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Abstract. The prevalent soil moisture probe algorithms are
based on a polynomial function that does not account for
the variability in soil organic matter. Users are expected to
choose a model before application: either a model for min-
eral soil or a model for organic soil. Both approaches in-
evitably suffer from limitations with respect to estimating
the volumetric soil water content in soils with a wide range
of organic matter content. In this study, we propose a new
algorithm based on the idea that the amount of soil organic
matter (SOM) is related to major uncertainties in the in situ
soil moisture data obtained using soil probe instruments. To
test this theory, we derived a multiphase inversion algorithm
from a physically based dielectric mixing model capable of
using the SOM amount, performed a selection process from
the multiphase model outcomes, and tested whether this new
approach improves the accuracy of soil moisture (SM) data
probes. The validation of the proposed new soil probe algo-
rithm was performed using both gravimetric and dielectric
data from the Soil Moisture Active Passive Validation Exper-
iment in 2012 (SMAPVEX12). The new algorithm is more
accurate than the previous soil-probe algorithm, resulting in
a slightly improved correlation (0.824 to 0.848), 12 % lower

root mean square error (RMSE; 0.0824 to 0.0727 cm3 cm−3),
and 95 % less bias (−0.0042 to 0.0001 cm3 cm−3). These re-
sults suggest that applying the new dielectric mixing model
together with global SOM estimates will result in more re-
liable soil moisture reference data for weather and climate
models and satellite validation.

1 Introduction

Soil moisture (SM) plays a critical role in weather and cli-
mate by affecting atmospheric variables via latent and sen-
sible heat exchange. For example, near-surface air temper-
ature can be affected by the evapotranspiration of surface
and root zone soil moisture. Therefore, its correlation with
the near-surface temperature is usually considered an effec-
tive indicator of the coupling strength between the land sur-
face and the atmosphere (Seneviratne et al., 2006; Koster et
al., 2009; Seneviratne et al., 2010; Jaeger and Seneviratne,
2011; Seneviratne et al., 2013; Hirschi et al., 2014; Whan
et al., 2015). In particular, soil moisture anomalies in a dry
regime have been reported as the main cause of strong land–
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atmosphere coupling, which can trigger drought and heat
waves (Fischer et al., 2007; Zampieri et al., 2009; Guillod
et al., 2015; Hauser et al., 2016; Hirschi et al., 2011; Mi-
ralles et al., 2011; Taylor et al., 2012; Mueller and Senevi-
ratne, 2012; Seo et al., 2019). Soil moisture also influences
precipitation formation and storm tracks by coupling with the
atmosphere (Koster et al., 2004; Taylor et al., 2012; Guillod
et al., 2015; Santanello et al., 2018, 2019; Zhang et al., 2019).
Consequently, inaccurate SM information in the land-surface
model hinders accurate predictions of extreme climate and
weather because of unrealistic land–atmosphere interactions
that result from uncertainties in air temperature, moisture,
dynamics, cloud formation, and precipitation.

High-quality in situ soil moisture data are an important
reference for evaluating climate models (Yuan and Quiring,
2017; Zhuo et al., 2019) and remote-sensed SM data (En-
tekhabi et al., 2010; Kerr et al., 2010). However, it is not
practically possible to perform in situ SM measurements
with high spatial and temporal coverage. Soil moisture net-
works based on cosmic ray neutron probes might be more
manageable for long-term operation; however, this approach
and associated networks are not established, globally, as a
dielectric-based approach. A practical alternative is to em-
ploy a portable soil probe that is calibrated using locally mea-
sured soil moisture. In particular, portable dielectric sensors
make use of the relationship between the dielectric constant
and volumetric soil water content. However, such retrieval
of the volumetric soil water content from dielectric measure-
ments does not account for soil organic matter (SOM) and
saturation conditions. A few studies have reported the rela-
tionship between the dielectric constant and the volumetric
soil water content in organic soils (Topp et al., 1980; Roth et
al., 1992; Bircher et al., 2012). However, the calibration func-
tions derived from these studies have limitations for global-
scale applications because they were developed using only a
few specific sites and/or are applicable only for the sites with
a limited range of organic matter content. For the purpose
of a global soil moisture probe observing system, using an
inversion method of the existing physical dielectric mixing
model can be a great alternative approach to incorporate the
variability of organic matter into the probe algorithm beyond
the current empirical probe models.

With this background, this work provides a pathway for a
physical model to consider soil organic matter. We developed
an inverse dielectric mixing model for mineral soil derived
from Park et al. (2019, 2017) to obtain more accurate vol-
umetric soil moisture estimates from the dielectric constant.
The proposed model reflects the damping effect and simu-
lates the supersaturation of soil moisture over soil porosity
(when soil moisture occupied more than the porosity of dry
compacted soil in the unit volume, causing lightweight clay
swelling or starting the existence of standing water or starting
surface runoff due to the precipitation accumulation over the
soil surface more quickly than infiltration), so that we can
capture the standing water and surface runoff during flood

events, which has not been studied in other prevalent dielec-
tric mixing models.

