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Abstract. Worldwide, the amount of water used for agricul-
tural purposes is rising, and the quantification of irrigation is
becoming a crucial topic. Because of the limited availability
of in situ observations, an increasing number of studies is fo-
cusing on the synergistic use of models and satellite data to
detect and quantify irrigation. The parameterization of irri-
gation in large-scale land surface models (LSMs) is improv-
ing, but it is still hampered by the lack of information about
dynamic crop rotations, or the extent of irrigated areas, and
the mostly unknown timing and amount of irrigation. On the
other hand, remote sensing observations offer an opportunity
to fill this gap as they are directly affected by, and hence
potentially able to detect, irrigation. Therefore, combining
LSMs and satellite information through data assimilation can
offer the optimal way to quantify the water used for irriga-
tion.

This work represents the first and necessary step towards
building a reliable LSM data assimilation system which,
in future analysis, will investigate the potential of high-
resolution radar backscatter observations from Sentinel-1 to
improve irrigation quantification. Specifically, the aim of this
study is to couple the Noah-MP LSM running within the
NASA Land Information System (LIS), with a backscatter
observation operator for simulating unbiased backscatter pre-
dictions over irrigated lands. In this context, we first tested
how well modelled surface soil moisture (SSM) and vegeta-
tion estimates, with or without irrigation simulation, are able
to capture the signal of aggregated 1 km Sentinel-1 backscat-

ter observations over the Po Valley, an important agricul-
tural area in northern Italy. Next, Sentinel-1 backscatter ob-
servations, together with simulated SSM and leaf area index
(LAI), were used to optimize a Water Cloud Model (WCM),
which will represent the observation operator in future data
assimilation experiments. The WCM was calibrated with and
without an irrigation scheme in Noah-MP and considering
two different cost functions. Results demonstrate that us-
ing an irrigation scheme provides a better calibration of the
WCM, even if the simulated irrigation estimates are inaccu-
rate. The Bayesian optimization is shown to result in the best
unbiased calibrated system, with minimal chances of having
error cross-correlations between the model and observations.
Our time series analysis further confirms that Sentinel-1 is
able to track the impact of human activities on the water cy-
cle, highlighting its potential to improve irrigation, soil mois-
ture, and vegetation estimates via future data assimilation.

1 Introduction

Over the last century, the global water withdrawal grew
1.7 times faster than the population (FAO, 2006). This ag-
gravates the concern over the sustainability of water use as
the demand for agricultural uses continues to increase (Foley
et al., 2011; FAO AQUASTAT http://www.fao.org/nr/water/
aquastat/water_use/index.stm, last access: 20 May 2021).
The strong impact of irrigation on the global water budget is
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highlighted by many studies, and it has been estimated that
about 87 % of the global fresh water withdrawals have been
used for agriculture (Douglas et al., 2009). Accordingly, the
quantification of irrigation on a regional to global scale has
become a hot research topic.

Correctly quantifying irrigation in Earth system models
can serve two purposes. On the one hand, it can help improve
water management (Le Page et al., 2020, Bretreger et al.,
2020); on the other hand, it allows us to quantitatively assess
its effects on the terrestrial water, carbon, and energy cycles
(Haddeland et al., 2007; Breña-Naranjo et al., 2014; Hu et al.,
2016; Qian et al. 2020). Indeed, results of large-scale irriga-
tion studies using land surface models (LSMs) have demon-
strated that irrigation increases soil moisture and evapotran-
spiration (ET) and, consequently, latent heat flux with a de-
crease in sensible heat flux (i.e. Badger and Dirmeyer, 2015;
Lawston et al., 2015; Ozdogan et al., 2010).

Despite the significant impact of irrigation on the water
and energy cycles, its simulation within LSMs is not yet
common practice (Girotto et al., 2017). In earlier studies,
attempts to simulate irrigation in LSMs have relied on dif-
ferent parameterizations of well-known irrigation systems
(like sprinkler, flood, and drip systems; Ozdogan et al., 2010;
Evans and Zaitchik, 2008), making simplified assumptions.
For instance, in Ozdogan et al. (2010), irrigation water is
not withdrawn from a source (such as a river) but instead
added as fictitious rainfall. In contrast, Nie et al. (2018) ac-
counted for source water partitioning, albeit only partially, by
considering groundwater irrigation. Irrigation is normally ap-
plied when soil moisture drops below a user-defined thresh-
old (Ozdogan et al., 2010) and is typically dependent on the
soil properties obtained via soil texture maps.

Moreover, LSMs equipped with irrigation schemes need to
be provided with auxiliary information about crop types and
whether or not the crops are irrigated. This is because differ-
ent crop types are characterized by different rooting depths,
which means they require more or less water to restore root
zone field capacity. This information is normally gathered
from static maps derived from statistical analysis and/or re-
mote sensing (Ozdogan et al., 2010; Monfreda et al., 2008;
Salmon et al., 2015) collected during specific historical pe-
riods, which are normally different to the desired period of
analysis. It is thus clear that the modelling of irrigation is
subject to many simplifying assumptions, which span from
neglecting the year-to-year crop variability and the irrigation
system used to the definition of irrigation application times
based on water availability and crop conditions rather than
actual farmer decisions.

Remote sensing (RS) technologies offer the opportunity
to observe the Earth’s surface and its changes directly and,
hence, are potentially able to monitor irrigated lands world-
wide (Ambika et al., 2016; Gao et al., 2018; Bousbih et al.,
2018; Bazzi et al., 2019; Le Page et al., 2020; Dari et al.,
2020). In the last decade, some authors used visible and near-
infrared RS observations jointly with in situ data collected

from inventories to map areas equipped for irrigation (Am-
bika et al., 2016; Ozdogan and Gutman, 2008). S. V. Kumar
et al. (2015) were the first to propose the use of coarse reso-
lution satellite microwave (MW) sensors to detect irrigation.
The authors compared different coarse-scale active and pas-
sive MW surface soil moisture (SSM) retrievals with SSM
simulations from the Noah LSM (version 3.3; Ek et al., 2003)
without activating an irrigation scheme over a continental
USA domain. Areas where the distributions of model and
RS data sets deviated (based on a Kolmogorov–Smirnov test)
were assumed to be irrigated. Even though some of the prod-
ucts showed a potential ability to detect irrigation, the au-
thors concluded that the spatial mismatch between the satel-
lite footprint and the irrigated fields, radio frequency interfer-
ence (RFI), vegetation, and topography could all deteriorate
the accuracy of the results. Similar conclusions were found
over the same area by Zaussinger et al. (2019), who com-
pared coarse-scale satellite SSM products with soil moisture
predictions from the Modern-Era Retrospective analysis for
Research and Applications, version 2 (MERRA-2) in the ab-
sence of precipitation, and Escorihuela and Quintana-Seguí
(2016), who additionally compared a downscaled version of
the Soil Moisture and Ocean Salinity (SMOS) mission SSM
to SURFEX LSM simulations. Brocca et al. (2018), Jalilvand
et al. (2019), and Dari et al. (2020) used a conceptually differ-
ent approach, with the same coarse scale MW SSM products,
and estimated irrigation by directly inverting a simple water
balance equation (Brocca et al., 2014).

The Copernicus Sentinel-1 satellites (Sentinel-1A and
Sentinel-1B) offer a new perspective for agricultural appli-
cations thanks to the finer spatial resolution (up to 10–20 m)
of the synthetic aperture radar (SAR) backscatter (σ 0) data.
For instance, Gao et al. (2018) proposed an approach to map
irrigated lands over the Urgell region in Catalonia (Spain),
and Le Page et al. (2020) proposed a methodology to detect
irrigation timing in southwestern France by comparing the
SSM signal at the plot scale, derived using Sentinel-1 σ 0 and
NDVI from Sentinel-2 (El Hajj et al., 2017), with a water
budget model forced by Sentinel-2 optical data for the detec-
tion of irrigation timing.

Despite the high potential demonstrated by RS in detect-
ing, mapping, and quantifying irrigation, the uncertainties of
the satellite retrievals, the relatively low revisit time of high-
resolution active MW products, and the too coarse spatial
resolution of passive MW products with respect to the mean
size of irrigated fields represent main limitations for irriga-
tion information retrieval (Romaguera et al., 2010; La Page
et al., 2020). Data assimilation (DA) could reduce some un-
certainties by optimally integrating LSM estimates and RS
observations. Indeed, the LSM estimates resolve processes at
desired spatiotemporal scales, while the RS observations can
track, in a more realistic way, human processes like irriga-
tion and their interactions with the water and energy cycles.
Contrasting LSM simulations with RS observations offers an
opportunity to correct for unmodelled processes or missed
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events, such as irrigation (S. V. Kumar et al., 2015; Girotto
et al., 2017). More generally, DA of satellite-based obser-
vations has shown the potential to update soil moisture (De
Lannoy and Reichle, 2016; Kolassa et al., 2017) and vegeta-
tion (Albergel et al., 2018; Kumar et al., 2020), and important
impacts have been reported over agricultural areas (Kumar
et al., 2020).

