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Abstract. Landslides are an impacting natural hazard in
alpine regions, calling for effective forecasting and warn-
ing systems. Here we compare two methods (physically
based and probabilistic) for the prediction of shallow rainfall-
induced landslides in an application to Switzerland, with a
specific focus on the value of antecedent soil wetness. First,
we show that landslide susceptibility predicted by the fac-
tor of safety in the infinite slope model is strongly depen-
dent on soil data inputs, limiting the hydrologically active
range where landslides can occur to only∼ 20 % of the coun-
try with typical soil parameters and soil depth models, not
accounting for uncertainty. Second, we find the soil satura-
tion estimate provided by a conceptual hydrological model
(PREVAH) to be more informative for landslide prediction
than that estimated by the physically based coarse-resolution
model (TerrSysMP), which we attribute to the lack of tem-
poral variability and coarse spatial resolution in the latter.
Nevertheless, combining the soil water state estimates in
TerrSysMP with the infinite slope approach improves the
separation between landslide triggering and non-triggering
rainfall events. Third, we demonstrate the added value of an-
tecedent soil saturation in combination with rainfall thresh-
olds. We propose a sequential threshold approach, where
events are first split into dry and wet antecedent conditions
by anN d (day) antecedent soil saturation threshold, and then
two different total rainfall–duration threshold curves are es-
timated. This, among all different approaches explored, is
found to be the most successful for landslide prediction.

1 Introduction

Landslides are a natural hazard affecting alpine regions
worldwide. They damage infrastructure and buildings, some-
times leading to loss of life (e.g. Kjekstad and Highland,
2009; Salvati et al., 2010; Petley, 2012; Trezzini et al., 2013;
Mirus et al., 2020). Shallow landslides occur when and where
the applied shear on the soil–bedrock interface exceeds the
shear strength of the soil on a slope. Their occurrence is de-
termined by two key factors: predisposing factors, which are
a collection of soil and land surface properties of a certain lo-
cation which make it susceptible (or not) to landsliding (e.g.
Reichenbach et al., 2018), and triggering factors, which are
those that initiate slope failure on susceptible slopes. In gen-
eral, most landslides are either triggered by earthquakes or
rainfall (e.g. Iverson, 2000; Highland and Bobrowsky, 2008;
Leonarduzzi et al., 2017; Marc et al., 2019). Here we focus
on shallow rainfall-induced landslides, which involve the top
layer of the soil, typically less than 2 m thick, and fail in-
stantaneously. In such landslides, failure is typically the re-
sult of the development of positive pore water pressure in the
soil, which decreases its strength (e.g. Anderson and Sitar,
1995; Highland and Bobrowsky, 2008). This condition is of-
ten associated with intense or long-lasting rainfall events that
saturate the soil by vertical infiltration and lateral subsurface
drainage. The wetness of the soil prior to the triggering rain-
fall is therefore a key ingredient in slope failure (Bogaard and
Greco, 2018).

Several approaches exist for the prediction of landslides
that focus on one or more predisposing and triggering fac-
tors, typically classified into three types: susceptibility map-

Published by Copernicus Publications on behalf of the European Geosciences Union.



5938 E. Leonarduzzi et al.: Rainfall-induced shallow landslides and soil wetness

ping, probabilistic approaches, and physically based mod-
elling (e.g. Aleotti and Chowdhury, 1999).

Susceptibility mapping assesses the vulnerability of a cer-
tain area to landsliding based on predisposing factors. In
statistical susceptibility mapping, the different predisposing
factors, geological, topographical, and climatological prop-
erties, are combined with landslide inventories and used as
explanatory variables in a statistical model (e.g. Reichen-
bach et al., 2018). Landslide hazard maps are then gener-
ated by various forms of linear and non-linear multivariate
regression models (e.g. Chung et al., 1995), logistic regres-
sion (e.g. Ohlmacher and Davis, 2003; Ayalew and Yamag-
ishi, 2005; Lee and Pradhan, 2007; Yilmaz, 2009; von Ruette
et al., 2011), or machine learning algorithms (e.g. Saito et al.,
2009; Ermini et al., 2005; Yilmaz, 2009). Susceptibility map-
ping can also be achieved by applying a physically based
geotechnical model which identifies the likelihood of failure
in a region based on an assessment of likely soil water dis-
tribution in space (e.g. Baum et al., 2002, 2008; Dietrich and
Montgomery, 1998; Formetta et al., 2016).