The most recent high-resolution SOM map (Hengl et al.,
2014; Batjes, 2016) is only available as a static variable
for the land model; therefore, the realism of the parame-
terization for surface runoff, infiltration, evapotranspiration,
and soil respiration is limited. Therefore, it would be im-
portant to obtain a spatially and temporally varying SOC
map from satellite measurements. SMAP has the potential
to provide an unprecedented and unique benefit to solve var-
ious challenges in deriving such maps regardless of the rel-
atively coarse resolution of the Soil Moisture Active Passive
(SMAP) radiometer measurements for the following three
reasons: (1) microwaves can detect SOC underneath veg-
etation, which other shorter-wave sensors cannot perceive,
(2) the temporally varying OC evolution obtained even from
a low-resolution satellite image will be helpful in various
modeling and observation studies, and (3) the limitation of
the low-resolution issue can be overcome by recent down-
scaling approaches, such as machine-learning methods, that
can utilize a synergy with other ground, spaceborne, and
satellite data. Consequently, the other aim of this study is
to provide a foundation for global SOM estimation using ob-
servations from a satellite, such as SMAP, by developing a
dielectric mixing model based on accurate in situ SOM and
gravimetric soil moisture.

The remainder of this paper is organized as follows: Sect. 2
introduces the inversion approach of the dielectric mixing
model to estimate soil moisture from organic-rich mineral
soil using the probe. The data used in this study are de-
scribed in Sect. 3. In Sect. 4, we evaluate the results using
the soil moisture measured during SMAPVEX12. Finally, a
summary and discussion for further applications are provided
in Sect. 5.

2 Method

The dielectric constant indicates a polarizability of materi-
als at a certain wavelength. The dipole structure of water
molecules is highly sensitive to a microwave electric field
with a very high dielectric constant (approximately 80). On
the other hand, the dielectric constant of mineral soil at mi-
crowave electric fields is rarely reacting, having only low val-
ues from 3 to 5. Therefore, an instrument which can mea-
sure the effective dielectric constant of a soil medium such
as a Stevens HydraProbe can provide an accurate estimate of
water amount within soil (Jackson et al., 1982; Schmugge,
1983; Stafford, 1988). Also, from space, microwave satel-
lites such as SMAP (Soil Moisture Active Passive) (En-
tekhabi et al., 2010), SMOS (Soil Moisture and Ocean Salin-
ity) (Wigneron et al., 2007), and AMSR-E (Advanced Mi-
crowave Scanning Radiometer for EOS) can effectively es-
timate soil moisture from the measured brightness tempera-
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ture by relating the effective dielectric constant of the land
surface.

For the application of portable soil moisture probes, the
in situ soil moisture data are provided based on the empirical
relationship between the measured dielectric constant and the
volumetric soil moisture (Seyfried and Murdock, 2004; Bell
et al., 2013) using the following equation:

w = 0.0838
√
εobs− 0.0846, (1)

where εobs is the real part of the dielectric constant measured
with the soil probe and w is the estimation of the volumetric
soil moisture (cm3 cm−3). As apparent in Eq. (1), the depen-
dence of εobs on SOM was not considered in the estimation
of w.

To consider the SOM, we first derive Eqs. (2)–(4), based
on Park et al. (2019).

If the observed real part of the dielectric constant mea-
sured with the soil probe is smaller than the real part of the
dielectric constant at the wilting point, εobs < εwp, we obtain
the following.

For w <wwp,

w = a
(
(εobs− 1)H−1

+ 1
)
+ b, (2)

where

a = 1/(εbound− εair) ,

b =−
(1−p)εsoil+pεair

εbound− εair
,

where H is the damping factor (0.8), εbound is the dielectric
constant for bound water, εfree is the dielectric constant for
free water, and εair is the dielectric constant for air (Eq. 1).

If the observed real part of the dielectric constant mea-
sured with the soil probe is larger than the real part of the
dielectric constant at the wilting point and still smaller than
the saturation point, εwp < εobs < εp, we get the following.

For wwp <w < p,

w =
−b+

√
b2− 4a

(
c− (εobs− 1)H−1− 1

)
2a

, (3)

where

a =
εfree− εbound

p−wwp
,

b =
pεbound−wwpεfree

p−wwp
− εair,

c = (1−p)εsoil+pεair.

Finally, for εobs > εp, we get the following.
For p < w,

w = a
(
(εobs− 1)H−1

+ 1
)
+ b, (4)

where

a =
1

εfree− εsoil
,

b =−
εsoil

εfree− εsoil
.

According to Debye relaxation, the dielectric constant of free
water at less than 2 GHz frequency has a constant value of
approximately 80. However, in the field measurements (Cur-
tis et al., 1995; Ishida, 2000; Mironov et al., 2013; Fal et al.,
2016), it is found that in clay-rich soil, the real part of the di-
electric constant increases at lower frequencies, which occurs
by the clay–ion-complex interaction (Kelleners et al., 2005).
Therefore, in this study for 50 MHz, the clay content and the
real part of the dielectric constant at 1.4 GHz are empirically
considered in the dielectric constant not only for free, but
also for bound water (Eqs. 5, 6).

