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Abstract. Several alternatives have been proposed to shift
the paradigms of water management under uncertainty from
predictive to decision-centric. An often-mentioned tool is the
response surface mapping system performance with a large
sample of future hydroclimatic conditions through a stress
test. Dividing this exposure space between acceptable and
unacceptable states requires a criterion of acceptable perfor-
mance defined by a threshold. In practice, however, stake-
holders and decision-makers may be confronted with am-
biguous objectives for which the acceptability threshold is
not clearly defined (crisp). To accommodate such situations,
this paper integrates fuzzy thresholds to the response sur-
face tool. Such integration is not straightforward when re-
sponse surfaces also have their own irreducible uncertainty
from the limited number of descriptors and the stochastic-
ity of hydroclimatic conditions. Incorporating fuzzy thresh-
olds, therefore, requires articulating categories of imperfect
knowledge that are different in nature, i.e., the irreducible
uncertainty of the response itself relative to the variables
that describe change and the ambiguity of the acceptability
threshold. We, thus, propose possibilistic surfaces to assess
flood vulnerability with fuzzy acceptability thresholds. An
adaptation of the logistic regression for fuzzy set theory com-
bines the probability of an acceptable outcome and the ambi-
guity of the acceptability criterion within a single possibility
measure. We use the flood-prone reservoir system of the Up-
per Saint François River basin in Canada as a case study to
illustrate the proposed approach. Results show how a fuzzy
threshold can be quantitatively integrated when generating a
response surface and how ignoring it might lead to different
decisions. This study suggests that further conceptual devel-
opments could link the reliance on acceptability thresholds

in bottom-up assessment frameworks with the current uses
of fuzzy set theory.

1 Introduction

Imperfect knowledge is a defining feature of water resources
management. As a prime example, the uncertain availability
of water at any given time drives human interventions such
as building storage capacities or levees. To address the un-
certain future in water systems, the dominant paradigm has
been to optimize investments or management plans accord-
ing to probabilistic estimates based on past observations, as-
suming that the underlying processes are stationary. How-
ever, the stationary assumption has been contested as anthro-
pogenic activities do affect the very processes that govern
the water cycle (Milly et al., 2008). A well-established al-
ternative is to rely on some form of prediction of those pro-
cesses through climate modelling and downscaling. Such an
approach also has its own limitations, however. Greenhouse
gas emission pathways depend on policy choices which are
not predictable, while climate models and downscaling pro-
cesses have structural uncertainties (Prudhomme et al., 2010;
Mastrandrea et al., 2010; Kay et al., 2014). Besides, a dis-
crete set of projections may not be suited to find the hydro-
climatic thresholds beyond which a system fails to reach its
target (Culley et al., 2016).

In the last 15 years, there has thus been a widespread ef-
fort to find new paradigms to make decisions under deep un-
certainty (Marchau et al., 2019), notably through a greater
focus on the robustness of the decision process rather than
on improving predictions (Lempert et al., 2006; Maier et al.,
2016; Lempert, 2019). Switching to a robust or decision-
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centric paradigm usually seeks to increase the sampling of
hydroclimatic conditions. It relies on a sensitivity analysis of
a water system to stressors rather than evaluating the conse-
quences of the most probable future and optimizing accord-
ingly (Weaver et al., 2013).

One of the most common tools within the decision-centric
framework is the response function or surface (Prudhomme
et al., 2010; Brown and Wilby, 2012). Through a bottom-
up approach, an acceptability threshold is first defined with
stakeholders in order to find the states of the world that lead
to unacceptable outcomes. The system is simulated through
a stress test for a large set of conditions representing possi-
ble evolutions of some uncertain hydroclimatic variables (or
stressors), thereby establishing a relationship between such
stressors and the performance of the system. Alternatives like
making new investments or changing management schemes
are compared through their respective simulation outcomes
over a whole range of possibilities (states of the world) or
also called exposure space (Culley et al., 2016). The perfor-
mance threshold is key in dividing this exposure space be-
tween acceptable and unacceptable outcomes.

The intention shared within the overall decision-centric
framework is to adapt classic risk assessments to the “death
of stationarity” (Milly et al., 2008), while producing informa-
tion that is more useful and engaging than a fully descriptive
scenario approach (Weaver et al., 2013). Response surfaces
have been illustrated by many case studies (e.g., Nazemi et
al., 2013; Turner et al., 2014; Whateley et al., 2014; Stein-
schneider et al., 2015; Pirttioja et al., 2019; Broderick et al.,
2019; Ray et al., 2020; Nazemi et al., 2020; DiFrancesco et
al., 2020), expanded to many objectives or stakeholder sys-
tems (Herman et al., 2014; Poff et al., 2016; Kim et al., 2019),
and sometimes officially adopted in management processes
(Moody and Brown, 2013; Weaver et al., 2013; Brown et al.,
2019).

Such bottom-up vulnerability assessments rely heavily on
the definition of the acceptability threshold in the first place.
Selecting the right threshold has a major impact on the out-
come of the vulnerability assessment (Hadjimichael et al.,
2020). However, such thresholds are often unclear or arbi-
trary (El-Baroudy and Simonovic, 2004). Stakeholders and
decision-makers might be unable or unwilling to provide
a single, well-defined value. Ambiguity is thus a form of
imperfect knowledge, different from hydroclimatic or mod-
elling uncertainty (Maier et al., 2016), that can affect bottom-
up vulnerability assessments through one of their most im-
portant components, namely the stakeholder-defined accept-
ability threshold.

Fuzzy set theory (Zadeh, 1965) provides an analytical
framework to characterize and manipulate stakeholders’ am-
biguity (Huynh et al., 2007). It has been extensively used in
the water domain (Tilmant et al., 2002; El-Baroudy and Si-
monovic, 2004; Le Cozannet et al., 2017; Qiu et al., 2018),
particularly to solve multi-objective decision-making prob-
lems (e.g., Jun et al., 2013). However, to the best of our

knowledge, fuzzy set theory has not yet been used to handle
imprecise thresholds between satisfactory and unsatisfactory
regions of a response surface. The very notion of an arbi-
trary threshold to define success, like flood control reliability
above 0.95, can be considered as being a departure from a
strictly probabilistic framework and could justify a comple-
mentary possibilistic approach based on fuzzy sets (Dubois et
al., 2004). This paper, therefore, introduces the use of fuzzy
acceptability thresholds when building a response surface for
decision-centric vulnerability assessment.

