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Abstract. We model monthly precipitation maxima at
132 stations in Germany for a wide range of durations from
1 min to about 6 d using a duration-dependent generalized
extreme value (d-GEV) distribution with monthly varying
parameters. This allows for the estimation of both monthly
and annual intensity–duration–frequency (IDF) curves:
(1) the monthly IDF curves of the summer months exhibit
a more rapid decrease of intensity with duration, as well as
higher intensities for short durations than the IDF curves
for the remaining months of the year. Thus, when short
convective extreme events occur, they are very likely to
occur in summer everywhere in Germany. In contrast,
extreme events with a duration of several hours up to about
1 d are conditionally more likely to occur within a longer
period or even spread throughout the whole year, depending
on the station. There are major differences within Germany
with respect to the months in which long-lasting stratiform
extreme events are more likely to occur. At some stations
the IDF curves (for a given quantile) for different months in-
tersect. The meteorological interpretation of this intersection
is that the season in which a certain extreme event is most
likely to occur shifts from summer towards autumn or winter
for longer durations. (2) We compare the annual IDF curves
resulting from the monthly model with those estimated con-
ventionally, that is, based on modeling annual maxima. We
find that adding information in the form of smooth variations
during the year leads to a considerable reduction of uncer-
tainties. We additionally observe that at some stations, the
annual IDF curves obtained by modeling monthly maxima
deviate from the assumption of scale invariance, resulting in
a flattening in the slope of the IDF curves for long durations.

1 Introduction

Extreme precipitation events can potentially cause significant
damage (Linnerooth-Bayer and Amendola, 2003; Barredo,
2009; Davenport et al., 2021), depending on their dura-
tion and spatial extent: extreme convective events can lead
to flash floods, while long-lasting stratiform precipitation
may lead to river flooding. In recent years, floods and land-
slides following heavy precipitation have become increas-
ingly frequent in many European countries (Bronstert, 2003;
Paprotny et al., 2018), and weather conditions favoring the
occurrence of heavy rainfall events are expected to further
increase due to anthropogenic climate change (Hattermann
et al., 2013; Hartmann et al., 2013, and references therein).
However, in addition to regional differences, changes in the
frequency and intensity of extreme precipitation in Europe
have been found to also differ between different storm types,
namely convective and stratiform events (Berg et al., 2013),
as well as between different seasons (e.g., Moberg and Jones,
2005; Łupikasza, 2017; Kunz et al., 2017, and references
therein). Hence, it is critical to research and improve our un-
derstanding of the occurrence of extreme precipitation events
on different timescales as well as in different seasons in order
to detect and interpret changes in seasonality in a consistent
way.

The characteristics of extreme precipitation on differ-
ent timescales can be summarized in terms of intensity–
duration–frequency (IDF) curves. These are a standard tool
in hydrology for designing hydrological structures and man-
aging water supplies (Durrans, 2010). IDF curves are basi-
cally probability distributions for extreme values of precipi-
tation intensity for a range of durations, or more precisely ag-
gregation times. Thus, they provide the relationship between
precipitation intensity and duration for selected occurrence
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frequencies (i.e., exceedance probabilities or return periods).
Since differences exist in the storm characteristics of differ-
ent seasons, it is essential to provide information on precipi-
tation extremes on a seasonal basis. Even though a seasonal
resolution may not be relevant for planning or adjusting hy-
drological structures, it could be beneficial for stakeholders
managing water storage. In addition, a seasonal approach
allows for a more detailed examination of the underlying
mechanisms that influence the IDF relationship, considering
that extreme events with different durations may occur in dif-
ferent seasons. However, while studies exist that investigate
seasonality in extreme precipitation of a selected duration
(e.g., Maraun et al., 2009; Rust et al., 2009; Fischer et al.,
2018, 2019) or also in flood frequency (e.g., Durrans et al.,
2003; Kochanek et al., 2012; Rottler et al., 2020), there are
few studies regarding seasonal IDF curves (Willems, 2000;
Durrans, 2010).

Extreme value theory offers several approaches to describe
the occurrence probability of extreme events (for an introduc-
tion, see Coles, 2001). There are numerous applications of
extreme value statistics in hydrology and climatology (e.g.,
Katz et al., 2002; Friederichs, 2010; Davison and Gholam-
rezaee, 2012; Papalexiou and Koutsoyiannis, 2013; Sebille
et al., 2017; Lazoglou et al., 2019), making use of two com-
monly accepted concepts: the block maxima approach and
the peaks over threshold (POT) approach. For the block max-
ima approach, the observed time series is divided into blocks
of equal length and the probability distribution of the max-
ima of these blocks is modeled using a generalized extreme
value (GEV) distribution. For the peaks over threshold (POT)
approach, on the other hand, the distribution of exceedances
above a chosen threshold is modeled using a generalized
Pareto distribution (GPD), potentially allowing for the use of
more data. However, while a sufficient block size has to be
selected for the block maxima approach, the POT approach
requires the choice of a suitable threshold. In the context
of this study, it would be necessary to choose a threshold
that varies seasonally as well as with duration; therefore we
consider the block maxima approach to be the more suitable
choice.

Since extreme events are by definition rare, the estima-
tion of quantiles (return levels) corresponding to small ex-
ceedance probabilities (return periods) is always associ-
ated with the problem of limited data. When modeling IDF
curves, the limitations of the observations are firstly the spa-
tial coverage and secondly the temporal resolution (Courty
et al., 2019). For example, the German Meteorological Ser-
vice (DWD) operates a relatively dense weather station net-
work, so that many long observation time series exist for
daily precipitation measurements. However, fewer stations
provide sub-daily measurements, and, in addition, consider-
ably shorter time series are available at these stations, since
operating instruments with hourly or minute by minute mea-
surement intervals has only been feasible without consider-
able maintenance for a few decades. The situation is simi-

lar in many other countries (see e.g., Dyrrdal et al., 2015;
Olsson et al., 2019). The objective in modeling sub-daily ex-
treme precipitation events is therefore to use the available
data most efficiently, i.e., to pool the information where pos-
sible. Hence, in this study we aim to combine different infor-
mation on extreme precipitation within one model, namely
information on different durations as well as seasonal varia-
tions.

In order to assess extreme precipitation observations of
different aggregation times simultaneously, it is possible to
use a duration-dependent extreme value distribution (Kout-
soyiannis et al., 1998; Van de Vyver and Demarée, 2010;
Lehmann et al., 2013; Van de Vyver, 2018). In the context of
the block maxima approach, a duration-dependent GEV (d-
GEV) distribution is derived by implementing empirical de-
pendencies of the GEV parameters on duration. Thus, we are
able to directly obtain quantile estimates for all durations
within the considered interval while additionally reducing
the uncertainties of the estimation by combining information
of different durations (Ulrich et al., 2020). To the best of our
knowledge, this approach has so far only been used with an
annual block size. This means that only the annual maxima of
each aggregation time are used, and therefore large amounts
of data are neglected for the analysis. However, when model-
ing daily precipitation sums, monthly block sizes have been
shown to be sufficient to model extreme precipitation in the
midlatitudes (Coles, 2001; Maraun et al., 2009; Rust et al.,
2009). Naturally, it would be possible to model the block
maxima separately according to the month of their occur-
rence, but the choice of a more complex model that explic-
itly includes the intra-annual variations results in a substan-
tial reduction in the number of parameters that need to be
estimated. This can be accomplished by adding smooth peri-
odic functions as covariates for the GEV parameters (Fischer
et al., 2018, 2019). Fischer et al. (2018) demonstrated that
this approach provides more precise quantile estimates than
using an annual block size as it allows for the use of more
data.