εfree = εfree1.4 GHz + 65 · vclay (5)
εbound = εbound1.4 GHz + 5 · vclay (6)

Also, we proposed the formulation of the dielectric constant
for the dried organic-rich mineral soil at 50 MHz, as shown
in Eq. (7).

εsoil =
(
εclay · vclay+ εsand · vsand+ εsilt · vsilt

)
· (1− vSOM)+ εSOM · vSOM, (7)

where εfree 1.4 GHz and εbound 1.4 GHz are the dielectric con-
stants for free and bound water at 1.4 GHz, respectively, and
vclay, vsilt, and vsand are the volumetric ratios (cm3 cm−3) for
clay, silt, and sand, respectively.

The bulk density for organic soils can be computed with
pure mineral and organic matter densities (Federer et al.,
1993) or be expressed with their total volume and mass of
these components (Liu et al., 2013; Jin et al., 2017). By re-
lating these two formulas, we can derive the following vol-
umetric ratio of organic matter (vSOM, cm3 cm−3) (see Ap-
pendix A for more details):

vSOM =

((
1

SOM
− 1

)
BDSOM

BDMI
+ 1

)−1

, (8)

where

SOM [kgkg−1
] = foc ·

OC [gkg−1
]

1000
, (9)

BD= 0.071+ 1.322 · exp(−0.0071 ·OC) . (10)

SOM is expressed as organic carbon (OC) in the major-
ity of global soil maps (Hugelius et al., 2013; Hengl et al.,
2014, 2017; Harmonized world soil database, 2020) as well
as in the published units in the SMAPVEX 12 study (Manns
and Berg, 2014). Organic carbon is the major component of
SOM, and in order to convert OC to SOM, the conversion
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factor (foc) of 1.8 was used in Eq. (9). The conventional
OC-to-SOM conversion factor was proposed to be 1.724 by
Waksman and Stevens (1930) and Stenberg et al. (2010).
However, it has been reported that the OC-to-SOM conver-
sion factor can vary from 1.25 to 2.5, and the conventional
value of 1.724 tends to overestimate the OC, as reported by
Pribyl (2010). Instead of 1.724, 1.8 is a more appropriate
value for a wide range of OC, as supported by various stud-
ies (Broadbent, 1953; Ranney, 1969; Manns and Berg, 2014).
Therefore, in this study, we applied 1.8 for the conversion
factor foc in Eq. (9). If a further effort in mapping conver-
sion factors on the global scale is made in a future study, the
probe sensor algorithm might benefit in the improvement of
its accuracy for soil moisture estimation in organic and peat
soils.

By applying Eq. (10) (Hossain et al., 2015), BDMI (bulk
density of “pure” mineral matter) and BDSOM (bulk den-
sity of “pure” organic matter) in Eq. (8) are computed
as 1.393 g cm−3 with 0 % OC (0 g OC per 1 kg soil) and
0.097 g cm−3 with 56 % OC (560 g OC per 1 kg soil) con-
verted from 100 % SOM with the conversion factor 1.8 by
Eq. (9), respectively.

In a previous study, Eq. (11) was proposed as the wilting
point, which is a function of SOM (kg kg−1), with the slope
parameter of SOM modified from 0.786 to 0.6 (Park et al.,
2019). In our study the porosity is suggested as a power law
function according to the SOM variable, as shown in Eq. (12)
(please see the result of simulations in all SOM and clay re-
gions in Fig. B1 in Appendix B).

wwp = 0.02982+ 0.089 · vclay+ 0.65 ·SOM (11)

p = 0.194+ 0.26 · vclay+ 0.5 ·SOM0.5 (12)

By applying Eqs. (11) and (12), which require Eq. (8),
Eqs. (2)–(4) can be used to compose the inverse dielectric
mixing model for the IDO. A detailed description of the pa-
rameters used in the algorithm is provided in Table 1. Pre-
vious studies (Saxton et al., 1986; Vereecken et al., 1989;
Schaap et al., 1998, 2001; Chadburn et al., 2015) showed that
greater SOM values increase the wilting point and porosity as
proposed in Eqs. (11)–(12). If the wilting point and porosity
in dense peat moss, which has very low bulk density, largely
differ according to the type of organic matter, the relationship
between the amount of total organic matter and those param-
eters might be more complex. Such a complex relationship
should be considered by including detailed classification of
SOM as sapric, hemic, and fibric based on a previous study
(Verry et al., 2011).

The IDO model is composed of bound, mixed, and free
water models, as shown in Fig. 1a–c, respectively. The di-
electric constant at the wilting point or porosity should be
calculated first and then compared with the measured data
in order to determine which model should be used among
Eqs. (2), (3), or (4) for soil moisture estimation from the
measured dielectric constant. The results of this selection for

soil moisture estimation from the measured dielectric con-
stant are displayed as shown as red dots in Fig. 1d.