Probabilistic approaches focus mainly on the temporal
component of the landslide hazard (triggering factors) rather
than the spatial susceptibility (predisposing factors). They
are based on the assumption that rainfall is the main trigger-
ing factor and take advantage of historical records of rainfall
and landslides. These databases are combined to learn which
meteorological conditions have been associated with the trig-
gering of landslides in the past. This allows us then to recog-
nise critical conditions in weather forecasts of the coming
days and estimate how likely the occurrence of landsliding
is. The most common of these approaches is that of rain-
fall thresholds, and in particular intensity–duration or total
rainfall–duration threshold curves (e.g. Guzzetti et al., 2007;
Leonarduzzi et al., 2017; Segoni et al., 2018). While rainfall
is the main triggering factor, soil wetness conditions prior
to triggering rainfall can also be included in this framework
(e.g. Bogaard and Greco, 2018; Marino et al., 2020). The
antecedent soil wetness conditions can be derived in many
different ways, each with its advantages and limitations, e.g.
from in situ measurements (depend on network density, e.g.
Wicki et al., 2020), remote sensing of soil moisture (suffer
from low resolution and insufficient penetrating depth, e.g.
Brocca et al., 2012; Thomas et al., 2019), through proxies
of soil wetness like antecedent rainfall (miss evapotranspira-
tion and snowmelt, e.g. Glade et al., 2000; Godt et al., 2006;
Mathew et al., 2014), or by hydrological soil water balance
modelling (e.g. Ponziani et al., 2012; Thomas et al., 2018).

Finally, physically based modelling approaches are usu-
ally made up of two components to directly simulate slope
stability in time and space: a hydrological and a geotechni-
cal model. The hydrological model is used to estimate the
condition of the soil, i.e. the pore water pressure and/or sat-
uration, which are then used in the geotechnical model for
the estimation of slope stability (e.g. by the infinite slope
or other hydromechanical slope failure model). These ap-

proaches are theoretically the most sound and predict both
when and where a landslide could occur, but they are compu-
tationally expensive and data demanding. For these reasons,
they are typically applied on individual slopes in landslide-
prone areas or small catchments only (Cohen et al., 2009;
von Ruette et al., 2013; Anagnostopoulos et al., 2015; Fan
et al., 2015, 2016).

In this work, we conduct a comparison of a probabilistic
and physically based modelling approach to landslide pre-
diction with the specific question of the value of the inclu-
sion of antecedent soil wetness state in the prediction. Our
scale of analysis is regional (Switzerland) instead of hills-
lope/catchment scale, because it is at this scale that landslide
early warning systems need to be developed (e.g. Staehli
et al., 2015). First we explore the regional susceptibility to
landslides following the infinite slope approach (physically
based susceptibility mapping). This allows us to understand
where hydrology can play a role in the landscape in trigger-
ing landslides, i.e. identifying areas where the transient soil
wetness results in the factor of safety (FoS) fluctuating above
1 (stable) and below 1 (unstable). We then explore two ap-
proaches to account for the soil wetness state for landslide
prediction, taking advantage of the hydrological estimates
of soil moisture provided by two different model set-ups for
forecasting purposes and covering Switzerland.

1. A fully physically based approach that takes advan-
tage of a state-of-the-art European simulation of hydrol-
ogy (Furusho-Percot et al., 2019) with three physically
based coupled models (climate forecast model, land sur-
face model, hydrological model) at a coarse resolution
(12.5 km× 12.5 km), from which we extract pore water
pressure. The pressure field is then used as a dynamic
component in the factor of safety estimation in the infi-
nite slope approach. This framework is designed based
on similar existing blueprints for landslide warning sys-
tems (Schmidt et al., 2008; Wang et al., 2020).

