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Abstract. Design flood estimation is a fundamental task
in hydrology. In this research, we propose a machine-
learning-based approach to estimate design floods globally.
This approach involves three stages: (i) estimating at-site
flood frequency curves for global gauging stations using the
Anderson–Darling test and a Bayesian Markov chain Monte
Carlo (MCMC) method; (ii) clustering these stations into
subgroups using a K-means model based on 12 globally
available catchment descriptors; and (iii) developing a re-
gression model in each subgroup for regional design flood es-
timation using the same descriptors. A total of 11 793 stations
globally were selected for model development, and three
widely used regression models were compared for design
flood estimation. The results showed that (1) the proposed
approach achieved the highest accuracy for design flood es-
timation when using all 12 descriptors for clustering; and the
performance of the regression was improved by considering
more descriptors during training and validation; (2) a sup-
port vector machine regression provided the highest predic-
tion performance amongst all regression models tested, with
a root mean square normalised error of 0.708 for 100-year
return period flood estimation; (3) 100-year design floods in
tropical, arid, temperate, cold and polar climate zones could
be reliably estimated (i.e.<±25 % error), with relative mean
bias (RBIAS) values of −0.199, −0.233, −0.169, 0.179
and−0.091 respectively; (4) the machine-learning-based ap-
proach developed in this paper showed considerable im-
provement over the index-flood-based method introduced by
Smith et al. (2015, https://doi.org/10.1002/2014WR015814)
for design flood estimation at global scales; and (5) the aver-
age RBIAS in estimation is less than 18 % for 10-, 20-, 50-

and 100-year design floods. We conclude that the proposed
approach is a valid method to estimate design floods any-
where on the global river network, improving our prediction
of the flood hazard, especially in ungauged areas.

1 Introduction

Flood hazard is the primary weather-related disaster world-
wide, affecting 2.3 billion people and causing USD 662 bil-
lion in economic damage between 1995 and 2015 (CRED
and UNISDR, 2015). The frequency and severity of flood
events are expected to increase in the future because of cli-
mate change and socio-economic growth in flood-prone ar-
eas (Sharma et al., 2018; Wing et al., 2018; Winsemius et
al., 2016). Flood hazard models are mature tools to iden-
tify flood-prone areas and have been widely used in flood
risk management at catchment or regional scales (Hammond
et al., 2015; Teng et al., 2017). With the development of
new remote sensing techniques and an increase in comput-
ing power, global flood hazard models (GFHMs) are now a
practical reality and have been successfully applied for large-
scale flood mapping and validated in several countries (Bates
et al., 2020; Schumann et al., 2018). GFHMs can identify
flood-prone areas in ungauged basins and provide a consis-
tent and comprehensive understanding of the flood hazard at
national, continental and global scales.

The “cascade” model type and “gauged flow data” model
type are the two most frequently used approaches in global
flood hazard modelling, and both map the flood hazard
based on return period flows (Trigg et al., 2016). The cas-
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cade model type, for example CaMa-UT (Yamazaki et al.,
2011) and GLOFRIS (Winsemius et al., 2013), uses land
surface models driven by climate reanalysis data to sim-
ulate streamflow. Return period flows along the river net-
work in the cascade model type are derived by an at-site
flood frequency analysis of the resulting land surface model
streamflow. However, due to the coarse resolution (usually
0.5◦) of global climate and land surface models (Yang et al.,
2019b; Liu et al., 2019), some downscaling and bias correc-
tion methods usually need to be adopted for high-resolution
flood hazard mapping (Müller Schmied et al., 2016; Frieler et
al., 2017; Schumann et al., 2014a). Unlike the cascade model
type, the gauged flow data model type uses observed gauged
discharge and regional flood frequency analysis (RFFA) ap-
proaches to produce different return period flows along the
global river network (Trigg et al., 2016). Compared with the
cascade model type, the gauged flow data model type can
be preferable for high-resolution flood hazard mapping as it
avoids the uncertainties from rainfall-runoff modelling (Pri-
hodko et al., 2008) and flood map downscaling (Schumann et
al., 2014b). However, the performance of the RFFA approach
adopted is highly dependent on the coverage and density of
observed discharge stations (Hosking and Wallis, 1988; Lin
and Chen, 2006).

RFFA has long been regarded as a reliable method to
estimate design floods in engineering hydrology (Cunnane,
1988). Based on the basic assumption that there is a relation-
ship between catchment descriptors and the design flood in
a region, different types of RFFA approaches have been pro-
posed and successfully applied in regional studies in the past
5 decades (Griffis and Stedinger, 2007; Merz and Blöschl,
2008a, b; Dalrymple, 1960). Among these, the index-flood
method and the direct regression method are two of the most
widely used procedures (Shu and Ouarda, 2008). The index-
flood method assumes that the flood frequency curves at dif-
ferent sites in a region are identical except for one scale index
(named the index flood) (Dalrymple, 1960; Bocchiola et al.,
2003). Therefore, the index-flood method involves two steps,
index-flood estimation and derivation of a single regional
flood frequency relationship, often termed a growth curve.
Unlike the index-flood method, the direct regression method
predicts flood quantiles as a function of catchment descrip-
tors directly (Shu and Ouarda, 2008). These two methods
have been successfully applied at both regional and conti-
nental scales (Salinas et al., 2013), but very few applications
of such methods have been performed at the global scale. To
date, Smith et al. (2015) have proposed an RFFA approach
at the global scale based on the index-flood method (termed
global RFFA). This approach has been applied successfully
in high-resolution flood hazard mapping for ungauged areas
in several countries (Sampson et al., 2015; Wing et al., 2017).

However, the global RFFA approach of Smith et al. (2015)
has shown some deficiencies during application, which we
seek to address in this research as follows:

1. The global RFFA approach of Smith et al. (2015) was
developed based on 945 stations in the Global Runoff
Data Base (GRDB) and the United States Geological
Survey (USGS) database. This limited number of sta-
tions means that it cannot provide a reliable estimation
in some regions at global scale. To improve the cov-
erage and density of discharge stations, nearly 12 000
stations from the newly published Global Streamflow
Indices and Metadata (GSIM) archive were selected for
model development in this research.