The difference in the soil moisture estimation from the ob-
served dielectric constant based on the Seyfried and IDO
models is presented in Fig. 1e. The IDO model provides
larger SM values with high SOM input (purple curve) and
lower SM values in low SOM input (orange curve) com-
pared with the Seyfried model (black dotted curve). The fac-
tory setting (default probe algorithm) reflects the average
SOM effect empirically in the generalized model. Even with
medium-range SOM (red curve), a relatively small but more
complex difference between the two approaches can be re-
vealed in the SM estimation: lower SM estimation in wet soil
and higher SM estimation in dry soil than the probe estimated
(black dotted).

3 Data

First, it was necessary to determine whether including the
organic matter parameter in the dielectric mixing model im-
proves the accuracy of soil moisture estimation from the
probed dielectric constant. Thus, we compared the results
with the SM measured using the gravimetric method during
SMAPVEX12. The SMAPVEX12 field campaign took place
in 2012 (southwest of Winnipeg, Manitoba, Canada), and the
SMAP SM retrieval algorithms were calibrated and validated
before the launch of the SMAP satellite in 2015 (McNairn et
al., 2015). During this field campaign, intensive data of the L-
band brightness temperature and total radar backscatter cross
section (Tsang and Li, 1999; Entekhabi et al., 2010; Kim et
al., 2014) were collected using airborne sensors. The land
surface type, crop type, crop water content, and soil texture
(clay and sand contents) were evaluated during the exper-
iment. Soil sampling included numerous measurements of
the real part of the dielectric constant: these measurements
were obtained using soil probes obtained from 16 sampling
locations on 50 different agricultural fields (McNairn et al.,
2015). The dielectric data were obtained approximately ev-
ery 2 d between 6 June and 17 July 2012. The sampling depth
of the probe is approximately 5.7 cm and is representative of
the soil layer relevant to the brightness temperature emission
depth detectable by SMOS and SMAP (Schmugge, 1983;
Jackson et al., 1997). In addition to the dielectric observa-
tions, a gravimetric soil sample was obtained from each sam-
pling field during the sampling dates. The gravimetric sam-
ples were obtained from a sampling core with dimensions
of 4.7 cm diameter× 4.6 cm depth (Manns and Berg, 2014);
the volumetric water content from these samples was also
used for the development of calibration equations for the di-
electric probes (Rowlandson et al., 2013). For comparison
with our new model, we used probe measurements (real di-
electric constant) as the input and volumetric soil moisture
data as references (Rowlandson et al., 2013), which were si-
multaneously archived with microwave brightness tempera-
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Table 1. Required physical properties to inverse the dielectric mixing model.

Symbol Physical property Physical unit

εobs Dielectric constant (real part) measured by TDR instrument –
εbound Dielectric constant (real part) of bound water at 50 MHz –
εfree Dielectric constant (real part) of free water at 50 MHz –
εbound 1.4 GHz Dielectric constant (real part) of bound water at 1.4 GHz –
εfree 1.4 GHz Dielectric constant (real part) of free water at 1.4 GHz –
εsoil Dielectric constant (real part) of dry soil –
εair Dielectric constant (real part) of air –
p Dry porosity or saturation point cm3 cm−3

wwp Wilting point (cm3 cm−3) cm3 cm−3

H Damping factor (–) –
w Volumetric soil water cm3 cm−3

vclay Volumetric mixing ratio of clay cm3 cm−3

vsilt Volumetric mixing ratio of silt cm3 cm−3

vsand Volumetric mixing ratio of sand cm3 cm−3

vSOM Volumetric mixing ratio of soil organic matter cm3 cm−3

OC Organic carbon g kg−1

SOM Organic matter kg kg−1

BD Bulk density g cm−3

ture measured from NASA’s airborne L-band active–passive
PALS instrument. The ancillary information for this func-
tion (soil texture information) was provided by Bullock et
al. (2014). At the SMAPVEX12 validation sites (Fig. 2a),
the volumetric clay and sand mixing ratios for Eqs. (5), (6),
(7), (11), and (12) are from the Agriculture and Agri-Food
Canada (AAFC) Soil Landscapes of Canada (Government of
Canada, 2011). The OC information was sampled from the
SoilGrid250m database (Hengl et al., 2017, 2014; Poggio et
al., 2021) and compared with the field estimates of the OC
put forth by Manns and Berg (2014). The field samples of the
OC were processed by grinding oven-dried soil samples and
igniting and burning off organic mass at 375 ◦C. The SOM
was determined from the weight difference between before
and after igniting the soil samples and divided by 1.8 (Ball,
1964; Manns and Berg, 2014; Wang et al., 2011) to convert
SOM to OC.