The assimilation of MW RS observations in LSMs of-
ten involves retrieval assimilation. However, assimilating re-
trievals (i.e. SSM or vegetation optical depth rather than MW
brightness temperature or σ 0 measurements) can be prob-
lematic as the retrievals may have been produced with an-
cillary data that are inconsistent with those used in the LSM
(De Lannoy et al., 2016). This is particularly true for passive
MW retrievals, while active MW retrievals generally rely on
change detection methods that lack land-specific ancillary in-
formation altogether. An alternative approach, which we fol-
low in this study, is to directly assimilate MW observations
and equip the LSM with an observation operator that links
the land surface variables of interest (e.g. soil moisture and
vegetation) with RS data. This allows us to obtain consis-
tent parameters and to reduce the chance of cross-correlated
errors between model states and corresponding geophysical
satellite retrievals. The direct assimilation of MW observa-
tions has already been demonstrated successfully for the up-
date of soil moisture by using brightness temperature (Tb)
derived from the SMOS and SMAP (Soil Moisture Active
Passive) missions (De Lannoy et al., 2016; Carrera et al.,
2019; Reichle et al. 2019), as well as using radar σ 0 from AS-
CAT (Advanced Scatterometer; Lievens et al., 2017b), and
σ 0 from Sentinel-1 in synergy with SMAP Tb (Lievens et al.,
2017a). However, to our knowledge, none of these studies
considered the joint updating of soil moisture and vegeta-
tion, and none specifically focused on the performance over
irrigated areas. The σ 0 from Sentinel-1 contains information
on both soil moisture (Zribi et al., 2011; Liu and Shi, 2016;
Li and Wang, 2018; Bauer-Marschallinger et al., 2018) and
vegetation (Vreugdenhil et al., 2018, 2020), and assimilat-
ing this data could allow us to update both soil moisture and
vegetation in a land data assimilation system and, in doing
so, correct for missed irrigation events.

To that end, the LSM needs to be coupled to a backscat-
ter forward model as an observation operator. Different SAR
σ 0 models have been proposed to simulate the backscatter-
ing contributions of soil and vegetation (Attema and Ulaby,
1978; Oh, 2004; Zribi et al., 2005; Bai et al., 2015; Baghdadi
et al., 2017). Most commonly used, the Water Cloud Model
(WCM hereafter) developed by Attema and Ulaby (1978) is a
σ 0 model that represents the vegetation canopy as a homoge-
neous cloud containing randomly distributed water droplets.
In order to use the WCM as the forward operator in a σ 0 data
assimilation system, it first needs to be calibrated to account
for biases between the LSM simulations and the satellite ob-
servations. However, calibrating a WCM to simulate σ 0 over
irrigated areas is not a straightforward process, and it repre-

sents a key research problem if the same σ 0 signal is used for
the calibration of WCM parameters and later for assimilation
and updating of the state. In fact, if the objective is to assimi-
late radar σ 0 to realistically inform the model about irrigation
applications, the WCM parameters have to maintain a certain
degree of independence from the irrigation signal contained
in the observed σ 0 as, otherwise, the assumption of uncorre-
lated errors between model and observations typical of clas-
sical Bayesian-based filters is violated. More specifically, if
the LSM provides unrealistic simulations as input (i.e. the
absence of irrigation), then the WCM calibration with ob-
served σ 0 would compensate for this bias. This would, in
turn, lead to a biased backscatter model with undesirable cal-
ibrated parameters for the subsequent data assimilation ex-
periments. Therefore, different strategies can be adopted, for
instance by calibrating the model during non-irrigated peri-
ods or over non-irrigated areas or equipping the LSM with an
irrigation module that makes the WCM less constrained by
inconsistencies between simulated and observed σ 0 during
irrigation periods. The efficacy of these strategies has, so far,
never been explored.

The main objective of this study is to simulate radar σ 0

using a LSM coupled with a WCM and to provide solutions
and recommendations for the optimization of the WCM as an
observation operator. This is a major stepping stone towards
the development of a reliable system for the assimilation of
high-resolution Sentinel-1 σ 0 observations over irrigated ar-
eas. Additionally, we aim at the following:

1. testing the ability of a sprinkler irrigation system cou-
pled with a LSM to simulate irrigation so as to highlight
the potential and limitations of such a tool to optimize
a backscatter forward operator over heavily irrigated ar-
eas

2. demonstrating that Sentinel-1 σ 0 observations contain
valuable information to improve both SM and vegeta-
tion predictions over irrigated land (i.e. soil moisture
and vegetation consistent with human alterations in the
water cycle due to intensive irrigation).

The analysis is carried out over the Po Valley, one of the
most important agricultural areas in Italy and also one of
the more intensively irrigated areas in Europe (water with-
drawal in the Po basin is estimated to be 20.5 billionm3 yr−1,
of which 16.5 billion m3 yr−1 is withdrawn for irrigation;
Po River Watershed Authority, 2016). We use the Noah-
MP v.3.6 LSM (Noah-MP hereafter) as part of the NASA
Land Information System (LIS) framework, together with
the WCM from Attema and Ulaby (1978), for the simula-
tion of both σ 0 vertical send and receive (VV) and verti-
cal send and horizontal receive (VH) polarization. Level 1
Sentinel-1 σ 0 observations are used to calibrate the WCM
at 1 km resolution, using simulated SSM and leaf area index
(LAI) estimates from Noah-MP. The WCM is calibrated for
a total of four calibration experiments for each polarization,

https://doi.org/10.5194/hess-25-6283-2021 Hydrol. Earth Syst. Sci., 25, 6283–6307, 2021



6286 S. Modanesi et al.: Optimizing a backscatter forward operator using Sentinel-1 data over irrigated land

Figure 1. The study area and the two test sites of (a) Budrio and (b) Formellino. Data on the topography are obtained from ETOPO1
Arc-Minute Global Relief Model (Amante and Eakins, 2009). Map data © 2015 Google.

namely (1) with or without activating an irrigation scheme
within Noah-MP and (2) considering two different cost func-
tions. Specifically, we want to demonstrate that activating an
– even poor – irrigation scheme is needed to obtain long-term
unbiased σ 0 simulations and uncorrelated errors between the
WCM and Sentinel-1, and that the calibration process can be
sensitive to different cost functions.

The paper is organized as follows. Section 2 provides in-
formation on the study area, the selected data sets, and meth-
ods used for our analysis. Specifically, Sect. 2.3 and 2.4
provide a detailed description of the Noah-MP LSM and
the WCM. Section 2.5 describes the cost functions used for
the WCM calibration, while Sect. 2.6 is a description of
the experimental set-up designed for the calibration. Finally,
Sect. 2.7 provides insights on the Noah-MP and WCM eval-
uations. Section 3 presents the results, with an assessment of
the Noah-MP evaluation, both regional (Sect. 3.1) and over
the test sites (Sect. 3.2). The WCM calibration and evalua-
tion results are described in Sect. 3.3 and 3.4, respectively.
We provide a discussion in Sect. 4, while conclusions are re-
ported in Sect. 5.

2 Data and methods

2.1 Study area and in situ data

The analysis was carried out over an area of 24 000 km2 lo-
cated within the Po Valley, one of the most important agricul-
tural areas in Europe (Fig. 1; 44◦ N, 10.5◦W – bottom left;
45.5◦ N, 12.2◦W – top right). The Po Valley is part of the
Po basin district (∼ 74 000 km2), a mountain-fed catchment

which extends from the Alps in the west to the Adriatic Sea in
the east. The Po district is one of the eight districts mentioned
in the Water Framework Directive (WFD; EC, 2000) initi-
ated by the European Commission and has been hit by sea-
sonal drought events which impacted all water use sectors,
in particular agriculture (Strosser et al., 2012). The water as-
sessment and impact evaluation of human activities over the
Po Valley is thus a topic of major interest, considering the
significant requirements from the agricultural management
sector.

According to the Köppen–Geiger climate classes (Peel
et al., 2007) the study area is classified as Cfa (temper-
ate climate, without a dry season, and with hot summers).
From a geographical point of view, the Po river flows from
the west to the east, splitting the area of interest in north-
ern and southern areas, respectively. North of the Po river,
the agricultural plain area can additionally be subdivided
into the Veneto region to the east and the Lombardy re-
gion to the west (Fig. 1). Lombardy lands have a high wa-
ter availability, thanks to the presence of several Alpine
lakes and reservoirs (Musolino et al., 2017), as does the
Veneto region. Wine cultivation plays an important role,
especially in the Lake Garda surroundings (located to the
northwest of the study area). In the south, the Emilia Ro-
magna region is an agricultural and urbanized industrial-
ized area. Compared to Lombardy and Veneto, Emilia Ro-
magna is much poorer both in water availability and stor-
age capacity, but its irrigation system is considered the most
technologically advanced and efficient in the Po river basin
(Musolino et al., 2017). Specifically, it hosts the Canale
Emiliano Romagnolo (CER; https://consorziocer.it/it/, last
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access: 20 May 2021), which is one of the most impor-
tant Italian hydraulic systems for agricultural water supply.
The main crops in the study region include general sum-
mer and winter crops, orchards (i.e. peach, pear, and kiwi),
olive groves, and vineyards (https://sites.google.com/drive.
arpae.it/servizio-climatico-icolt/home; last access: 20 May
2021). The plain area is surrounded by a forested hilly and
mountainous area of the Tuscan–Emilian Apennines to the
south/southwest.

In situ data were collected over two test sites located in the
Emilia Romagna region.

– For an analysis at plot scale, we selected the Budrio
test site (Fig. 1a), an experimental farm managed by
the CER authority, which includes two plots of 0.39–
0.49 ha. The main crops are maize for field 1 (in yel-
low) and tomatoes in field 2 (red). Daily irrigation
data, in millimetres, were collected for the summer of
2015–2016 over field 1, whereas daily irrigation water
amounts were collected for the summer of 2017 over
field 2. Additionally, for field 2, hourly in situ soil mois-
ture data, aggregated here at a daily scale, were made
available from the Department of Physics and Earth
Science of the University of Ferrara. The soil moisture
data were derived from an innovative proximal gamma-
ray (PGR SM hereafter; Filippucci et al., 2020, Strati
et al., 2018) station, equipped with a 1 L NaI(Tl) de-
tector placed at 2.25 m above ground and a commer-
cial agro-meteorological station (MeteoSense 2.0, Net-
sens; Strati et al., 2018). The PGR is a nuclear non-
invasive and non-contact technique, which allows us to
overcome the issue connected to in situ point measure-
ments, probing soil moisture with a field-scale footprint
(∼ 104 m2) up to a depth of∼ 30 cm. The quantification
of PGR soil moisture is derived from measurements of
gamma signals emitted by the decay of 40K, which is
extremely sensitive to different soil water contents in
agricultural soils (for more information on the PGR soil
moisture deriving procedure, the reader can refer to Bal-
doncini et al., 2019). Finally, daily rainfall data were
collected from the national rainfall network, managed
by the Department of Civil and Environmental Protec-
tion (DPC) of Italy, for the irrigated periods.

