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Abstract. Timely and accurate estimation of reference evap-
otranspiration (ET0) is indispensable for agricultural water
management for efficient water use. This study aims to esti-
mate the amount of ET0 with machine learning approaches
by using minimum meteorological parameters in the Co-
rum region, which has an arid and semi-arid climate and
is regarded as an important agricultural centre of Turkey.
In this context, monthly averages of meteorological vari-
ables, i.e. maximum and minimum temperature; sunshine du-
ration; wind speed; and average, maximum, and minimum
relative humidity, are used as inputs. Two different kernel-
based methods, i.e. Gaussian process regression (GPR) and
support vector regression (SVR), together with a Broyden–
Fletcher–Goldfarb–Shanno artificial neural network (BFGS-
ANN) and long short-term memory (LSTM) models were
used to estimate ET0 amounts in 10 different combinations.
The results showed that all four methods predicted ET0
amounts with acceptable accuracy and error levels. The
BFGS-ANN model showed higher success (R2

= 0.9781)
than the others. In kernel-based GPR and SVR methods, the
Pearson VII function-based universal kernel was the most
successful (R2

= 0.9771). Scenario 5, with temperatures in-
cluding average temperature, maximum and minimum tem-

perature, and sunshine duration as inputs, gave the best re-
sults. The second best scenario had only the sunshine dura-
tion as the input to the BFGS-ANN, which estimated ET0
having a correlation coefficient of 0.971 (Scenario 8). Con-
clusively, this study shows the better efficacy of the BFGS
in ANNs for enhanced performance of the ANN model in
ET0 estimation for drought-prone arid and semi-arid regions.

1 Introduction

Accurate estimation of reference crop evapotranspira-
tion (ET0) and crop water consumption (ET) is essential in
managing water in the agricultural sector particularly for arid
and semi-arid climatic conditions where water is scarce and
valuable. Although ET0 is a complex element of the hydro-
logical cycle, it is also an important component of hydro-
ecological applications and water management in the agricul-
tural sector. The estimation of ET0 is critical in the forcible
management of irrigation and hydro-meteorological studies
on respective basins and on national scales (Pereira et al.,
1999; Xu and Singh, 2001; Anli, 2014) since knowledge
of ET0 would allow for reduced water wastage, increased ir-
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rigation efficiency, proper irrigation planning, and reuse of
water.

In general, the equations that calculate ET0 values are
very complex, nonlinear, contain randomness, and all in all
have several underlying assumptions. The results obtained
from these equations differ greatly from the measured values.
ET0 is considered a complex and nonlinear phenomenon that
interacts with water, agriculture, and climate. It is difficult to
emulate such a phenomenon by experimental and classical
mathematical methods. About 20 well-known methods for
estimating ET0 based on different meteorological variables
and assumptions are available in the literature. The Penman–
Monteith (FAO56PM) method proposed by FAO is recom-
mended to estimate ET0, as it usually gives usable results
in different climatic conditions (Hargreaves and Samani,
1985; Rana and Katerji, 2000; Feng et al., 2016; Nema et
al., 2017). Cobaner et al. (2017) modified the Hargreaves–
Samani (HS) equation used in the determination of ET0.
Solving the equations and finding the correct parameter val-
ues requires sophisticated programs for the employment of
differential equations, which require rigorous optimization
methods together with a broad range of high-quality and ac-
curate spatio-temporal input data with the knowledge of ini-
tial conditions (Prasad et al., 2017).

On the other hand, the developments in artificial intel-
ligence (AI) methods and the increase in the accuracy of
the estimation results have increased the desire for these
AI methods. The AI models offer a number of advantages
including their ease of development compared to physically-
based models, not requiring underlying boundary conditions
or other assumptions or initial forcings, and the ability to
operate at localized positions (Prasad et al., 2020). Conse-
quently, many studies have been reported to have applied AI
approaches for ET0 estimations. Artificial intelligence tech-
niques based on machine learning (ML) has been success-
fully utilized in predicting complex and nonlinear processes
in natural sciences, especially hydrology (Koch et al., 2019;
Prasad et al., 2017; Solomatine, 2002; Solomatine and Dulal,
2003; Yaseen et al., 2016; Young et al., 2017). Thus, meth-
ods such as ML and deep learning have gained popularity in
estimating and predicting ET0.

The artificial neural network (ANN) has been the most
widely used ML model to date. Sattari et al. (2013) used the
backpropagation algorithm of the ANN and tree-based M5
model to estimate the monthly ET0 amount by employing a
climate dataset (air temperature, total sunshine duration, rel-
ative humidity, precipitation, and wind speed) in the Ankara
region and compared the estimated ET0 with FAO56PM
computations. The results revealed that the ANN approach
gives better results. In another study, Pandey et al. (2017) em-
ployed ML techniques for ET0 estimation using limited me-
teorological data and evaluated evolutionary regression (ER),
ANN, multiple nonlinear regression (MLNR), and SVM.
They found that the ANN FAO56PM model performed bet-
ter. In their study, Nema et al. (2017) studied the possibili-

ties of using an ANN to increase monthly evapotranspiration
prediction performance in the humid area of Dehradun. They
developed different ANN models, including combinations of
various training functions and neuron numbers, and com-
pared them with ET0 calculated with FAO56PM. They found
that the ANN trained by the Levenberg–Marquardt algorithm
with 9 neurons in a single hidden layer made the best esti-
mation performance in their case. The ANNs with multiple
linear regression (MLR), ELM, and HS models were tested
by Reis et al. (2019) to predict ET0 using temperature data in
the Verde Grande River basin, Brazil. The study revealed that
AI methods have superior performance over other models.
Abrishami et al. (2019) estimated the amount of daily ET0
for wheat and corn using ANNs and found the proper and ac-
ceptable performance of ANNs with two hidden layers. How-
ever, some studies showed a slightly better performance of
other models. Citakoglu et al. (2014) predicted monthly av-
erage ET0 using the ANN and adaptive network-based fuzzy
inference system (ANFIS) techniques using combinations of
long-term average monthly climate data such as wind speed,
air temperature, relative humidity, and solar radiation as in-
puts and found ANFIS to be slightly better than ANN. Yet
they found both methods to be successful in estimating the
monthly mean ET0. Likewise, ANN and ANFIS models em-
ploying the cuckoo search algorithm (CSA) were applied by
Shamshirband et al. (2016) using data from 12 meteorolog-
ical stations in Serbia. The results showed that the hybrid
ANFIS-CSA could be employed for high-reliability ET0 es-
timation.