In this study, we implement monthly covariates analo-
gously for the parameters of the d-GEV distribution. Hence,
we model intra-annual variations of extreme precipitation for
a wide range of durations from 1 min to approximately 6 d at
132 stations in Germany. This not only allows us to estimate
and compare IDF curves of different months, but we also ex-
pect to obtain more reliable annual IDF curves due to the
more efficient use of the available data. Furthermore, we an-
ticipate that accounting for seasonality and reducing uncer-
tainties in parameter estimation will provide a better under-
standing of the underlying processes. Hence, we expect to
gain new insights into the empirical dependencies of GEV
parameters on duration, which are in turn relevant for the
modeling of annual maxima. This study addresses the fol-
lowing research questions:

Hydrol. Earth Syst. Sci., 25, 6133–6149, 2021 https://doi.org/10.5194/hess-25-6133-2021



J. Ulrich et al.: Modeling seasonal variations of extreme rainfall on different timescales in Germany 6135

– How does the IDF relationship at different stations in
Germany evolve throughout the year?

– To what extent do the annual IDF curves based on
monthly and annual maxima differ?

– Does explicit modeling of seasonal variations allow us
to draw conclusions aimed at improving the modeling
of annual maxima?

The remainder of this study is organized as follows: in
Sect. 2, we present the data and methods on which this
study is based. We address both the methods used for mod-
eling as well as for comparing the different models. We then
present and discuss the respective results regarding our re-
search questions in Sect. 3. We close with our conclusions in
Sect. 4.

2 Methods

We aim to model the intra-annual variations of extreme pre-
cipitation on different timescales. For this purpose, we use
observations with high temporal resolution from stations in
Germany. We use a duration-dependent GEV (d-GEV) dis-
tribution with monthly covariates to describe the monthly
maxima over a range of durations collectively in one model.
Thereby, appropriate models for the intra-annual variations
of the d-GEV parameters are selected through stepwise for-
ward regression. This approach allows us to examine how the
IDF curves vary throughout the year in different areas of Ger-
many. From this seasonal model, we can derive annual IDF
curves as well. We compare these annual IDF curves with
those resulting from directly modeling the annual maxima
via a verification procedure using the quantile skill index. Fi-
nally, we verify whether modeling monthly maxima allows
for a more precise estimate of the relationships between GEV
parameters and duration. Therefore, we model each duration
separately using the GEV distribution with monthly covari-
ates. Details of the data as well as all methods involved are
described in the following section.

2.1 Data

We use precipitation measurements at 132 stations in Ger-
many that provide a temporal resolution of 1 min. Their lo-
cations are presented in Fig. 1. The majority (129) of these
stations are operated by the German Meteorological Ser-
vice (DWD). The data were obtained via the Climate Data
Center (https://opendata.dwd.de/climate_environment/CDC/
observations_germany/climate, last access: 5 March 2021).
The available time series at these stations range from 19 to
28 years (Fig. 1 yellow and green). Additionally we use
three stations operated by the Wupperverband (https://www.
wupperverband.de, last access: 11 June 2021) with time se-
ries ≥ 44 years (Fig. 1 blue). The station Bever-Talsperre

Figure 1. Map of Germany with positions of all 132 stations con-
sidered. Colors represent the length of the available time series with
minute resolution. The longest observation period of 51 years exists
for station Bever-Talsperre (dark blue).

with the longest observation period of 51 years is used as
an example station.

The observations were accumulated to the following du-
rations: d ∈ 2{0,1,2, ..., 13}min= {1,2,4, . . ., 8192}min, with
the longest duration 8192 min≈ 5.7 d, thus resulting in
14 time series per station. Of each time series, we consider
both the monthly and annual maxima. Blocks are excluded
from the analysis if they contain more than 10 % missing val-
ues.

2.2 Modeling annual maxima of different durations

The challenge in modeling extremes is to estimate probabili-
ties of very rare events or those not even observed yet. Here,
we apply the block maxima approach which is commonly
used for this purpose. It is based on the Fisher–Tippett–
Gnedenko theorem, which essentially states that under cer-
tain assumptions the probability distribution of block max-
ima can be modeled by the generalized extreme value (GEV)
distribution (Coles, 2001).

More precisely, let X1, . . . Xn be a sequence of n ran-
dom variables which are independent and identically dis-
tributed (iid), with an unknown distribution. We denote the
maximum of this sequence as

Mn =max {X1, . . ., Xn} . (1)

In the limit of large block sizes n, the non-exceedance
probability can be approximated by the generalized extreme
value (GEV) distribution

Pr {Mn ≤ z} ≈G(z), (2)
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if for n→∞ the distribution of properly rescaled Mn con-
verges to a nondegenerate distribution. The GEV distribution

G(z;µ,σ,ξ)= exp

{
−

[
1+ ξ

(
z−µ

σ

)]−1/ξ
}

(3)

is defined on {z : 1+ ξ(z−µ)/σ > 0} and has three parame-
ters: location parameter−∞< µ<∞, scale parameter σ >
0, and a shape parameter −∞< ξ <∞. Thus, the position
and width of the distribution are specified by µ and σ , re-
spectively, whereas ξ determines the right tail behavior, re-
sulting in bounded right tails for ξ < 0 and polynomial decay
for ξ > 0. In the case ξ = 0, Eq. (3) is interpreted in the limit
of ξ → 0, leading to the Gumbel distribution, with an expo-
nentially decaying tail.

The GEV distribution is thus likely to be a well suited
model for the distribution of annual precipitation inten-
sity maxima of one selected aggregation duration. In or-
der to model the distribution for different durations si-
multaneously, Koutsoyiannis et al. (1998) proposed that
the empirical relationship between precipitation intensity
and duration can be directly used to model the parame-
ters of the GEV distribution depending on duration, which
leads to a duration-dependent GEV (d-GEV) distribution
G(z,d;µ(d),σ (d),ξ(d)). The relationship between precipi-
tation intensity I and duration d for a chosen non-exceedance
probability p corresponds to the quantile qp(d) of the d-GEV
distribution:

Ip(d)= qp(d)= µ(d)−
σ(d)

ξ(d)

[
1−{− log(p)}−ξ(d)

]
; (4)

hence IDF curves can be estimated in a consistent way (Ul-
rich et al., 2020). For the empirical dependence of the param-
eters on duration, we follow the assumptions of Koutsoyian-
nis et al. (1998):

σ(d)= σ0

(
d

1h
+ θ

)−η
, (5)

µ(d)= µ̃ · σ(d), (6)
ξ(d)= const., (7)

with re-parameterized location parameter −∞< µ̃ <∞,
scale offset σ0 > 0, duration offset θ ≥ 0, and duration ex-
ponent 0< η ≤ 1. These assumptions are commonly used
(Lehmann et al., 2013; Van de Vyver, 2015; Stephenson
et al., 2016; Ritschel et al., 2017), however, it may be benefi-
cial to introduce additional parameters (Van de Vyver, 2018;
Fauer et al., 2021). By inserting assumptions (Eqs. 5–7) into
Eq. (3), we obtain the d-GEV distribution with five parame-
ters

G(z,d; µ̃,σ0,ξ,θ,η)

= exp

{
−

[
1+ ξ

(
z

σ0(d + θ)−η
− µ̃

)]−1/ξ
}
, (8)

which constitutes a model for the distribution of annual pre-
cipitation maxima for a range of durations.