– The second test site (Fig. 1b) is located around the city
of Faenza (hereafter the Faenza test site) and has a total
extent of 1051 ha, consisting of two fields which allow
analysis at the small-district spatial scale. The first one
is called San Silvestro (290 ha), and it is located north of
the city. The second one is called Formellino (760 ha),
located east of the San Silvestro field and northeast of
the city of Faenza. Fruit trees are prevalent on the fields;
in particular, pear trees and kiwi dominate the area. The
water used for irrigation was provided by CER, at an
hourly timescale and in millimetres, for the 2-year time
period of 2016–2017. Daily rainfall data were collected

from the national rainfall network managed from the
DPC.

2.2 Sentinel-1 σ 0 and reference remote sensing
products

The Copernicus-ESA Sentinel-1 σ 0 observations were used
in this study for the calibration of the WCM. The Sentinel-
1 constellation consists of two satellites, Sentinel-1A and
Sentinel-1B, launched in 2014 and 2016, respectively. Each
satellite carries a synthetic aperture radar (SAR) operating at
the C band (5.4 GHz) in the microwave portion of the elec-
tromagnetic spectrum. The processing of the ground-range
detected (GRD) interferometric wide swath (IW) observa-
tions in VV and VH polarization was done using Google
Earth Engine’s Python interface and included standard tech-
niques, namely precise orbit file application, border noise re-
moval, thermal noise removal, radiometric calibration, and
range Doppler terrain correction. Furthermore, the σ 0 obser-
vations acquired at 5 m× 20 m resolution were aggregated
and projected on the 1 km Equal-Area Scalable Earth ver-
sion 2 (EASE-2) grid (Brodzik et al., 2012). After apply-
ing an orbit bias correction (Lievens et al., 2019), the ob-
servations from different orbits, either from Sentinel-1A or
Sentinel-1B and ascending or descending tracks, were com-
bined at the daily timescale.

Additionally, RS observations were used for the evaluation
of the SSM and LAI simulated in Noah-MP LSM for the
period 31 March 2015–December 2019.

– The NASA Soil Moisture Active Passive (SMAP; En-
tekhabi et al., 2010) is an orbiting observatory launched
in January 2015 carrying two instruments, namely a
SAR, which suffered a failure in early July 2015, and
a radiometer measuring Tb at the L band, with a na-
tive spatial resolution of 40 km, a revisit time of 2–3 d,
and ascending and descending overpasses at 18:00 and
06:00 LT (local time), respectively. For this study, the
9 km SMAP Enhanced Level-2 SSM version 4 (0–5 cm;
SMAP L2 hereafter) product was used (O’Neill et al.,
2020; Chan et al., 2018). The product is derived from
SMAP Level-1B (L1B) interpolated antenna temper-
atures using the Backus–Gilbert optimal interpolation
technique. Both ascending and descending tracks were
collected.

– The Metop ASCAT SSM Climate Data Record (CDR)
H115 and its extension H116 are provided by the Eu-
ropean Organization for the Exploitation of Meteoro-
logical Satellites (EUMETSAT) Support to Operational
Hydrology and Water Management (H SAF, 2021). The
SSM is retrieved from σ 0, using a change detection al-
gorithm (Wagner et al., 2013), and is characterized by
a spatial sampling of 12.5 km and a temporal resolution
of one to two observations per day, depending on the
latitude.
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Figure 2. Regridded and reclassified input data used in the LIS framework. (a) The PROBA-V land cover (LC) map. (b) The Harmonized
World Soil Database (HWSD) soil texture map.

– The PROBA-V LAI is derived from the PROBA-V
satellite mission (Francois et al., 2014; Dierckx et al.,
2014) and provided by the Copernicus Global Land Ser-
vice (CGLS) programme (Copernicus Global Land Ser-
vice Site, 2021). The CGLS product at 1 km spatial res-
olution and 10 d temporal resolution is developed based
on the work by Verger et al. (2014).

In order to compare Noah-MP simulations and reference
data at the same spatial resolution, Sentinel-1 observations
(σ 0 VV and σ 0 VH) and ASCAT SSM, SMAP L2 SSM, and
PROBA-V LAI were extracted over the study domain (44◦ N,
10.5◦W – bottom left; 45.5◦ N, 12.2◦W – top right) and re-
gridded over the LIS grid domain (0.01◦) using the nearest
neighbour approach.

2.3 Land surface and irrigation modelling

2.3.1 Noah-MP v.3.6

The analysis was carried out using the Noah-MP (Niu et al.,
2011) LSM, running within NASA’s LIS version 7.2 (Ku-
mar et al., 2008). LIS is a software framework for terres-
trial hydrology modelling and DA, which supports different
LSMs that can be conditioned on multiple remote sensing
products from active and/or passive microwave sensors. The
Noah-MP LSM, which was chosen for this study, is an evo-
lution of the baseline Noah LSM (Mahrt and Ek, 1984; Chen
et al., 1996; Chen and Dudhia, 2001), where the main im-
provements and augmentations are (1) the presence of four
soil layers, (2) up to three snow layers, (3) one canopy layer,
which allows us to dynamically simulate the vegetation and
to compute separately the ground surface temperature, (4) a
two-stream radiation transfer scheme based on the canopy
layer sub-grid scheme, (5) a Ball–Berry-type stomatal resis-
tance scheme, and, (6) finally, a simple groundwater model

with a TOPMODEL-based runoff scheme (Niu et al., 2005,
2007). The model was set up by selecting four soil layers at
depths of 0–10, 10–40, 40–100, and 100–200 cm, a dynamic
vegetation model with a Ball–Berry-type canopy stomatal re-
sistance model (Ball et al., 1987), and TOPMODEL-based
runoff.

The parameterization followed the recommended options
provided in the LIS documentation (https://lis.gsfc.nasa.gov/
documentation/lis, last access: 30 November 2021). A model
time step of 15 min and a 6 h output interval were selected,
together with a spatial resolution of 0.01◦. The meteoro-
logical forcings used for running Noah-MP LSM were ob-
tained from MERRA-2 (Gelaro et al. 2017). The MERRA-
2 original spatial resolution of 0.5◦× 0.625◦ was remapped
to 0.01◦ through bilinear interpolation. Land model data and
parameters were preprocessed and adapted to the LIS longi-
tude/latitude projection using the Land Surface Data Toolkit
(LDT; Arsenault et al., 2018) in order to run Noah-MP at the
chosen spatial resolution.

For this study, the default LIS land cover (LC) map from
the University of Maryland (UMD) global land cover prod-
uct (Hansen et al., 2000), based on the Advanced Very
High Resolution Radiometer (AVHRR) data, was replaced
with the 2015 global LC map, available from the CGLS at
100 m spatial resolution (Buchhorn et al., 2020; available
at https://land.copernicus.eu/global/products/lc, last access:
20 May 2021). The CGLS provides dynamic land cover lay-
ers at 100 m spatial resolution (CGLS-LC100), obtained by
combining information derived from the vegetation instru-
ment on board the PROBA-V satellite, a database of high-
quality LC reference sites, and several ancillary data sets.
For a more detailed explanation of the LC maps generation
process we refer to the Algorithm Theoretical Basis Docu-
ment (ATBD; Buchorn et al., 2020). The 23 classes of the
PROBA-V LC map were reclassified to the 14 classes used
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in the UMD-AVHRR classification supported by LIS. Ad-
ditionally, the LC map was regridded at 0.01◦ (Fig. 2a) by
identifying the most representative class over each LIS grid
cell. For additional information on the reclassification pro-
cess, we refer the reader to Table S1 in the Supplement. Sim-
ilarly, the default Food and Agriculture Organization (FAO)
Soil Map (FAO, 1971) was replaced by the Harmonized Soil
World Database (HWSD v1.21; 1 km; Fig. 2b) and mapped
to five soil classes over the study region. Other model pre-
processed parameters inputs were (1) the Shuttle Radar To-
pography Mission elevation data (SRTM30; 30 m spatial res-
olution); (2) the climatological global Greenness Vegetation
Fraction (GVF) data (0.144◦; Gutman and Ignatov, 1998),
derived from 5 years (1985–1989) of normalized difference
vegetation index (NDVI) data from the AVHRR (Miller et al.,
2006), (3) a snow-free albedo and a Noah-specific maxi-
mum snow albedo product from NCEP (National Centers
for Environmental Prediction; original resolution 1◦ and re-
gridded), and, finally, (4) soil, vegetation, and other general
parameter tables for Noah-MP from the official LIS Data
Portal (https://portal.nccs.nasa.gov/lisdata_pub/data/, last ac-
cess: 20 May 2021).