2. A probabilistic approach in which we develop rainfall
threshold curves for landslide prediction based on a
combination of historical databases of rainfall and land-
slides for Switzerland (Leonarduzzi et al., 2017). We
then combine these predictions with estimated soil sat-
uration by a Swiss operational, semi-distributed con-
ceptual hydrological model (PREVAH; Viviroli et al.,
2009) to quantify the strength of the signal in antecedent
soil moisture which could be used in rainfall threshold
curve methods for landslide prediction at this scale.

The comparison between the two approaches allows us to
answer the following questions. (1) Is the infinite slope ap-
proach valuable for landslide hazard assessment at the re-
gional scale? (2) Where does hydrology play a role in the
triggering of landslides in Switzerland? (3) Which hydrolog-
ical soil water estimate (PREVAH or TerrSysMP) is more in-
formative for landslide prediction and why? (4) How can we
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best take advantage of the soil saturation estimates in combi-
nation with rainfall characteristics for landslide prediction?

2 Methods and data

2.1 Physically based approach

2.1.1 The infinite slope model

For the stability assessment, we choose to follow the infinite
slope approach, because this is one of the most widely used
models for slope failure prediction (e.g. Pack et al., 1998;
Iverson, 2000; Baum et al., 2008; Lu and Godt, 2008). It is
based on the assumption that the thickness of the sliding mass
(soil) is much smaller than the length of the slope, which is
typically true for shallow landslides (up to 2 m deep). The
factor of safety (FoS) is computed as the ratio between soil
shear strength and applied stress to the soil layer:

FoS(t)=
c+ [γ d − γwh]cos2β tanφ

γ d sinβ cosβ
, (1)

where h is the water pressure head within the soil layer [m]
(see Sect. 2.1.3), d the soil depth [m] (see Sect. 2.1.2), c is
soil cohesion [Pa], γ is soil unit weight [N/m2] (computed
from the bulk soil density ρ and gravitational acceleration g
as γ = ρ · g), γw is the specific weight of water [N/m2], β is
the slope angle [rad], and φ is the soil internal friction angle
[rad]. Typically FoS= 1 is assumed to be the threshold of
failure, with landsliding occurring when FoS< 1, i.e. when
the applied shear stress exceeds the soil shear strength.

All calculations are done at the resolution of the DEM,
i.e. a grid of cell size 25 m× 25 m in this paper. This reso-
lution is a result of testing (not reported here) and a com-
promise between not violating the infinite slope assumptions
(length scale of landslides � their depth) and keeping the
grid size similar to that of a typical landslide detachment area
while also capturing local topographic gradients β, which are
smoothed as resolution decreases.

To estimate the bulk soil density, cohesion, and friction
angle, we used publicly available datasets in OpenLandMap
(OpenLandMap, 2020; Hengl et al., 2017), which provide
global maps of a wide range of soil, land cover, hydrol-
ogy, geology, climate, and relief characteristics. All the maps
used here are available at a resolution of approximately
250 m× 250 m. The soil properties are provided for six dif-
ferent depths up to 200 cm produced by machine learning al-
gorithms trained on soil profiles globally (SoilGrids dataset).
For the estimation of the bulk soil density, we compute the
thickness-weighted average for the 2 m soil column. For
the friction angle, we first associate a value for each soil
texture class (USDA system) present in Switzerland in the
OpenLandMap dataset (Geotechdata.info, Angle of Friction,
2013). Then at each location, we choose the value of the fric-
tion angle at the depth corresponding to the local soil depth

(e.g. if the soil is 120 cm deep locally, the closest value in
SoilGrids will be that at 1 m depth). Finally for cohesion,
we assume that the soil itself is cohesionless (c = 0), but
we add the important contribution of vegetation to cohesion
on slopes. From the land-cover map in OpenLandMap, we
identify eight classes of tree cover, and we assign them a co-
hesion value between c = 5− 22 kPa. Denser tree cover and
mixed forests are associated with larger values of cohesion
(Schwarz et al., 2012; Dorren and Schwarz, 2016). To quan-
tify the sensitivity of the FoS estimation to the apparent root
cohesion, we also simulate the reference case in which co-
hesion is assumed c = 0 over the entire country (Fig. 1). All
maps are downscaled to 25 m× 25 m resolution by resam-
pling with nearest neighbour.