A central challenge to a straightforward incorporation of
a fuzzy threshold is the internal uncertainty of the response
surface. The selected stressor variables can only partially ex-
plain hydroclimatic uncertainties, and stochastic realizations
introduce noise in the resulting system performance. As such,
performance is an expected value rather than a deterministic
one, and that estimate might underestimate real risks. Such
uncertainty is often integrated to the response surface, for
example with a logistic regression (Quinn et al., 2018; Kim
et al., 2019; Lamontagne et al., 2019; Marcos-Garcia et al.,
2020). These studies show that, even with a crisp acceptabil-
ity threshold, the internal uncertainty of the response surface
can challenge the separation of the exposure space. Introduc-
ing a fuzzy threshold to a response surface that also has its
own uncertainty is not trivial, as these concepts address forms
of imperfect knowledge that are very different in nature.

The present study proposes a method to articulate these
two categories of imperfect knowledge, i.e., the ambiguity
of the acceptability threshold and the uncertainty of the re-
sponse surface, through a possibilistic approach. Section 2
presents this method, starting with the rationale that defines
uncertain response surfaces and fuzzy sets, followed by a
solution to handle a fuzzy acceptability threshold within a
logistic regression approach. A case study is presented in
Sect. 3 that refers to a flood-prone reservoir system in south-
ern Quebec, Canada. Results are presented in Sect. 4, fol-
lowed by a discussion on the merits and limitations of the
proposed method.

2 Methods

This section starts with a rationale (Sect. 2.1) that defines
uncertain response surfaces (Sect. 2.1.1) and fuzzy sets
(Sect. 2.1.2). Then, Sect. 2.2 proposes a method to combine
a fuzzy threshold and a logistic regression for a bottom-up
vulnerability assessment.

2.1 Rationale

2.1.1 Uncertain response surfaces

Response surfaces are a common feature of bottom-up vul-
nerability assessments. Following a paradigm that is robust
and decision-centric, they first consider the acceptability
threshold of a water system and then ask what amount of
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pressure can lead a system to an unacceptable state. This
pressure is sampled for different variables that form an ex-
posure space and represent the possible states of the world.

Such an approach is sometimes called a scenario-neutral
approach (Prudhomme et al., 2010; Broderick et al., 2019) as
it separates the system response from the likelihood of each
scenario describing future conditions. Different versions of
what is here called the response surface have been used in
specific decision-making frameworks. The response surface
can be used to measure an uncertainty horizon between a first
estimate of the state of the world and an acceptability frontier
(information gap decision theory; Ben-Haim, 2006). In the
decision-scaling approach (Brown et al., 2012, 2019; Poff
et al., 2016), general circulation model (GCM) projections
can then be introduced as weights on the response surface
to inform probabilities associated with climate states. GCMs
can, thus, remain useful without conditioning the decision
process. Their weights can be updated as uncertainty is re-
solved, resulting in a refined estimate of the expected system
outcome over the response surface.

While response surfaces usually seek to sample possible
futures, for example in climate vulnerability assessments,
they still have their own internal uncertainty. Hydrological
modelling and internal climate variability can have strong
impacts on a response surface compared to long-term cli-
mate uncertainty (Steinschneider et al., 2015; Whateley and
Brown, 2016). Testing a limited number of stressors as ex-
planatory variables, therefore, leads to a response function
that returns imprecise performance estimates.

We first formulate how a limited set of variables leads to
an inherently uncertain response surface and how it relates to
the partition of the exposure space and the decision process.

A stress test consists of assessing the performance of a
system for a large enough number of situations in order to
identify which of these situations leads to an unacceptable
performance. We first define how the terms “success”, “fail-
ure”, “performance”, and “acceptability” are used in this
study. Success or failure is a state of the system at a given
time step. For example, failure can be defined by a stream-
flow exceeding a threshold at any moment, characterizing a
state of flooding. Common performance indicators of a wa-
ter system are statistical measures of the frequency, ampli-
tude, or duration of failures aggregated over a certain time
period (Hashimoto et al., 1982; Loucks and van Beek, 2017).
For example, the reliability of a flood control system can be
measured as the proportion of a given period (frequency) in
which no flooding happens.

While the terms success/failure define the state of the sys-
tem for a single time step, the terms acceptable/unacceptable
define its behavior over a time period. When perform-
ing a stress test of a system, the criterion for accept-
able/unacceptable outcomes is usually defined by perfor-
mance satisfying a threshold θ . For example, reliability
above 0.95 over a given period can define an acceptable out-
come.

Figure 1. Concept of the response surface as a stress test with de-
scriptive variables (x1, x2). Acceptable and unacceptable regions
are defined by a threshold θ over performance R.

A stress test maps the performanceR on a response surface
to a limited number of descriptive variables or stressors xi .
Each coordinate, or state of the world, is a combination of
specific values taken by such stressors. The stress test aims
to delineate the subsets A and D of acceptable and unac-
ceptable outcomes (Fig. 1). Alternative options (management
rules, infrastructure design, etc.) can be ranked based on the
respective size of subsets A and D. The more states of the
world lead to acceptable outcomes, i.e., the more robust an
option is, the more preferable this option will be.