2.3.2 Irrigation modelling

The ability of Noah-MP to dynamically simulate the vegeta-
tion and the option to activate irrigation are particularly im-
portant when considering an extensively irrigated area such
as the Po Valley. Indeed, in a recent study by Nie et al. (2018),
Noah-MP was coupled with a sprinkler irrigation scheme
(Ozdogan et al., 2010; where irrigation is applied as supple-
mentary rainfall), which requires the following three pieces
of information:

– The irrigation location, which only occurs over poten-
tially irrigated croplands (expanding over grassland if
the intensity exceeds the grid cell’s total crop fraction).
This information is extracted from a LC map associated
with an additional data set providing information on the
percent of irrigated area per grid cell. In this study, the
reclassified PROBA-V LC map was coupled with the
information contained in the 500 m global rain-fed, ir-
rigated, and paddy croplands data set (GRIPC; Salmon
et al., 2015).

– The timing of irrigation, which is determined by check-
ing the start and end of the growing season, based on a
GVF threshold, separately at each grid cell. Following
Ozdogan et al. (2010), we set this threshold to 40 % of
the GVF.

– The amount of water which is used for irrigation.
This quantity is derived from the root zone soil mois-
ture (RZSM) availability (MA) as MA = (RZSM −
SMWP)/ (SMFC − SMWP), where RZSM is the cur-
rent RZSM, SMWP is the wilting point, and SMFC is

the field capacity. When the MA falls below a user-
defined threshold, irrigation is triggered, and the quan-
tity is defined by calculating the amount of irrigation
needed to raise the RZSM to the SMFC. For this study,
the MA threshold was defined as the 50 % of SMFC
as in Ozdogan et al. (2010). MA is calculated at each
time step, but the irrigation is only applied between
06:00 and 10:00 LT. Following Ozdogan et al. (2010),
this time frame is typically chosen by farmers to re-
duce evaporative losses. In this context, the maximum
rooting depth becomes a crucial information to compute
the amount of irrigation water. This information is re-
lated to an assigned crop type, cultivated over the study
area, through a maximum rooting depth table. Consid-
ering the high crop variability over the Po Valley and
the lack of high-resolution dynamic crop maps for the
entire study area, a generic crop type with 1 m root
depth was selected for the irrigation simulations. The
reference rooting depth was verified to be feasible over
the study area, based on the European Soil Data Cen-
tre (ESDAC; available at https://esdac.jrc.ec.europa.eu/
content/european-soil-database-derived-data, last ac-
cess: 20 May 2021) rooting depths map (Fig. S1 in the
Supplement).

2.4 Water Cloud Model

The WCM allows us to simulate the top-of-vegetation σ 0

as a function of SSM and vegetation, using empirical fit-
ting parameters. σ 0 is modelled as the sum of the backscat-
ter from the vegetation (σ 0

veg; in decibels, hereafter dB) and
from the bare soil (σ 0

soil; in dB), attenuated by the t2 coeffi-
cient that describes the two-way attenuation from the vege-
tation layer. Scattering interactions between the ground and
the vegetation are not accounted for. As reported in Baghdadi
et al. (2017), for a given polarization pq (i.e. VV and VH),
the WCM can be written as follows:

σ 0
pq = σ

0
veg,pq+ t

2
pqσ

0
soil,pq, (1)

where, in the following,

σ 0
veg,pq = ApqV1 cosθ(1− t2pq) (2)

t2pq = exp
(
−2BpqV2

cosθ

)
(3)

σ 0
soil,pq = Cpq+Dpq ·SSM. (4)

Equations (2) and (3) describe the vegetation-related
terms. V1 and V2 represent two bulk vegetation descriptors,
with the first one accounting for the direct vegetation σ 0

and the second one representing the attenuation. Apq (−) and
Bpq (−) are the two related fitting parameters. Common veg-
etation descriptors used in previous studies are the vegeta-
tion water content (VWC; Paloscia et al., 2013), the NDVI
(El Hajj et al., 2016; Li and Wang, 2018), and LAI (K. Ku-
mar et al., 2015; Bai and He, 2015), while θ represents the
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incidence angle, which is assumed to be 37◦ for Sentinel-1.
Following previous studies (see Lievens et al., 2017b; Bagh-
dadi et al. 2017; Li and Wang, 2018), we assumed V1 = V2
represented by the dynamically simulated LAI vegetation de-
scriptor.

Equation (4) describes the soil-related term. Following the
work by Lievens et al. (2017b), the σ 0

soil can be described,
in a simple linear approach, as a function of the SSM. There
are several semi-empirical models (e.g. the Oh model; Oh
et al., 1992) or theoretical models (e.g. the Integral Equation
Model – IEM; Fung, 1994), which describe the scattering
processes related to the bare soil, but their application as a
forward operator coupled to a LSM has two main limitations.
The first one lies in the difficulty in retrieving soil roughness
values over extended reference areas required to parameter-
ize these models. The second one is their saturation of σ 0 in
moist conditions, which causes low variability in simulated
σ 0 if the LSM soil moisture simulations are biased wet (for
more information, see Lievens et al., 2017b). Those limita-
tions justify the use of a linear fitted approach. In Eq. (4), the
C andD parameters (here fitted in dB and decibels per cubic
metre per cubic metre, dBm−3 m−3, respectively, but σ 0

soil is
transformed back to the linear scale in Eq. 1) describe the
linear relation between σ 0

soil,pq and SSM. Those parameters,
together with A and B (–), need to be calibrated separately
for each polarization.

2.5 Calibration algorithms

We considered the following two different objective func-
tions to optimize the A, B, C, and D parameters:

– A Bayesian solution, which minimizes the sum of
squared errors (SSEs) between σ 0 observations from
Sentinel-1 and WCM simulations. The SSE Bayesian
calibration solution aims at identifying the optimal pa-
rameter vector α, which maximizes the probability of
the resulting σ 0 simulations p(ŷ−)= p(ŷ−|α)p(α),
where p(α) is the prior parameter distribution and
p(ŷ−|α) is the likelihood. Starting from the assumption
of an independent and identically distributed normal er-
ror model, the posterior probability can be maximized
by maximizing the following:

p(ŷ−|α)p(α)

=

∏Ni

i

{
1

si
√

2π
exp

(
−
(ŷ− ŷ−)2i

2s2
i

)}

·

∏Nα

j

{
1

sj
√

2π
exp

(
−
(α0−α)2j

2s2
j

)}
, (5)

i.e. the combination of the likelihood and a prior param-
eter constraint. The latter helps in reducing problems of
equifinality. In Eq. (5), ŷ represents the observed σ 0,
ŷ− is the simulated σ 0, i is the time step, and si is

the standard deviation of the residual differences be-
tween the observed and simulated σ 0 values forNi time
steps. Nα is the number of parameters to be calibrated,
α0 is the prior parameter constraint, and the parame-
ter deviation is limited by s2

j , which is the variance of
a uniform distribution s2

j = (αmax,j −αmin,j )
2/12, with

determined boundaries of the parameters [αmin,αmax].
The maximum likelihood solution is found by minimiz-
ing the following cost function J :

J =
∑Ni

i

{
ln(si)+

(ŷ− ŷ−)2i

2s2
i

}

+

∑Nα

j

{
(α0−α)2j

2s2
j

}
= J0+ Jα, (6)

where si is assumed to be constant in time and repre-
sented by a target accuracy of 1 dB, leaving the SSEs in
the first term of J0 to minimize. The second term (Jα)
constrains the optimal solution by avoiding strong devi-
ations from initial parameter guesses.

– A solution that maximizes the Kling–Gupta efficiency
(KGE; Gupta et al., 2009). Even though this objective
function does not ensure Bayesian optimality, it is a
widely used metric which could help to better tune the
dynamic σ 0 behaviour, as follows:

KGE

= 1−

√
(r − 1)2+

(
〈ŷ−〉

〈ŷ〉
− 1

)2

+

(
s[ŷ−]/〈ŷ−〉

s[ŷ]/〈ŷ〉
− 1

)2

. (7)

The KGE formulation embeds three terms. (1) The
first term accounts for the Pearson correlation (Pear-
son R) between the observed (ŷ) and simulated (ŷ−)
σ 0 time series. (2) A second term accounts for the bias,
where the long-term mean is represented as 〈.〉. Fi-
nally, (3) there is a term accounting for the variability
in the simulated and observed signal through the use of
the standard deviation s[.]. KGE= 1 indicates a perfect
agreement between simulations and observations. Note
that KGE redistributes the weight of the bias, variance,
and correlation components compared to J in Eq. (6),
which can help in reducing differences between simu-
lated and observed σ 0, and also in terms of temporal
dynamics, during the calibration. On the other hand, in
the KGE, cost function parameters are not constrained
by prior values α0. This could possibly result in overfit-
ting and a larger prediction uncertainty.

The particle swarm optimization (PSO; Kennedy and
Eberhart, 1995) was used to minimize J and maximize KGE.
For our case study, the PSO parameters were set as in De
Lannoy et al. (2013).
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Figure 3. Flow chart of the experimental set-up used in this study to calibrate the WCM σ 0 signal. A natural and an irrigation experimental
line was performed coupling either Noah-MP natural or irrigation simulations with the WCM. For each experimental line, σ 0 simulations
are driven by the Sentinel-1 signal using two different cost functions (J and KGE) in order to provide eight different calibration experiments.

2.6 Experimental set-up

An optimal DA system requires long-term unbiased σ 0 sim-
ulations (with respect to the assimilated observations). The
risk, over an intensively irrigated area, is that an unmodelled
irrigation signal would manifest itself as a predominant bias
in the σ 0 simulations. The calibration would then inadver-
tently correct for this supposed bias (i.e. the irrigation signal),
thus preventing the DA system from propagating the missing
irrigation signal from the observations into the model. Even
though existing irrigation schemes are evidently unrealistic
and inaccurate, we conjecture that using such a scheme when
calibrating the WCM will more likely yield optimal WCM
parameters than when neglecting irrigation.