2.3 Modeling monthly maxima

According to the Fisher–Tippett–Gnedenko theorem, the
GEV distribution is an adequate model for block maxima
if the block size is sufficiently large. For geophysical appli-
cations, such as modeling extreme precipitation, it is com-
mon to choose a block size of 1 year, as explicit modeling of
seasonality is thereby avoided. However, this results in two
major disadvantages: large portions of the data are lost for
the analysis if only the annual maxima are used, and the as-
sumption that precipitation events originate from an identical
distribution is violated if a distinct intra-annual cycle exists.
Therefore, the use of a smaller block size is worth consid-
ering. Multiple studies suggest that the GEV distribution is
well suited to model monthly block maxima of daily precip-
itation sums in the midlatitudes (Maraun et al., 2009; Rust
et al., 2009; Fischer et al., 2018). Similarly, we use monthly
maxima to model extreme precipitation of different dura-
tions: either with separate models for each duration using the
GEV (Eq. 3) or simultaneously using the d-GEV distribution
(Eq. 8). Inspection of the quantile–quantile (q–q) plots indi-
cates that the d-GEV distribution is a reasonable approxima-
tion for the distribution of monthly maxima at the regarded
stations. The q–q plots for station Bever-Talsperre with re-
spect to each month are shown in Fig. S1 in the Supplement.

To account for any form of variability in the GEV model
(Eq. 3), the GEV parameters ϕ ∈ {µ,σ,ξ} can be modeled as
linear functions of covariates xi within the framework of vec-
tor generalized linear models (VGLMs) (Yee and Stephen-
son, 2007):

lϕ (ϕ (xi))= ϕ0+

I∑
i=1

β
ϕ
i xi, (9)

where ϕ0 represents the intercept, and βϕi are the regression
coefficients. The choice of the parameter specific link func-
tion lϕ(·) can ensure that parameters stay within a predefined
range. However, we employ the identity lϕ(ϕ)= ϕ as link
function for all parameters. Following Fischer et al. (2018),
the intra-annual variations of the GEV parameters can be
modeled as a periodic functions of the day of the year (doy)
using a series of harmonic functions with a fundamental pe-
riod of 1 year:
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ϕ(doy)= ϕ0+

J∑
j=1

[
α
ϕ
j cos

(
2πj · doy
365.25

)

+β
ϕ
j sin

(
2πj · doy
365.25

)]
, (10)

where J is the maximum order of harmonic functions. To ob-
tain the parameters for each month, Eq. (10) is evaluated at
the corresponding center days of each month. We model the
seasonal variations of the d-GEV distribution in exactly the
same way. Essentially, this means that each of the parame-
ters ϕd-GEV ∈ {µ̃,σ0,ξ,θ,η} can be expressed in the form of
Eq. (10).

2.4 Parameter estimation

The parameters of the GEV distribution can be estimated
from a time series of observed block maxima. For this pur-
pose, we apply the widely used maximum likelihood estima-
tor (MLE) (Coles, 2001). Thus, the parameters are chosen by
optimizing the likelihood

L(φ | Z)=
∏
n∈N

g (zn;φ) , (11)

where the parameter vector φ = (µ,σ,ξ)T contains the un-
known GEV parameters, the vector Z consists of the ob-
served maxima zn for different blocks (years/months) n, and
g(zn;φ) is the probability density function of the GEV distri-
bution. This can be applied analogously for the d-GEV dis-
tribution:

L(φ | Z)=
∏
d∈D

∏
n∈N

g
(
zn,d,d;φ

)
. (12)

Whereas in this case the parameter vector φ =

(µ̃,σ0,ξ,θ,η)
T , Z now contains all observed max-

ima zn for different blocks (years/months) n and durations d,
and g(zn,d,d;φ) is the probability density function of the
d-GEV distribution. A benefit of the MLE is that it can be
easily extended in the case of using covariates to model the
parameters (Eq. (10)). The parameter vector then contains
the parameter intercepts ϕ0 and regression coefficients αϕj
and βϕj for each parameter in the case of both GEV and
d-GEV distribution.

Since the logarithm of the likelihood reaches the maxi-
mum at the same value but is easier to calculate, the param-
eters are estimated by optimizing the log-likelihood numeri-
cally:

φ̂ = argmaxφ{ln[L(φ | Z)]}. (13)

It is possible to derive the uncertainty of the parameter es-
timates, i.e., the variance–covariance matrix, via the Fisher
information matrix estimated in this process.

Nevertheless, Eqs. (11) and (12) are only valid if the block
maxima are independent of each other. The assumption that

maxima of different years or also months are independent is
reasonable. However, a dependency exists between the max-
ima of different durations. Jurado et al. (2020) have shown
that accounting for asymptotic dependence between dura-
tions yields a modest improvement in the estimation of quan-
tiles of short durations d ≤ 10 h but comes at the cost of in-
creased model complexity. We therefore decide to neglect
the dependence between durations when estimating the d-
GEV parameters using Eq. (12). Yet, the dependence be-
tween durations is taken into account when estimating the
uncertainties of the quantiles using the bootstrap method (see
Sect. 2.6).

2.5 Model selection

To obtain a parsimonious model, we use a selection pro-
cedure consisting of two steps: in the first step, we deter-
mine for which of the GEV/d-GEV parameters the modeling
of the intra-annual variations is not appropriate and which
should therefore remain constant. In the second step, we se-
lect which terms of the harmonic series in Eq. (10) are actu-
ally needed in order to model the nonconstant parameters.

When modeling intra-annual variations of GEV parame-
ters, the shape parameter ξ is often assumed to be constant
(Maraun et al., 2009; Rust et al., 2009; Fischer et al., 2018).
This is justified by the fact that ξ controls the tail of the distri-
bution, and thus the estimation of ξ is already associated with
large uncertainties. Hence, adding additional coefficients to
the estimation of ξ is only reasonable if there are sufficient
data available. Fischer et al. (2019) demonstrated that mod-
eling the intra-annual variations of ξ can indeed improve the
GEV model. However, their model is able to combine the
observations of many stations – due to additional spatial co-
variates – and therefore the amount of data on which the es-
timation is based is increased. Since in contrast we employ
separate models for each station, we choose the shape pa-
rameter to remain constant ξ(doy)= ξ0. For the parameters
µ(doy) and σ(doy), a variation in the form of Eq. (10) is
adopted.

To be consistent, we also use a constant shape parameter in
the d-GEV case. The estimation of the duration offset param-
eter θ is likewise associated with considerable uncertainties
because it is strongly influenced by the estimation of the pa-
rameters η and σ0. Equation (5) clearly indicates this effect.
Therefore, we choose for θ to remain constant θ(doy)= θ0
as well. The parameters µ̃(doy),σ0(doy), and η(doy) are al-
lowed to vary periodically throughout the year according to
Eq. (10).

For the maximum order of the harmonic series in Eq. (10),
we choose J = 4. This results in a maximum of eight regres-
sion coefficients αϕj and βϕj for each nonconstant parameter.
Thus, in the GEV case, one would obtain one model per du-
ration containing 3+2 ·8= 19 parameters and in the d-GEV
case one model describing all durations simultaneously with
5+3·8= 29 parameters to be estimated. To reduce this num-
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Table 1. All possible models in the first step of the stepwise regres-
sion (GEV case) with ω = 2π

365.25 .