The descriptive variables or stressors, like the mean flow,
the peak flow, or temporal autocorrelations, are aggregations
of the time series that are the inputs of a water system model.
Because a limited number of descriptors do not capture all
possible fluctuations of a time series, a term of irreducible
uncertainty remains. The response surface, R, is then given
by the following:

R = g (x1,x2 . . .)+ ε. (1)

In a risk-averse approach, the objective is to find the range of
unacceptable outcomes, i.e., the space over which a system
fails to satisfy an acceptability threshold θ . With two vari-
ables, this space is the set of solutions D = (x∗1 ,x

∗

2 ) to the
inequality R < θ , so that, in the following:

g (x1,x2)+ ε < θ. (2)

Simplifying the response surface by, e.g., its average esti-
mate can, thus, underestimate the unacceptability domain.
The irreducible uncertainty can be addressed through adap-
tive management (Brown et al., 2011), but there is inter-
est in integrating estimates of uncertainty into the response
surface tool. Kay et al. (2014) proposed the use of uncer-
tainty allowances that could vary depending on the response
type and catchment. More specifically, flood control systems
operate on shorter timescales and are harder to assess over
long-term climate shifts (Knighton et al., 2017), increasing
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uncertainty in flood response functions. Kim et al. (2018)
show how the choice of a longer modelling timescale (daily
vs. hourly) can lead to risk underestimation. The choice of
the weather generator used to generate synthetic weather se-
ries in a scenario-neutral experiment can also lead to differ-
ent results (Keller et al., 2019; Nazemi et al., 2020). Stein-
schneider et al. (2015) and Whateley and Brown (2016) com-
pare different sources of uncertainty in the response. Taner et
al. (2019) integrate probability estimates through a Bayesian
belief network model. Recently, logistic regression has been
a convenient way to divide the exposure space based on prob-
ability of success (Quinn et al., 2018; Kim et al., 2019; La-
montagne et al., 2019; Hadjimichael et al., 2020; Marcos-
Garcia et al., 2020).

2.1.2 Fuzzy acceptability thresholds

The acceptability criterion based on a threshold θ defines
the set of acceptable outcomes. It is a subjective or arbitrary
opinion from stakeholders or decision-makers to attribute a
normative value to a certain performance level. The vast ma-
jority of the studies reported in the literature assume that the
threshold between satisfactory and unsatisfactory outcomes
is crisp (Brown et al., 2012; Culley et al., 2016; Kim et al.,
2019). As such, a threshold shapes directly the partition of
the response function; with a crisp value the exposure space
can be subdivided in only two sub-spaces: acceptable versus
unacceptable.

The very existence of a threshold is the basis of satisfic-
ing behaviors (Simon, 1955) that differ from utility maxi-
mizing behaviors, as coined by Von Neumann and Morgen-
stern (1944). In practice, however, there might be situations
whereby the water manager is unable (or unwilling) to pro-
vide a crisp, well-defined threshold or when such threshold is
disagreed upon by stakeholders. For example, when control-
ling water levels in a reservoir to prevent floods, the opera-
tor can handle certain tolerances above the maximum desired
level. Of course, the greater the deviation from the desired
level, the less acceptable it becomes.

Mathematically, fuzzy sets theory handles imprecisely de-
fined or ambiguous quantities. Introduced by Zadeh (1965),
fuzzy sets theory has become a common tool in decision-
making analysis or computational sciences when nonproba-
bilistic, imperfect knowledge stemming from ambiguity or
vagueness must be considered (Yu, 2002). In our case, fuzzy
sets theory allows us to introduce vagueness in target-based
decision-making, without forsaking a target-based model in
favor of an unbounded maximizing behavior (although a
fuzzy target can also be seen as a generalization of both
maximizing and satisficing behaviors; see Castagnoli and
Li Calzi, 1996, and Huynh et al., 2007).

We consider here the case where such a threshold θ

may not be precisely defined by stakeholders but can take
many subjective qualifications from acceptable to unbear-
able, hence relaxing (without fully removing) the arbitrary

Figure 2. Concept for a fuzzy set of acceptable outcomes Aµ over
performance R.

condition of satisfying a crisp value. A fuzzy set Aµ of ac-
ceptable states therefore qualifies the performance R with a
membership value comprised between 0 and 1. The member-
ship function µ associated to the fuzzy set A describes the
degree to which any value of R more or less belongs to A
(Fig. 2; Eq. 3). µ(R)= 0 R < θ1

0< µ(R) < 1 θ1 ≤ R < θ2
µ(R)= 1 R ≥ θ2.

(3)

When a threshold corresponds to a fuzzy set, it means that
there is a transition zone between acceptable and unaccept-
able outcomes where intermediate levels of membership ex-
ist. Conversely, another interpretation is that the membership
function is the distribution of the possibilities (Zadeh, 1978;
Dubois and Prade, 1988) that any given performance R rep-
resents an acceptable outcome.

An α-cut Aα is the crisp set over Aµ for which the mem-
bership degree toAµ is equal to or above α. The largest α-cut
is called the support of the fuzzy set Aµ (R ≥ θ1). The small-
est α-cut is the core of the fuzzy set (R ≥ θ2).

Aα =
{
R ∈ Aµ|µ(R)≥ α

}
. (4)

A fuzzy definition of acceptability is not only a way to ac-
commodate ambiguity as a stakeholder-based constraint, but
it can also alter the outcome of the analysis. Theoretically, it
can happen when the slope of a response as a function of
stressors is different for the compared alternatives (infras-
tructure investments, management rules, etc.), as illustrated
in Fig. 3 for a single stressor variable. Rule 2 has a larger ac-
ceptable region with a crisp threshold, but the result is mixed
with a fuzzy definition of acceptability. In that case, a trade-
off appears between minimizing a loss of any sort (i.e., any
type of flooding) and minimizing the maximum loss (min–
max).

For example, in Quinn et al. (2017a), an attempt at mini-
mizing expected flood damage leads to worse results under
extreme events most of the time. Hadjimichael et al. (2020)
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Figure 3. The case of different performance slopes, as a function of
a single stressor X. (a) With a crisp threshold θ , Rule 2 has a larger
acceptable region A2. (b) With a fuzzy threshold (θ1, θ2), the fuzzy
set of acceptable outcomes over performance R has a core (R ≥ θ1,
where acceptability is µ= 1) and a support (R ≥ θ2, where µ≥ 0),
to which respective regions C and S are associated. Rule 2 has a
larger domain S2 where acceptability is at least partial but a smaller
full acceptability domain C2 than Rule 1.

perform a sensitivity analysis on binary acceptability thresh-
olds and show the impact such a definition has on the
outcome of a vulnerability assessment. Criterion ambiguity
could lead to similar effects, i.e., the preferred option might
not be the same, depending on the value of the threshold, and
in the present study it depends on the degree of acceptability.