To that end, we considered two different experiment lines
(referred to as natural and irrigation, respectively) that pro-
duced a total of eight different σ 0 simulation runs (see
Fig. 3). The natural experiment line differs from the irriga-
tion line by the activation of an irrigation module in Noah-
MP, and both are subjected to the calibration algorithms de-
scribed in Sect. 2.5. The natural line was used as a diagnostic
experiment against which to compare irrigation, which, ac-
cording to our initial hypothesis, should minimize the impact
of the irrigation signal contained in the σ 0 observations on
WCM parameters.

As a first step, a model spin up was performed, starting in
January 1982 and ending in December 2014. Then, a study
period from January 2015 to December 2019 was selected
for the different model runs, based on the availability of the
processed Sentinel-1 σ 0 and reference irrigation data (see

Sect. 2.1 and 2.2). Daily surface model and irrigation outputs
were produced. Considering that the main source of irriga-
tion in the Po Valley is related to surface water abstraction,
the sprinkler irrigation scheme did not account for ground-
water withdrawals (see Nie et al., 2018).

The A, B, C, and D parameters of the WCM (see
Sect. 2.4) were fitted separately to Sentinel-1 σ 0 VV and
σ 0 VH observations during the period of January 2017– De-
cember 2019. Following previous literature (Lievens et al.,
2017b; De Lannoy et al., 2014, 2013), we performed a grid-
cell-based calibration to account for the spatial variability in
the simulated and observed σ 0 signals that stems from spe-
cific features within the observed footprints and from the soil
and vegetation parameterization of Noah-MP. Both the cal-
ibration using the SSEs with prior constraint (Bayesian J )
and the KGE were applied to the natural and irrigation runs,
providing eight different experiments named J -VV natural,
J -VH natural, J -VV irrigation, J -VH irrigation, KGE-VV
natural, KGE-VH natural, KGE-VV irrigation, and KGE-VH
irrigation.

Lower and upper boundaries and prior guess values of
the WCM parameters were defined based on the work of
Lievens et al. (2017b) and on a sensitivity analysis (not
shown here). The selected values are displayed in Table 1.
Finally, it should be noted that all the calibration experiments
were realized by considering daily values of σ 0 simulations
and observations.
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Table 1. Lower boundaries (LB), upper boundaries (UB), and prior guess values of the WCM parameters for both VV and VH polarization.

A-VV A-VH B-VV B-VH C-VV C-VH D-VV D-VH
(–) (–) (–) (–) (dB) (dB) (dBm−3 m−3) (dBm−3 m−3)

UB 0.4 0.4 0.4 0.4 −10 −10 80 80
LB 0 0 0 0 −35 −35 15 15
Guess 0 0 0 0 −20 −30 40 40

2.7 Noah-MP LSM and WCM evaluations

The validation aims at (i) evaluating the performance of
Noah-MP in simulating irrigation, soil moisture, and veg-
etation, and the ability of the WCM to simulate radar σ 0,
and (ii) unveiling the information about irrigation contained
in Sentinel-1 radar σ 0 in order to assess its potential to im-
prove both soil moisture and vegetation representation within
Noah-MP.

The evaluation was carried out on both the regional scale
(i.e. over the entire study area) and on the two selected sites,
Faenza (small district scale) and Budrio (plot scale), where
irrigation data were available. Considering the lack of bench-
mark data for irrigation evaluation (Foster et al., 2020), we
decided to use in situ data for the small Budrio fields spa-
tial scale (i.e. 0.45–049 ha), even though model simulations
are made at a much coarser resolution (i.e. ∼ 1 km). We are
aware that differences in the spatial scale can increase the un-
certainty of our evaluation, but the 0.01◦ LSM spatial resolu-
tion is still a good compromise for an analysis at the regional,
small district, and plot scale. Additionally, limitations are
partly reduced by the low chance of including non-irrigated
fields within the 1 km LIS grid cells within the Po Valley, as
the latter is almost entirely irrigated (Salmon et al., 2015).
We compared Noah-MP (with and without using the irriga-
tion module) SSM and LAI simulations with satellite SSM
from ASCAT and SMAP and LAI from PROBA-V, respec-
tively, during the period 2015–2019. Furthermore, these land
surface simulations were compared to Sentinel-1 σ 0 to un-
derstand how much of the SSM and LAI signal was captured
by Sentinel-1.

As the irrigation timing is often driven by the stakehold-
ers’ turns to withdraw water and by water availability rather
than by the conditions of the soil and crops themselves, the
comparisons between simulated SSM and satellite SSM were
carried out by aggregating the two variables over a biweekly
time window. On the other hand, the LAI from Noah-MP was
aggregated to 10 daily values in order to match the PROBA-
V LAI values. We used the Pearson R for SSM and LAI eval-
uation. For SSM, we also computed the root mean square
error (RMSE), calculated considering the original temporal
resolution of the satellite products, while for LAI, we also
tested the ratio bias, i.e. the ratio between the long-term mean
of the simulations and the long-term mean of observations. In
particular, this additional score for LAI was used to provide

a further evaluation of the ability of the Noah-MP to simulate
crop phenology during the irrigated vs. non-irrigated periods
so as to not rely solely on the evaluation of temporal dynam-
ics, which, due to the uncertainty in the Noah-MP crop type
parameterization, could be affected by time shifts in the LAI
climatology. This parameterization uncertainty comes from
the lack of knowledge of the spatial crop type information
and is difficult to reduce without additional information. Our
assumption is that the radar σ 0 assimilation can also correct
for this with future data assimilation.

Following Vreugdenhil et al. (2018) and Vreugdenhil et al.
(2020), Noah-MP LAI and PROBA-V LAI were also com-
pared with the Sentinel-1 σ 0 VH/σ 0 VV cross ratio (CR),
which was demonstrated to have a high agreement with the
vegetation signal. Though the σ 0 VH was demonstrated to in-
crease with the vegetation signal (Macelloni et al., 2001), the
CR will be more sensitive to vegetation changes as the ratio is
less sensitive to changes in soil moisture and soil–vegetation
interaction (Veloso et al., 2017; Vreugdenhil et al., 2020).

To evaluate WCM simulations, we used biweekly val-
ues of σ 0 simulations and observations considering a 2-year
period independent from the calibration period (i.e. 2015–
2016). Statistical metrics, such as grid-based temporal Pear-
son R, KGE, and bias, were calculated between Sentinel-1
σ 0 and calibrated WCM simulations. The analysis of the pa-
rameters was restricted to the cropland area as no difference
between our experiment lines exists over other land cover
types (i.e. the irrigation module is active only over grid points
classified as crop).

3 Results

3.1 Noah MP regional evaluation

Figure 4 shows maps of the Pearson R between biweekly
Noah-MP SSM natural and irrigation simulations and bi-
weekly ASCAT and SMAP L2 SSM retrievals, respectively,
for April 2015 to December 2019. The Noah-MP SSM ir-
rigation run provides a higher agreement with both satellite
SSM data sets compared to the natural run. Indeed, the me-
dian Pearson R between SMAP L2 SSM and Noah-MP SSM
increases from 0.68 to 0.73, for the natural run (Fig. 4a)
and the irrigation run (Fig. 4b), respectively. A similar im-
provement can be observed considering the ASCAT refer-
ence SSM, with an improvement in the median Pearson R
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Figure 4. Maps of temporal Pearson R between biweekly values of SSM from Noah-MP and satellite retrievals. (a) Natural run and SMAP
L2. (b) Irrigation run and SMAP L2. (d) Natural run and ASCAT. (e) Irrigation run and ASCAT. Maps of the Pearson R differences display
the grid-based difference between (c) map b and map a and (f) map e and map d. The reference period is April 2015–December 2019.

of 0.08 when irrigation is activated in the model (from 0.7
to 0.78; Fig. 4e). Areas characterized by higher correlation
when irrigation is simulated are represented in blue in the
Pearson correlation difference map of Fig. 4f (obtained by
subtracting the map in Fig. 4d from the map in Fig. 4e). Al-
most all cropland areas are characterized by a higher agree-
ment between observations and simulations for the irriga-
tion run. Note that, for the evaluation of Noah-MP against
SMAP, we relaxed the retrieval quality flags, which would
otherwise mask out almost the entire study area. Figure S2 in
the Supplement shows the coverage when using the recom-
mended quality flags. The results in Fig. 4 were confirmed
by analysing the RMSE between satellite SSM products and
Noah-MP simulations for both the natural and irrigation runs,
after rescaling them based on their mean and standard devi-
ation, because SSM retrievals and SSM simulations do not
have the same units. The results are displayed in Fig. S3 and
show, for both the satellite products, a general reduction in
RMSE when compared with the irrigation run. An improve-
ment in performances can be observed over the entire crop-
land area, in particular over the central triangle feature where
a sandy loam soil texture is present and where, consequently,
more irrigation is simulated in the model due to the higher
permeability of the soil.

The evaluation of the LAI simulation was limited to the
regional-scale analysis due to a lack of in situ vegetation
data over the selected test sites. The comparison between the
10 d values of Noah-MP LAI, from both model runs, and the
PROBA-V LAI product was carried out over the reference

period of January 2015 to October 2019, using the temporal
Pearson R and the ratio bias, as shown in Fig. 5.

Figure 5a and b show that the Pearson R for vegetation has
a lower median value of 0.67 when irrigation is simulated in
Noah-MP, whereas this value equals 0.72 for the natural run.
The difference between the two Pearson R maps is shown in
Fig. 5c, providing evidence of the areas facing a deteriora-
tion of the performance in terms of Pearson R related to the
irrigation run. This deterioration is particularly strong over
cropland areas south of the Po river (red), while the northern
area also shows grid cells where the performance improves
(blue).