2. The flood frequency curve in the Smith et al. (2015)
approach was assumed to obey a generalised extreme
value (GEV) distribution for the global coverage. Stud-
ies have suggested alternate distributions, such as GEV,
generalised logistic (GENLOGIS) and Pearson type III
(P3), whilst log-normal (LN3) distributions are man-
dated for use in the United States (Water Resources
Council (US), 1975). In this research, the at-site flood
frequency curve was selected from eight widely used
distributions based on the Anderson–Darling goodness-
of-fit tests.

3. The global RFFA approach of Smith et al. (2015)
adopted only three catchment descriptors (rainfall, slope
and catchment area) for clustering and flood estima-
tion. These three factors can only provide a basic de-
scription of global catchment characteristics. In this re-
search, 12 catchment descriptors covering meteorolog-
ical, physiographical, hydrological and anthropological
aspects were considered for clustering and design flood
estimation.

4. The global RFFA approach of Smith et al. (2015) was
proposed based on the index-flood method, and the
index flood in ungauged areas was computed with a
power-form function. As the coefficient of variation of
flood flows generally varies from site to site, the index-
flood method is not recommended if available sam-
ples are sufficient or highly cross-correlated (Stedinger,
1983). Moreover, the simple power-form function may
fail to capture complicated relationships within the data,
since the relationship between flood and each descrip-
tor is assumed to obey an explicit power-form func-
tion, which may not always be appropriate. In this re-
search, the design flood in ungauged areas is estimated
based on a direct regression method, and machine learn-
ing models were adopted to describe the unknown re-
lationship between catchment descriptors and at-site
design floods. These machine-learning-based methods
have shown advantages over ordinary regression ap-
proaches in RFFA at regional scales (Gizaw and Gan,
2016; Shu and Ouarda, 2008; Zhang et al., 2018) and
are tested here for the first time in a global study.

The aim of this research is therefore to provide an im-
proved method for reliable design flood estimation, ad-
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dressing the deficiencies identified with the previous global-
scale study of Smith et al. (2015). A three-phase model
framework is applied, where Bayesian Markov chain Monte
Carlo (MCMC), K-means and support vector machine
(SVM) models were applied for at-site flood estimation, sub-
group delineation and regional flood estimation, respectively.
Specifically, 11 793 stations selected from the GSIM archive
are used for model development, and the stations were di-
vided into 16 subgroups using a K-means model and 12
catchment descriptors. For each subgroup, 70 % and 30 %
stations were randomly selected for model training and val-
idation respectively. Three types of regressions including
power-form function (PF), SVM and random forest (RF)
were compared for regional flood estimation. Finally, the
proposed direct regression approach is compared with the
previous results of Smith et al. (2015) in each climate zone.

2 Study areas and data

2.1 Flood data

Observed annual maximum streamflow data in the GSIM
archive were used to estimate at-site design floods (DFs)
at different return periods. This archive is a collection of
streamflow indices that includes more than 35,000 sta-
tions from seven national and five international streamflow
databases (Gudmundsson et al., 2018; Do et al., 2018a).
Compared with a widely used database in large-scale hy-
drological studies, the Global River Discharge Database
(GRDB), which contains data from 9500 stations, the GSIM
archive can help to improve the understanding of large-scale
hydrological processes by improving the coverage and den-
sity of streamflow observations. After quality control of the
daily streamflow data, 15 types of time-series indices are
provided at yearly, seasonal and monthly resolutions in the
GSIM archive (Do et al., 2018a; Gudmundsson et al., 2018).
In this research, time series of annual maximal floods in the
GSIM archive were adopted for at-site design flood estima-
tion. To date, this archive has been successfully used in flood
classification (Stein et al., 2019), streamflow trend analysis
(Do et al., 2019) and hydrological model evaluation (Yang et
al., 2019a) at the global scale.

To make reliable estimates for at-site DFs, a station selec-
tion is needed based on some quality control criteria. Firstly,
the hydrological signatures of streamflow are reported to be-
come stable during estimation with at least 20 years of record
(Richter et al., 1997). Therefore, only stations with a histor-
ical streamflow record of 20 years or longer were selected
for the analysis. Second, the traditional RFFA approach re-
quires the assumption of flood stationarity. Stations experi-
encing obvious trends or sudden changes were detected by a
Mann–Kendall test (MKT) (Hamed, 2008) and the standard
normal homogeneity test (SNHT) (Alexandersson, 1986).
Any stations exhibiting obvious non-stationarity or which

Table 1. The number of discharge stations for model development
in each climate class. NA stands for “not available”.

Climate class Smith et al. (2015) This research

Training Validation Training Validation

Tropical 163 8 716 298
Arid 121 55 595 231
Temperate 296 99 4231 1816
Cold 109 80 2666 1099
Polar 14 NA 100 41

Total 703 242 8308 3485

do not obey the given hypothetical distributions identified
by Anderson–Darling goodness-of-fit tests were not consid-
ered further in model development. Lastly, to better estimate
DFs at the global scale, the selected stations were first di-
vided into several subgroups based on a K-means cluster-
ing model, and separate regression models were developed
for the different subgroups. The streamflow stations in each
subgroup were also required to pass discordancy and het-
erogeneity tests. The adopted stationarity, discordancy and
heterogeneity measures are described in Sect. 3, and the dis-
tribution of training and validation stations after selection is
shown in Fig. 1.

Table 1 compares the number of stations used for model
training and validation in each climate class between Smith
et al. (2015) and this study. Compared with the research of
Smith et al. (2015), the number of stations in this research is
significantly improved in all climate classes.

2.2 Catchment descriptors

The main idea of an RFFA is to characterise a relationship be-
tween at-site DFs and catchment descriptors and then apply
this relationship to estimate flood magnitudes along the river
network in similar ungauged catchments. In this research, the
river network of the global coverage is extracted from the
1 km resolution catchment area map for catchments exceed-
ing a threshold area of 50 km2. Twelve explanatory factors
collected from open-access databases were selected as po-
tential descriptors and applied for clustering and regression
model development. A correlation analysis of all explanatory
factors was done before model development to ensure none
of them have strong correlation (Pearson’s correlation coef-
ficient > 0.6) with each other. The statistics and data sources
of these factors are summarised in Table 2.

These explanatory factors can be grouped into four cate-
gories as follows:

1. Meteorological factors included annual precipitation
(AP), precipitation seasonality (PS), annual mean tem-
perature (AT) and annual temperature range (TR). AP
and AT represent the average annual precipitation and
mean temperature of the upstream catchment respec-

https://doi.org/10.5194/hess-25-5981-2021 Hydrol. Earth Syst. Sci., 25, 5981–5999, 2021



5984 G. Zhao et al.: Design flood estimation for global river networks based on machine learning models

Figure 1. The distribution of discharge stations used for training and validation in this research.