2.2 Combination of fuzzy thresholds and uncertain
response function

When incorporating a fuzzy threshold, the challenge is to
combine two different sources of imperfect knowledge (de-
scribed in Sect. 2.1), the uncertainty of the response itself,
relative to the variables that describe change, and the ambi-
guity of the acceptability threshold. An approximated fuzzy

random logistic regression is proposed in order to integrate
both.

As the goal of the response surface is to divide the expo-
sure space between acceptable and unacceptable outcomes,
the value associated to any combination of variables can be
either 0 or 1 whether a specific acceptability threshold θ is
reached or not. As seen in Sect. 2.1, an intrinsic uncertainty
remains in response surfaces. Several studies use a logistic
regression to divide the exposure space based on probability
of acceptability (Quinn et al., 2018; Kim et al., 2019; Lamon-
tagne et al., 2019; Hadjimichael et al., 2020; Marcos-Garcia
et al., 2020). The logistic regression is used to explain a bi-
nary outcome from independent variables (x1, x2) and returns
a probability of acceptable outcome π as follows:

πθ =
1

1+ exp(−(β0+β1x1+β2x2))
(5)

πθ (x1,x2)= P(R ≥ θ), (6)

where xi are the defining variables of the exposure space,
and βi are the regression coefficients. The logistic response
surface therefore provides the probability π of meeting the
threshold θ over the (x1, x2) exposure space. The logistic re-
gression also has its own uncertainty, but it is not considered
here. While the response surface considers a range of states
of the world without knowing their probability of occurrence,
the logistic regression still provides a conditional probabil-
ity of acceptable outcome once a given state of the world is
reached. Partitions of the space between acceptable and un-
acceptable subspaces that can be defined as π -cuts are now
relative to a specific probability of acceptable outcome π∗,
taken by πθ , as follows:

Sπ∗ =
{
x1,x2 |x1,x2 π (x1,x2)≥ π

∗
}
. (7)

By considering the domain of acceptable outcomes as a fuzzy
set, we introduce a quantification of ambiguity that is differ-
ent in nature from the irreducible hydroclimatic uncertainty.
While the logistic regression returns a probability of surpass-
ing any given acceptability threshold for a combination of
variables (Eqs. 5 and 6), the fuzzy set of acceptable outcomes
returns the possibility of any such performance value being
actually considered as acceptable (Eq. 7).

Fuzzy regression models, including fuzzy logistic regres-
sion (e.g., Pourahmad et al., 2011; Namdari et al., 2013),
replace probabilities by fuzzy numbers; they usually do not
combine them. Fuzzy probabilities (Zadeh, 1984) are consid-
ered within the so-called fuzzy random regression field; how-
ever, no fuzzy random logistic regression seems to have been
developed to date (see Chukhrova and Johannssen, 2019, for
a review of the fuzzy regression field).

Here we use a discretized approximation of a fuzzy ran-
dom logistic regression based on α-cuts. As illustrated in
Figs. 2 and 4, a fuzzy set Aµ can be decomposed in α-cuts.
Each α-cut is a crisp set, and the values belonging to an α-
cut also belong to the fuzzy setAµ with a membership degree
equal to or above α.
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Figure 4. Concept for α-cut sampling and sigmoid function.

Therefore, any crisp set of acceptable outcomesA, defined
by a single threshold θ , is also an α-cut of the fuzzy set of ac-
ceptable outcomes Aµ. Then, a single logistic regression for
any acceptability threshold θ is also the probability of be-
longing to the α-cut of the fuzzy set of acceptable outcomes
defined by θ as follows:

πθ (x1,x2)= P (R ∈ Aα)= P
(
R ∈ Aµ

∣∣R ∈ Aµ µ(R)≥ α), (8)

with α = µ(θ).
Following the interpretation of Huynh et al. (2007), the

overall possibility 5 of the random variable R belonging to
the fuzzy set Aµ can be given by the integral over α of the
probabilities of acceptability defined at every α-cut.

5(x1,x2)= P
(
R ∈ Aµ

)
=

1∫
0

P
(
R ∈ Aµ

∣∣R ∈ Aµ µ(R)≥ α) . (9)

And, thus,

5(x1,x2)=

1∫
0

πµ−1(α) (x1,x2)dα. (10)

The approximated logistic regression for a fuzzy set of ac-
ceptable outcomes is, therefore, the average of the logistic
regressions for all the associated α-cuts. With a uniform dis-
cretization of 10 α levels, the spacing of every α-cut, de-
fined with θ = µ−1(α), relies on the shape of the member-
ship function. A linear shape of µ(R) leads to a uniform
sampling of the α-cuts, while a sigmoid error function leads
to a Gaussian sampling of α-cuts centered on θ∗ = µ−1(0.5)
(Fig. 4).

3 Application

A two-reservoir system in eastern Canada is used as a case
study to illustrate the applicability of the possibilistic re-
sponse surfaces.

Figure 5. Layout of the Upper Saint François River basin, Quebec,
Canada. (Map credit: Ministère de l’Environnement et de la Lutte
contre les changements climatiques.)

3.1 Upper Saint François River basin features

The Upper Saint François River basin (USFRB) is located
in the province of Quebec, Canada. The selected gauging
point, near the agglomeration of Weedon, drains an area of
2940 km2 with an average annual flow of 2.1×107 m3. The
system (Fig. 5) involves the Saint François River, controlled
by two reservoirs (Great Lake Saint François and Lake
Aylmer) with a combined storage capacity of 941×106 m3

and the uncontrolled affluent Saumon River.
Both reservoirs are managed by the Quebec Water Agency,

which is part of the Ministry of Environment (Ministère de
l’Environnement et de la Lutte contre les changements cli-
matiques – MELCC). The main operational objectives are
(i) to protect the municipality of Weedon and several res-
idential areas around the lakes from floods, (ii) to ensure
minimum river discharges and water levels in the lakes to
preserve aquatic ecosystems, (iii) to regulate the floods for
downstream power plants, and (iv) to maintain desired wa-
ter levels in the lakes for recreational use during the summer
(Fortin et al., 2007).