To assess the susceptibility to landsliding in Switzerland,
we compute the factor of safety of the two endmember sce-
narios: completely wet soil (h= d) or completely dry soil
(h= 0), which give us the minimum and maximum FoS. This
allows us to identify unconditionally stable and unstable ar-
eas in our domain just based on hydrology and soil and topo-
graphic characteristics. Unconditionally stable areas have the
minimum FoS> 1 for a completely wet soil and will never
fail regardless of the actual hydrological state. Uncondition-
ally unstable areas have the maximum FoS< 1 for a com-
pletely dry soil and will (should) always fail according to
Eq. (1). In all other areas, hydrology plays a role in the initi-
ation of landslides according to the FoS methodology.

We then compute the dynamic factor of safety in time and
its statistics for all cells (25 m× 25 m) in which at least one
landslide was recorded according to the landslide database
(for details on the database see Sect. 2.2), using the water
pressure head h estimated from the hydrological model de-
scribed in Sect. 2.1.3. Additionally, we also compute the de-
parture of the minimum FoS from the local temporal mean
(i.e. mean of the 25 m cell) during each triggering and non-
triggering rainfall event which are defined in Sect. 2.2. These
analyses allow us to observe variations in FoS at cell level
and relate them to observed landslide occurrence at those lo-
cations. If these relations are found to be strong, we hypoth-
esise that a warning system could be based on the estimated
FoS. Otherwise, its use for landslide warning is questionable.

2.1.2 Soil depth

Because soil depth is the most poorly known variable and
uncertain parameter in the slope stability model in Eq. (1),
here we use four different methods to estimate soil thickness
distributions in space and test their impacts on FoS estimates.
(1) Uniform soil depth of 1 m for the entire country is the first
method. (2) The slope-dependent model is given as follows
(Saulnier et al., 1997):

di = dmax

{
1−

[
tanβi − tanβmin

tanβmax− tanβmin

(
1−

dmin

dmax

)]}
, (2)
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Figure 1. Maps of the distributed input used in the factor of safety calculations. (a) The 25 m digital elevation model (Swisstopo), (b) friction
angle obtained from the OpenLandMap USDA texture class and provided soil depth, (c) bulk density obtained from OpenLandMap, and
(d) cohesion estimated for the land-cover map from OpenLandMap. The friction angle depends on the local soil depth; here soil depth is
estimated with the linear diffusion model.

where dmax is maximum soil depth, dmin is the minimum
soil depth (assumed to be 5 cm), βi is the local slope,
βmax is the maximum slope above which no soil layer can
form (assumed to be 45◦), and βmin is the minimum slope
(0◦). (3) The elevation-dependent model is given as follows
(Saulnier et al., 1997):

di = dmax−
zi − zmin

zmax− zmin
(dmax− dmin), (3)

where zi is the local elevation, zmax is the maximum eleva-
tion, and zmin is the minimum elevation. (4) The steady-state
soil depth produced by the linear diffusion transport model
(Roering, 2008) is the fourth method where we simulate
the distributed soil depth after 15 000 years of soil develop-
ment. This approach is based on mass conservation (Eq. 4),
with soil production decreasing exponentially with soil depth
(Eq. 5), and soil erosion and transport assumed to be linearly
dependent on slope (Eq. 6).

∂di

∂t
=−∇qs,i +

ρr

ρs
εi, (4)

εi =
ε0

cosβi
e−µdi cosβi , (5)

qs,i =−Kl∇zi, (6)

where ∂di
∂t

is the change of soil depth in time, qs,i the soil
(sediment) transport vector at location i, ρr

ρs
the ratio between

the bedrock and soil density (2 as in Dietrich et al., 1995),
εi the soil production rate at location i, ε0 the maximum soil
production rate associated with 0 depth (0.000268 m per year
as in Heimsath et al., 2001), β the slope angle at location i, µ
the critical value depth (3/m as in Roering, 2008), Kl the co-
efficient of linear proportionality (0.0050 as in Dietrich et al.,
1995), and ∇zi the gradient of elevation at location i.