Table 2. Statistics and data source of the explanatory descriptors.

No. Factor name (abbreviation) Unit Min Max Data source

1 Annual precipitation (AP) mm 0 7743 WorldClim
2 Precipitation seasonality (PS) – 0 219.35 WorldClim
3 Annual mean temperature (AT) ◦C −27.57 33.44 WorldClim
4 Temperature annual range (TR) ◦C 0 74.79 WorldClim
5 Mean slope (SL) ◦ 0 32.78 MERIT DEM
6 Lake fraction (LF) % 0 1 GLWD
7 Longitude (LO) ◦

−180 180 WGS 84
8 Latitude (LA) ◦

−60 85 WGS 84
9 Curve number (CN) – 0 95 NRCS CN dataset
10 Catchment area (CA) km2 50 16 198 686 MERIT DEM
11 Dam capacity (DC) 106 m3 0 2648 GRanD
12 Population density (PD) number/km2 0 5317 GPW

tively. PS is the coefficient of variation of the monthly
rainfall series, and TR is the range between the maxi-
mal and minimal temperatures of the time series average
over the upstream catchment. These four factors were
collected from the WorldClim dataset (V2) at 30 arcsec
(∼ 1 km) resolution (Fick and Hijmans, 2017) and are
used to represent the extreme value and seasonal distri-
bution of precipitation and temperature.

2. Physiographical factors comprised discharge station lo-
cation, slope (SL) and lake fraction (LF) of the upstream
catchment. Station location is defined by the longitude
(LO) and latitude (LA) of the discharge station in de-
gree units of the World Geodetic System 1984 (WGS84)
spatial reference frame. SL reflects the average slope
of the upstream catchment, which is calculated based
on the MERIT DEM (Yamazaki et al., 2017). LF rep-
resents the fraction of the catchment area upstream of
the station covered with lakes. The location and area of
global lakes are taken from the Global Lakes and Wet-
lands Database (GLWD) (Lehner and Döll, 2004).

3. Hydrological factors of catchment area (CA) and curve
number (CN) reflect the area and runoff capacity of the
upstream catchment respectively. CA is defined as the
upstream flow accumulation area based on the D8 al-
gorithm and the MERIT DEM. CN is an empirical pa-
rameter for runoff prediction in ungauged areas, which
is calculated from the tables in the National Engineer-
ing Handbook of the United States, Section-4 (NEH-
4) (United States Soil Conservation Service, 1985).
The CN in this research is collected from a global
CN dataset that utilises the latest Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) land cover
information and the Harmonized World Soil Database
(HWSD) soil data (Zeng et al., 2017).

4. Anthropological factors included total dam capacity
(DC) and population density (PD). DC is the total dam
capacity of the upstream catchment. The location and
capacity of each dam are provided by the Global Reser-
voir and Dam (GRanD) dataset, which includes about
7000 dams globally (Lehner et al., 2011). PD is a widely
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used factor to reflect the impact of human activities on
the environment. The PD map in this research is col-
lected from the Gridded Population of the World (GPW)
dataset of the year 2015 (Doxsey-Whitfield et al., 2015).

3 Methodology

The flowchart for this research has three parts, which are
shown in Fig. 2. Panel (a) includes the procedures of sta-
tion selection and at-site design flood estimation that are de-
scribed in Sect. 3.1 and 3.2 respectively. Panel (b) displays
the procedure for subgroup delineation by using a K-means
clustering model (in Sect. 3.3). Panel (c) describes the pro-
cedure of regression model development and regional flood
estimation in ungauged areas. Three regression models, de-
scribed in Sect. 3.4, were adopted for model comparison.

3.1 Station selection methods

3.1.1 Stationarity measures

Two widely used stationarity measures in hydrology, the
Mann–Kendall test (MKT) (Hamed, 2008) and the standard
normal homogeneity test (SNHT) (Alexandersson, 1986),
were adopted for trend and change-point detection respec-
tively in the research. One advantage of these two tests is
that they provide an index reflecting the degree of trend or
change. The details of the MKT and SNHT methods are de-
scribed in Appendix A and B respectively.

TheZ index in the MKT test was used to evaluate the trend
that is descending (negative values) and ascending (positive
values) in the time series. The change points occurred at the
largest value of T index among the time series Td , and a
larger T represents a higher change. After stationarity mea-
sures were evaluated, each station has corresponding Zi and
Ti indices. The stations experiencing obvious trends and/or
sudden changes were removed based on the 95 % quantile
value of the |Zi | and Ti indices.

3.1.2 Discordancy measures

The aim of using the discordancy measures was to detect po-
tential outliers in each subgroup. Two discordancy measures
are applied in this research to the time series of observed
discharge. The first is the Z score method (Shiffler, 1988),
which is based on the value of mean annual runoff (R). The
global gauging stations are divided into several subgroups,
and the R in each subgroup is normalised using Eq. (C1) in
Appendix C. A station is regarded as an outlier with the Z
score is larger than 3 (Garcia, 2012).

Another discordancy measure was proposed by Hosking
and Wallis based on L-moment ratios (Hosking and Wallis,
2005). The discordancy of each station can be evaluated by
Di as defined in Eqs. (C2) to (C4) in Appendix C. As sug-

gested by Hosking and Wallis (2005), a station is considered
as discordant if Di ≥ 3 when Nk is larger than 15.

3.2 At-site flood estimation

Table D1 (in Appendix D) describes the tested hypothetical
distributions which have been widely recommended in flood
frequency analysis in different countries. For example, a gen-
eralised Pareto distribution performs better in populated re-
gions of Australia, whilst P3 is recommended as the national
standard distribution for flood frequency analysis in China
(Gao et al., 2019; Vogel et al., 1993; Wang et al., 2015).
The at-site flood estimation involves two steps. Firstly, the
flood frequency curve for each station was selected from
eight widely used hypothetical distributions based on the
Anderson–Darling goodness-of-fit test. After the preferred
distribution was selected, the parameters and design floods
for this station were derived by a Bayesian MCMC method.
The adopted Anderson–Darling test and Bayesian MCMC
method are briefly described as follows.