Despite ANNs being universal approximators with the
ability to approximate any linear or nonlinear system with-
out being constrained to a specific form, there are some in-
herent disadvantages. Slow learning speed, over-fitting, and
constraints in local minima make it relatively tedious to de-
termine key parameters, such as training algorithms, activa-
tion functions, and hidden neurons. These inherent structural
problems sometimes make ANNs difficult to adapt for dif-
ferent applications. However, despite all the disadvantages,
it is still a preferred method in all branches of science and
especially in hydrology. Having said that, in this study, the
ANN is benchmarked with other comparative models. One
such model is support vector machine (SVM) developed by
Vapnik (2013). SVMs have good generalization ability since
they utilize the concept of the structural risk minimization
hypothesis in minimizing both empirical risk and the con-
fidence interval of the learning algorithm. Due to the un-
derlying solid mathematical foundation of statistical learn-
ing theory giving it an advantage, the SVMs have been pre-
ferred in a number of studies and produced highly compet-
itive performances in real-world applications (Quej et al.,
2017). Subsequently, Wen et al. (2015) predicted daily ET0
via SVM, using a limited climate dataset in the Ejina Basin,
China, using the highest and lowest air temperatures, daily
solar radiation, and wind speed values as model inputs and
FAO56PM results as model output. The SVM method’s per-
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formance was compared to ANN and empirical techniques,
including Hargreaves, Priestley–Taylor, and Ritchie, which
revealed that the SVM recorded better performance. Zhang
et al. (2019) examined SVM’s success in ET0 estimation and
compared the outcomes with Hargreaves, FAO-24, Priestley–
Taylor, McCloud, and Makkink. SVM was determined to be
the most successful model. However, SVM also has several
drawbacks, such as having a high computational memory
requirement as well as being computational exhaustive, as
a large amount of computing time is necessary during the
learning process.

In order to overcome the disadvantages of these two
widely accepted approaches (ANN and SVM), many new
modelling techniques have been proposed in recent years.
For instance, the two state-of-the-art machine learning tech-
niques, namely Gaussian process regression (GPR) and long
short-term memory (LSTM), have also been recently tri-
alled in hydrologic time series modelling and forecasting
applications. Following the newer developments, Shabani et
al. (2020) used ML methods, including GPR, random for-
est (RF), and SVR, with meteorological inputs to estimate
evaporation in Iran and found that ML methods have high
performances even with a small number of meteorological
parameters. In a recent study, deep learning and ML tech-
niques to determine daily ET0 have been explored in Pun-
jab’s Hoshiarpur and Patiala regions, India (Saggi et al.,
2019). They found that supervised learning algorithms such
as the deep learning (DL) multilayer sensor model offers high
performance for daily ET0 modelling. However, to the best
of the authors’ knowledge, there have been very few attempts
to test the practicability and ability of these two advanced
approaches (LSTM and GPR) for ET0 modelling and predic-
tion. In addition, many studies included solar radiation in the
modelling process yet did not include sunshine hours in the
modelling, which will be dealt with in this study.

With recent developments in ML methods with the use of
deep learning techniques such as LSTM in water engineer-
ing together with technical developments in computers and
the emergence of relatively comfortable coding languages,
this study explores the application of different deep learn-
ing (LSTM) and other machine learning methods (ANN,
SVM, and GPR) in the estimation of ET0 to shed light
on future research and to determine effective modelling ap-
proaches relevant to this field. ET0 is one of the essential
elements in water, agriculture, hydrology, and meteorology
studies, and its accurate estimation has been an open area
of research due to ET0 being a complex and nonlinear phe-
nomenon. Hence, robust deep learning and ML approaches
including LSTM, ANN, SVM, and GPR methods need to be
aptly tested. As a result, this study has three important goals:
(i) to estimate the amount of ET0 using deep learning and
machine learning methods, i.e. GPR, SVR, and Broyden–
Fletcher–Goldfarb–Shanno ANN (BFGS-ANN) learning al-
gorithms, as well as LSTM in Corum, Turkey, an arid and
semi-arid climatic region with a total annual rainfall of

427 mm; (ii) to investigate the effect of different kernel func-
tions of the SVR and GPR models on the performance of
ET0 estimation; and (iii) to determine the model that pro-
vides the highest performance with the fewest meteorologi-
cal variable requirements for the study. A proper prediction
of reference evapotranspiration would be vital in managing
limited water resources for optimum agricultural production.

2 Study area and dataset used

Corum encompasses an area of 1 278 381 ha, of which
553 011 ha, or 43 %, is agricultural land (Fig. 1). Its popula-
tion is 525 180, and 27 % of it lives in rural areas. The city’s
water resource potential is 4916 hm3 yr−1, and 84 988 ha
of agricultural land is being irrigated. The main agricul-
tural products are wheat, paddy, chickpeas, onions, walnuts,
and green lentils. This study was conducted using monthly
meteorological data including highest and lowest tempera-
ture; sunshine duration; wind speed; and average, highest,
and lowest relative humidity from 312 months from Jan-
uary 1993–December 2018 (Republic of Turkey, 2017) as
model inputs. 200 months were used for training, and the re-
maining 112 were used for testing. Statistics of the data used
are given in Table 1. During the training period, the daily
average, highest, and lowest temperature averages are 10.80,
18.27, and 4.02 ◦C, respectively. The average sunshine du-
ration in the region is 6.29 h, wind speed is 1.72 m s−1, and
the mean humidity is 70.41 %. The lowest skewness coeffi-
cient of −0.64 was found in RHmax and the highest of 0.35
in RHmin. Tmean has the lowest kurtosis coefficient of −1.24
and RHmax the highest of 1.12. The highest variation was
observed in RHmin with 140.40 and the lowest in sunshine
duration with 0.18. Similarly, in the testing period, the daily
average, highest, and lowest temperature averages are 11.44,
18.60, and 4.89 ◦C, respectively. The average sunshine du-
ration in the region is 5.74 h, wind speed is 1.64 m s−1, and
the mean humidity is 68.08 %. The lowest skewness coeffi-
cient of −0.53 was found in RHmax and the highest of 0.75
in RHmin. Tmean has the lowest kurtosis coefficient of −1.25
and RHmax and RHmin have the highest of −0.37. The high-
est variation was observed in RHmin with 202.50 and the low-
est in sunshine duration with 0.16. The skewness and kurtosis
coefficients in the train and the testing period are similar in
all parameters except the maximum relative humidity. The
frequency distributions of meteorological data of the study
area are given in Fig. 2 which conforms to the distribution
statistics. As it is understood from the figure, the dependent
variable ET0 values do not conform to the normal distribu-
tion.