In contrast, the ratio bias evaluation score (Fig. 5d–f) high-
lights an improvement in the long-term mean vegetation sim-
ulations when irrigation is included (Fig. 5e). Here the opti-
mal condition is represented by a ratio bias equal to 1 when
the mean of the simulated LAI is equal to the mean of the ob-
served LAI. In this context, Fig. 5d displays ratio bias values
lower than 1 over a large central triangle-shaped cropland
area and a median ratio bias value of 0.73, highlighting an
underestimation of the LAI simulation related to the natural
run. Conversely, Fig. 5e shows ratio bias values close to 1
when irrigation is simulated over an extended cropland area
and a median bias value of 0.99. The improvement given by
the irrigation run is emphasized in Fig. 5f, where the his-
tograms of the ratio bias distributions related to both model
runs show the higher performance of the irrigation run (red)
compared to the natural run (blue) for which the distribution
is more skewed to the zero value.
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Figure 5. Maps of temporal Pearson R between 10 d LAI values from PROBA-V LAI and Noah-MP LAI. (a) Natural run. (b) Irrigation
run. Map of Pearson R differences between (c) map b and map a. Map of the ratio bias of LAI from PROBA-V and Noah-MP, showing
the (d) natural run and (e) irrigation run. Additional histogram distributions from (f) map d and map e. The reference period is January
2015–October 2019.

Figure 6. (a) Evaluation of SSM over the Budrio field 2, with (green) in situ PGR SM data, (light blue) SSM from Noah-MP natural
and (orange) SSM from Noah-MP irrigation. Additional information is provided in panel (b), with observed irrigation (green), simulated
irrigation (orange), and observed rainfall (magenta) in millimetres per day (mmd−1).
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Figure 7. Sentinel-1 σ 0 VV and σ 0 VH data for the Budrio field 1 test site compared with Noah-MP SSM, for (a) natural and irrigation
runs. Sentinel-1 CR (VH/VV) compared with PROBA-V LAI and Noah-MP LAI for (b) natural and irrigation runs. Also shown are the
(c) observed irrigation (green) and simulated irrigation from Noah-MP (orange).

3.2 Noah MP site evaluation

The Noah-MP SSM was evaluated at the Budrio test site
field 2 (Fig. 1a), using the daily reference PGR SM for the
year 2017. Comparisons between the SSM simulations of the
natural and irrigation runs with in situ PGR SM are shown in
Fig. 6a, while daily observed irrigation and rainfall data are
compared with daily irrigation simulations in Fig. 6b. Soil
moisture data are plotted at their original temporal resolution
(i.e. daily) to illustrate an issue related to the irrigation tim-
ing, namely that SSM simulations in Fig. 6a show the abil-
ity of the sprinkler irrigation scheme to simulate irrigation
in the summer season, but there is an inevitable problem in
reproducing the correct timing and magnitude of irrigation.
Indeed, the total amount of simulated irrigation is 604 mm
for the 2017 summer season, which overestimates the total
amount of observed irrigation that is 349.5 mm. Furthermore,
the model simulations not only miss irrigation but also suf-
fer from erroneous precipitation input, such as on the 11 July
2017, where the observed precipitation event in the grow-
ing season is not found in the model SSM simulations. In
any case, biweekly Pearson R between simulated SSM and
in situ PGR SM are higher for the irrigation run than for the
natural run (0.54 vs. 0.42), suggesting the benefit of activat-
ing irrigation.

For the Budrio field 1 test site (Fig. 1a), two summer sea-
sons of irrigation data were available. To assess the irrigation
information contained in Sentinel-1 σ 0 observations (and the
potential added value for a forthcoming DA experiment), we
compared biweekly values of Sentinel-1 σ 0 VV and σ 0 VH
with SSM estimates from both the natural run and irrigation
run (Fig. 7a) for this site. Although the σ 0 VV is generally
used to retrieve SSM (Wagner et al., 2013; Gruber et al.,
2013; Bauer-Marschallinger et al., 2018), data at both po-
larizations were analysed in order to understand the soil con-
tribution contained in the two signals. Information related to
the irrigation periods are shown in Fig. 7c, where irrigation
observations and irrigation simulations from Noah-MP are
compared. Figure 7a indicates that the SSM simulations are
better reflected in the Sentinel-1 σ 0 VV than σ 0 VH data,
particularly when irrigation is simulated (orange line). The
SSM estimates from the natural run (light blue line) agree
poorly with the Sentinel-1 data, with Pearson R values equal
to 0.32 and−0.1 for the σ 0 VV (blue dots) and σ 0 VH (cyan
dots), respectively. When irrigation is simulated, the σ 0 VV
data better follow the modelled SSM signal (Pearson R of
0.53), especially during the summer irrigation season when
the backscatter signal remains higher and stable. On the other
hand, σ 0 VH seems to provide poor performances, also when
irrigation is simulated, with a Pearson R value equal to 0.06,
confirming findings by Baghdadi et al. (2017), which high-
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lighted how the use of VH alone to retrieve SSM is subopti-
mal when vegetation cover is well developed.

In Fig. 7b, the Sentinel-1 σ 0 CR (VH/VV) is compared
with Noah-MP LAI from the natural run (light-blue line)
and irrigation run (orange line). The performance in terms
of Pearson R decreases from 0.76 to 0.65 when the irriga-
tion is simulated. This is due to a time shift of the Noah-
MP LAI growing season in the irrigation run. PROBA-V LAI
(in green) was additionally compared with the Sentinel-1 CR
(blue dots), showing a Pearson R of 0.84. The higher agree-
ment between the RS products (Sentinel-1 and PROBA-V)
highlights the strong relation between the σ 0 CR and the veg-
etation signal, suggesting a potential benefit of the Sentinel-1
assimilation for correcting the simulated vegetation phenol-
ogy.

Finally, Fig. 7c shows a comparison between 15 d accu-
mulated millimetres of simulated irrigation (orange) and ob-
served irrigation (green). The Pearson R is equal to 0.77,
indicating that the sprinkler irrigation scheme can provide
acceptable irrigation estimates at this temporal resolution
though absolute irrigation amounts are overestimated.

3.3 WCM calibration

The WCM parameters A and B (vegetation parameters) and
C and D (soil parameters) were calibrated for each grid cell
separately, during the reference period of January 2017 to
December 2019 (Fig. 3), using daily σ 0 simulations and ob-
servations. The calibrated parameters related to the entire
study area for each of the eight experiments are shown in
Fig. 8, where the blue (left) parts of the violin plots identify
experiments of the natural run, while the orange (right) parts
of the violin plots are related to the irrigation run.

Generally, the J calibration provides parameter distribu-
tions closer around their prior guess as compared to the KGE
calibration for which the distributions are often multimodal,
especially for the C and D parameters (i.e. Fig. 8d and h).
This is due to the prior parameter penalty, which is included
in the Bayesian solution but not in the KGE. In general, the
calibration of the two functions using the natural run provides
wider distributions between the lower and upper boundaries
for the A vegetation parameter, with a high number of grid
cells characterized by A values higher than 0.1 (see KGE-
VV natural and J -VV natural experiments in Fig. 8a and e,
respectively). Conversely, the irrigation run provides A dis-
tributions more skewed to the lower boundary (being also the
guess value in each calibration experiment), with a smaller
number of grid cells characterized by high A values com-
pared to the natural run. In a preliminary sensitivity study
(not shown), we observed that high values of the vegetation
parameters A and B, as obtained for the natural run, have the
tendency to generate high peaks in the simulated σ 0 during
the growing season. Indeed, in the summer, the SSM natural
signal is low and not consistent with the Sentinel-1 σ 0, which
observes irrigation. In order to follow the temporal dynam-

ics of the Sentinel-1 σ 0, the calibration algorithms attribute a
relatively higher weight (higher A values) to the LAI than to
SSM to compensate for the underestimated SSM in the nat-
ural run. In contrast, the irrigation run provides vegetation
parameter distributions more skewed to the lower boundaries
(see also Sect. 3.4.2). The C and D parameter distributions
feature a better sensitivity to soil moisture dynamics using
the irrigation run input data, which is the expected behaviour,
considering that they describe the σ 0

soil. This is true especially
when using the J cost function (see parameters distributions
for the J -VV natural and for the J -VV irrigation experiments
in Fig. 8g and h), which results in more spread in the cal-
ibrated C and D distributions for the irrigation simulations
(especially in VV polarization), whereas the mode of the C
and D parameter distributions for the natural experiments is
more shifted to the upper and lower boundaries, respectively.

Figure 9 shows the spatial pattern of the parameters
over the study area to better understand the differences be-
tween the natural and irrigation calibration runs. We found
a connection between the WCM parameters distribution and
model parameters, particularly with the HWSD soil texture
map (shown in Fig. 2). For both the J -VV natural and J -VV
irrigation experiments, the activation of the irrigation scheme
reduces the dependency of the vegetation-related parameters
A and B on soil texture (see Fig. 9a and b for the J -VV nat-
ural and Fig. 9e and f for the J -VV irrigation experiment).
This is also shown in the parameter maps of the KGE calibra-
tion experiments (Fig. S5). Additionally, the activation of the
irrigation scheme, more realistically, shifts the soil texture
dependency towards the soil parameters C and D (Fig. 9g
and h), highlighting another important reason for simulating
irrigation.

Finally, the different polarization experiments generally
provided similar distributions for the vegetation A and B pa-
rameters and the D soil parameter. The largest differences
between the VV and VH polarizations are identified for the
C parameter distributions. This is due to the lower σ 0 signal
associated with the VH polarization. Indeed, Fig. 8c and g
are characterized by higher values of C in the VV polariza-
tion, as compared to the distributions for VH polarization in
Fig. 8k and o. In the latter, the C–VH distributions are gener-
ally more skewed to the lower boundary of the parameters,
with median values closer to the defined guess parameter
value.