3.2.1 Distribution selection

The Anderson–Darling (AD) test can detect whether a given
sample of data follows a hypothetical distribution. It has been
widely used in flood frequency analysis as it shows good skill
for small sample sizes and heavy-tailed distributions (Had-
dad and Rahman, 2011). For each station, the A2 statistic
was calculated for all hypothetical distributions, and the dis-
tribution with the minimum A2 was selected as the flood fre-
quency curve for that station. The calculation process for the
A2 statistic is described in Appendix E. After selection of a
flood frequency curve for all stations, a threshold A2

95 % was
determined by the 95 % quantile value of A2

i . The stations at
which A2

i exceeded the threshold were regarded as not obey-
ing all hypothetical distributions, and these stations were not
considered further for model development.

3.2.2 Parameter estimation

The adopted Bayesian inference consisted of three steps as
follows:

a. Prior distribution and likelihood function calculation.
The first step is to determine the prior distribution for
Bayesian analysis. As non-prior knowledge (i.e. pop-
ulation distribution function) was considered, a non-
informative normal distribution was selected as a prior
distribution. The likelihood function f (q|θ) can be
computed as in Eq. (1).

f (q|θ)=
∏n

i=1
f (qi;θ), (1)

where q = (q1,q2,q3, . . .,qn) are the given samples, and
θ is a parameter vector.

b. Posterior distribution calculation. The posterior distri-
bution f (θ |q) is computed using Bayesian inference as
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Figure 2. The framework of this research. (a) At-site flood estimation; (b) subgroup delineation; (c) regional flood estimation.

in Eq. (16). As the integral in Eq. (2) cannot be solved
analytically, the Metropolis–Hastings MCMC method
(Chib and Greenberg, 1995) was used to generate sam-
ples from the posterior distribution.

f (θ |q)=
f (q|θ)π (θ)∫
f (q|θ)π (θ)dθ

, (2)

where π (θ) is the density function of the prior distribu-
tion.

c. Parameter and design flood estimations. The final pa-
rameters θ̂ can be calculated by the expected value of
the posterior distribution. The probability density func-
tion of design flood Q can be described as in Eq. (3).

f (Q|q)=

∫
2

f (Q|θ)f (θ |q)dθ (3)

The three common methods for estimating the param-
eters of at-site flood frequency curves are based on
moments (MOM), maximum likelihood (MLE) and
Bayesian inference. Compared with MOM and MLE,
the Bayesian approach can provide credibility inter-
vals for the estimated design flood. The details of the
adopted approach are comprehensively described in the
research of Reis and Stedinger (2005), and the calcula-
tion is implemented based on a BayesianMCMC func-
tion (nsRFA package) in R software.

3.3 Clustering method

3.3.1 K-means model

The standard K-means model was adopted for clustering in
this research. This model has been widely used in the area
of hydrology, including in RFFA studies (Smith et al., 2015;
Lin and Chen, 2006). The K-means model consists of two
steps:

a. An input datasetD = {xj |j = 1,2,3. . .,N}, where N is
the number of samples. The K centroids C = {Ck|k =
1,2,3. . .,K} are first randomly selected from the input
dataset D. Each sample xj is assigned to its nearest Ck
based on the squared Euclidean distance as in Eq. (4).

arg min
ck∈C

[
dis
(
Ck, xj

)]2
, (4)

where dis(−) is the function for Euclidean distance cal-
culation.

b. The centroid Ck in step (a) is updated as in Eq. (5).
Then, the algorithm iterates between centre assign-
ment (a) and centre update (b) until the maximum num-
ber of iterations is reached or cluster assignments do not
change.

Ck =
1
Ni

∑Ni

j=1
xj ,xk ∈ Ak, (5)

where Ak is the subset of D, and Ni is the number of
samples in Ak .
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TheK-means model was implemented based on the MAT-
LAB kmeans function, and the maximum number of iter-
ations was set to 1000 (https://www.mathworks.com/help/
stats/kmeans.html, last access: 26 October 2021). Two sen-
sitive parameters, the number of clusters and the clustering
factors, were selected to maximise model performance dur-
ing the validation procedure.

3.3.2 Heterogeneity measure

The heterogeneity of subgroup delineation is measured by
a Davies–Bouldin index (Davies and Bouldin, 1979). This
index considers both intra-subgroup diversity and inter-
subgroup distances. The intra-subgroup diversity of a sub-
group i is computed as Eq. (6)

Si =

{
1
Ti

∑Ti

j=1

∣∣xj −Ci∣∣2}1/2

, (6)

where Cj is the centroid of subgroup i; xj is the clustering
factors of subgroup j ; and Ti is the number of samples in
subgroup i.

The inter-subgroup distance between subgroup j and sub-
group k is measured as in Eq. (7):

Ri,j =
si + sj

dis(Ci,Cj )
, (7)

where dis(Ci,Cj ) is the Euclidean distance between Ci and
Cj .

The Davies–Bouldin index is computed as in Eq. (8) and
(9):

Ri =
max
i 6=j

{
Ri,j

}
, (8)

DBI=
1
K

∑K

i=1
Ri, (9)

whereK is the number of subgroups, and DBI is the Davies–
Bouldin index; a lower value means that the subgroups are
better clustered.

3.4 Regression method

The direct regression method estimates design floods directly
with catchment descriptors using a regression model as de-
scribed in Eq. (10). Three types of regression models were
compared in this research and are described below. The op-
timal regression model for the direct regression method was
selected according to the highest prediction accuracy during
the validation period. To the best of our knowledge, this re-
search is the first in which three different regression models
have been tested in an RFFA at the global scale.

DF= fFQ (d1,d2, . . .,dN ) , (10)

where DF is the design flood for specific return periods, and
fFQ is the regression model for design flood estimation in
each subgroup.

3.4.1 Power-form function (PF)

The power-form (PF) function is a simple non-linear regres-
sion model that has been successfully used in RFFA studies
at a global scale (Smith et al., 2015). The basic formula of
PF regression is described in Eq. (11).

DF= β0d
β1
1 d

β2
2 d

β3
3 . . .d

βN
N ± ε, (11)

where βm are the model parameters, d is the explanatory de-
scriptor used for model development, N is the total number
of descriptors and ε is the error term.