There are significant range differences among the global
soil organic carbon maps (Zhu et al., 2019), such as the
HWSD (Harmonized World Soil Database, 2020), Soil-
Grid250m (Hengl et al., 2014, 2017), WISE30sec (Bat-
jes, 2016), and Northern Circumpolar Soil Carbon Database
(NCSCD; Hugelius et al., 2013). Therefore, the reliability of
the global soil organic maps used for local soil moisture esti-
mation using soil probes is still unknown. To investigate the
potential limitation of global OC maps (hereafter called the
OCmap experiment), we performed a comparison of OC mea-
surements obtained from each SMAPVEX12 site (Manns
and Berg, 2014) with those retrieved from the SoilGrid205
map. As shown in Fig. 3a, there is an offset between both
datasets of ∼ 50 g kg−1. The estimated OC from the map
was greater and showed a wider OC range compared with

the measured OC at the SMAPVEX12 sites (Fig. 3b). This
means that the SoilGrid250m (Hengl et al., 2017) estimates
are, on average, more than 100 % higher than the measured
data. Thus, a potential limitation of the SoilGrid250m map
exists not only in the spatial pattern, but also in the overall
magnitude (74.4 g kg−1 on average). In this study, we used
OC from SoilGrid250m (without any scaling factor) for the
OCmap experiment.

We investigated the OC accuracy using one type of OC
input into the new soil probe algorithm (Eqs. 2–4) by per-
forming two experiments: (1) OC entered using a Soil-
Grid250m map (OCmap experiment; blue in Fig. 3) and
(2) SMAPVEX12 of the OC in situ of SMAPVEX12 (red
in Fig. 3).

4 Calibration of portable soil moisture sensors

The development of the calibration models is necessary for
further campaigns or further extension of the global soil
moisture network based on a portable soil moisture sensor.
For example, calibration models (Rowlandson et al., 2013)
were proposed by deriving the parameters A, B, and C of the
quadratic function between the effective dielectric constant
and soil moisture for each SMAPVEX12 station.

εobs = Aw
2
+Bw+C (13)

At each site a unique set of A, B, and C was obtained to esti-
mate w (volumetric soil moisture) from the measured dielec-
tric constant ε. It is important to verify whether these em-
pirical models are transferable to other field sites based on
physical interpretation. Therefore, we compared them with
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Figure 1. Single phase relationship between (a) dielectric constant and bound water, (b) bound and free water mixture, (c) free water, (d) soil
moisture estimated among those models, and (e) comparison with the polynomial-based soil probe sensor algorithm proposed by Seyfried
(Seyfried and Murdock, 2004) and for IDO.

Figure 2. (a) SMAPVEX12 validation sites (adapted from Row-
landson et al., 2013) and (b) calculated distribution of soil organic
matter in Canada based on the SoilGrid250m database.

those derived from the dielectric mixing model, as shown in
Table 2. The weighting function describing the attenuation
of signal on probe and satellite sensor can be an exponen-
tial form basically following the Beer–Lambert law, where
infinite attenuation of the electric field is allowed but is neg-
ligible for the deeper sampling depth. On the other hand,
a quadratic form can be considered the weighting function
based on the assumption of a linearly decreasing refractive
index scheme (Wilheit, 1978), so that the emission can be
assumed to be zero from the deeper sampling depth. In this
study, as shown in Table 2, we assumed the Beer–Lambert
law to consider the attenuation effect by applying the damp-
ing factor 0.8 applicable for both probe and satellite remote
sensing. More detailed derivation associated with the damp-
ing factor can be found in the previous study (Park et al.,
2017).

We observed that when the wilting point and porosity in-
creased with increasing OC (according to Eqs. 11–12),A and

Hydrol. Earth Syst. Sci., 25, 6407–6420, 2021 https://doi.org/10.5194/hess-25-6407-2021
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Figure 3. Comparison between organic carbon (OC) observation from SMAPVEX12 (red) and data sampled from the highly resolved
SoilGrid250m map (Hengl et al., 2017) (blue) (a) in histogram and (b) in scatter plot.

Table 2.A, B, and C parameters of the relationship between the effective dielectric constant and soil moisture adapted from Park et al. (2017)
with damping factor H (0.8); dielectric constant for free (εfree), bound water (εbound), and soil mineral, including organic matter (εsoil).