3.4 WCM evaluation

3.4.1 Regional evaluation

The regional evaluation of the calibration experiments was
carried out during the period from January 2015 to Decem-
ber 2016 for agricultural areas within the study domain (al-
most 15 000 km2), by comparing biweekly σ 0 simulations
with Sentinel-1 σ 0 in terms of Pearson R, KGE, and bias.
The distribution of the evaluation metrics for the eight exper-
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Figure 8. Split violin distributions of the calibrated parameters over the entire study area for the eight calibration experiments. For both
the natural (blue) and irrigation (orange) experiments, the distributions are shown for the A, B, C, and D parameters, (a–d) using the KGE
objective function for VV polarization, (e–h) J objective function for VV polarization, (i–l) KGE objective function for VH polarization,
and (m–p) J objective function for VH polarization. Note that the areas under the histograms on both left and right sides of the violins are
automatically scaled for optimizing the visualization.

Figure 9. Maps of the (a) A parameter, (b) B parameter, (c) C parameter, and (d) D parameter for the J -VV natural calibration experiment.
Maps of the (e) A parameter, (f) B parameter, (g) C parameter, and (h) D parameter for the J -VV irrigation calibration experiment.
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Figure 10. Split violin distributions of (a–d) Pearson R, (e–h) KGE, and (i–l) bias calculated between σ 0 simulations and observations for
the validation period, for all the calibration experiments and considering only the cropland areas, using simulations from the natural run (left;
green) and the irrigation run (right; violet). The results are shown for VV (first two columns) and VH (right two columns) and alternate for
both the calibration with a J and KGE cost function. Note that the areas under the histograms on both left and right sides of the violins are
automatically scaled for optimizing the visualization.

iments is shown in Fig. 10. A comparison of the metrics for
the irrigation and natural runs confirms better results when
irrigation is activated, with violin plots skewed towards more
positive values for both KGE and Pearson R. When stratified
by the cost function, the Pearson R distribution in Fig. 10a–d
indicates a slightly higher performance for the KGE (Fig. 10a
and c) than for J (Fig. 10b and d). In terms of the KGE
score, simulations are naturally closer to the observations
when the KGE cost function is used. On the other hand, in
terms of bias, generally better performances are found when
the Bayesian solution is used (Fig. 10i–l). The latter is par-
ticularly evident for the VH polarization when comparing the
KGE-VH and J -VH experiments (Fig. 10k and l).

The VH simulations exhibit a better performance in the ir-
rigation run than the VV simulations (Fig. 10c and d and 10a
and b). Indeed, considering all the statistical scores, the VV
polarization is characterized by more similar distributions
between the natural and irrigation run for both cost functions.
This suggests a higher sensitivity of the VH polarization to
the change in vegetation introduced by irrigation, confirm-

ing the Sentinel-1 σ 0 VH to be strongly influenced by irriga-
tion, as witnessed by the larger score improvement obtained
for the calibration experiments KGE-VH irrigation (Fig. 10g)
and J -VH irrigation (Fig. 10h) when compared to the natural
run experiments.

In summary, (i) VH polarization is more sensitive to the
change in the cost function and input data (irrigation or natu-
ral run) than VV polarization, likely due to its higher sensitiv-
ity to vegetation change (Vreugdenhil et al., 2018; Macelloni
et al. 2001), which, in the area, is related to the crop develop-
ment after irrigation, and (ii) the combination of J with the
activation of the irrigation scheme is able to provide the best
unbiased estimates of simulated σ 0 for both VV and VH (J -
VV irrigation and J -VH irrigation experiments) at the price
of generally lower correlations (compared to the KGE cost
function). This is, however, beneficial for DA as it minimizes
the chance of potential error cross-correlation between model
estimates and observations. Indeed, the match of the tempo-
ral dynamic of the signals induced by the correlation term is
stronger in the KGE than in J , which, additionally, includes a
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parameter constraint. The higher weight of the correlation in
the KGE cost function can negatively impact the parameter
calibration, even when irrigation is turned on in Noah-MP,
because the simulated irrigation applications are, in general,
not temporally consistent with those seen by Sentinel-1 (see
Fig. 6).

3.4.2 In situ evaluation

The WCM simulations are further analysed in detail at the
Faenza test site (specifically for the San Silvestro field) be-
cause it has a larger extent than the Budrio site (see Fig. 1),
although the same overall conclusions were found for Bu-
drio. Figure 11 shows the simulated and observed σ 0 time
series for the different experiments highlighted in Fig. 3, and
Table 2 summarizes the statistics (i.e. Pearson R, KGE and
bias) of each experiment.

The agreement between simulated and observed σ 0 mea-
sured by the Pearson R and KGE in Table 2 generally gives
better performances after calibration with the KGE cost func-
tion than with the J cost function. An example is in the
higher correlations found for the KGE-VH irrigation experi-
ment as compared to the J -VH irrigation (Fig. 11b and d, re-
spectively). On the other hand, in terms of bias, the cost func-
tion J significantly outperforms the calibration with KGE in
all experiments with surprisingly comparable values between
natural and irrigation runs (Table 2).

One undesirable feature of natural runs is the presence of
high σ 0 peaks during the summer, clearly detectable over the
Faenza test site, especially in the VH polarization, which are
less evident in the irrigation run (see Fig. 11b and d). A simi-
lar behaviour was found for Budrio (not shown). These peaks
are likely attributed to the poor estimation of model veg-
etation parameter values, previously discussed in Sect. 3.3,
when the WCM attempts to compensate for bias in SSM and
vegetation input, i.e. input that is not consistent with obser-
vations over irrigated areas. This is particularly true for the
KGE calibration, which does not use a prior parameter con-
straint. In contrast, the J calibration still provides reasonable
σ 0 simulations that are closer to the ones of the irrigation run
due to the Bayesian technique itself.

4 Discussion

4.1 Noah-MP irrigation modelling

The Noah-MP LSM, used as input for the WCM calibration,
was evaluated in two configurations, either with a sprinkler
irrigation scheme activated or without irrigation (i.e. irriga-
tion run and natural run). Although not all of the Po Valley
is irrigated by sprinkler systems, it most likely still leads to
more realistic LSM simulations than not considering irriga-
tion at all.

The main limitation found in the irrigation simulations was
related to the irrigation timing and magnitude that was incon-

sistent with observations. Although this finding is based on
only a single study site, it is very likely that it is a widespread
issue within the study area for several reasons. In LSMs, the
irrigation application is driven by the RZSM availability and,
consequently, by the soil type and the rooting depth parame-
terizations. Moreover, it is also influenced by the accuracy of
the meteorological forcings (especially precipitation), which
can determine errors in the soil moisture representation. The
main reason, however, is likely that irrigation is often the re-
sult of subjective farmer decisions rather than objective rules
based on the soil state and crop conditions. In theory, the
irrigation timing issue could be partly solved by using tem-
porally consistent high-resolution crop maps, which should
provide a more realistic information of crop phenology and
rooting depth. However, in practice, this is unfeasible over
many areas of the world given the absence of this information
on a large scale. Also, given that irrigation applications are
mainly linked to unmodelled processes, like rotation sched-
ules for farmers to withdraw water, the correct simulation of
the timing can be unsolvable when using models only.

Despite the potential problems related to the unrealistic as-
sumptions in the simulation of irrigation, our results demon-
strated that even the use of simple irrigation schemes within
Noah-MP can be beneficial. In the regional evaluation, SSM
simulations of the natural and irrigation runs were compared
with RS SSM from SMAP and ASCAT (Fig. 4) on a bi-
weekly temporal scale. For both products, we found large im-
provements in temporal PearsonR when irrigation was simu-
lated, which were confirmed by a decrease in the RMSE val-
ues over croplands, suggesting that the activation of irrigation
modelling provides more realistic SSM estimates. Our find-
ings further confirm the potential of coarse-resolution data
sets for providing irrigation-related information over inten-
sively irrigated and relatively large agricultural areas, as was
shown by S. V. Kumar et al. (2015).

While the impact of irrigation was clear in terms of SSM,
the regional evaluation of the simulated LAI against the
PROBA-V-based LAI provided contradicting results. In this
case, the Pearson R analysis suggested a deterioration of
the Noah-MP-simulated LAI when irrigation was activated
over the cropland area. We interpreted this correlation de-
terioration from the absence of specific information about
the crop phenology in the model parameterization. In prac-
tice, information about the specific crop type is not available,
and the rooting depth is the sole parameter controlling wa-
ter uptake from the soil layers. Additionally, information on
sowing and harvest periods are not included in the current
version of Noah-MP, while irrigated areas are defined based
on a global data set (Salmon et al., 2015) which can suffer
accuracy limitations. Indeed, the absence of annual dynamic
information on irrigated fields, the unknown yearly variabil-
ity of the crop types, and the impact of the meteorological
conditions in the stakeholders’ decision-making process (i.e.
sowing) make the simulation of Noah-MP prone to LAI peak
shifts, as compared to observations, when irrigation is sim-
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Table 2. Results of the site WCM evaluation considering the test site Faenza San Silvestro for each WCM experiment.