This multipurpose reservoir system thus follows a refill–
drawdown cycle accordingly. With a snowmelt-dominated
flow regime, the reservoirs are emptied in winter, filled dur-
ing the spring, and kept at a constant pool elevation during
the summer.

3.2 Inflow time series

At the request of the system operators, we use hydrologic
stressors instead of climatic ones. Other authors have also
used hydrologic stressors (see, e.g., Nazemi et al., 2013,
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2020; Borgomeo et al., 2015; Herman et al., 2014). Readily
available inflow time series from GCM weather projections
are used to generate additional synthetic streamflow series,
as in Vormoor et al. (2017). Results are then directly plotted
on the exposure space according to their own (x1, x2) coordi-
nates. Such a method seeks to make greater use of hydrocli-
matic future scenarios when many are already available and
to obtain a higher diversity of synthetic times series (based
on different GCM simulations, Representative Concentration
Pathway (RCP) scenarios, and downscaling techniques). We
first describe the initially available time series and then how
they are perturbed and reused to create synthetic time series.

Historical daily measurements are available for the 2000–
2014 period (MELCC, 2018). They include the lakes’ in-
flows, levels, and reservoir releases and river discharges from
the tributary and at the basin outlet.

Streamflow scenarios are provided by MELCC through the
Quebec Water Atlas 2015 (CEHQ, 2015; MELCC, 2018).
Those hydrologic projections are based on climatic projec-
tions from the Natural Resources Canada database of GCM
simulations (CMIP5; CEHQ, 2015). Meteorological time se-
ries were bias corrected by the Quebec Water Agency for
the reference climate (1971–2000 period) and then processed
by the HYDROTEL model (Fortin et al., 2001) for all ma-
jor rivers in the southern part of the Quebec province. For
the Upper Saint François River basin, resulting hydrological
simulations were also bias corrected with the historical flow
record and the quantile mapping approach.

A set of 501 time series was made available, spanning
30 years of daily inflows. The set contains 135 scenarios
for a 1971–2000 reference period and 366 scenarios for the
2041–2070 period. The 366 scenarios are based on 122 GCM
projections to which three different downscaling techniques
were applied, i.e., projections without bias correction, with
quantile mapping, or with delta quantile mapping (based on
Mpelasoka and Chiew, 2009). In order to obtain the largest
degree of variability, and find as many failure configurations
as possible, all 501 time series are used indistinctively. These
runoff time series are first perturbed to increase the sample
size and cover a wider share of the exposure space and are
then used as input for the synthetic time series generation.

In order to expand the sample of the exposure space and
explore less favorable conditions, the perturbation of avail-
able inflows is performed by either modifying the average an-
nual flow, the dispersion of daily flows, or both. To increase
the range of tested inflow volumes, a single change factor is
applied in the first case, arbitrarily increasing all flow values
at every time step by 50 %. To perturb the dispersion, a vary-
ing factor multiplies flow values, depending on their rank in
the series distribution (factor 1 for the lowest flow and fac-
tor 1.5 for the highest flow). There are then four categories
of perturbation, namely volume only, dispersion, volume and
dispersion, and none.

This expanded set of time series is then used as the input of
the synthetic generator. The generator is the Kirsch–Nowak

method (Nowak et al., 2010; Kirsch et al., 2013), made avail-
able online as MATLAB code by Quinn et al. (2017b), as
employed, e.g., in Quinn et al. (2017a). Each synthetic gen-
eration is performed twice for each available time series.
We then obtain 501 (initial tie series)× 4 (different perturba-
tions)× 2 (synthetic realizations)= 4008 synthetic time se-
ries, each containing 30 years of daily river discharges.

G=
1
N

N + 1− 2

N∑
i=1
(N + 1− i)qi

N∑
i=1
qi

 . (11)

Similar to other stress test studies that generate inflow in-
stead of climate time series (Feng et al., 2017), the selected
driving variables (axes x and y of the response function) are
the total annual inflow volume and a measure of the intra-
annual variability in streamflow. The intra-annual variability
is here measured with the dispersion coefficientG, a measure
also known as Gini coefficient in economics but employed in
hydrology too (Masaki et al., 2014). It is similar to the co-
efficient of variation used in, e.g., Nazemi et al. (2020) but
bound between 0 and 1, which offers the following conve-
nient interpretation: at G= 0 all daily discharges in a year
are equal; if G= 1, the entire yearly runoff happens in a sin-
gle day. Like the variation coefficient, it allows for a second
variable statistically independent of the total annual runoff
volume. Here qi are the ordered daily discharges of a given
year, i.e., N = 365 d.

3.3 Simulation and response surface

The model is built with HEC-ResSim, the Reservoir System
Simulation software developed by the U.S. Army Corps of
Engineers (Klipsch and Hurst, 2007). It relies on a network of
elements representing the physical system (reservoirs, junc-
tions, and routing reaches) and the sets of operating rules.
HEC-ResSim replicates the decision-making process applied
to many actual reservoirs through a rule-based modeling of
operational constraints and targets.

Hydrologic inputs consist of 30-year-long daily river dis-
charges for each sub-basin. The main outputs are daily water
levels in lakes, reservoir releases, and the discharges at the
outlet. A complementary Jython routine is developed in or-
der to run HEC-ResSim in a loop to systematically load a
large set of different hydroclimatic scenarios. Dam charac-
teristics and operational rules were provided by the Quebec
Water Agency (MELCC, 2018).

The model is developed with a first set of operating
rules (Rule 1) expected to mimic the current operation of
the system. It reproduces measured daily releases over the
2000–2014 period. A total of 4008 simulations are then run,
each taking an input of synthetic daily flow series spanning
30 years. In order to increase the density of the ungridded
exposure space sampling, the results are divided into 5-year
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periods. Such a decomposition is deemed acceptable based
on the reservoir system, whose storage capacity is designed
for seasonal, not multiyear, regulation, mitigating the effects
of boundary conditions. It leads to a sample of 24 048 points,
with each one representing a 5-year simulation.