For the soil depth models (2)–(4), we fix the maximum
soil depth dmax = 2 m to be consistent. In fact, no deeper soil
depths are reported in the Swiss soil suitability map for agri-
culture (Bodeneignungskarte der Schweiz, 2020).

2.1.3 Hydrology

The water pressure head within the soil layer required for
the calculation of the factor of safety (h in Eq. 1) is pro-
vided by an operational European forecasting system. This
consists of the climatology from 1989 to current day, ob-
tained by applying the Terrestrial Systems Modeling Plat-
form (TerrSysMP) (Kurtz et al., 2016). This platform is made
up of three physically based coupled models that solve the
water and energy fluxes from the atmosphere to the ground-
water: a weather prediction model, a land surface process
model, and a hydrological model for surface and subsurface
3D water fluxes. TerrSysMP is produced at daily resolution
over a 12.5 km× 12.5 km grid covering Europe. Several state
and flux variables are available and can be freely accessed;
here we use the water pressure in the soil and soil saturation.

We extract from the historical simulations the water pres-
sure at the depth obtained by the soil depth model chosen and
correct for the elevation difference between the centre of the
corresponding TerrSysMP vertical layer and the estimated lo-
cal depth and use it as the water pressure head term in Eq. (1),
h. In addition to pressure, we also extract the average satura-
tion of the top two soil layers (total depth of 60 cm from the
surface), in order to facilitate comparisons with the saturation
obtained by the conceptual hydrological model PREVAH.
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2.2 Probabilistic approach

2.2.1 Rainfall threshold curves

We combine landslide inventory data in Switzerland and a
daily gridded dataset of rainfall to develop rainfall threshold
curves following the method by Leonarduzzi et al. (2017).
The historical landslides were collected in the Swiss flood
and landslide damage database (Swiss Federal Research In-
stitute WSL; Hilker et al., 2009). This database contains
floods, landslides, and rockfall events which produced dam-
ages in Switzerland since 1972. We select the landslide
events that have a known location and date and were not
associated with snowmelt, for a total of 1807 events be-
tween 1981 and 2016 (time frame of the analysis). The
rainfall record is obtained as the interpolation of a network
of ca. 430–460 rain gauges, using the local climatology
and regional precipitation–topography relationships (Shep-
ard, 1984; Frei and Schär, 1998; Frei et al., 2006). It contains
daily rainfall totals on a 1 km× 1 km grid covering the entire
country since 1961.

For the definition of rainfall events, we follow the proce-
dure introduced in Leonarduzzi et al. (2017). First we select
susceptible cells, i.e. rainfall cells (1 km× 1 km grid cells)
where at least one landslide was recorded. For those cells, we
separate the rainfall time series into events, where an event is
defined as a series of consecutive rainy days with a minimum
of 1 dry day between events. These events are then classi-
fied as observed triggering if a landslide was recorded during
or immediately after them and non-triggering otherwise. The
properties of each event are total rainfall depth (E), event du-
ration (D), event mean daily intensity, and event maximum
daily intensity.

We then define a power-law total rainfall–duration (ED)
threshold curve E = aDb that separates triggering and non-
triggering rainfall events. To this end, we estimate the a and
b parameters of the power-law curve by maximising the true
skill statistic (TSS= true positive ratio− false positive ratio),
as in Leonarduzzi et al. (2017). This allows us to classify
the rainfall events by the calibrated ED threshold into the
following groups (see also Leonarduzzi and Molnar, 2020):
observed and correctly predicted triggering events above the
ED curve (true positive), observed triggering events which
fall below the ED curve (false negative), observed non-
triggering events which fall above the ED curve (false pos-
itive), and observed non-triggering events which fall below
the ED curve (true negative).