To determine the meteorological factors employed in the
model and the formation of scenarios, the relationships be-
tween ET0 and other variables were calculated as given in
Fig. 3. Input determination is an essential component of
model development as irrelevant inputs are likely to worsen
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Table 1. Basic statistics of the data used in the study during the training and testing periods.

Period Statistic Tmean Tmax Tmin n U RHmean RHmax RHmin ET0
(◦C) (◦C) (◦C) (h) (m s−1) (%) (%) (%) (mm per

month)

Training Minimum −6.18 −1.27 −11.3 1 0.95 51.6 66.87 21.51 11.76
dataset Maximum 25.06 35.44 14.75 11.97 2.69 94.74 98.93 82.83 185.59

Mean 10.80 18.27 4.02 6.29 1.72 70.41 87.76 47.48 79.15
SD 8.00 9.32 6.34 2.96 0.42 8.02 5.39 11.88 52.64
Skewness −0.09 −0.15 −0.13 0.06 0.13 0.16 −0.64 0.35 0.34
Kurtosis −1.24 −1.21 −1.06 −1.25 −0.85 −0.37 1.12 −0.48 −1.29
Coefficient of variation 63.75 86.50 40.02 8.72 0.18 63.97 28.86 140.40 2756.72
Number of records 200 200 200 200 200 200 200 200 200

Testing Minimum −4.25 1.08 −9.21 0.83 0.7 45.8 72.06 19.03 13.99
dataset Maximum 25.06 34.85 15.63 10.87 2.45 94.07 99.83 80.12 180.53

Mean 11.44 18.60 4.89 5.74 1.64 68.08 90.09 40.53 79.21
SD 7.82 9.17 6.23 2.92 0.39 11.23 6.21 14.17 53.02
Skewness −0.04 −0.15 −0.03 0.08 0.08 0.25 −0.53 0.75 0.36
Kurtosis −1.25 −1.20 −1.12 −1.23 −0.65 −0.74 −0.37 −0.37 −1.27
Coefficient of variation 61.68 84.89 39.20 8.60 0.16 127.17 38.90 202.50 2836.65
Number of records 112 112 112 112 112 112 112 112 112

NB: T : temperature, n: sunshine duration, U : wind speed, RH: relative humidity.

Figure 1. Location of the study area, Corum Province, Turkey
(© Google Maps).

the model performances (Hejazi and Cai, 2009; Maier and
Dandy, 2000; Maier et al., 2010), while a set of carefully
selected inputs could ease the model training process and
increase the physical representation whilst providing a bet-
ter understanding of the system (Bowden et al., 2005). The
sunshine duration in this study was very highly correlated
with ET0 (R2

= 0.92), and the variables Tmean, Tmax, and
Tmin were all highly correlated (R2 > 0.8). The RH mean
was the least correlated variable (R2

= 0.24) in this study.
As can be understood visually, the meteorological variables
associated with temperature and especially the sunshine du-
ration have a high correlation with ET0. Considering these
relationships, 10 different input scenarios were created, and
the effect of meteorological variables on ET0 estimation was
evaluated. Table 2 gives the meteorological variables used in
each scenario. While all parameters were taken into account
in the first scenario, the ones that could affect ET0 more in
the following scenarios were added in the respective scenar-
ios.

3 Methods

3.1 Calculation of ET0

The United Nations Food and Agriculture Organiza-
tion (FAO) recommend the Penman–Monteith (PM) equa-
tion (Eq. 1) to calculate the evapotranspiration of reference
crops (Doorenbos and Pruitt, 1977). Although the PM equa-
tion is much more complex than the other equations, it has
been formally explained by FAO. The equation has two main
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Figure 2. Frequency distributions of meteorological input dataset conforming to the distribution statistics.

Figure 3. Scatter plot showing the correlation between ET0 and the independent variable. The coefficient of determination has been added
for clarity.

Table 2. The scenarios developed in this study with respective in-
puts in respective scenarios.

Scenario Inputs

1 (all variables) TMean, TMax, TMin, n, U , RHMax, RHMin, RHMean
2 TMean, n, U , RHMean
3 TMax, n, RHMax
4 TMax, n , U
5 TMean, TMax, TMin, n
6 n, U , RHMax
7 n, RHMax
8 (highest R2) n

9 TMin
10 TMax

features: (1) it can be used in any weather conditions without
local calibration, and (2) the performance of the equation is
based on the lysimetric data in an approved spherical range
(Allen et al., 1989). The requirement for many meteorolog-
ical factors can be defined as the main problem. However,
there is still no equipment to record these parameters cor-
rectly in many countries, or data are not regularly recorded
(Gavili et al., 2018).

ET0 =
0.4081(Rn−G)+ γ

900
T+273u2 (es− ea)

1+ γ (1+ 0.34u2)
, (1)

where ET0 refers to the reference evapotranspira-
tion [mm d−1], G refers to the soil heat flux density
[MJ m−2 d−1], u2 refers to the wind speed at 2 m [m s−1],
ea refers to the actual vapour pressure [kPa], es refers to
the saturation vapour pressure [kPa], es− ea refers to the

https://doi.org/10.5194/hess-25-603-2021 Hydrol. Earth Syst. Sci., 25, 603–618, 2021



608 M. T. Sattari et al.: Comparative analysis of kernel-based versus ANN and deep learning methods

saturation vapour pressure deficit [kPa], T refers to the
mean daily air temperature at 2 m [◦C], Rn refers to the net
radiation at the crop surface [MJ m−2 d−1], γ refers to the
psychrometric constant [kPa ◦C−1], and1 refers to the slope
vapour pressure curve [kPa ◦C−1].