KGE-VV KGE-VV J -VV J -VV KGE-VH KGE-VH J -VH J -VH
Natural Irrigation Natural Irrigation Natural Irrigation Natural Irrigation

Pearson R (–) 0.14 0.27 0.14 0.18 0.33 0.41 0.22 0.38
KGE (–) 0.12 0.26 0.12 0.03 0.20 0.38 0.22 0.31
Bias (dB) −0.46 −0.55 0.07 0.09 −0.82 0.38 −0.22 −0.02

Figure 11. Comparisons between σ 0 observations (VV polarization in blue dots and VH polarization light blue dots) and simulations (VV
polarization in red and VH polarization in green) in the Faenza (San Silvestro) field, after calibration with a KGE cost function for (a) the
natural run, (b) the irrigation run, and after calibration with the J cost function for (c) the natural and (d) irrigation runs.

ulated. Another important aspect affecting LAI simulations
is its sensitivity to root zone soil moisture, which might be
more difficult to simulate than SSM during the irrigation sea-
son due to larger impacts of the soil texture and transpiration
processes along with the high frequency of the wetting and
drying phases caused by irrigation events. This results in a
significant performance deterioration (often worse than LAI
simulations not including irrigation which are mainly driven
by seasonality; see Fig. 7). In contrast, irrigation modeling
helps to reduce the bias of the LAI-simulated time series,
which, in the cropland area, show a significant underestima-
tion when irrigation is not considered.

The limitations found in simulating LAI and vegetation by
Noah-MP, even when irrigation was simulated, could poten-
tially be overcome by assimilating Sentinel-1 σ 0 data. To ex-
plore this potential, we compared the LAI from both model
runs, and from PROBA-V, with the observed Sentinel-1 σ 0

CR (VH/VV), which should provide information about the
vegetation dynamics (Vreugdenhil et al., 2018, 2020). We
found that the correlation between σ 0 CR and LAI from
PROBA-V was much higher than that between σ 0 CR and
the simulated LAI by Noah-MP (see Fig. 7), suggesting that
Sentinel-1 σ 0 DA could help to correct poor LAI model sim-
ulations. Additionally, a higher correlation was found be-
tween the σ 0 VV observations and the simulated SSM when
irrigation was turned on than in the absence of irrigation, sug-
gesting that the assimilation of σ 0 VV could improve SSM

where irrigation is poorly modelled or not modelled. On the
other hand, considering the low correlation between the VH
signal and SSM in presence of vegetation (Baghdadi et al.
2017), and its close relation with vegetation (Ferrazzoli et al.,
1992; Macelloni et al., 2001), future data assimilation exper-
iments will investigate the contribution of VH and CR in im-
proving LAI predictions and irrigation quantification.

Finally, biweekly accumulated irrigation estimates in
Fig. 7 agree well with real irrigation applications, suggest-
ing that the large-scale LSM irrigation scheme is helpful for
intensively irrigated areas. On the other hand, the poor soil
and crop parameterization, along with other unknown pa-
rameters related to the irrigation management (e.g. the farm-
ers can apply more water than actually needed), can cause
large biases in these irrigation simulations. Again, ingestion
of radar backscatter data could correct for unmodelled pro-
cesses. More specifically, Sentinel-1 σ 0 could correct (i) for
the magnitude and timing of the irrigation simulations and
(ii) for Noah-MP irrigation predictions over regions that are
not irrigated.

4.2 WCM backscatter simulation

The purpose of the presented WCM observation operator cal-
ibration and evaluation was to optimize the parameters for
the future assimilation of the Sentinel-1 σ 0 VV and VH into
Noah-MP. Such an optimization would ideally minimize the
long-term bias between the simulated and observed σ 0 sig-
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nals. This can be achieved by calibrating the observation op-
erator with long-term observed σ 0 prior to data assimilation,
but in this process, it is crucial to avoid potential error cross-
correlation between model observation predictions and ob-
servations. Furthermore, a good observation operator should
not already compensate for missing processes in the LSM by
accepting effective, but unrealistic, optimized parameters be-
cause it would then lose its physically based ability to accu-
rately convert misfits between observations and simulations
to LSM updates during the data assimilation.

One way to avoid parameters compensating for erroneous
LSM input into the WCM would be to use observed time
series of, e.g., LAI. However, LAI products from different
sensors have different biases themselves, which can add bias
to the σ 0 simulations, and more importantly, replacing sim-
ulated LAI or SSM with external data sets would undermine
the possibility of updating these variables in the future as-
similation system. Based on that, we performed the WCM
calibration considering the SSM and LAI model input from
two different experiments, i.e. a natural run and an irriga-
tion run, as well as two cost functions, a Bayesian solution
J , and a KGE solution, which resulted in four calibration
experiments for each polarization (i.e. eight calibration ex-
periments in total).

The calibration experiments using simulations from the
natural run as input showed a limited performance and pro-
vided presumably bad vegetation parameter estimates, which
resulted in unrealistic peaks in the simulated σ 0 during the
summer when driven by higher modelled LAI during this
period. The inclusion of the irrigation within Noah-MP was
very beneficial for all the calibration experiments, helping to
reduce the bias, increase the correlation with Sentinel-1 σ 0,
and remove the anomalous σ 0 increase during warm periods,
especially for the KGE-based calibration. This corroborates
our initial hypothesis that, over intensively irrigated areas,
the simulation of irrigation is a mandatory task for an op-
timal calibration of the WCM. Irrigation modeling, even if
only done approximately and perhaps with inaccurate timing,
reduces obvious land surface (soil moisture and vegetation)
bias and avoids that the WCM needs to compensate for this
bias.

Our results show overall higher performance in terms of
KGE and Pearson R scores for the KGE-based calibration,
whereas the long-term bias was better reduced for the J -
based calibration, which is beneficial in anticipation of future
DA. This is because, in the J cost function, there is (i) a tar-
get accuracy term which also takes into account the Sentinel-
1 observations, where an error is present, and (ii) a parameter
deviation penalty based on the prior parameters constraints is
used, which prevents parameters from deviating largely from
their prior values.

In terms of polarization, we found σ 0 VH simulations
much more sensitive to the inclusion of the irrigation (vs.
non-inclusion) in Noah-MP, suggesting that observed σ 0 VH
might also contain much more information about irrigation

(via the influence of the vegetation change due to irrigation)
than that contained in σ 0 VV, which is normally used for
SSM retrieval (Vreugdenhil et al., 2020). We believe that the
cause of this is related to a comparatively larger σ 0 of vege-
tation with respect to that of the soil when the crops are well
developed. This was also corroborated by the better agree-
ment between CR and LAI from PROBA-V in one of the
study sites mentioned above. Despite this, further investiga-
tions are required to confirm this hypothesis, and DA will
certainly help to test this aspect.

5 Conclusions

With the specific focus on intensively irrigated land, the main
objective of this work was to define the optimal calibration
of the WCM as an observation operator for the future inges-
tion of Sentinel-1 backscatter into the Noah-MP LSM via
DA. In this context, we additionally aimed at (1) unveiling
the strengths and limitations of irrigation simulation in LSMs
from the perspective of a calibrating the WCM and (2) iden-
tifying the potential irrigation-related information contained
in the Sentinel-1 σ 0 observations to improve soil moisture
and vegetation states, as well as irrigation estimates, in a cal-
ibrated DA system.

To reach these objectives, we coupled the Noah-MP with
a sprinkler irrigation scheme within LIS and performed two
different simulation experiments, i.e. one with and one with-
out irrigation (i.e. natural and irrigation runs). Moreover, we
coupled a WCM with Noah-MP and tested different calibra-
tion options to prepare for the optimal, future, assimilation of
σ 0 VV and VH to update both soil moisture and vegetation
states.

The main conclusions drawn from our evaluation are as
follows:

– Over highly irrigated areas, the simulation of irrigation
in LSMs helps to provide better soil moisture and vege-
tation simulations, which can be used with benefit as in-
put for the WCM calibration. However, the performance
of the irrigation simulations is limited by the simplis-
tic model parameterization of this human process and
the necessity for considering realistic and updated land
cover information (e.g. crop types). This results in poor
simulations of the irrigation timing and quantities, as
well as vegetation dynamics.

– The Sentinel-1 σ 0 observations contain useful informa-
tion about SSM and vegetation over highly irrigated
areas. This information can be exploited to overcome
LSM deficiencies in simulating soil moisture and vege-
tation over highly irrigated regions, e.g. when irrigation
is unmodelled or poorly modelled because of uncertain-
ties due to crop types, irrigation timing, and farmer agri-
cultural practices. In particular, there is a high chance
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that the assimilation of Sentinel-1 σ 0 can help in cor-
recting LAI dynamics.

– The optimal assimilation of Sentinel-1 σ 0 into a LSM
must rely upon a well-calibrated WCM as the observa-
tion operator to provide unbiased σ 0 simulations with a
minimal chance of having error cross-correlations be-
tween model and observations, while ensuring a re-
alistic operator controllability or realistic connection
between observed signals and land surface state vari-
ables. We demonstrated that calibrating the WCM by
including irrigation modeling consistently led to a better
agreement with Sentinel-1 σ 0. The modeling of irriga-
tion in the LSM simulations, even if not done optimally,
avoids that the WCM calibration compensates for LSM
biases.

– We demonstrated that the WCM calibration with a
Bayesian cost function, including a prior parameter con-
straint, provides the optimal WCM parameters, is able
to generate the lowest bias in the σ 0 simulations for both
VV and VH. Although slightly higher correlations are
obtained when using a KGE cost function, unbiased es-
timates are particularly beneficial for DA, as this mini-
mizes the chance of potential error cross-correlation be-
tween model estimates and observations.

This study improves the understanding of the LSM limita-
tions in simulating irrigation and highlights the information
content in Sentinel-1 σ 0 data. A natural follow-up of this
study is the assimilation of σ 0 observations within Noah-
MP, which should enforce our tested evidence and provide
new insights for a more realistic description of the water and
carbon cycles over irrigated areas.
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