Although the operating rules were designed by taking all
operating objectives into account, the present study focuses
on the flood control performance R. More specifically, it is
the reliability (Hashimoto et al., 1982; Loucks and van Beek,
2017) of the system keeping the river discharge at Weedon
below 300 m3 s−1. Mathematically, if F(t) is the state of
flooding at time step t , then R is given by the following:

F(t)=

{
0 if Q(t)≤ 300
1 if Q(t) > 300 (12)

R = 1−
1
T

T∑
t=1

F(t). (13)

The response function is built by representing performanceR
as a function of the selected inflow characteristics (yearly
volume and dispersion). We consider the case where the
threshold between acceptable and unacceptable performance
is not clearly defined but is bounded between θ1 = 0.93 and
θ2 = 0.97.

The separation of the exposure space between acceptable
and unacceptable regions is calculated following Sect. 2,
combining a logistic regression with a fuzzy acceptability do-
main, with its support being [0.93, 1] and its core [0.97, 1].
Consequently, any given performance valueR has a member-
ship degree of 0 for R < 0.93 and is equal to 1 for R ≥ 0.97.
A counterfactual exercise is also run with a crisp threshold
θ∗ = 0.95, where the ambiguity is ignored and only the me-
dian between bounds is selected. Performance is also calcu-
lated for a sub-set of GCM-based projections deemed more
trustworthy by the Centre d’expertise hydrique du Québec
(CEHQ; with quantile mapping downscaling for the 2041–
2070 period), with each one divided into 5-year periods.

These rules are compared to an instrumental set (Rule 2),
which slightly alters the anticipation and emergency release
algorithm of the reservoirs.

4 Results

The simulation is first run with 122 of the original time series
made available by the Quebec Water Agency. These are the
bias-corrected rainfall–runoff simulations considered as be-
ing the most reliable for scenario-driven adaptation plans and
corresponding to different radiative forcing scenarios. Taken
in 5-year periods (thus, 610 time series), the values all lead
to flood control reliabilities superior to 0.97, which is above
any considered acceptability threshold. So, both rule sets are
considered successful in all these time series.

Simulations are then run for the much larger and more
diverse sample of 4008 synthetic time series. The perfor-

Figure 6. Response surface (Rule 1). Performance R is the flood
control reliability.

mance R, measured as the reliability of flood control, is eval-
uated for each 5-year period contained in the 4008 simula-
tions of 30 years (24 048 evaluations). The color scale repre-
sents the performance (reliability R against floods) in Fig. 6
for each 5-year time series. The axes are the stressors x1, x2,
showing the average annual inflow volume at Great Lake
Saint François and the dispersion (or Gini coefficient) of the
daily inflows. The response shows considerable noise, al-
though a northeast–southwest anisotropy or gradient can be
visually noticed.

An acceptability value µ is then associated to each dot
(time series) in the sample, depending on the value of the per-
formance (reliability) R (Fig. 7a). The acceptability value µ
is the membership degree of R to the fuzzy set of acceptable
outcomes, with [0.93, 1] as the support and [0.97, 1] as the
core (as in Fig. 2). The sample of simulations, thus, leads to
acceptability values between 0 and 1 in Fig. 7a.

To solve the problem of combining two uncertainties that
are different in nature (the probability of meeting a thresh-
old vs. the possibility that this threshold is acceptable), the
aggregated logistic regression presented in Sect. 2.2.1 is per-
formed for the fuzzy outcomes, thus proposing a continu-
ous mapping for a case where the outcomes are not available
as binary categories. The logistic regression is performed 10
times for 10 α-cuts corresponding to a uniform sampling of
α levels. The aggregated logistic regression at every coordi-
nate is the average of the 10 logistic regressions, with each
one considering a single α-cut as being the crisp set over R
that defines acceptable outcomes.

It provides, at each coordinate of the exposure space (or
state of the world), a possibility value 5 of the outcome (re-
liability against floods) deemed as being acceptable given
the realization of the state of the world. This – conditional
– possibility measure expresses both the ambiguity of the ac-
ceptability criterion and the probability of an acceptable out-
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Figure 7. Acceptability of sampled outcomes and logistic regressions. (a) Fuzzy outcomes and the possibility of an acceptable perfor-
mance 5. (b) Binary outcomes and the probability of an acceptable performance π .

come at any location on the response surface. The surface can
be divided into acceptable and unacceptable regions (Fig. 7)
based on any desired level of possibility (5-cut).

As a counterfactual point, we also compute an alternative,
where the ambiguity of the threshold is ignored with the re-
sponse surface converted into binary outcomes – acceptable
or unacceptable frequency of flooding – based on a median
crisp threshold of 0.95 (Fig. 7b). A simple logistic regression
is performed for the counterfactual binary outcomes, leading
to a probability π of acceptable outcome.

The approximation was done with the MATLAB® func-
tion mnrfit. The McFadden pseudo R2 of the median thresh-
old logistic regression is 0.7531. The relation between ex-
planatory variables is kept linear, as introducing an interac-
tion term only increased the pseudo R2 to 0.7562. These val-
ues are considered as being an acceptable goodness of fit for
this study. A pseudoR2 equal to 1 represents a perfect model,
and a value of 0 means that the logistic model is not a bet-
ter predictor of probabilities than an intercept-only model. A
possible room for improvement of the predicting value of the
model would be to change the predictors, although it was not
the core of this study. Selecting two different predictors from
a larger set of candidates might increase the final R2 (by per-
forming a first round of logistic regressions for each pair and
selecting the pair with highest R2, as in Quinn et al., 2018).
5-cuts producing frontiers between acceptability regions

can be contrasted with the mapping of the time series from
GCM projections on the response surface (Fig. 8). While all
these downscaled time series lead to fully acceptable perfor-
mances, showing reliability values above 0.97, their coordi-
nates, and thus their corresponding state of the world, can
still fall below a 5-cut.

This is because, for any of these projections, the evaluated
sequence is one realization of those conditions x1, x2. As-
suming that the logistic regression model is accurate with the

possibility of 1-5, alternative realizations of those conditions
may not be seen as being satisfactory. A scenario sharing the
same properties x1, x2, i.e., yearly inflow volume and daily
inflow dispersion, with a satisfactory GCM projection could
still lead to an unacceptable frequency of flooding if its possi-
bility of acceptable outcome5 is below the acceptable level.