3.2 Broyden–Fletcher–Goldfarb–Shanno artificial
neural network (BFGS-ANN)

McCulloch and Pitts (1943) pioneered the original idea of
neural networks. ANN is essentially a black-box modelling
approach that does not identify the training algorithm explic-
itly, yet the modellers often trial several algorithms to attain
an optimal model (Deo and Şahin, 2015). In this study, the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) training algo-
rithm has been used to estimate ET0 amounts. In optimiza-
tion studies, the BFGS method is a repetitious approach for
solving unlimited nonlinear optimization problems (Fletcher,
1987). The BFGS-ANN technique trains a multilayer percep-
tron ANN with one hidden layer by reducing the given cost
function plus a quadratic penalty using the BFGS technique.
The BFGS approach includes quasi-Newtonian methods. For
such problems, the required condition for reaching an opti-
mal level occurs when the gradient is zero. Newtonian and
the BFGS methods cannot be guaranteed to converge unless
the function has a quadratic Taylor expansion near an op-
timum. However, BFGS can have a high accuracy even for
non-smooth optimization instances (Curtis and Que, 2015).

Quasi-Newtonian methods do not compute the Hessian
matrix of second derivatives. Instead, the Hessian matrix is
drawn by updates specified by gradient evaluations. Quasi-
Newtonian methods are extensions of the secant method to
reach the basis of the first derivative for multi-dimensional
problems. The secant equation does not specify a specific so-
lution in multi-dimensional problems, and quasi-Newtonian
methods differ in limiting the solution. The BFGS method is
one of the frequently used members of this class (Nocedal
and Wright, 2006). In the BFGS-ANN method application,
all attributes, including the target attribute (meteorological
variables and ET0), are standardized. In the output layer, the
sigmoid function is employed for classification. In approxi-
mation, the sigmoidal function can be specified for both hid-
den and output layers. For regression, the activation function
can be employed as the identity function in the output layer.
This method was implemented on the basis of radial basis
function networks trained in a fully supervised manner using
Weka’s optimization class by minimizing squared error with
the BFGS method. In this method, all attributes are normal-
ized into the [0, 1] scale (Frank, 2014).

3.3 Support vector regression (SVR)

The statistical learning theory is the basis of the SVM. The
optimum hyperplane theory and kernel functions and nonlin-
ear classifiers were added as linear classifiers (Vapnik, 2013).

Models of the SVM are separated into two main categories:
(a) the classifier SVM and (b) the regression (SVR) model.
An SVM is employed to classify data in various classes, and
the SVR is employed for estimation problems. Regression is
used to take a hyperplane suitable for the data used. The dis-
tance to any point in this hyperplane shows the error of that
point. The best technique proposed for linear regression is
the least-squares (LS) method. However, it may be entirely
impossible to use the LS estimator in the presence of out-
liers. In this case, a robust predictor has to be developed that
will not be sensitive to minor changes, as the processor will
perform poorly. Three kernel functions were used including
the polynomial, Pearson VII function-based universal, and
radial basis function with the level of Gaussian noise param-
eters added to the diagonal of the covariance matrix and the
random number of seed to be used (equal to 1.0); the most
suitable kernel function in each scenario was determined by
trial and error (Frank, 2014), and the description of kernels
is provided in Sect. 3.6.

3.4 Gaussian process regression (GPR)

The GPR or GP is defined by Rasmussen and
Williams (2005) as a complex set of random variables,
which have a joint Gaussian distribution. Kernel-based
methods such as SVM and GPs can work together to
solve flexible and applicable problems. The GP is gener-
ally explained by two functions: average and covariance
functions (Eq. 2). The average function is a vector; the
covariance function is a matrix. The GP model is possibly a
nonparametric black box technique.

f ≈ GP(m,k), (2)

where f refers to Gaussian distribution, m refers to a mean
function, and k refers to covariance function.

The value of covariance expresses the correlation between
the individual outputs concerning the inputs. The covariance
value determines the correlation between individual outputs
and inputs. The covariance function produces a matrix of two
parts (Eq. 3).

Cov
(
xp
)
= Cf

(
xp
)
+Cn

(
xp
)

(3)

Here, Cf represents the functional part but defines the un-
known part of the modelling system, while Cn represents the
system’s noise part. A Gaussian process (GP) is closely re-
lated to SVM, and both are part of the kernel machine area in
ML models. Kernel methods are sample-based learners. In-
stead of learning a fixed parameter, the kernels memorize the
training data sample and assign a certain weight to it.

3.5 Long short-term memory (LSTM)

LSTM is a high-quality evolution of recurrent neural net-
works (RNNs). This neural network is presented to address
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the problems that existed in RNNs by adding more inter-
actions per cell. The LSTM system is also special since it
remembers information for an extended period. Moreover,
LSTM consists of four essential interacting layers, which
have different communication methods.

The next thing is that its complete network consists of a
memory block. These blocks are also called cells. The infor-
mation is stored in one cell and then transferred into the next
one with the help of gate controls. Through the help of these
gates, it becomes straightforward to analyse the information
accurately. All of these gates are extremely important, and
they are called forget gates as explained in Eq. (4).

ft = σ
(
Wf
[
ht−1,Xt

]
+ bf

)
(4)

LSTM units or blocks are part of the repetitive neural net-
work structure. Repetitive neural networks are made to use
some artificial memory processes that can help these AI al-
gorithms to mimic human thinking.

3.6 Kernel functions

Four different kernel functions are frequently used as de-
picted in the literature including the polynomial, radial-based
function, Pearson VII function (PUK), and normalized poly-
nomial kernels, and their formulas and parameters are tab-
ulated in Table 3. As is clear from Table 3, some parame-
ters must be determined by the user for each kernel func-
tion. While the number of parameters to be determined for
a PUK kernel is two, it requires determining a parameter in
the model formation that will be the basis for classification
for other functions. When kernel functions are compared, it
is seen that polynomial- and radial-based kernels are more
plain and understandable. Although it may seem mathemat-
ically simple, the increase in the degree of the polynomial
makes the algorithm complex. This significantly increases
processing time and decreases the classification accuracy af-
ter a point. In contrast, changes in the radial-based func-
tion parameter (γ ), expressed as the kernel size, were less
effective on classification performance (Hsu et al., 2010).
The normalized polynomial function was proposed by Graf
and Borer (2001) in order to normalize the mathematical ex-
pression of the polynomial kernel instead of normalizing the
dataset.