2.2.2 Antecedent soil saturation

We use the values of soil saturation estimated by the Swiss
operational hydrological model PREVAH (Viviroli et al.,
2009) at a 500 m× 500 m resolution to explore the added
value of antecedent soil saturation on the ED curve pre-
dictions. PREVAH is a conceptual model, where the soil is

represented by three storage modules: soil moisture storage
(SSM), upper zone (unsaturated) runoff storage (SUZ), and
lower zone (saturated) runoff storage. We use the values of
the first two (unsaturated) layers and combine and transform
them into a 0–1 soil saturation estimate. This is computed as
soil saturation= (SSM+SUZ)/(SSMmax+SUZmax), where
SUZmax is a distributed calibrated parameter, while SSMmax
is the maximum value of SSM simulated over the entire time
frame (1981–2018) at each grid cell.

For each susceptible cell defined in Sect. 2.2.1, we ex-
tract the time series of the PREVAH soil saturation estimate
at the corresponding cell, and we compute the departure of
the maximum saturation during triggering and non-triggering
rainfall events from the local temporal mean and the N d
mean antecedent saturation (N = 1, 2, 5, 10, 20, 30, 60 d).

We test the information content of soil saturation for the
ED curves, i.e. analyse whether information on soil satura-
tion could reduce some of the false positives and negatives
generated by the ED threshold curve estimated in Sect. 2.2.1.
For each group of events (false positives, false negatives, true
positives, and true negatives) and each rainfall event duration
(1 to 6 d), we compute the mean soil saturation over 5–60 d
prior to the beginning of the event. This allows us to exam-
ine if we fail to predict some triggering events (false neg-
ative) with the ED curve because saturation was very high,
reducing the rainfall amount required for the initiation of a
landslide, and likewise if some larger rainfall amounts were
insufficient for the triggering (false positive) because the soil
was very dry prior to rainfall.

Finally we explore two different approaches to combine
rainfall characteristics and antecedent saturation. On the one
hand, a hydrometeorological threshold separating the an-
tecedent N d mean saturation (with N = 1, 2, 5, 10, 20, 30,
60 d) and rainfall characteristic (logarithm of either total rain-
fall, maximum or mean intensity) pairs for triggering and
non-triggering events. On the other hand, a sequential thresh-
old system where events are first split into high and low N d
antecedent saturation, and then two different ED thresholds
are used accordingly, for wet and dry antecedent conditions
(e.g. Sidle and Ochiai, 2006). We optimise the saturation and
ED thresholds by maximising the TSS, but we also consider
different antecedent saturation periods (N = 1, 2, 5, 10, 20,
30, 60 d). We propose that such thresholds could be used in
a landslide warning context together with estimated current
soil wetness and forecasted rainfall.

3 Results

3.1 Physically based approach

3.1.1 Infinite slope model spatial patterns

Distributed inputs (Fig. 1) are used to compute the FoS across
Switzerland as a function of the hydrological term h for the
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Figure 2. From top to bottom: digital elevation model (DEM, Swis-
stopo 25 m) and four soil depth distributions: constant (d = 1 m),
slope- and elevation-dependent, and d between 0 and 2 m assum-
ing the linear diffusion model at steady state. The maps on the right
show a zoom-in view to the same area to appreciate small-scale
variability.

two endmember states h= 0 and h= d . As a first step, we
generate the distributed soil depth values following the four
approaches introduced in Sect. 2.1.2 (Fig. 2).

These result in quite different spatial soil depth distribu-
tions, with the elevation-dependent soil depth mirroring the
DEM, the slope-dependent soil depth showing low variabil-
ity in depth in valleys and lowlands where slope is constant,
and the linear diffusion model soil depth showing the high-
est spatial heterogeneity, with large differences in soil depth
over short distances. This is due to the dependence on the
second derivative of elevation (curvature) and results in low
soil depth on mountain ridges but sometimes larger values in
convergent topography right next to them.