Respectively, the binary counterfactual model (Fig. 8b),
provides a degree of probability π of an unacceptable out-
come for the same state of the world as in the previous studies
using the logistic regression. Figure 8 illustrates the straight-
forward difference between adapting to the ambiguity of the
acceptability criterion (Fig. 8a) and ignoring it (Fig. 8b). For
any given state of the world (coordinate) x1, x2, the aggre-
gated logistic regression not only considers the probability
of a realization leading to a certain performance, but also
the possibility that such performance, the reliability against
floods, would be considered an acceptable outcome. Accept-
ing a fuzzy acceptability criterion thus mechanically widens
the range of the continuous transition resulting from the lo-
gistic regressions. A state of the world with a near 100 %
probability of meeting a 0.95 reliability threshold might still
have a possibility of this threshold not actually being ac-
cepted.

Such differences are more noticeable in this case study
when using GCM projections as ex post weights. With a
fuzzy target, 46 projections (6.3 %) fall out of the 0.995-cut,
i.e., the sub-space where the possibility of acceptable out-
come is at least 0.99. Said otherwise, there is a possibility of
at least 0.01 that a realization leading to the same state of the
world (coordinates) would produce a flooding pattern con-
sidered as being unacceptable according to the aggregated
logistic regression. With a crisp simplification, thus with less
information, 17 projections (2.3 %) fall out of the 0.99 π -cut.
There is a probability of at least 0.01 that a realization leading
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Figure 8. Logistic regressions and GCM projections (a) for fuzzy outcomes and (b) for binary outcomes.

Figure 9. Compared logistic regressions, Rules 1 and 2, and GCM projections for (a) fuzzy outcomes and (b) binary outcomes.

to the same state of the world would produce an unacceptable
outcome.

These frontiers are specific to a reservoir operation rule.
When using a stress test with a response surface, alterna-
tive rules are compared based on the relative position of the
frontiers between acceptable and unacceptable regions. Alto-
gether, two of them are compared, namely an approximation
of current reservoir operations (Rule 1) and an alternative,
instrumental set of rules (Rule 2). Figure 9 compares the two
rules based on selected 5-cuts (Fig. 9a). The counterfactual
calculation with binary outcomes and π -cuts is also provided
(Fig. 9b).

Figure 9 shows a situation partially similar to the theoret-
ical situation of Fig. 2, where the relative advantage of each
rule depends on the location on the exposure space and the
preferred level of possibility. With a fuzzy acceptability cri-
terion (Fig. 9a), Rule 2 is preferred to Rule 1 for the high
possibility of an acceptable outcome (5≥ 0.95) because the

region defined by this frontier for Rule 2 is larger than for
Rule 1. It means that Rule 2 leads to acceptable outcomes in
a larger range of states of the world than Rule 1. However,
for low possibilities of an acceptable outcome (below 0.05),
the comparison depends on the stressors x1, x2. Rule 2 is
preferred for very high daily inflow dispersion (or Gini co-
efficient; y axis) but moderate yearly inflow (x axis), while
Rule 1 is preferred for low dispersion and very high yearly
inflows (again assuming the logistic regression model is ac-
curate).

Using a counterfactual with binary outcomes (Fig. 9b),
and thus frontiers defined only by probabilities, modifies
the above results. While Rule 2 remains preferable for high
probabilities of acceptable outcomes, it becomes worse than
Rule 1 for low probability cuts, which is this time indepen-
dent of the location on the exposure space.

If the decision-makers choose to use GCM projections as
ex post weights, the preference order for low possibility lev-
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els becomes less important. It narrows the relevance of the
exposure space to the vicinity of the projections and, thus,
to the high possibilities of acceptable outcomes. In this case,
eight scenarios for Rule 2 (1.1 %) fall below the 0.99 5-cut
(meaning that other realizations have a 0.01 possibility of
unacceptable outcome) compared to 46 scenarios for Rule 1
(6.3 %). Again, all GCM-based scenarios lead to fully ac-
ceptable outcomes (R ≥ 0.97). Rule 2 would then be pre-
ferred to Rule 1, but there would still be a possibility of un-
acceptable outcome superior to 0.01 with this rule for the
same states of the world (coordinates x1, x2) sampled by the
GCM-based scenarios.

Using only binary outcomes, thus only probability-based
frontiers, produces a slightly different result. Rule 2 is not
only preferred in the vicinity of the GCM projections but also
no such projection falls below the 0.99 π -cut. The probabil-
ity of unacceptable outcome is, thus, less than 0.01 at the
vicinity of any GCM projection. Based on such projections,
Rule 2 would be adopted with less reservations with a binary
model than with a fuzzy model.

5 Discussion

By itself, a stress test approach can be seen as a departure
from a probabilistic framework towards a possibilistic one.
The stress test of a water system, through a response sur-
face, asks which states of the world could possibly lead to an
unacceptable outcome instead of evaluating the system per-
formance with a given probability.

In this paper, we consider that the threshold employed
to define acceptable outcomes might be ambiguous or con-
tentious. The fuzzy or possibilistic framework (Zadeh, 1965,
1978; Dubois and Prade, 1988), often used in decision-
making analysis, provides the analytical tools to incorporate
an uncertainty that is not probabilistic, the ambiguity of a de-
cision threshold, within the increasingly popular stress test
tool.

Applying a fuzzy threshold would be straightforward for a
deterministic response surface, with each performance value
on the exposure space being mapped to a degree of accept-
ability between 0 and 1. This study explores how to solve
the problem of combining a fuzzy definition of acceptability
with the remaining hydroclimatic uncertainty of the response
surface itself. These two concepts represent the following
different sources of imperfect knowledge: one applies to the
performance of the system and the other to the qualification
of this performance as being acceptable or not. To integrate
them in a same response surface, the methodology relies on
the concept of α-cuts to produce an aggregated logistic re-
gression from a membership function.