The normalized polynomial kernel is a generalized version
of the polynomial kernel. On the other hand, the PUK kernel
has a more complex mathematical structure than other kernel
functions with its two parameters (σ , ω) known as Pearson
width. These two parameters affect classification accuracy
and these parameters are not known in advance. For this rea-
son, determining the most suitable parameter pair in the use
of the PUK kernel is an important step.

The user must determine the editing parameter C for all
SVMs during runtime. If values that are too small or too large
for this parameter are selected, the optimum hyperplane can-
not be determined correctly. Therefore there will be a seri-

ous decrease in classification accuracy. On the other hand, if
C is equal to infinity, the SVM model becomes suitable only
for datasets that can be separated linearly. As can be seen
from here, the selection of appropriate values for the param-
eters directly affects the accuracy of the SVM classifier. Al-
though a trial-and-error strategy is generally used, the cross-
validation approach enables successful results. The purpose
of the cross-validation approach is to determine the perfor-
mance of the classification model created. For this purpose,
the data are separated into two categories, where the first is
used to train the model and the second part is processed as
test data to determine the model’s performance. As a result
of applying the model created with the training set to the test
dataset, the number of samples classified correctly indicates
the classifier’s performance. Therefore, by using the cross-
validation method, the classification and determination of the
best kernel parameters were obtained (Kavzoglu and Golke-
sen, 2010).

In this study, during SVR and GPR modelling, the three
kernel functions as in Table 3 were used, and the most suit-
able kernel function in each scenario was determined by trial
and error (Frank, 2014). For the BFGS-ANN, SVR, and GPR
methods in the Weka software were used, while Python lan-
guage was used for the LSTM method.

3.7 Model evaluation

The statistical parameters used in the selection and compari-
son of the models in the study included the root mean square
error (RMSE), mean absolute error (MAE), and correlation
fit (R) as shown in Eqs. (5)–(7). Here, Xi and Yi are the ob-
served and predicted values, and N is the number of data.

MAE=
1
N

N∑
i=1

|Xi −Yi | (5)

RMSE=

√
1
N
6Ni=1(Xi −Yi)

2 (6)

R =
N
∑
XiYi −

(∑
Xi
)(∑

Yi
)√

N
(∑

X2
i

)
−
(∑

Xi
)2√

N
(∑

Y 2
i

)
−
(∑

Yi
)2 (7)

In addition, Taylor diagrams were prepared to check the
performance of the models, which illustrates the experimen-
tal and statistical parameters simultaneously.

4 Results

In this study, 10 different scenarios were created by us-
ing combinations of input variables, i.e. monthly average;
highest and lowest temperature; sunshine duration; wind
speed; and average, highest, and lowest relative humidity
data. ET0 amounts were estimated with the help of kernel-
based GPR and SVR methods, a BFGS-ANN, and one of
the deep learning LSTM models. ET0 estimation results ob-
tained from different scenarios according to the GPR method
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Table 3. Basic kernel functions used in the study with parameters that needed to be determined.

Kernel functions Mathematical expression Parameter

Polynomial kernel K(x,y)= ((x · y)+ 1)d Polynomial degree (d)
Radial-based function kernel K(x,y)= e−γ |(x−xi )|

2
Kernel size (γ )

PUK K(x,y)= 11+

(
2·
√
‖x−y‖2

√
2(1/ω)−1

σ

)2
ω Pearson width parameters (σ , ω)

Figure 4. Scatter plots comparing GPR-estimated and FAO56PM-estimated ET0 in scenarios 5 and 8.

Figure 5. Time series graphics of GPR-estimated and FAO56PM-estimated ET0 in scenarios 5 and 8.

are summarized in Table 4. As can be seen from the table,
scenario 5, with the GPR method PUK function, contains
four meteorological variables including TMax, TMin, TMean,
and n and gave the best result (training period: R2

= 0.9667,
MAE= 9.1279 mm per month, RMSE= 11.067 mm per
month; testing period: R2

= 0.9643, MAE= 9.1947 mm per
month, RMSE= 11.2109 mm per month). However, sce-
nario 8, with only one meteorological variable (sun-
shine duration), registered quite good results for the
training period (R2

= 0.9472, MAE= 10.1629 mm per
month, RMSE= 13.2694 mm per month) and testing
period (R2

= 0.9392, MAE= 11.8473 mm per month,
RMSE= 15.8719 mm per month). Since the scenario with
the fewest input parameters and with an acceptable level of
accuracy is largely preferred, scenario 8 was chosen as the
optimum scenario.

The scatter plot and time series plots of the test phase for
scenarios 5 and 8 are given in Figs. 4 and 5. As can be seen
from these figures, a relative agreement has been achieved
between the FAO56PM ET0 values and the ET0 values mod-

elled. When the time series graphs are examined, minimum
points in estimated ET0 values are more in harmony with
FAO56PM values than maximum points.

For the SVR model, again three different kernel functions
were evaluated in respective scenarios under the same
conditions, and the results are displayed in Table 5. As can
be seen here, scenarios 5 and 8 have yielded the best and
most appropriate results according to the PUK function. The
results of scenario 5 with TMean, TMin, TMax, and n as input
variables gave the best result (training period: R2

= 0.9838,
MAE= 6.0500 mm per month, RMSE= 8.5733 mm per
month; testing period: R2

= 0.9771, MAE= 7.07 mm
per month, RMSE= 9.3259 mm per month). How-
ever, scenario 8 gave the most appropriate result
(training period: R2

= 0.9398, MAE= 9.7984 mm per
month, RMSE= 13.0830 mm per month; testing pe-
riod: R2

= 0.9392, MAE= 11.2408 mm per month,
RMSE= 15.5611 mm per month) with only one mete-
orological input variable, i.e. the sunshine duration (n).
Although the accuracy rate of scenario 8 is somewhat lower
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Table 4. Outcomes of the GPR modelling approach from different kernel functions based on R2, MAE, and RMSE (italic font represents the
best results; bold represents the optimally selected model).