3.4.2 Support vector machine (SVM)

SVM has shown advantages in solving complicated non-
linear problems in the field of hydrology. The adopted SVM
regression model was proposed by Drucker et al. (1997)
and successfully used in forecasting of flood, drought and
groundwater, etc. For a given training dataset {(x1,y1),
(x2,y2), . . . , (xN ,yN )}, where N is the number of training
samples, the overall goal of SVM regression is to find a func-
tion f (x) that has at most ε deviation from the observed yi .
Thus, the SVM regression model can be described as a con-
vex optimisation problem as in Eq. (12).

min
w,b

1
2
‖w‖2,

s.t.
{
yi −w

T xi − b ≤ ε

wT xi + b− yi ≤ ε
, (12)

where w and b are hyperplane parameters, and ε is the insen-
sitive loss.

The SVM regression is formulated as follows by adding
two slack variables in Eq. (13).

min
w,b,ξi ,ξ̂i

1
2
‖w‖2+C

∑N

i=1

(
ξi + ξ̂i

)
,

s.t.


f (xi)− yi ≤ ε+ ξi

yi − f (xi)≤ ε+ ξ̂i

ξi ≥ 0, ξ̂i ≥ 0, i = 1,2, . . .,N
(13)

where ξi and ξ̂i are the two slack variables, and C is a pa-
rameter that controls the trade-off between the support line
and training samples. The solution of Eq. (13) is described in
Garmdareh et al. (2018) and Gizaw and Gan (2016).

3.4.3 Random forest (RF)

RF regression is a representative type of ensemble ma-
chine learning model. Unlike SVM, which makes decisions
based on a single trained model, RF is based on the av-
erage result of numerous independent regression tree mod-
els (RTMs). In RF, n subsets were selected using a boot-
strap aggregating method from the whole training sam-
ples, where n is the number of subsets. For each subset
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T = {(x1,y1) , (x2,y2), . . ., (xn,yn)}, an RTM is developed
by minimising the loss as in Eq. (14).

min
1
n

∑M

m=1

∑
xi∈Rm

(pm− yi), (14)

where x is the input, y is the observed training target, M is
the amount of leaf of an RTM,R is the subset of whole model
inputs and pm is the predicted value of leaf m.

In each RTM, the factors were randomly selected for
model development, and the final prediction of the RF model
is calculated as the average of the results of different RTMs.
This strategy means RF usually has good performance in
terms of reducing overfitting, outliers and noise (Zhao et al.,
2020, 2018).

The out-of-bag (OOB) samples (samples not selected by
the bootstrap method) are applied to test its accuracy. Once
an RF is developed, the error of OOB samples can be com-
puted as in Eq. (15).

EOOB =
1
n

∑n

i=1
(yi − ŷi), (15)

where n is the total number of OOB samples, and ŷi is the
predicted value of RF.

Each factor in the OOB samples is permuted one at a time,
and the permuted EOOB can be computed with the permuted
OOB samples and the trained RF model. The RF estimates
the factor importance by comparing the difference between
the original and permuted EOOB, while all others are un-
changed. RF has been successfully applied for tasks such as
flood assessment, discharge prediction and ranking of hydro-
logical signatures (Zhao et al., 2018; Hutengs and Vohland,
2016; Li et al., 2016), including RFFA at regional scales (De-
sai and Ouarda, 2021).

3.5 Validation indices

Two widely used indices, the root mean square normalised
error (RMSNE) and the relative mean bias (RBIAS), were
applied for model evaluation (Salinas et al., 2013; Shu and
Ouarda, 2008; Smith et al., 2015). The RMSNE and RBIAS
are computed as in Eqs. (16) and (17) respectively. RM-
SNE is a negatively oriented index, where lower value means
better model performance. Since the errors in RMSNE are
squared before they are averaged, it should be more useful
than RBIAS when large errors are particularly undesirable.
However, as well as its use in error evaluation, RBIAS can
describe if the model has positive bias (underestimation) or

negative bias (overestimation).

RMSNE=

√
1
N

∑N

i=1

(
qi − q̂i

qi

)2

, (16)

RBIAS=
1
N

∑N

i=1

(
qi − q̂i

qi

)
, (17)

where qi is the specific flood quantile derived by observed
data, q̂i is the specific flood quantile estimated by the RFFA
method and N is the total number of stations.

4 Results and discussion

4.1 At-site flood estimation

Firstly, 16854 stations with a historical streamflow record
of 20 years or longer were selected from all stations in the
GSIM archive. Then, the MK, SNHT and AD tests were ap-
plied to these stations. As shown in Fig. 3, the thresholds
of the MK, SNHT and AD tests were derived based on the
95 % quantile value of the |Z|, T and A2 indices, respec-
tively. A total number of 1951 stations which experience ob-
vious trends (or sudden changes), or at which the discharge
data did not obey the given hypothetical distributions, were
not considered further. The selected stations were then clus-
tered into several subgroups based on a K-means clustering
model, and the discordancy measures described in Sect. 3.1.2
were further applied to these stations in each subgroup. Fi-
nally, 11 793 stations were selected for model development
in this research.

Taking one selected station (no. AT0000032) as an exam-
ple, as shown in Fig. 4a, the P3 distribution was selected as
the optimal flood frequency curve for this station as this gives
the minimal A2 of 0.43 among all hypothetical distributions.
After the flood frequency curve was defined, the parameters
and uncertainties of the P3 curve were estimated based on the
Bayesian MCMC method described in Sect. 3.2.2. As shown
in Fig. 4b, the uncertainties (band between 0.05–0.95 con-
fidence interval) improved with the increase of return peri-
ods, and the 100-year return period could be estimated within
25 % RBIAS for this station. The results of flood frequency
curve selection and 100-year return period flood estimation
for all stations are shown in Fig. 4c. We found that P3 and
GENLOGIS are the two most favoured distributions and that
only a small percentage of stations obey a NORM distribu-
tion.

4.2 Subgroup delineation

For subgroup delineation, the number of clusters (K) and the
clustering factors are two sensitive parameters. The value of
K is selected by considering both the heterogeneity (reflected
by the DB index) and the number of stations in the subgroup.
Figure 5 describes the selection process of K when using
all factors for clustering. As shown in Fig. 5a, the DB index
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Figure 3. Thresholds for MK (a), SNHT (b) and AD (c) tests during station selection.