µ(doy) σ (doy) ξ(doy)

µ0 σ0 ξ0
µ0+α

µ
1 cos(ω · doy) σ0 ξ0

µ0 σ0+α
σ
1 cos(ω · doy) ξ0

µ0+α
µ
1 cos(ω · doy) σ0+α

σ
1 cos(ω · doy) ξ0

ber to a level where the model describes the variations suf-
ficiently well without overfitting, we apply a stepwise for-
ward regression. For both the GEV model and the d-GEV
model, we use the same methods to select the necessary pre-
dictor terms: as a model selection criterion, we use the cross-
validated log-likelihood. For this purpose, the observations
are divided into a training set and a test set, and ln[L(φ | Z)]
is computed as in Eqs. (11) and (12), where the parameter
vector φ is estimated based on the training set, and the obser-
vations Z originate from the test set. We choose a small num-
ber of folds k = 2, as recommended for cross-validation with
the aim of model selection (Arlot and Celisse, 2010). Thus,
the data are divided into two sets, each of which is used once
as a training and once as a test set. In the first step of the step-
wise regression, we compare all possible models that can re-
sult from the addition of the cosine term with j = 1 as covari-
ate for the nonconstant parameters. This yields four possible
models for the GEV case, listed in Table 1, and analogously
eight models for the d-GEV case. The model resulting in the
maximum cross-validated likelihood is retained for the next
model selection step. In this next step we similarly identify
the nonconstant parameters for which the addition of the sine
term with j = 1 results in an improvement of the model. We
proceed to the maximum order J = 4 accordingly.

For the station Bever-Talsperre, the resulting estimated d-
GEV parameters are presented in Fig. 2. For comparison, the
estimated parameters resulting from using a separate model
for each month are shown as well. In the case of the station
Bever-Talsperre, model selection yields a model with 16 pa-
rameters to be estimated. This represents a large parameter
reduction compared to using one separate d-GEV model per
month with 5 ·12= 60 parameters. From Fig. 2, we can note
that the choice to keep the parameters ξ and θ constant seems
to be justified. In addition, the parameters σ0 and η show a
clear variation throughout the year. The estimates of the sep-
arate models per month and the d-GEV model with covari-
ates agree well for these two parameters. In the case of the
modified location parameter µ̃, the variations are not as pro-
nounced as for σ0 and η, so it might be possible to model this
parameter as constant as well. However, following Eq. (6),
setting µ̃(doy)= const. would enforce the annual cycle of
the location parameter µ(d) and the scale parameter σ(d) to
be in phase for any fixed duration d . Based on the results of
an exploratory analysis (see Sect. S3), we conclude that the

assumption of phase equality of µ(d) and σ(d) for each du-
ration may be too restrictive. Therefore, we decide to allow
variations in µ̃(doy) throughout the year.

2.6 Obtaining IDF curves

When modeling the annual maxima with the d-GEV distribu-
tion according to Eq. (8), we can derive IDF curves that cor-
respond to the annual exceedance probabilities using Eq. (4).
Likewise, when modeling monthly maxima using the d-GEV
distribution with monthly covariates (Eq. 10), Eq. (4) yields
separate IDF curves for each month of the year. These cor-
respond to the probabilities that a certain intensity will not
be exceeded within a specific month. To distinguish between
these two types of IDF curves, we refer to them as annual
and monthly IDF curves, respectively.

However, we can also derive annual IDF curves, i.e., quan-
tiles of the distribution of annual maxima, from modeling the
monthly maxima. Assuming the maxima of all months in a
year as independent, the non-exceedance probability p of an
intensity level qp,d within 1 year is derived from its monthly
non-exceedance probabilities as

p =

12∏
m=1

Gm
(
qp,d;µm,σm,ξm

)
, (14)

for a fixed duration d. Therefore, to obtain the quantiles
of the distribution of annual maxima, we numerically solve
Eq. (14) for qp,d, where qp,d is the quantile corresponding to
the exceedance probability 1−p, sometimes interpreted as
the return level associated with the return period 1/(1−p).
We compute qp,d for the entire duration range to yield the
annual IDF curves.

We determine the uncertainties of the estimated IDF
curves using the ordinary nonparametric bootstrap percentile
method (Davison and Hinkley, 1997). In this process, a sam-
ple is first created from the data by drawing with replace-
ment. This sample is used to estimate the model parameters,
from which a certain intensity quantile dependent on dura-
tion Ip(d) is then calculated using Eq. (4). By repeating this
process R = 500 times, we obtain a distribution of intensity
quantiles. Finally, the empirical 0.025 and 0.975 quantiles
of the bootstrap distribution are used as the lower and up-
per bounds of the 95 % confidence interval for Ip(d). We
assume that considering an appropriate sampling strategy,
this method accounts for the dependence between maxima
of different durations. For this purpose, all maxima from a
particular year are jointly sampled; thus we obtain a sam-
ple of n years matching the length of the station time series.
Fauer et al. (2021) demonstrated in a sampling experiment
that the coverage of the 95 % confidence intervals obtained
in this manner stays adequate, even when the dependence of
the maxima of different durations is increased.

To visualize the differences between the annual IDF curves
resulting from the different models, it can be useful to com-
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Figure 2. Estimated d-GEV parameters µ̃, σ0, ξ , θ , and η (a–e) for station Bever-Talsperre: through applying one separate d-GEV model for
each month (blue dots) and by modeling all month simultaneously using a d-GEV model with monthly covariates (green lines). The error
bars and shaded areas show the 95% confidence intervals obtained via the estimated Fisher information matrix.

pare the parameters of the respective distributions of an-
nual maxima. Unfortunately, these are only directly available
when modeling the annual maxima. However, we can assume
that the distribution of the annual maxima resulting from
modeling the monthly maxima is for each duration again a
GEV distribution, due to its max-stability property. Thus, we
estimate the GEV parameters of the distribution of annual
maxima by firstly using Eq. (14) to estimate the quantiles in
the range p ∈ [0,1] and through inversion obtaining p(qp,d).
We then fit the GEV distribution to p(qp,d) using the nonlin-
ear least-squares method to estimate µd, σd, and ξd:

p
(
qp,d

)
∼ exp

{
−

[
1+ ξd

(
qp,d−µd

σd

)]−1/ξd
}
. (15)

The uncertainties of the estimates of µd, σd, and ξd are like-
wise determined using the described bootstrap method.

2.7 Verification

We apply a verification procedure in order to assess the esti-
mated quantiles, i.e., IDF curves. At a given station, we aim
to compare the annual IDF curves obtained by modeling the
monthly maxima with those obtained by modeling the annual
maxima. We model the monthly maxima using the d-GEV
distribution with monthly covariates according to Eqs. (8)
and (10). We abbreviate this model as monthly d-GEV in the
following. For modeling the annual maxima, we use the d-
GEV distribution (Eq. 8) and abbreviate this model as annual
d-GEV.

To provide a detailed analysis we follow Ulrich et al.
(2020), who suggest a verification strategy that allows the
estimated quantiles for each duration d and probability p to
be examined separately. The approach is based on the com-
parison of the observations on with the modeled quantile qp
via the quantile score (QS) (Bentzien and Friederichs, 2014):

QS(p)=
1
N

N∑
n=1

ρp
(
on− qp

)
,

where ρp(u)=

{
pu, u≥ 0
(p− 1)u, u < 0, (16)

where the check-loss function ρp(u) is evaluated at u= on−
qp. To obtain the out-of-sample performance of the model,
QS is evaluated in a cross-validation setting (Wilks, 2011).
For this purpose, we split the available time series at a station
into ny sets, corresponding to the length of the time series in
years, by removing the maxima of all durations of a specific
year y for each set. The model parameters and thus the quan-
tile qp,d are estimated based on the remaining data. The quan-
tile score for a cross-validation set is calculated from qp,d
and the respective omitted observed annual maximum od,y.
Therefore, the cross-validated quantile score results in

QScv(p,d)=
1
ny

∑
y∈Y
ρp
(
od,y− qp,d

)
. (17)

To compare the score of the monthly d-GEV QSm
cv with that

of the annual d-GEV QSa
cv, we use the quantile skill in-

dex (QSI) (Ulrich et al., 2020) that is based on the quantile
skill score (Wilks, 2011):

QSI(p,d)={
1−QSm

cv(p,d)/QSa
cv(p,d), QSm

cv(p,d)≤ QSa
cv(p,d)

−1+QSa
cv(p,d)/QSm

cv(p,d), QSm
cv(p,d) > QSa

cv(p,d).
(18)

Therefore, QSI ∈ [−1,1], where negative values indicate a
superior performance of the annual d-GEV model, whereas
positive values indicate a superior performance of the
monthly d-GEV model.
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Figure 3. The 0.9 quantiles for station Bever-Talsperre for each month (a) and for various durations (b). The durations shown correspond to
the durations d ∈ 2{0,1,2, ...,13}min discussed in Sect. 2.1. Shaded areas represent the 95 % confidence intervals obtained via the bootstrap
method.