Scenario no. Kernel functions Train Test

R2 MAE RMSE R2 MAE RMSE
(mm per (mm per

month) month)

1
Polynomial 0.9084 13.1238 16.0365 0.8451 17.8013 21.4952
PUK 0.9732 6.8024 8.9055 0.9506 10.5906 13.4330
Radial basis function 0.9357 22.3706 25.3578 0.9220 22.3353 25.4332

2
Polynomial 0.8825 15.0049 18.3607 0.8332 19.4655 23.9183
PUK 0.9666 7.2041 9.4750 0.9639 8.9058 11.5185
Radial basis function 0.9450 27.7700 31.2897 0.9366 27.5940 31.2150

3
Polynomial 0.8697 15.7587 19.2936 0.7807 21.2623 26.2083
PUK 0.9436 9.5556 12.6058 0.9335 12.2152 15.0187
Radial basis function 0.9251 31.3045 35.4426 0.9073 31.9344 36.1935

4
Polynomial 0.7002 37.824 43.417 0.7105 36.6604 41.2745
PUK 0.9637 7.7384 10.153 0.9629 9.3003 12.4647
Radial basis function 0.9374 29.1996 32.9582 0.9491 29.7864 33.6709

5
Polynomial 0.6312 35.1424 40.3818 0.6030 33.8278 38.3742
PUK 0.9667 9.1279 11.067 0.9643 9.1947 11.2109
Radial basis function 0.9239 25.6568 29.4976 0.9239 26.2766 30.0768

6
Polynomial 0.8703 15.6789 19.3039 0.7841 21.5210 27.2959
PUK 0.9569 8.5950 11.1225 0.9401 12.1685 15.8165
Radial basis function 0.9229 33.0011 36.9189 0.8991 33.4845 37.9140

7
Polynomial 0.8599 16.6129 20.0640 0.7852 21.7258 26.9480
PUK 0.9349 10.3820 13.5482 0.9310 12.9590 16.5650
Radial basis function 0.9086 36.4501 40.9667 0.8746 36.9353 41.6716

8
Polynomial 0.9203 41.2839 46.5019 0.9281 40.4306 45.9593
PUK 0.9472 10.1629 13.2694 0.9392 11.8473 15.8719
Radial basis function 0.9283 37.0877 41.8535 0.9281 37.6298 42.3803

9
Polynomial 0.8394 44.0191 49.2989 0.8380 43.9357 50.0790
PUK 0.8759 15.0361 18.5984 0.8634 16.2747 20.1854
Radial basis function 0.8398 39.0547 44.3349 0.8380 40.0566 44.8850

10
Polynomial 0.8677 43.1716 48.2151 0.8746 42.6604 48.7584
PUK 0.9027 13.3821 16.4932 0.9130 13.0145 15.8309
Radial basis function 0.8679 38.2998 43.4373 0.8748 39.1677 43.9253

than scenario 5, it provides convenience and is preferred
in terms of application and calculation since it requires a
single input. The sunshine duration can be measured easily
and without the need for high-cost equipment and personnel.
Consequently, by using only one parameter, the amount
of ET0 is estimated within acceptable accuracy limits.

The scatter plot and time series graph drawn for the SVR
model are given in Figs. 6 and 7, which shows that all points
are compatible with FAO56PM ET0 values and ET0 values
estimated from the model, except for the less frequent end-
points. The R2 values were also very high (R2 > 0.939).

In this study, the BFGS training algorithm was specifically
used to train the ANN architecture, and ET0 amounts were
estimated for all scenarios. The results are given in Table 6.
In implementing the BFGS-ANN method, all features, in-
cluding the target feature (meteorological variables and ET0)
are standardized. In the hidden and output layer, the sigmoid
function is f (x)= 1/(1+ e−x) used for classification.

As can be seen here, scenarios 5 and 8 gave the best and
most relevant results. According to the results, scenario 5
including TMean, TMin, TMax, and n meteorological variables
again produced the best result (training period: R2

= 0.9843,
MAE= 8.0025 mm per month, RMSE= 9.9407 mm per

https://doi.org/10.5194/hess-25-603-2021 Hydrol. Earth Syst. Sci., 25, 603–618, 2021



612 M. T. Sattari et al.: Comparative analysis of kernel-based versus ANN and deep learning methods

Figure 6. Scatter plots comparing SVR-estimated and FAO56PM-estimated ET0 in scenarios 5 and 8.

Figure 7. Time series graphics of SVR-estimated and FAO56PM-estimated ET0 in scenarios 5 and 8.

Figure 8. Scatter plots comparing BFGS-ANN-estimated and FAO56PM-estimated ET0 in scenarios 5 and 8.

month; testing period: R2
= 0.9781, MAE= 6.7885 mm

per month RMSE= 8.8991 mm per month). However,
scenario 8 gave the most appropriate result (train-
ing period: R2

= 0.9474, MAE= 10.1139 mm per
month, RMSE= 13.1608 mm per month; testing pe-
riod: R2

= 0.9428, MAE= 11.4761 mm per month,
RMSE= 15.6399 mm per month) with only the sunshine
duration (n) as a meteorological input variable, and hence
it is selected as the optimal BFGS-ANN model. Although
scenario 8’s accuracy rate is marginally lower than that of
scenario 5, it is easy and practical in terms of application
and calculation since it consists of only one parameter. The
scatter plot and time series graph drawn for the BFGS-ANN
model, given in Figs. 8 and 9, concurs with the statistical
metrics of Table 6. As can be seen, the BFGS-ANN method
predicted ET0 amounts with a high success rate, and a high
level of agreement was achieved between the estimates

obtained from the model and FAO56PM ET0 values. The
R2 values were also very high (R2 > 0.942).

Finally, the LSTM method, which is a deep learning tech-
nique, was used to estimate the ET0 under the same 10 sce-
narios. Two hidden layers with 200 and 150 neurons were
utilized in LSTM with the rectified linear unit (ReLU) activa-
tion function and Adam optimizations. The other parameters,
learning rate alternatives from 1× 10−1 to 1× 10−9, decay
as 1× 10−1 to 1× 10−9, and 500–750–1000 as epochs, have
been tried. The best results obtained for 10 different scenar-
ios at the modelling stage, according to the LSTM method,
are given in Table 7.

As in other methods, scenarios 5 and 8 of the LSTM model
registered the best and most appropriate results. In scenario 5
TMean, TMin, TMax, and n as the input variables gave the best
result (training period: R2

= 0.9835, MAE= 4.9405 mm
per month, RMSE= 6.8687 mm per month; testing
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Figure 9. Time series graphics of BFGS-ANN-estimated and FAO56PM-estimated ET0 in scenarios 5 and 8.