Figure 4. Flood frequency curve selection and estimation. (a) Flood frequency curve selection of station no. AT0000032 (A2 value in
brackets). (b) Design flood estimation of station no. AT0000032 using the Bayesian MCMC interface. (c) Selection results of flood frequency
curve for all stations.

reached an optimal value at K = 16 and then fluctuated with
the increase of K . From Fig. 5b, we found that the number
of stations in subgroups reduced with a larger K . To ensure
a sufficient number of stations for model development for
each subgroup, K greater than 40 is not considered in this
research.

Taking the 100-year flood estimation as an example, dif-
ferent combinations of clustering factors were tested using
the optimal K . As shown in Table 3, the best combination
is to use all factors for clustering, and this result reaches the
best RMSNE of 0.708 and RBIAS of−0.174 among all com-
binations for the validation periods. The design flood still
could be satisfactorily estimated (RBIAS< 25 %) when us-

ing meteorological, physiographical or hydrological factors
for clustering, respectively. Anthropological factors alone are
not recommended for clustering as this results in the worst
RMSNE of 1.788 and RBIAS of −0.909 among all combi-
nations.

4.3 Regression model comparison

Three regression models, PF, SVM and RF, were compared
for 100-year flood estimation. Figure 6 describes the accu-
racy of the three models during training and validation peri-
ods. We found that PF showed the worse accuracy, with an
RMSNE of 1.175 and 1.1089 in training and validation pe-
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Figure 5. Optimal K selection by (a) DB index and (b) the number of stations in subgroups during delineation.

Table 3. The impact of clustering factors on regional 100-year flood estimation.

Clustering factors Optimal Training Validation

K RBIAS RMSNE RBIAS RMSNE

All factors 16 −0.179 0.703 −0.174 0.708
Meteorological factors (AP, PS, AT, TR) 11 −0.202 0.768 −0.185 0.746
Physiographical factors (SL, LF, LO, LA) 5 −0.214 0.829 −0.244 0.824
Hydrological factors (CA, CN) 30 −0.207 0.781 −0.243 0.876
Anthropological factors (DC, PD) 7 −0.379 1.235 −0.909 1.788

riods respectively. This reveals the coefficients of PF cannot
accurately describe the contribution of factors to the results.
RF gave the highest fitting ability during the training period,
with an RMSNE of 0.290 and RBIAS of −0.037. However,
the SVM model slightly outperformed the RF model during
the validation period, with an RMSNE of 0.708 and RBIAS
of−0.174. Therefore, SVM was selected for flood estimation
for ungauged areas in this research.

The factor importance in each subgroup was evaluated us-
ing the RF model, and Fig. 7a describes the range and av-
erage value of factor importance of all subgroups. The top
four important factors are the catchment area (CA), annual
precipitation (AP), longitude (LO) and latitude (LA). Mean-
while, dam capacity (DC) and curve number (CN) are the
two least important factors and make up a relatively low pro-
portion (average importance < 5 %) of the total importance
among all factors.

To reduce model complexity, the type of descriptors for all
subgroups was the same during training and validation. The
optimal number of catchment descriptors used in the regres-
sion results was further tested based on the SVM regression
and the factor importance order identified by the RF model.
Figure 7b described the RMSNE for all subgroups during
the validation period considering different combinations of
catchment descriptors. AP and CA are the two most impor-
tant factors and were also recommended as the catchment de-
scriptors in the global RFFA approach of Smith et al. (2015),
with a small number of samples (242 stations) for validation.
When only using the CA and AP (top two factors) for regres-
sion and a large number of stations (3485 stations) for vali-
dation, the design flood cannot be accurately estimated (RM-

SNE> 1.0) for some subgroups. As shown in Fig. 7b, the
prediction accuracy can be improved by considering more
importance factors for model training and validation. After
considering the top 10 factors for regression, the RMSNE of
subgroups becomes stable and does not significantly improve
by adding the further factors DC and CN. The SVM showed
the highest performance considering all factors for regression
(mean RMSNE of 0.70 in the validation period).

4.4 Regional flood estimation

Figure 8a–e demonstrate the simulated results from the opti-
mal SVM model in each climate zone, and Fig. 8f displays
the cumulative distribution function (CDF) between the sim-
ulated and observed discharge for all stations. Specially, the
RMSNEs found were 0.746, 0.785, 0.722, 0.704 and 0.480
for tropical, arid, temperate, cold and polar climates respec-
tively. Although there were some large individual errors, the
SVM model showed good performance in tropical, tempera-
ture, cold and polar climate zones, with an RBIAS of−0.199,
−0.169, −0.179 and −0.091 respectively. The SVM model
showed a higher error of flood estimation in arid zones, with
an RBIAS of −0.233. As shown in Fig. 8f, the simulated re-
sult can successfully fit the observed discharge curve given
its likely error.

Table 4 compares the training and validation results of 10-,
20-, 50- and 100-year return period floods derived by the pro-
posed direct regression method. By using the proposed di-
rect regression method, all design floods could be estimated
within the RBIAS of 0.18 (18 %). We found, unsurprisingly,
that the prediction accuracy decreases with a larger flood
magnitude. This is mainly because the at-site design flood
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Figure 6. Comparison of three regression models (PF, SVM and RF) during training and validation periods.

Figure 7. (a) Descriptor importance evaluated by the RF model and (b) the optimal number of catchment descriptors for SVM regression.

Table 4. Result for different return period flood estimation.

Return Training Testing

periods RBIAS RMSNE Mean RBIAS RMSNE

10 −0.160 0.655 −0.165 0.664
20 −0.165 0.663 −0.168 0.672
50 −0.175 0.695 −0.166 0.684
100 −0.179 0.703 −0.174 0.708

is derived by observed data based on several assumptions,
not the truth, and large return period floods are more difficult
to be reliably estimated with limited observed data (Gaume,
2018). Regarding the natural and epistemic uncertainties in
flood frequency analysis, the RBIAS of at-site design flood
estimation was reported to be as large as 30 % in some studies
(Di Baldassarre et al., 2012; Di Baldassarre and Montanari,
2009; Halbert et al., 2016; Merz and Thieken, 2005). As the
at-site design flood is regarded as a training target, this error
will be introduced in the regression and will directly affect
the approach accuracy. Therefore, an RBIAS of 20 % or less
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Figure 8. Results of simulated Q100 in different climate zones, (a) tropical, (b) arid, (c) temperate, (d) cold and (e) polar. (f) Cumulative
distribution function of simulated and observed discharge.

is very impressive considering the uncertainties of at-site de-
sign flood estimation.

