.07 0.23 0.25 0.25 0.34 0.10 0.19 0.47
Kw 0.59 0.41 0.19 0.11 0.32 0.16 0.16 0.13 0.23 0.39 0.41 0.50 0.17 0.23 0.51
aw 0.75 0.58 0.59 0.58 0.63 0.61 0.63 0.66 0.63 0.65 0.58 0.60 0.65 0.62 0.06
Kd 0.45 0.32 0.20 0.08 0.29 0.15 0.14 0.09 0.17 0.46 0.43 0.53 0.16 0.20 0.55
ad 0.80 0.39 0.52 0.52 0.48 0.29 0.56 0.53 0.55 0.51 0.42 0.48 0.53 0.51 0.22

Median 0.59 0.39 0.25 0.13 0.33 0.18 0.18 0.17 0.24 0.43 0.42 0.50 0.18
CV 0.31 0.46 0.53 0.81 0.53 0.65 0.67 0.76 0.58 0.45 0.41 0.26 0.74

Variable

Da 0.53 0.34 0.30 0.28 0.39 0.24 0.22 0.30 0.21 0.44 0.37 0.64 0.21 0.31 0.38
v 0.95 0.67 0.39 0.32 0.69 0.39 0.55 0.54 0.64 0.74 0.70 0.69 0.62 0.64 0.26

Table C3. Performance statistics for each of the classes for the variables Lr.perc, Da and vf predicted by CART.

Lr.perc vf Da

Class 7 Class 12 Class 18 Class 1 Class 10 Class 20 Class 3 Class 10 Class 18

Sensitivity 0.63 0.38 0.94 0.43 0.00 0.77 0.63 0.07 0.82
Specificity 0.91 0.89 0.69 0.74 1.00 0.36 0.75 0.97 0.54
Positive predicted value 0.77 0.62 0.61 0.45 NA 0.38 0.56 0.54 0.47
Negative predicted value 0.83 0.75 0.96 0.72 0.67 0.76 0.80 0.68 0.86
Prevalence 0.34 0.32 0.34 0.34 0.33 0.33 0.34 0.33 0.33
Detection rate 0.21 0.12 0.32 0.14 0.00 0.26 0.21 0.02 0.27
Detection prevalence 0.28 0.12 0.32 0.32 0.00 0.68 0.38 0.04 0.58
Balanced accuracy 0.77 0.63 0.82 0.58 0.50 0.56 0.69 0.52 0.68

Code availability. The network model code and
the CurvMax function can be accessed at
https://doi.org/10.4211/hs.da70a09dc6074242ada756c29d12dcb3
(Dehaspe, 2021).

Data availability. The data we used were published by third parties
and referenced in the text where appropriate, with complete access
data in the reference list.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-25-6437-2021-supplement.
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