3 Results and discussion

We first show the results for the monthly IDF curves at the
station Bever-Talsperre. Based on the probability that the an-
nual p quantile is exceeded within a certain month, we inves-
tigate the seasonal variations of the IDF relationship across
Germany. We present the results in detail for six selected sta-
tions. Furthermore, we examine the annual IDF curves re-
sulting from modeling monthly maxima and compare them
to those obtained from modeling annual maxima. We present
the resulting annual IDF curves together with the verifica-
tion results for three example stations. Since the annual IDF
curves derived from the monthly maxima deviate from our
original assumptions about the duration dependence, we fi-
nally investigate the dependence of the estimated GEV pa-
rameters on duration using annual and monthly maxima, re-
spectively. We focus in detail on the shape parameter.

3.1 Intra-annual variations

We obtain quantile estimates, i.e., IDF curves, for each
month using the d-GEV distribution (Eq. 8) with monthly co-
variates (Eq. 10), through Eq. (4). In the case of the monthly
IDF curves, p indicates the probability that the value of the
p quantile will not be exceeded within a given month. The
0.9 quantile for each month dependent on duration is shown
in Fig. 3a for the station Bever-Talsperre. The IDF curves
exhibit a steeper slope in the summer months (pink) than in
the autumn and winter months (blue). This is related to the
duration exponent η, which exhibits higher values in sum-
mer than in winter (Fig. 2e). This result matches the findings
of Willems (2000), who determined the rate of exponential
decline β of intensity with duration (equivalent to η) for dif-
ferent seasons and likewise found that β exhibits the smallest

values in the winter season. For short durations d ≤ 1 h, the
intensities reach their maximum in the summer months and
their minimum in the winter months. This corresponds to the
scale offset parameter σ0, which similarly peaks in summer
(Fig. 2b). In contrast, the intensity maximum of long dura-
tions d ≥ 24 h occurs in winter and the minimum in spring
and summer, since the curves for different months intersect
at d ≈ 8 h. The annual variation of the intensity for the dif-
ferent durations is presented in Fig. 3b. It is evident that the
intensity maximum shifts from summer for the short dura-
tions (purple/ blue) through autumn into winter for the long
durations (light green/ yellow). Here, only the quantiles of
the monthly distributions for p = 0.9 are shown. However,
the monthly quantiles for other probability values exhibit the
same behavior. The intersection of the IDF curves and the
resulting change in seasonality for different durations is not
generally present at all stations in the investigated duration
range. However, since different duration exponents of the
curves in summer and winter occur at all stations, we sus-
pect that at all stations, given sufficiently long durations, the
intensity maximum moves into winter eventually.

Due to the exponential decrease of intensity with duration,
a comparison of the p quantiles of different durations is only
possible on a logarithmic intensity scale. However, the inter-
pretation of a logarithmic axis is often difficult. Therefore, in
addition to the monthly 0.9 quantiles presented in Fig. 3, we
will also consider the probabilities that the annual 0.9 quan-
tile is exceeded within a given month. To do this, we first use
Eq. (14) to calculate the annual quantiles qp,d (return values)
from the monthly non-exceedance probabilities. Based on
this, we calculate the probability that qp,d will be exceeded
within a given month. Figure 4 (upper left) presents the prob-
abilities that the annual 0.9 quantile q0.9,d (10-year return
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Figure 4. Probability of the annual 0.9 quantile q0.9,d being exceeded in a given month. Dots indicate the probability that q0.9,d is exceeded
in a certain month, while each point in a line can be interpreted as the probability that q0.9,d is exceeded within the surrounding block of 30 d.
To illustrate the interpretation, the product of all probability values presented as dots for a chosen duration results in the annual exceedance
probability 1−p = 0.1. Therefore, dividing the probability values by 0.1 yields the conditional probability of exceeding q0.9,d in a given
month. For reasons of visual clarity, confidence intervals are not presented. Station names are listed at the top of each plot, while the numbers
indicate their positions in Fig. 5.

value) for different durations will be exceeded within a given
month at the Bever station. This depiction is a useful comple-
ment to Fig. 3, since the probabilities for different durations
vary on a linear scale, unlike the intensities. The monthly
exceedance probability for short durations d < 1 h (purple/
blue) exhibits a sharp peak with a maximum in July. The
probability that q0.9,<1 h is exceeded in the months Novem-
ber to April is approximately zero. This means that extreme
events of short duration, i.e., caused by convective precipita-
tion cells, are likely to occur in summer, while the probability
of these events occurring in the months October to April is
very small. This is consistent with the results for one sta-
tion in Belgium (Willems, 2000). In the transition to longer
durations, the probability decreases in July, while a second
maximum occurs in December to January. For durations of
about 8 to 17 h, this results in an extended period of time
ranging from June to February, during which the probabil-
ity shows similarly elevated values. For the long durations
d > 48h (light green/yellow), the probability again has one
clear maximum, which occurs in December to January. The
probability of q0.9,>48 h being exceeded in the months April
to June is relatively low in this case. Therefore, these long-
lasting extreme events, i.e., frontal events, are more likely to
occur in late autumn or winter.

To investigate the intra-annual variations across Germany,
we calculate the probability that the annual p quantile is ex-
ceeded in a given month for each station. We present the re-
sults for p = 0.9 in Fig. 5, whereby a different choice of p

yields very similar results. We summarize the information
on a map by indicating the maximum probability (size of the
dots), as well as the month in which the maximum occurs
(color of the dots). To a certain extent, the maximum prob-
ability provides information about the shape of the curve: a
high maximum probability is associated with a narrow prob-
ability peak. This implies that the probabilities in the remain-
ing months of the year are comparatively small. In contrast,
a small maximum probability suggests that there are other
months in the year with similar probability values.

From Fig. 5a it is evident that for short durations the prob-
ability peaks in summer at every station, specifically in July
at most stations. There are also some stations where the
maximum occurs in June or August. Noticeably, the stations
where the maximum is in August are all located on the North
Sea coast. Furthermore, at most stations the maximum prob-
ability is greater than 3 %, which indicates a narrow proba-
bility peak in summer for short durations. When comparing
the maximum probabilities with those at d = 24 h (Fig. 5b),
we find that the maximum probability decreases consider-
ably at almost all stations, thus broadening the time window
within which the annual 0.9 quantile is more likely to be ex-
ceeded. At most stations, the maximum occurs in the period
from June to September. At six stations, however, the maxi-
mum is reached in December or January. These stations are
all located at higher altitudes (Mittelgebirge). Figure 5c for
d = 120 h reveals a comparatively heterogeneous spatial dis-
tribution, both in terms of the maximum probability and the
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Figure 5. Maximum probability of the annual 0.9 quantile qp,d being exceeded in 1 month and months when the maximum occurs at each of
the considered stations for three different durations. Dividing the probability values by the annual exceedance probability 1−p = 0.1 yields
the conditional probability. Therefore a value of Prmax = 5 % can be interpreted as 50 % of the exceedances of qp,d occurring in a single
month. Numbers indicate the locations of example stations, presented in more detail in Fig. 4.

months in which the maximum occurs. At most stations in
Germany, the maximum still lies between June and Septem-
ber; however, the number of stations with maximum prob-
ability between November and January is considerably in-
creased in the west of Germany, especially in higher regions.