The case study of the Upper Saint François reservoir sys-
tem illustrates the implementation of the aggregated logis-
tic regression and the conceptual framework behind it. Just
like for previous uses of logistic regression, in the present

method, the response surface does not show a single fron-
tier that divides the exposure space between acceptable and
unacceptable flooding outcomes but rather a parametric fron-
tier depending, in this case, on a desired level of possibility.
While possibility and probability levels cannot be directly
compared (the first comprises the latter), their difference is
illustrated by the wider spread of the transition zone in the
response functions. This wider spread is to be expected as
more sources of ambiguity are considered in the possibilistic
approach, and a consequence can be that GCM projections
may fall below an acceptability frontier when they do not for
a probabilistic logistic regression.

Although the main goal of this study is to propose a prac-
tical adaptation to a stakeholder-driven constraint (the ab-
sence of a clear threshold), results also explore the effect that
threshold ambiguity can have on final decisions. Compared
response surfaces show that ignoring the ambiguity of a cri-
terion can alter the comparison between options, which is
either based on the size of the acceptable domains or on the
position of GCM projections in the response surface. While
specifically applying this criterion for a fuzzy approach with
varying degrees of acceptability, this type of result is compa-
rable to more general sensitivity studies over binary thresh-
olds, as in Hadjimichael et al. (2020). Not accounting for the
criterion ambiguity may, thus, lead, in some cases and for
some actors, to floods perceived as being worse with the se-
lected option than with the discarded option.

Results show that the preference between options can
change depending on the possibility level 5. When this hap-
pens, selecting the appropriate level 5 threshold is highly
consequential and depends on the involved actors. This chal-
lenge is the equivalent, in possibilistic terms, to the selection
of the probability threshold π in the non-fuzzy logistic re-
gression (Kim et al., 2019). The π threshold depends on both
a probability level and the value of α.

Defining the membership function µ does introduce an ad-
ditional layer of complexity in the modelling process. It is ul-
timately up to the modeler and stakeholders to decide if it is
a necessary translation of the social reality, while keeping in
mind how it can affect the results. The elaboration of mem-
bership functions from linguistic information has been well
studied in many fields (Zimmermann, 2001; Garibaldi and
John, 2003; Sadollah, 2018), including in water resources
management (Khazaeni et al., 2012). Future works should
further explore how to elaborate adapted membership func-
tions specific to the linguistic inputs that characterize satis-
faction thresholds in the case of flood control systems.

To further address both challenges of selecting the appro-
priate possibility level 5 and eliciting the membership func-
tion µ, loss aversion, as developed by Kahneman and Tver-
sky (1979) in prospect theory, would also be a useful concept.
A parallel can be drawn with Quinn et al. (2018), where the
choice of the probability level π in a logistic regression is
instead linked to risk aversion.
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Other studies have linked prospect theory with member-
ship functions for fuzzy sets (e.g., Liu et al., 2014; Andrade
et al., 2014; Gu et al., 2020). While this study focuses on the
practical integration of ambiguity as a real-world constraint,
further theoretical research should focus on linking both risk
and loss attitudes to hydroclimatic response functions.

An important caveat is that the response surface relies
on a specific set of realizations from a synthetic generator
and a starting data set that is perturbed and reshuffled. The
choices and assumptions that lead to a realization deserve
further scrutiny in future works. Ungridded, on-the-fly sam-
pling here allows us to more freely explore the variability
in the response, as the focus of the study is the diversity of
outcomes for a given coordinate. The sampling should be im-
proved to cover the exposure space more evenly but without
constraining too much the diversity of time series. The im-
pact of the choice of a given synthetic generator, of the sam-
ple size, and of the perturbation process should be further
examined. Likewise, the choice of describing variables was
not the focus of the study but should be subject to an initial
comparison among a larger number of candidate predictors.
Finally, the quality of the logistic model should be further
analyzed. External validation with a separate sampling of the
exposure space should be included (Kim et al., 2019). Fur-
ther work should seek to integrate the goodness of fit and
the external validation as additional sources of uncertainty
within the method. All the aforementioned steps should be
considered for this possibilistic method to be used as policy
recommendation.

A possibilistic framework could integrate within a re-
sponse surface many more of these kinds of uncertain-
ties when probabilities are not relevant or too uncertain,
as done in other water management studies (El-Baroudy
and Simonovic, 2004; Afshar et al., 2011; Jun et al., 2013;
Le Cozannet et al., 2017; Qiu et al., 2018; Wang et al., 2021).
One particularly suitable use of fuzzy logic should be to con-
sider as fuzzy values the ex post expert judgment on the pos-
sibility or likeliness of the obtained synthetic time series in a
given river basin. The synthetic generator explores time se-
ries configurations, but those may not always correspond to
the range of outcomes expected in a watershed.

The integration of the uncertainty and ambiguity quantifi-
cation within the response surface tool could allow for ag-
gregation options in a multi-objective problem (like in Poff
et al., 2016; Kim et al., 2019), while easily controlling its two
separate components, i.e., response uncertainty and threshold
ambiguity.

Importantly, the response surface is here considered as be-
ing a generic tool for decision-making under deep uncer-
tainty, but it is used within more complex frameworks. Fur-
ther research should also analyze how fuzzy thresholds can
be inserted within a more complete set of methods.

6 Conclusions

We explore, in this study, how to integrate ambiguous ac-
ceptability thresholds within uncertain response surfaces in
decision-centric vulnerability assessments. We propose a
method to produce a possibilistic surface when the fuzzy
threshold is applied to an uncertain surface. Aggregating lo-
gistic regressions over α-cuts incorporates, in a single mea-
sure, the ambiguity of the acceptability threshold and the
probability of meeting such threshold for a given state of
the world. The method is illustrated with the Upper Saint
François reservoir system in Canada. We show how a fuzzy
threshold shapes the response surface and how the way this
ambiguity is treated can affect the vulnerability assessment.

Challenging old probabilistic assumptions, notably in a
climate crisis context, brings new tools that also imply
new choices and degrees of arbitrariness. How to transpar-
ently elaborate fuzzy thresholds jointly with stakeholders,
or the choice of a synthetic scenario generator, are neces-
sary research continuations. The presented approach can be
followed by further work on stakeholder attitudes, multi-
objective problems, and aggregation choices in bottom-up
vulnerability assessments. The framework introduced here
to solve a practical challenge can be consolidated from a
more theoretical perspective, from both possibility theory
and decision-making, under deep uncertainty.
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