w range A B C

w <wwp (εbound− εair)H ((1−p)εsoil+pεair− 1)H + 1

wwp <w < p
εfree−εbound
p−wwp

H
(
pεbound−wwpεfree

p−wwp
− εair

)
H ((1−p)εsoil+pεair− 1)H + 1

p < w 0 (εfree− εsoil) ·H εsoilH −H + 1

B increased and decreased, respectively, as shown in Fig. 4.
The results of this matching (Fig. 4) showed that A and B
used in the quadratic function computed for SMAPVEX12
can be parameterized with soil texture, wilting point, poros-
ity, and the bound and free water dielectric constants. Ad-
ditionally, the C parameter indicates the effective dielectric
constant of the mixture of dry organic matter (approximately
1.2; Savin et al., 2020) and solid mineral soil (3–5); ide-
ally, the C parameter value should decrease with an increase
in OC. Notably, the clay content was also positively corre-
lated with an increase in OC in SMAPVEX12. Therefore,
owing to the simultaneous increase in clay content, which
is characterized by a high dielectric constant, the sensitiv-
ity of the C parameter to OC variation (decreasing pattern
in C) is nullified, as shown in Fig. 4c. Furthermore, because
C perfectly represents the dielectric constant of dry soil, it
should be greater than 1, which is the real part of the di-
electric constant of a vacuum. Based on this physical con-
straint, the previous C (gray points in Fig. 4) is unrealisti-
cally low (less than that of the vacuum state) in the higher
SOM range. The minimum C is (1−p)εsoil among three w
ranges (Eq. 4), because the following order is always true,
[(1−p)εsoil < (1−p)εsoil+p < εsoil], and it is larger than
2, as shown in Fig. 4c. This shows that the proposed IDO
computes a more realistic value of the dielectric constant for
organic-rich mineral soil.

5 Results

This study aimed to mitigate a significant discrepancy found
between volumetric soil moisture estimated by soil probe
sensor (considered a ground truth for the validation of land
surface modeling and remote sensing) and the gravimetric
soil moisture. Therefore, in this section, the new approach
proposed in Sect. 2 investigated whether the accuracy of the
new sensor algorithm can be improved compared with the ex-
isting probe algorithm. Firstly, looking at Fig. 5a, the current
issue in the probe SM estimates was well displayed in terms
of the matching pattern of the gravimetric soil moisture with
the measured dielectric constant. It showed that the existing
probe soil moisture (red dots in Fig. 5a) could not follow
both features that appeared in the measurements (the signifi-
cant scattering degree and the distinct varying patterns under
dry and wet conditions). This is a fundamental limitation of
the traditional polynomial function, the Seyfried model, as
well as a two-mode system (mineral or organic (peat) soil),
as proposed by Topp et al. (1980) or Roth et al. (1992).

On the other hand, the IDO, with soil organic carbon con-
sidered, allowed us to compute SM with a similar scattering
pattern comparable with that measured by the gravimetric
method. It means that soil organic carbon is a critical factor
in the application of the soil moisture sensors from portable
to satellite based. With regards to the shape appearing in the
scattering pattern, the IDO captured the distinctively curved
edge in the low- and high-end points close to the values of
12 and 50, respectively, on the x axis for the real part of
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Figure 4. Relationship between soil organic carbon measurements (x axis) and calibration parameters (A, B, andC) (y axis) relating between
measured dielectric constant (ε) and volumetric soil moisture (w): (blue dash lines)A, B, and C, which are not sensitive to OC measurements
(Seyfried approach); (gray dots) A, B, and C, which are empirically obtained (Rowlandson et al., 2013); (red dots) A, B, and C, which are
physically simulated by the proposed IDO, which applies the wilting point and porosity as functions of sand and clay volumetric mixing
ratios as well as soil organic carbon with the damping factor applied.

Figure 5. Scatter plot between probe measurements of the real part of the dielectric constant (x axis) and volumetric soil moisture (y axis)
measured by the gravimetric method (green dots in a–c), Seyfried model (red dots in a), the IDO with SOM taken from SoilGrid250m (Hengl
et al., 2017) (red dots in b), and the IDO using OC measured during SMAPVEX12 (Manns and Berg, 2014) (red dots in c).

the dielectric constant. The only difference between (b) and
(c) in Fig. 5 is OC input, originating from SoilGrid250m or
in situ obtained during SMAPVEX12, respectively, with the
same input of clay and sand mixing ratio from SMAPVEX
12. This pattern is probably related to the transition moments
from bound to mixed (a to b in Fig. 1) and from mixed to
free water states (b to c in Fig. 1), which is very interesting
evidence indicating that soil probes can detect critical soil
parameters such as wilting point and soil porosity based on
the accumulated dielectric measurements of certain sites.

Even though the shape of SM scattering estimated from
the measured dielectric data (x axis) became similar to the
one appearing in the gravimetric soil moisture, it is also re-
quired to investigate whether the actual improvement in the
SM accuracy has been achieved via the point-by-point com-
parison with the gravimetric data. This analysis was illus-
trated in the Q–Q plot in Fig. 6. It showed that the scat-
tered uncertainty shown in Fig. 6a of the current soil probe

algorithm can be reduced by the IDO approach as in panels
(b) and (c). The scatter error shown in Fig. 6a slightly con-
verged to a 1 : 1 line when the IDO adapted the OC map as
input (Fig. 6b) and further improved with a narrower scat-
tered error pattern with OC in situ (Fig. 6c). This result fur-
ther showed that the OC variability with the proposed model
can mitigate the uncertainty in SM estimation of the current
dielectric-based soil moisture sensor network.