4.5 Discussion

In this research, we adopted a simple hold-out validation
strategy such that 70 % and 30 % of stations were randomly
selected for training and validation, respectively. To test the
influence of hold-out samples on the model results, a 10-fold
cross-validation strategy (Garmdareh et al., 2018; Lee et al.,
2020) was applied. All stations in one subgroup were ran-
domly divided into 10 folds. For every fold i (i = 1, 2, . . . ,
10), the modeli was trained by the remaining 9 folds (except
the ith fold) and validated by the ith fold. Using this strat-
egy, 10 models were developed for each subgroup, and each
sample in the original dataset was used for validation once.
Table 5 describes the best, worse and median model perfor-
mances validated by the different folds. We found that the
selection of hold-out samples had a moderate impact on the
PF model, and the RMSNE performance ranged from 0.97 to
1.49. Both SVM and RF showed more stable performances
than PF, and SVM provided the narrowest range. We suggest
using ensemble results from SVM models trained by differ-
ent split samples to reduce the errors in sample selection.

We compared the flood estimation accuracy in different
catchment sizes (Fig. 9a). Both over- and underestimations
were found from small to large catchments. The range of
RBIAS in small catchments is wider than that in large catch-
ments. This reveals that design floods in small catchments
are more difficult to estimate than large catchments. This
is mainly because the catchment descriptors derived from

Table 5. Results of 100-year design flood estimation using 10-fold
cross-validation.

Models RBIAS RMSNE

Worse Best Median Worse Best Median

PF −0.37 −0.21 −0.29 1.49 0.97 1.12
SVM −0.20 −0.16 −0.19 0.74 0.69 0.71
RF −0.21 −0.14 −0.18 0.78 0.69 0.74

global satellite images can have large uncertainties (Mc-
Cabe et al., 2017) when describing small catchments and can
lead to more substantial errors at low discharge. The neg-
ative value of RBIAS reflected some overestimation. Some
studies suggested that the trends in observed discharge can
lead to overestimation (or underestimation) of flood quan-
tiles if such non-stationarity is not taken into consideration in
RFFA (Kalai et al., 2020; O’Brien and Burn, 2014). Before
model development, some non-stationary or discordant sta-
tions were eliminated from the whole dataset using a thresh-
old of 5 %. This threshold is an empirical value and may re-
move some reliable stations if the sample is homogeneous.
Figure 9b presents the model performances of training, test-
ing and eliminated stations. We found that the proposed ap-
proach showed stable performance in the training and testing
stations. However, the wide range of RBIAS in eliminated
stations reveals that there may be some downsides in apply-
ing the proposed approach to a station where flows are chang-
ing rapidly. To address this limitation, the non-stationary
RFFA approach should be explored in further research.

Hydrol. Earth Syst. Sci., 25, 5981–5999, 2021 https://doi.org/10.5194/hess-25-5981-2021



G. Zhao et al.: Design flood estimation for global river networks based on machine learning models 5993

Figure 9. RBIAS of 100-year return period flood estimation (a) in different catchment sizes and (b) in training, testing and eliminated
stations.

All the proposed methods have not been implemented
in a totally optimised way, the SVM model being slightly
favoured in terms of the selected stations, not the whole ini-
tial GSIM dataset. Although only one-third of GSIM stations
were selected, this research significantly improved the sta-
tion density and model accuracy in all climate zones com-
pared with the global RFFA of Smith (2015). The proposed
approach achieved similar performances to some regional
studies by adopting a global coverage of stations (Shu and
Ouarda, 2008; Salinas et al., 2013). However, there can
still be large errors in design flood estimation, especially
in arid zones. This is consistent with previous research and
is likely to be a result of drier regions being more hetero-
geneous (Salinas et al., 2013; Smith et al., 2015). In this
study, the subgroups are delineated based on a widely used
K-means model using squared Euclidean distance. Some
studies showed that this model is not recommended for
solving highly non-linear problems (Bárdossy et al., 2005;
Samaniego et al., 2008; Raykov et al., 2016), and this may
make it difficult to properly reflect the heterogeneous char-
acteristics of the study area. Other clustering models and dis-
tance metrics that can better describe the non-linear relation-
ship between descriptors should be compared in future stud-
ies.

5 Conclusions

A three-phase machine-learning-model-based approach was
proposed to estimate design floods along river networks at
the global scale. The at-site floods for global gauging station
data were estimated based on a Bayesian MCMC method.
The global stations were then clustered into several sub-
groups using a K-means clustering model, and a SVM re-
gression was developed in each subarea for design flood es-
timation. Three widely used regression techniques, power-
form function (PF), support vector machine (SVM) and ran-
dom forests (RF), were compared for regression in each sub-

group. The regional floods were final estimated using the
same descriptors and the optimal SVM regression model.

The main conclusions of this study are summarised below:

1. To make reliable estimates, 11793 stations from the
GSIM archive were selected for model implementation
using stationarity, discordancy and homogeneity mea-
sures. For clustering, the impact of clustering num-
ber and clustering factors on estimation accuracy was
tested. The best clustering number (K) was 16, which
gave the lowest RMSNE of 0.708 for 100-year flood es-
timation when using all factors for clustering in a K-
means model.

2. Three regression models were compared for 100-year
flood estimation, and the SVM method showed the
highest accuracy during the validation period, with an
RMSNE of 0.708 and RBIAS of −0.174. Factor im-
portance was identified using the RF model, and dif-
ferent combinations of factors were tested for the opti-
mal SVM regression implementation. When only using
the top two factors (annual precipitation and catchment
area) for regression and a large number of stations (3485
stations) for validation, the design flood cannot be accu-
rately estimated (RMSNE> 1.0) for some subgroups.
After considering the top 10 factors for regression, the
RMSNE for subgroups became stable and did not sig-
nificantly improve by further adding factors.

3. The proposed approach showed good performance (i.e.
the bias <±20 %) in tropical, temperate, cold and po-
lar climate zones, with an RBIAS of −0.199, −0.169,
−0.179 and −0.091 respectively. A satisfying perfor-
mance was found in arid areas with an RBIAS of
−0.233. The negative value of RBIAS reflected some
overestimation in RFFA.