Table 5. Outcomes of the SVR modelling approach from different kernel functions based on R2, MAE, and RMSE (italic font represents the
best results; bold represents the optimally selected model).

Scenario no. Kernel function Train Test

R2 MAE RMSE R2 MAE RMSE

1
Polynomial 0.9667 7.6671 9.6167 0.9655 11.0033 13.5740
PUK 0.9790 1.3130 2.9310 0.9683 8.70480 11.1693
Radial basis function 0.9446 10.3256 12.5561 0.9366 11.1203 13.4468

2
Polynomial 0.9587 9.8445 12.0674 0.9526 10.1138 11.6124
PUK 0.9775 4.3655 8.0208 0.9742 8.88250 11.6469
Radial basis function 0.9487 11.0557 12.8207 0.9456 11.4313 13.5386

3
Polynomial 0.9392 10.088 13.468 0.9160 13.5919 15.903
PUK 0.9608 7.1018 7.1018 0.9249 12.0206 15.6733
Radial basis function 0.9401 12.1973 14.4483 0.9107 15.1051 18.4364

4
Polynomial 0.9491 10.5076 12.7585 0.9485 11.8516 14.1386
PUK 0.9732 5.5868 8.6784 0.9604 9.2452 12.5707
Radial basis function 0.9593 12.7177 14.8832 0.9500 12.6226 16.1700

5
Polynomial 0.9743 8.9452 11.5497 0.9657 8.5349 10.2108
PUK 0.9838 6.0500 8.5733 0.9771 7.0700 9.3259
Radial basis function 0.9414 11.8017 15.1588 0.9318 11.8607 14.4412

6
Polynomial 0.9399 10.3413 12.9082 0.9281 14.5901 17.9626
PUK 0.9698 6.1970 9.1435 0.9497 11.2859 14.7455
Radial basis function 0.9299 13.9103 17.0013 0.9120 16.7198 22.2031

7
Polynomial 0.9214 11.9563 14.8277 0.9214 14.7185 17.6297
PUK 0.9426 9.1560 12.6111 0.9407 12.0180 15.5924
Radial basis function 0.9164 17.8134 21.4555 0.8951 19.4352 25.7907

8
Polynomial 0.9283 12.0330 14.9227 0.9281 13.7164 16.4672
PUK 0.9398 9.7984 13.0830 0.9392 11.2408 15.5611
Radial basis function 0.9283 18.6912 22.9160 0.9281 19.1426 25.6111

9
Polynomial 0.8394 17.2037 21.1520 0.8380 17.9619 22.8538
PUK 0.8755 14.3397 18.8555 0.8623 16.2552 20.9296
Radial basis function 0.8398 25.6982 31.0532 0.8380 26.4915 31.2574

10
Polynomial 0.8777 14.7758 19.8128 0.8746 15.2039 19.8289
PUK 0.9087 12.2525 17.3738 0.9084 12.0109 16.8281
Radial basis function 0.8779 23.2745 28.4086 0.8748 23.7460 28.7051

https://doi.org/10.5194/hess-25-603-2021 Hydrol. Earth Syst. Sci., 25, 603–618, 2021



614 M. T. Sattari et al.: Comparative analysis of kernel-based versus ANN and deep learning methods

Table 6. Outcomes of the BFGS-ANN modelling approach for different scenarios based on R2, MAE, and RMSE (italic font represents the
best results; bold represents the optimally selected model).

Scenario no. Train Test

R2 MAE RMSE R2 MAE RMSE

1 0.9778 6.7017 8.6972 0.9769 6.6346 8.6243
2 0.9763 7.2683 9.6751 0.9700 7.5305 10.3722
3 0.9450 9.2810 12.3463 0.9423 11.2870 14.3732
4 0.9670 7.8325 10.4035 0.9659 9.1159 12.4740
5 0.9843 8.0025 9.9407 0.9781 6.7885 8.8991
6 0.9536 8.9027 11.3546 0.9522 11.5089 14.7687
7 0.9466 10.2246 13.2535 0.9417 11.9444 15.7787
8 0.9474 10.1139 13.1608 0.9428 11.4761 15.6399
9 0.8768 14.8765 18.4766 0.8709 15.9139 19.8957
10 0.9158 13.0161 16.2424 0.9149 12.4874 15.5428

Table 7. Outcomes of the LSTM modelling approach for different scenarios based on R2, MAE, and RMSE (italic font represents the best
results; bold represents the optimally selected model).

Scenario no. Train Test

R2 MAE RMSE R2 MAE RMSE

1 0.9825 7.0178 9.3020 0.9769 8.6232 11.4663
2 0.9618 9.0678 12.4321 0.9604 8.5703 11.7467
3 0.9403 13.841 16.3260 0.9345 14.8644 17.1128
4 0.9499 10.375 12.3748 0.9393 11.5043 13.7417
5 0.9835 4.9405 6.8687 0.9759 6.2907 8.5897
6 0.9694 11.532 15.7447 0.9602 8.1580 10.6059
7 0.9382 10.962 14.8716 0.9366 10.1113 13.6070
8 0.9461 12.461 15.7539 0.9384 11.6711 14.4864
9 0.8807 14.479 18.2882 0.8664 15.2565 19.4120
10 0.9231 14.195 17.1729 0.9220 13.7034 16.1857

period: R2
= 0.9759, MAE= 6.2907 mm per month

RMSE= 8.5897 mm per month). However, scenario 8 gave
the most appropriate result (training period: R2

= 0.9461,
MAE= 12.461 mm per month, RMSE= 15.7539 mm per
month; testing period: R2

= 0.9384, MAE= 11.6711 mm
per month, RMSE= 14.4864 mm per month) with the
sunshine duration (n) meteorological variable as the input to
the model.

Scatter plot and time-series graphs of observed and
LSTM-predicted ET0 are given in Figs. 10 and 11, where
again a high success rate and a high level of agreement were
achieved between the estimates obtained from the model and
FAO56PM ET0 values.

In order to compare and evaluate the models used in this
study, statistical values for the test phase are given in both
FAO56PM ET0 and the respective models in Table 8. The
lowest skewness coefficient of 0.39 was found in scenario 5
in both GPR and SVR methods and the highest of 0.52 in
LSTM scenario 8. Tmean has the lowest kurtosis coefficient
of −1.23 and RHmean has the highest of 0.36. The highest

variation was observed in RHmin with 174.19 and the lowest
in U with 0.17.