Regarding the month with the highest probability in the
case of long durations, we derive a rough division of the
stations within Germany into three types. For each type we
choose two stations, for which we present the probabilities
in detail in Fig. 4. We separate the stations into those with a
maximum in late autumn and winter (1, 2), between Septem-
ber and October (3, 4), and in summer (5, 6). The locations
of the stations are indicated by numbers in Fig. 5.

Station (1) is Bever-Talsperre, which has already been dis-
cussed in detail. Similarly to (1), the maximum at the sta-
tion Saarbrücken-Ensheim (2) also shifts from summer for
short durations into late autumn to winter for long dura-
tions. The stations differ, however, insofar as the maximum
probability for short durations at station (2) in July varies
only slightly from the probability in the months of June and
September. In addition, the probability for long durations re-
mains rather high in summer, in contrast to station (1). Sta-
tions that show a similar shift of the maximum exceedance
probability, from summer for short durations to late autumn
or winter for long durations, are located exclusively in the
western half of Germany and also occur mostly at higher al-
titudes. The exception are two stations in northern Germany.
The location of these stations coincides well with the results
of Fischer et al. (2018). They explain the increased occur-
rence of longer-lasting extreme events in these regions in
late autumn and winter, with the stronger westerly winds dur-
ing these months, which cause particularly high precipitation
amounts on the windward sides of the mountain chains (Mit-
telgebirge) due to the forced uplift of the air. However, this
study is based on daily precipitation sums. The fact that when
modeling several durations simultaneously, the seasonal vari-
ations are observed at longer durations than when modeling a

single duration might be due to the smoothing of the seasonal
signal.

As examples for stations where the maximum occurs in
September or October, for long durations, we present the
monthly exceedance probabilities for Cuxhaven (3) and List
auf Sylt (4). At both stations the width of the probability peak
increases for long durations, while its maximum shifts. This
shift is more pronounced at station (3). The probabilities in
the interval between December and May are relatively low
at both stations for all durations. Some stations of this type
are located scattered throughout Germany. However, a clear
cluster of these stations exists on the North Sea coast. This
group is also characterized by extreme convective precipi-
tation events occurring most likely in August, which could
be related to the water temperature in this region reaching
its maximum during this month. Accordingly, a possible ex-
planation for the high probability of long-lasting heavy pre-
cipitation in the following months might be that extratropical
cyclones transport air, which was warmed over the North Sea
and thus features a high water content, into this region.

Examples of stations where the probability maximum for
all durations occurs in summer are Berlin-Tempelhof (5)
and Mühldorf (6). An essential difference to the stations (3)
and (4) is that in this case a second maximum occurs in win-
ter for long durations. At station (6) this second maximum
is even almost as high as the one in summer for d > 120 h.
Stations of this type occur everywhere in Germany but are
the prominent station type in the eastern half of Germany.
The example stations (5) and (6) show a very distinct be-
havior for the probabilities with increasing duration. At most
of the other stations of this type, the signal for longer dura-
tions is less clear, as sometimes several maxima occur, or the
summer maximum might be shifted by 1 or 2 months. How-
ever, the common characteristics of these stations continue
to be the maximum for all durations occurring in the period
between May and October and the probability for long dura-
tions showing similarly increased values throughout several
months of the year.
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The monthly exceedance probability is a useful indicator
of the months from which the annual maxima of different du-
rations originate. For all stations, the peak of the probability
is relatively narrow for short durations, with the maximum in
summer. The probability that the annual 0.9 quantile occurs
in one of the other seasons is negligible. This fact contradicts
the assumption of the block maxima approach that precipi-
tation intensities are identically distributed within the block
of 1 year. In other words, a block size of 1 year for short
durations results in a much smaller effective block size of
about 4 to 6 months. With respect to longer durations, the
stations differ greatly, but it can be generally stated that the
effective block size increases for long durations. Thus, the
annual maxima at a station for different durations originate
from effective blocks of different sizes, which might even
be in different seasons, depending on the station’s location.
This effect is further emphasized in Fig. S2. Modeling the
monthly maxima, on the other hand, avoids this problem.
Therefore, in the following section we compare the annual
IDF curves derived from annual maxima with those derived
from monthly maxima.

3.2 Annual IDF curves

We obtain the annual IDF curves and their confidence inter-
vals from modeling annual and monthly maxima, using the
respective methods described in Sect. 2.6. We compare the
estimated quantiles from both models along with the QSI de-
scribed in Sect. 2.7. Figure 6 presents the IDF curves (lower
panels) together with the QSI (upper panels) for three ex-
ample stations. In addition to the station Bever-Talsperre (1),
with the longest time series, we present the results for the
stations Saarbrücken-Ensheim (2) and Cuxhaven (3), since
these three stations cover a broad spectrum in terms of differ-
ences between the quantile estimates obtained by both mod-
els as well as their uncertainties. The QSI is used to compare
the performance of both models. Positive values (red) indi-
cate an increase in the skill of the monthly d-GEV model
compared to the annual d-GEV model, while negative values
(blue) indicate that the annual model is superior. The result
of the QSI may be less reliable if the length of the time se-
ries T is shorter than the period corresponding to the non-
exceedance probability p = 1− 1/T being verified. There-
fore, we indicate the length of the time series available for
verification by dots in the upper panels in Fig. 6.

For the station Bever-Talsperre, the IDF curves resulting
from the two different models are almost identical over a long
duration range d < 8 h. Therefore, in this duration range, the
models’ performances differ only marginally, indicated by
|QSI| ≤ 0.05 for almost all probabilities. For high proba-
bilities p ≥ 0.98, the QSI suggests a slightly better perfor-
mance of the monthly model for durations 4min≤ d.2 h.
At d ≈ 8 h the IDF curves of the monthly model start to de-
viate from those of the annual model. More precisely, the
IDF curves of the monthly model no longer exhibit a power-

law behavior for d > 8 h but decrease more gradually. Due to
the larger differences in the IDF curves, the models’ perfor-
mances vary considerably (|QSI|> 0.05) in this range. How-
ever, the sign of the QSI differs for d.34 h and d&68 h: for
d.34 h, the data are better represented by the annual model,
as indicated by the negative values of the QSI in this range.
For d&68 h and p ≥ 0.95, however, the monthly model is a
considerable improvement over the annual model. This is ev-
ident both from the strongly positive QSI values in this range
as well as directly from the data, shown as box-and-whisker
plots, as the maximum of the observations extends above the
modeled 0.99 quantile. The models do not differ much with
respect to the width of the 95 % confidence intervals.

At station Saarbrücken-Ensheim, the differences in the
IDF curves of the two models are more pronounced through-
out the entire duration range: the estimated quantiles of the
monthly model are higher for very small and very large dura-
tions but lower in the range 8min.d.48 h than those of the
annual model. Thus, again the monthly model does not com-
ply with a power law. The QSI indicates that the monthly
model is mostly an improvement, except for smaller prob-
abilities at longer durations. Since this station provides a
shorter time series than station Bever-Talsperre, i.e., only
24 years, the 95 % confidence intervals of the annual model
are wider, especially for short durations and high probabili-
ties. This indicates that the monthly model benefits from uti-
lizing more data regarding the uncertainties.