In Fig. 7, we investigated more characteristics of SM un-
certainty: how the biases of SM estimated by the conven-
tional probe algorithm are related to the in situ OC and
whether they can be mitigated by the proposed algorithm
with the OC measurements. Figure 7a shows that both neg-
ative and positive biases are affected by the IDO. Figure 7b,
obtained by spreading out the histogram according to the de-
gree of SOM, provides an in-depth analysis of how these bi-
ases are distributed according to the measured SOM. This
shows that the negative bias in the high SOM range was re-
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Figure 6. Performance of soil moisture probe algorithms in terms of scattering degree to the gravimetric measurements (x axis): soil moisture
estimates (y axis) using (a) a third-order polynomial approach (Seyfried and Murdock, 2004; Bell et al., 2013), (b) the proposed IDO with
the variational soil organic matter (SOM) sampled from the SoilGrid250m map (Hengl et al., 2017), and (c) the same algorithm but with
SOM measured from SMAPVEX12 (Manns and Berg, 2014).

Figure 7. (a) Histogram of soil moisture (SM) bias and (b) its scat-
ter relationship according to SOM converted from in situ organic
carbon (OC).

duced because the polynomial function of the conventional
probe algorithm presented in Fig. 1e tends to overestimate
the SM in the cases of lower SOM and underestimate the SM
in the cases of higher SOM (as compared with the proposed
multiphase model).

The importance of accurate and highly resolved organic
carbon data in soil moisture estimation from portable soil
sensors is highly evident from the statistical validation pre-
sented in Table 3. The results confirmed that the IDO per-
forms better than the traditional probe algorithm based on
a third-order polynomial function, especially with the OC
measured in the SMAPVEX12 field campaign (with a main-
tained spatial variability): RMSE= 0.0727 cm3 cm−3, corre-
lation of 0.848, and bias of 0.0001 cm3 cm−3.

The results in this section demonstrated that the wilting
point and porosity which emerged in pairing the gravimetric
soil moisture and the dielectric measurements could also be
detected by the new model. Also, it is proven that the volu-

metric soil moisture could be estimated from the sensor more
accurately in terms of bias, RMSE, and correlation analysis.
It means that our approach can provide a more accurate soil
moisture probe algorithm than that currently used in various
soil moisture networks, such as the USCRN (US Surface Cli-
mate Observing Reference Networks) and SMAPVEX field
campaigns. In the boreal forest and Alaska tundra region with
abundant SOM, our study can deliver a significant effect on
the validation and conclusion of the previous studies in land
surface modeling and microwave satellite remote sensing,
which used the probe soil moisture as reference data.

6 Summary and discussion

In this study, we proposed an inverse dielectric mixing model
for a 50 MHz soil sensor for agricultural organic-rich mineral
soil. The 50 MHz sensor is a prevalent frequency band for
soil moisture probes. Cosh et al. (2021) found that in North
America soil sensors using this waveband occupied 40 % of
the soil moisture networks (10 of 25, including USCRN)
and 53 % of sensors (1021 of 1923 locations). Therefore,
the proposed algorithm has the potential to contribute sig-
nificantly to the accuracy of the soil moisture estimates de-
rived from current in situ soil moisture measurements. Fur-
thermore, since the SMAPVEX also used 50 MHz sensors, it
is anticipated that the accuracy of the calibration and valida-
tion of the SMAP-related soil moisture algorithms will be in-
creased. The proposed model is composed of three nonlinear
functions that are mathematically capable of describing the
physical behavior, including the effect of the organic matter
content. In this model, we proposed a physical mixing ap-
proach of organic matter in dry soil and improved the wilting
point and saturation point. This derivation can also be applied
to other bands for capacitance sensors (5 TE (70 MHz), wet
(20 MHz), time-domain reflectometry (TDR) (TDR100/200
(1450 MHz), SoilVUE-10 (1450 MHz), and satellite sensors
SMAP (L-band), and SMOS (L-band) (AMSR-E (JAXA)
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Table 3. Validation of soil moisture obtained from Probe (Probe SM), organic-rich mineral soil based on the SoilGrid250m organic carbon
map (IDOmap), and SMAPVEX12 OC in situ observation (IDOobs).

Bias RMSE Correlation

Probe −0.0042 0.0824 0.824
Proposed algorithm with organic carbon map (IDOmap) 0.0222 0.0789 0.835
Proposed algorithm with in situ organic carbon (IDOobs) 0.0001 0.0727 0.848

Figure 8. Investigation of the similarity of the scatter pattern be-
tween the measured dielectric constant and the soil moisture: (a) ob-
tained from the gravimetric measurements and (b) experimentally
simulated with extreme SOM from 0 % to 30 %.