This approach shows considerable promise for the estima-
tion of extreme flood magnitudes at global scales, and the
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average RBIAS in estimation is less than 18 % for all design
floods. This is likely to yield a significant improvement in the
skill of global flood inundation models.

Appendix A: Mann–Kendall test (MKT)

For a discharge series {Yi |i = 1,2, . . .,n, the process of MKT
is described in Eqs. (A1) to (A4):

S =
∑n−1

i=1

∑n

j=i+1
sgn

(
Yj −Yi

)
, (A1)

sgn(y)=

 1, y > 0
0, y = 0
−1, y < 0.

(A2)

The variance of S is computed as follows:

Var(s)=
1

18
(n(n− 1)(2n+ 5)−

∑n

i=1
ti i(i− 1)(2i+ 5)),

(A3)

where n is the total number of time series Yi ; Var(s) is the
variance of S; and ti is the number of data points contained
in the ith tie group.

The MKT statistic Z is given by

Z =


S−1
√

Var(s)
, S > 0

0, S = 0
S+1
√

Var(s)
, S < 0

. (A4)

Appendix B: Standard normal homogeneity test
(SNHT)

For a discharge series {Yi |i = 1,2, . . .,n, the SNHT is de-
scribed in Eqs. (B1) to (B4).

Td = dz
2
1+ (n− d)z

2
2,d = 1,2, . . .n, (B1)

Z1 =
1
d

∑d

i=1

(
Yi −Y

)
/δ, (B2)

Z2 =
1

n− d

∑n

i=d+1

(
Yi −Y

)
/δ. (B3)

The SNHT statistic T is given by

T =max(Td) , (B4)

where n is the total number of time series Yi ; and Y and δ are
the mean and standard deviation of time series Yi .

Appendix C: Discordancy measure methods

The Z score (ZS) method is described in Eq. (C1).

zsi =
Ri −R

sd(R)
, (C1)

where Ri is the mean annual runoff of station i in one sub-
group; R is the mean value of Ri in one subgroup; and sd(R)
is the standard deviation of Ri in one subgroup.

The L-moment-based method is presented in Eqs. (C2) to
(C4).

Di =
1
3
Nk
(
Ui −U

)T
S−1(Ui −U), (C2)

U =
1
Nk

∑Nk

1
Ui, (C3)

S =
∑Nk

1
(Ui −U)(Ui −U)

T , (C4)

where Nk is the number of stations in cluster k, and Ui =
[t i t i3, t

i
4] is the vector of the coefficient of L variation (L

CV), L skewness and L kurtosis of the station i as defined
by Hosking and Wallis (2005).
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Appendix D: Hypothetical distributions

Table D1. Hypothetical distributions adopted in this research.

No. Hypothetical distributions Probability density function f (x) or cumulative
distribution function F(X)

1 Normal distribution (NORM) f (x)= 1√
2πb2

exp
(
−
(x−a)2

2b2

)
2 Exponential distribution (EXP) F(x) = 1 − exp

(
−
x−a
b

)
3 Gumbel distribution (GUMBEL) F(x) = exp

[
− exp

(
−
x−a
b

)]
4 Generalised extreme value distribution (GEV) F(x)= exp

[
−

(
1− b

a (x− c)
) 1
b

]
5 Generalised logistic distribution (GENLOGIS) F (x)= 1(

1+exp
(
x−a
b

))c
6 Generalised Pareto distribution (GENPAR) F (x)= 1−

(
1+ c

(
(x−a)
b

))− 1
c

7 Log-normal distribution (LN3) f (x)= 1√
2πb(x−c)

exp
(
−

1
2

(
log(x−c)−b

a

)2
)

8 Pearson type III distribution (P3) f (x)= 1
a0(b)

(
x−c
a

)b−1 exp
(
−
(
x−c
a

))
Note that x is the random variable; a, b and c are parameters of distributions.

Appendix E: Anderson–Darling (AD) test

Given a sample of data xi(i = 1, 2, . . . , m), the AD test will
determine if a given dataset comes from a candidate cumula-
tive distribution function F(x,θ) as in Eq. (E1), where θ is
the parameter estimated by the sample xi .
Fm (x)= 0, x < x(1)
Fm (x)=

i
m
, x(i) ≤ x < x(i+1)

Fm (x)= 1, x(m) ≤ x

, (E1)

where Fm(x) is the empirical cumulative distribution func-
tion; x(i) is the ith element of the sample in increasing order;
and the AD test statistic A2 can be calculated as in Eq. (E2)
(Ahmad et al., 1988; Laio, 2004).

A2
=−m−

1
m

∑m

i=1

{
(2i− 1) ln[F

(
x(i),θ

)
]

+(2m+ 1− 2i) ln[1−F
(
x(i),θ

)
]
}

(E2)
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Code availability. The MKT and SNHT were implemented
using the “trend” package (https://cran.r-project.org/web/
packages/trend/index.html, Pohlert, 2021). The discordancy
and at-site design floods were estimated based on the nsRFA
package (https://CRAN.R-project.org/package=nsRFA, Viglione,
2021). The K-means, SVM and RF models are available
from https://www.mathworks.com/help/stats/kmeans.html
(MathWorks, 2021a), https://uk.mathworks.com/help/stats/
support-vector-machine-regression.html (MathWorks, 2021b) and
https://www.stat.berkeley.edu/~breiman/RandomForests/ (Breiman
and Cutler, 2021) respectively.

Data availability. The Global Streamflow Indices
and Metadata Archive (GSIM) is freely available at
https://doi.org/10.1594/PANGAEA.887477 (Do et al.,
2018b). To access WorldClim – Global Climate Data,
visit http://www.worldclim.org/ (Fick and Hijmans,
2021). The adopted terrain data are the MERIT-DEM at
http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/ (Yamazaki,
2021). The Gridded Population of the World (GPW) dataset is avail-
able from https://sedac.ciesin.columbia.edu/data/collection/gpw-v4
(CIESIN, 2021). The Global Lakes and Wetlands Database
(GLWD) is available from https://www.worldwildlife.org/pages/
global-lakes-and-wetlands-database (Lehner and Döll, 2021). The
data sources of the NRCS curve number dataset are described
at https://doi.org/10.1080/2150704X.2017.1297544 (Zeng et al.,
2017). The Global Reservoir and Dam Database (GRanD) can be
downloaded by visiting http://globaldamwatch.org/grand/ (Beames
et al., 2021).
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