This appears even more prominent at the Cuxhaven sta-
tion. Since the high-resolution time series at this station cov-
ers only 19 years, the uncertainties of the annual model are
considerably wider than those of the monthly model. The es-
timates of the monthly model for the 0.9 quantile and the
0.99 quantile are below the respective estimates of the annual
model. The estimates for the 0.5 quantile differ only slightly.
The quantiles of the monthly model roughly parallel those
of the annual model for longer durations. Thus, the monthly
model does not deviate essentially from a power law at this
station. The QSI does not provide a clear indication regarding
which model better represents the data but fluctuates between
positive and negative values. This seems to be in agreement
with the observations. The spread of the boxes and whiskers
first increases and then decreases over duration. As a result,
in the duration ranges with narrower box-and-whisker plots,
the monthly model better represents the data, especially for
higher quantiles, while the annual model is more suitable par-
ticularly for 8min≤ d.1 h, where the boxes and whiskers
are rather broad.

Overall, we find that the differences between the annual
and the monthly model are very heterogeneous for individual
stations. However, two general statements can be made:

1. Modeling monthly maxima provides a clear improve-
ment in terms of the quantile estimates’ uncertainties,
especially for stations with short observational time se-
ries.
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Figure 6. Annual IDF curves for three example stations estimated via two models: modeling annual maxima with the d-GEV distribution and
modeling monthly maxima using the d-GEV distribution with monthly covariates. The shaded areas represent the respective 95 % confidence
intervals. The distributions of the observed annual maxima are shown as box-and-whisker plots, where the whiskers cover the complete
data range. In the upper panels the corresponding QSI values are presented, indicating the comparison of the models’ performances, where
positive values indicate an increase in the skill of the monthly d-GEV model compared to the annual d-GEV model.

2. Although a power-law behavior for long durations is as-
sumed for the monthly IDF relations, the resulting an-
nual IDF curves can deviate from this behavior and are
therefore more flexible.

This deviation from a simple power-law behavior for long
durations is consistent with the findings of Willems (2000),
who observes a decrease in the rate of exponential decline
of intensity with increasing duration. We observe this de-
crease to be particularly pronounced at the station Bever-
Talsperre, where we also find a clear shift of the seasons in
which extreme events of different durations occur. We there-
fore suspect that the lower slope of the annual IDF curves at
long durations is related to this shift. Since we aim to bet-
ter understand this deviation from the original assumptions
in Eqs. (5)–(7), in the following section we examine the re-
lationships between the GEV parameters and duration that
follow from modeling monthly maxima.

In terms of model performance, we likewise cannot draw
general conclusions. At some stations, such as Cuxhaven,
we find that modeling monthly maxima improves the esti-
mates of the annual IDF curves for almost all probabilities
and durations. However, at many stations the improvement in
the estimation is limited to a selected range of probabilities
and durations, and there are also stations at which the esti-
mated quantiles of the monthly model are always worse than
those of the annual model. Since the objective of this study
is to model the seasonal variations at all stations by apply-
ing a uniform framework, the model selection was performed

identically for all stations, e.g., choosing θ(doy)= const. and
ξ(doy)= const. This results in a varying quality of represen-
tation of the parameters at different stations. We expect that
parameter estimation for rare events should generally im-
prove, as the introduction of smooth variation during the year
allows for the inclusion of additional information. Therefore
we assume that with more focus on estimating the IDF curves
of a single station, and thus a more targeted choice of model
selection approach and initial conditions, the model perfor-
mance of the monthly model at this station can be consider-
ably improved.

3.3 Duration dependence

To model the IDF relationship, we have so far assumed
that the GEV parameters depend on duration according to
Eqs. (5)–(7). This results in a power-law behavior, or so-
called simple scaling, of intensity with duration except for
short durations d < 1 h. The curvature of the IDF curves for
short durations (in a double-logarithmic plot) is controlled by
the parameter θ . Figure 3a illustrates that the IDF curves for
each month follow this imposed pattern. However, the result-
ing annual IDF curves, shown in Fig. 6 in green, deviate from
this behavior and thus from the assumptions in Eqs. (5)–(7).
To investigate this deviation in more detail, we estimate the
annual GEV parameters resulting from modeling monthly
maxima, using nonlinear regression according to Eq. (15),
separately for each duration. We use the obtained parame-

Hydrol. Earth Syst. Sci., 25, 6133–6149, 2021 https://doi.org/10.5194/hess-25-6133-2021



J. Ulrich et al.: Modeling seasonal variations of extreme rainfall on different timescales in Germany 6145

Figure 7. Annual GEV parameters µ, σ , and ξ for station Bever-Talsperre estimated via four different models along with bootstrapped 95 %
confidence intervals shown as error bars and shaded areas.

ters only to compare them with those estimated directly from
modeling the annual maxima. They are not intended as a ba-
sis of any further analysis. We compare the following four
models:

– modeling annual maxima using

– a separate GEV distribution for each duration (an-
nual GEV)

– one d-GEV distribution (annual d-GEV)

– modeling monthly maxima using

– a separate GEV distribution with monthly covari-
ates for each duration (monthly GEV)

– one d-GEV distribution with monthly covariates
(monthly d-GEV).

The annual GEV parameters µ, σ , and ξ estimated via these
models are presented depending on duration for the station
Bever-Talsperre in Fig. 7 including their respective 95 % con-
fidence intervals. Although the uncertainties of the parame-
ters estimated directly from the annual maxima can be de-
rived using the Fisher information matrix, for comparability,
the uncertainties of the parameter estimates are obtained us-
ing the bootstrap method described in Sect. 2.6 for all mod-
els.

For the location parameter µ (Fig. 7a), the estimates of
both annual models (red squares and black line) agree well;
i.e., µ follows a power law for durations d ≥ 1 h, while the
curve decreases more gradually for shorter durations. The es-
timates of the monthly models (purple triangles and green
line) are consistent with those of the annual models for du-
rations d.24 h; however, both monthly models agree on a
slower decline of µ for longer durations d&24 h and thus
a deviation from simple scaling. We observe quite a similar
behavior of the model estimates for the scale parameter σ
(Fig. 7b): the estimates of all models agree relatively well
for short durations d.1 h, and both monthly models show

an upwards deviation from simple scaling for longer dura-
tions d&24 h. However, the estimates of both GEV models
(squares and triangles) deviate noticeably from simple scal-
ing towards smaller values in the range 1h.d.24 h. Regard-
ing the uncertainties for the estimates of µ and σ , the annual
GEV model (red) is associated with the largest uncertainties.
By considering more data, the parameters can be estimated
more accurately using the monthly GEV model (purple).
Similarly, the annual d-GEV model (black) exhibits consid-
erably smaller uncertainties than the annual GEV model be-
cause here the addition of data from other aggregation levels
leads to a more confident estimate. Consequently, the joint
use of data from all months and durations in the monthly d-
GEV model results in the smallest uncertainties regarding pa-
rameter estimation. The estimates for µ and σ obtained from
all four models agree relatively well at most of the other sta-
tions (not presented). Similar to the station Bever-Talsperre,
at several stations the estimates of the monthly models show
an upward deviation from simple scaling for long durations.
The estimates are associated with considerably larger uncer-
tainties for most other stations, where shorter time series are
available.