X/C, Sentinel-1 (ESA) – C). It is also noticed that the applied
organic matter carbon data sampled from SMAPVEX12 sites
(36 g kg−1) were half those of the OC map (74 g kg−1). The
validation results demonstrated a higher performance of the
new model. Regardless of the small amount of OC, its ef-
fect improved the performance of the SM estimation, which
was demonstrated via the IDO proposed in this study. We
compared the obtained soil moisture retrievals with improved
RMSE (13 % ↓), slightly stronger correlation (3 % ↑), and
lower bias (90 % ↓) using the new model and gravimetric
soil moisture data. However, the coverage of the simulated
pattern over the measured points was still smaller. Therefore,
we sought out a potential further improvement based on the
additional experiment designed with SOM varying within the
proposed model. The simulation based on the conventional
polynomial function (red curve in Fig. 8a) could not reduce
the innate uncertainties, and the IDO proposed in this study
could resolve this issue. However, the red dots simulated with
the IDO (Fig. 8b) covered over the measured green dots in-
sufficiently. Therefore, in order to activate this weak pattern,
we performed the experiments to impose a more dynamic OC
estimate to investigate whether greater or less SOM can cover
a similar boundary of the measured distribution through the
IDO model. The results showed that the piecewise pattern of
SM simulated with the proposed approach covered well the
measured pattern with imposing lower (1 %) to higher (30 %)
SOM.

Because the SOM is translated from OC with a conversion
factor (1.8) in this study, the improvement might not have

been sufficient. A realistic estimation of the conversion fac-
tor (foc) in Eq. (10) varying from 1.25 up to 2.5 might be a
possible solution for this. In addition, the IDO is a model able
to replace the calibration factorsA, B, and C of Eq. (13) with
the soil properties presented in Table 2. Overall, the proposed
more physics-based IDO can replace the current soil probe
sensor algorithm, which does not incorporate the importance
of organic matter variability.

A significant improvement could not be shown, probably
for two reasons: the instrumental error in measuring OC from
the soil sample or the constant OC-to-SOM conversion fac-
tor (1.8 for all soil samples). In addition, uncertainty can be
suspected from other sources, such as clay or sand contents
or soil salinity (assumed to be 0 % in this study) used in the
IDO. These effects on the dielectric measurements and their
uncertainties probably served as the limitation of further im-
provement by the IDO. Therefore, for the potential users to
apply our approach, note the following range of SOM ap-
plied: our study was validated in 1 %–15 % and performed
the sensitivity experiment in 1 %–30 % SOM.

Nevertheless, the results regarding the adaptation of in situ
OC in our study demonstrated that the accuracy of the SOM
input for the IDO is critical for the accuracy of SM estimation
from the probe sensor.

In previous studies (Topp et al., 1980; Roth et al., 1992;
Bircher et al., 2016), in the organic mode or the peat soil,
the dielectric constant and soil moisture relationship is cal-
ibrated to be able to simulate the dielectric constant lower
than mineral soil with a given soil moisture. These results are
consistent with our study, which showed a decreasing dielec-
tric constant value in higher SOM by increasing the bound
water fraction due to a higher wilting point (wp). Therefore,
if we have more information about the dielectric constant of
perfectly dried peat soil and a more accurate model for the
wilting point and porosity of this soil, our model will be able
to cover soils from mineral to peat regions to obtain more
accurate global soil moisture. In addition, if we improve this
model toward a frequency-dependent model in a future study,
the existing and future probe measurements obtained in var-
ious frequencies will be able to contribute more extensively
to the calibration and validation of satellites and models.
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Appendix A

Based on the computation of the bulk density for organic
soils, the volumetric mixing ratio of soil organic matter can
be derived as shown in Eqs. (A1)–(A7).

BDsoil =
MMI+MSOM

VMI+VSOM

=
BDMI×BDSOM

(1−SOM)×BDSOM+SOM×BDMI
, (A1)

VSOM

VMI+VSOM

MMI+MSOM

VSOM

=
BDMI×BDSOM

(1−SOM)×BDSOM+SOM×BDMI
, (A2)

υSOM =
VSOM

MMI+MSOM

×
BDMI×BDSOM

(1−SOM)×BDSOM+SOM×BDMI
, (A3)

υSOM =
MSOM

MMI+MSOM

VSOM

MSOM

×
BDMI×BDSOM

(1−SOM)×BDSOM+SOM×BDMI
, (A4)

υSOM =
SOM

BDSOM

×
BDMI×BDSOM

(1−SOM)×BDSOM+SOM×BDMI
, (A5)

υSOM =
BDMI

(1−SOM)
SOM ×BDSOM+BDMI

(A6)

υSOM =
1(

1
SOM − 1

)
×

BDSOM
BDMI

+ 1
, (A7)

where MMI (kg) and MSOM (kg) are mass of mineral and
soil organic matter, VMI (cm3) and VSOM (cm3) are volume
of mineral soil and soil organic matter, υSOM (cm3 cm−3) and
SOM (kg kg−1) are volume and mass mixing ratio, and BDMI
(kg cm−3) and BDSOM (kg cm−3) are bulk density of mineral
and organic matters, respectively.

Appendix B

Figure B1. Simulations of wilting point, Eq. (11) improved from
Park et al. (2019), and porosity, Eq. (12), proposed in this study,
which are functions of soil organic matter in extreme case (a) vol-
umetric clay mixing ratio 100 % and (b) 0 % of the total mineral
within soil.
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