As can be seen from Table 8, the closest value to the
FAO56PM ET0 minimum value (13.99 mm per month) is
scenario 8 in the BFGS-ANN method (13.906 mm per
month). Furthermore, the FAO56PM ET0 maximum value
(180.53 mm per month) has been reached in scenario 5
(180.53 mm per month) in the SVR method, which is the
closest and even the same value. The value closest to the
mean value of FAO56PM ET0 (79.21 mm per month) cor-
responds to scenario 5 (75.8818 mm per month) in the GPR
method; the value closest to the FAO56PM ET0 SD value
(53.26 mm per month) is the value of scenario 5 (51.5342 mm
per month) in the SVR method. As shown in Table 8, all
methods have estimated the ET0 amounts within acceptable
levels, yet disparate results are attained when comparing the
statistics. Having said that, when models are ranked accord-
ing to the correlation coefficient, the best results were BFGS-
ANN, SVR, LSTM, and GPR in scenario 5 and BFGS-ANN,
GPR, SVR, and LSTM in scenario 8.

Hydrol. Earth Syst. Sci., 25, 603–618, 2021 https://doi.org/10.5194/hess-25-603-2021



M. T. Sattari et al.: Comparative analysis of kernel-based versus ANN and deep learning methods 615

Table 8. Statistical values of the test phase for selected scenarios (the best/closest results are in bold).

Statistic GPR SVR BFGS-ANN LSTM ET0PM

Scenario 5 Scenario 8 Scenario 5 Scenario 8 Scenario 5 Scenario 8 Scenario 5 Scenario 8

Minimum 17.687 19.1090 15.1900 17.1520 12.2480 13.9060 14.2971 16.9787 13.99
Maximum 163.440 158.557 180.530 167.527 176.765 164.100 175.613 172.767 180.53
Mean 75.8818 71.3861 74.5771 71.2124 75.8644 70.7299 75.6023 72.3210 79.21
SD 48.8941 47.6359 51.5342 48.9192 50.6812 48.2539 50.0143 50.2075 53.26
Correlation 0.9820 0.9691 0.9885 0.9691 0.9890 0.9710 0.9879 0.9687 1
Skewness 0.39 0.47 0.39 0.51 0.41 0.46 0.36 0.52 0.36
Kurtosis −1.29 −1.27 −1.32 −1.16 −1.24 −1.21 −1.21 −1.16 −1.27
Coefficient of variation 2344.09 2226.93 2655.77 2393.09 2568.59 2328.44 2501.43 2520.80 2836.65
Number of records 112 112 112 112 112 112 112 112 112

Figure 10. Scatter plots comparing LSTM-estimated and FAO56PM-estimated ET0 in scenarios 5 and 8.

Figure 11. Time series graphics of LSTM-estimated and FAO56PM-estimated ET0 in scenarios 5 and 8.

Furthermore, to have precise model comparative evalua-
tions besides the tables, the Taylor diagram for the scenarios
5 and 8 were plotted as in Fig. 12. The points on the polar
Taylor graph are used to study the adaption between mea-
sured and predicted values in the Taylor diagram. The corre-
lation coefficient and normalized standard deviation are also
indicated by the azimuth angle and radial distances from the
base point, respectively (Taylor, 2001). As displayed in the
figure, all four models performed quite well but the BFGS-
ANN seemed to achieve higher success than others. As seen
in the Fig. 1 histogram, FAO56PM ET0 values do not con-
form to normal distribution. This mismatch is considered to
be the reason for the poor performances of the GPR method
over comparative models.

The results of Fig. 12 also show that model performances
were higher in scenario 5; however, using the fewest input
parameters to develop the most parsimonious model was the

key target of the study and was achieved by scenario 8, in
which ET0 values were estimated correctly at relatively ap-
propriate and acceptable levels. Therefore, these methods
produced trustworthy results and have the potential to make
correct estimations in climates similar to the study area.

5 Conclusion

The amount of ET0 can be calculated with many empiri-
cal equations. However, these equations can generally dif-
fer spatially and require the knowledge of many parameters.
Since ET0 includes a complex and nonlinear structure, it can-
not be easily estimated with the previously measured data
without requiring numerous parameters. In this study, esti-
mating the ET0 with different machine learning and deep
learning methods was made using the fewest meteorologi-
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Figure 12. Taylor diagrams of scenarios 5 and 8.

cal variables in Turkey’s Corum region, which has an arid
and semi-arid climate and is regarded as a strategic agri-
cultural region. In this context, firstly, ET0 amounts were
calculated with the Penman–Monteith method and taken as
the output of the models. Then, 10 different scenarios were
created using different combinations of meteorological vari-
ables. Consequently, kernel-based GPR and SVR methods
and BFGS-ANN and LSTM models were developed for
monthly ET0 amount estimations. The results revealed bet-
ter performance of the BFGS-ANN model in comparison to
other models in this study, although all four methods pre-
dicted ET0 amounts within acceptable accuracy and error
levels. In kernel-based methods (GPR and SVR), PUK was
the most successful kernel function. Scenario 5, which is re-
lated to temperature and includes four meteorological vari-
ables (mean temperature, highest and lowest temperature av-
erages, and sunshine duration), gave the best results in all the
scenarios used. Scenario 8, which included only the sunshine
duration, was determined as the most suitable and parsimo-
nious scenario. In this case, the ET0 amount was estimated
using only sunshine duration without the need for other mete-
orological parameters for the study area. The Corum region is
described as arid and semi-arid with low rainfall and cloudi-
ness and longer sunshine duration; hence sunshine hours are
the key driving factor of ET0 in the region, which is clearly
highlighted by high model performances with sunshine hours
as the only input. Continuous measurement of meteorologi-
cal variables in large farmland areas is a costly process that
requires expert personnel, time, or good equipment. Simul-
taneously, some equations used for ET0 calculations are not
preferred by specialists because they contain many parame-
ters. In this case, it is very advantageous for water resources

managers to estimate ET0 amounts only with sunshine du-
ration time, which is easy to measure and requires no extra
cost. A follow-up study aims to evaluate the performance of
GPR and LSTM models in a larger area on a daily timescale
and with data to be obtained from more meteorology stations.
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