The shape parameter ξ determines the tail of the distribu-
tion, and its estimation is therefore subject to relatively large
uncertainties depending on the length of the time series. This
is similarly the case for the station Bever-Talsperre (Fig. 7c)
with a time series of 51 years, where the estimates of ξ based
on annual maxima of a single duration (red squares) vary in
the range 0.09 to 0.4, but since the 95 % confidence intervals
are very broad, it is challenging to derive a relationship be-
tween ξ and duration. For the d-GEV we therefore assume
a constant shape parameter (Eq. 7), which for the annual d-
GEV model (black line) is estimated to be 0.11. Compared
to the separate estimates of the annual GEV for each dura-
tion (red squares), this value appears reasonable. Addition-
ally, the uncertainties decrease significantly when modeling
the annual maxima of all durations simultaneously. For the
monthly d-GEV, ξ is also assumed to remain constant over
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Figure 8. Distribution of shape parameter ξ estimated using four different models (columns) at all 132 stations. The shaded areas present the
percentage of stations for which the estimated value lies within the respective range, while the line depicts the median value.

duration for each month. In addition, we hypothesize that
ξ does not change throughout the year either, as described
in Sect. 2.5. Interestingly, ξ(d) resulting from the monthly d-
GEV model (green line) nevertheless deviates slightly from
being constant. The estimated values are slightly higher than
those of the annual d-GEV model and vary between 0.12
and 0.14, with the minimum at about d ≈ 17 h. Similarly toµ
and σ , the uncertainties of the monthly d-GEV model (green)
for the estimation of ξ are even smaller than those of the
annual d-GEV model (black). When we model the monthly
maxima for each duration separately, we benefit from being
able to estimate the shape parameter with smaller uncertain-
ties without constraining the relation between ξ and duration.
Thus, we observe a distinct variation of ξ estimated via the
monthly GEV model (purple triangles) over duration. The
estimated values exhibit a minimum, similar to those of the
monthly d-GEV model (green line), at d ≈ 8h and vary in the
range −0.08 to 0.24. To evaluate this result, we can visually
examine the distribution of annual maxima for different dura-
tions, seen in Figs. S2 and 6 (bottom left) as box-and-whisker
plots. It is noticeable that the observations for d ≈ 8 h actu-
ally cover the smallest range, thus agreeing with the results
for the shape parameter.

Since the shape parameter estimates of the four different
models vary substantially at the individual stations, we sum-
marize the information for all stations in Fig. 8. For each
model, the distribution of the estimated value over all sta-
tions is plotted with respect to duration. We observe that ξ
estimated using the annual GEV model (red) varies widely
among stations. The model seems to only provide estimates
in a reasonable range at 75 % of the stations based on the
small amount of data. The median of all stations appears to
oscillate around a constant value. For the annual GEV model
(black), the range in which the estimates vary among stations
is narrower, but implausibly high values still occur at some
stations. The median is consistent with the median of the an-
nual GEV model (red). In comparison, the range in which
the estimated values of the monthly d-GEV model (green)

vary is much smaller, and the values are within a reasonable
range at all stations. Although in this model ξ is assumed to
be constant over duration and months, we see a subtle de-
crease in the median with duration. Likewise, the variation
for ξ between individual stations is smaller for the monthly
GEV model (purple) than for either of the annual models (red
and black). Additionally, we can see a clear decrease of the
shape parameter with duration for this model, since in this
case no relation between ξ and duration is predefined.

To summarize, we find that modeling the monthly maxima
allows new conclusions to be drawn about the behavior of the
parameters of the distribution of annual maxima depending
on duration. Instead of using the more complex modeling of
monthly maxima to estimate annual IDF curves, one might
also try to implement the resulting characteristics directly
into the model for annual maxima. We find that for some
stations the location µ and scale σ parameters deviate from
the assumption of simple scaling toward higher values for
long durations. Fauer et al. (2021) showed that this behavior
of the parameters can be modeled by an additional parameter
τ , called intensity offset. They report that the addition of this
parameter for the stations of the Wupper catchment, in which
the example station Bever-Talsperre is located, leads on av-
erage to an improved estimation of the annual IDF curves
for medium to long durations. Regarding the shape param-
eter ξ , we observe that the reduced uncertainties in the esti-
mation of ξ , resulting from modeling monthly maxima, allow
for further investigation of the dependence of ξ on duration.
We find that ξ decreases with duration when taking the aver-
age of the investigated stations in Germany, reaching values
around zero for most stations at long durations. We believe
that this finding provides a good basis to explore a potentially
more suitable formulation of ξ(d) in future studies. We could
imagine that the explicit modeling of this decrease of ξ yields
similar results to assuming a different duration exponent for
the parameters µ and σ of the d-GEV, so called multiscaling
(Gupta and Waymire, 1990; Van de Vyver, 2018). Possibly
the latter implementation could be beneficial, since the esti-
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mation of these parameters is associated with less uncertainty
than that of ξ .

4 Conclusions

This study focuses on modeling the intra-annual variations
of extreme precipitation on different timescales. For this pur-
pose, we employ a duration-dependent generalized extreme
value (d-GEV) distribution with monthly covariates. Using
this approach allows for the following:

– investigation of seasonal variations in the intensity–
duration–frequency (IDF) relationship;

– the obtaining of more reliable estimates for the annual
IDF curves by utilizing information on extreme events
more efficiently;

– a better understanding of the underlying processes,
i.e., the dependence of the parameters on the duration.

Regarding the seasonal variations, we find that everywhere
in Germany, the short convective extreme events are most
likely to occur in the summer months, whereas there are re-
gional differences for the seasonality of long-lasting strati-
form extreme events. Our findings will allow future studies
to identify meaningful factors accounting for these regional
differences.

Furthermore, our results show that the annual IDF curves
based on the monthly maxima constitute a major improve-
ment in terms of uncertainties of the estimates. Using the
quantile skill index (QSI), we compare the performance of
the models based on the annual and monthly maxima and
show that, for some stations, modeling the monthly maxima
also leads to a considerable improvement in this regard. A
limitation of this study is the strict assumptions that are im-
posed on the seasonal variations of the distribution parame-
ters. Subsequent studies should therefore investigate the de-
gree to which relaxing these assumptions might further im-
prove the performance of the model based on monthly data.
For example, in the framework of a vector generalized ad-
ditive model (Yee and Stephenson, 2007), it would be pos-
sible to model these smooth variations in a nonparametric
form. Based on our results, it might be beneficial to model the
monthly maxima for obtaining annual IDF curves when there
are large differences in the seasonality of extreme events on
different timescales, such as at the station Bever-Talsperre,
or for stations where only short observation time series are
available. However, it must be considered that a misspecifi-
cation of the seasonal variations of the parameters can lead to
poor results. Moreover, modeling monthly precipitation max-
ima with the GEV may not be possible in regions with very
small precipitation amounts during some months of the year.
Therefore, the applicability of the model to the data should
always be verified.

Finally, we can demonstrate that at some stations the an-
nual IDF curves based on the monthly maxima deviate from
the assumption of scale invariance for long durations. We il-
lustrate that this behavior can be captured by a different pa-
rameterization of the location and scale parameter. For fu-
ture research, it might be of interest to compare the monthly
model employed in this study with an annual model that uses
different parameterization, e.g., the one proposed by Fauer
et al. (2021). Moreover, by including additional information
in the form of smooth variations during the year, we ob-
serve that the shape parameter decreases with duration when
averaged over all stations. Based on this result, future re-
search should investigate whether the assumption of a con-
stant shape parameter is appropriate for a wide range of du-
rations from minutes to several days or whether a more ap-
propriate explicit relationship can be identified.

In conclusion, the use of monthly maxima can be bene-
ficial in several respects when estimating IDF curves, even
when information on seasonal variations is not required.
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(https://opendata.dwd.de/climate_environment/CDC/observations_
germany/climate/1_minute/precipitation/historical/; DWD,
2021). We provide the monthly maxima for 14 aggregation
times at all 132 stations, serving as the basis for the anal-
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et al., 2021a). The statistical analysis was performed using
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