We then compute the minimum (assuming soil completely
wet, h= d in Eq. 1) and maximum (assuming soil com-
pletely dry, h= 0 in Eq. 1) FoS for every 25 m× 25 m cell in
Switzerland considering all four soil depth maps. We group
the cells as unconditionally stable (when FoSmin > 1), un-
conditionally unstable (when FoSmax < 1), and conditionally
(un)stable (all remaining cells) (Fig. 3). The resulting limits
of the FoS over the country seem not to be affected strongly

Figure 3. Maps of (un)conditionally (un)stable regions of Switzer-
land obtained from the two factor of safety limiting cases (soil com-
pletely wet or dry) and the different soil depth models. Panel in the
bottom row is the reference case obtained with the linear diffusion
model neglecting cohesion (c = 0).

by the soil depth model chosen. This is confirmed also when
looking at the fraction of cells with observed landslides in
each condition (Table 1). Nevertheless this is not to say that
soil depth is not an important parameter for the initiation of
landslides, as in Fig. 3 and Table 1 we are not considering the
interplay of soil depth and hydrology. Considering the two
extreme scenarios (soil completely wet or completely dry),
we are ignoring how likely these conditions are to occur and
the fact that a thicker soil will likely be more difficult to satu-
rate. Therefore, while soil depth does not seem to impact the
areas with limiting conditions for completely wet and dry
soil, it will very likely impact the landslide volume and the
actual hydrological state and therefore FoS value.

Under the conditions studied here, only 22 %–25 % of the
area of Switzerland is conditionally unstable, i.e. area where
hydrology matters for landslide occurrence according to the
infinite slope model. The presence of so many landslides in
unconditionally stable areas (65 %–66 % of the total number
of landslides) and the existence of some unconditionally un-
stable cells (10 %–13 % of the country) are undesirable out-
comes. While some inaccuracy in the location of the land-
slides (which might not refer to the detachment zone) could
play a role, these results also suggest that either the infinite
slope model is inadequate or that the input parameters are in-
accurate. In fact, the sensitivity of the FoS to cohesion makes
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Table 1. Percentage of unconditionally stable (US), conditionally (un)stable (CUS), and unconditionally unstable (UU) cells in Switzerland
according to the FoS calculations for each soil depth model and percentage of landslides in each condition from the landslide inventory. For
the linear diffusion model, the results are also shown when cohesion is neglected (c = 0).

Landslides
Soil depth model US CUS UU in US in CUS in UU

Constant 66 % 22 % 12 % 65 % 30 % 5 %
Slope dep. 66 % 25 % 10 % 65 % 30 % 5 %
Elevation dep. 65 % 22 % 13 % 64 % 31 % 5 %
Lin. diff. 65 % 22 % 13 % 64 % 31 % 5 %
Lin. diff. (no cohesion) 35 % 40 % 25 % 19 % 61 % 20 %

the point (Fig. 3 and Table 1) regarding parameter uncer-
tainty. If we remove cohesion (c = 0), a much larger portion
of the country is susceptible to landslides (unstable or poten-
tially unstable), and the hydrologically active portion, con-
ditionally (un)stable, is now 40 % of the country, with more
than 60 % of the total landslides recorded in this area, and
only 19 % of the landslides remain in unconditionally unsta-
ble areas (Fig. 3 and Table 1). This is a strong indication that
the infinite slope model predictions are highly sensitive to in-
put parameters. These aspects and potential limitations of the
FoS will be further discussed in Sect. 4.

3.1.2 The effect of dynamic hydrology

To address the temporal dynamics of FoS in the suscepti-
ble areas (25 m× 25 m cells where at least one landslide was
recorded) and their connection to observed landslides, we ex-
tract the daily time series of simulated TerrSysMP soil wa-
ter pressure for all TerrSysMP cells within Switzerland for
the period 1989–2018, and we then compute the FoS in time
for all 25 m× 25 m cells in which at least one landslide was
recorded at the local depth estimated by the linear diffusion
soil depth model.

The expectation is that landslides should occur when and
where FoS< 1. While the value of 1 is often chosen as a the-
oretical threshold based on the balance of forces in a soil,
several studies actually calibrate either the threshold FoS
value or the critical area over which FoS< 1 in a region (e.g.
Casadei et al., 2003). In this work we accept that the crit-
ical value of FoS can vary spatially depending on the soil
parameters and the performance of the hydrological model.
To this end, we focus on the departure of the FoS from the
long-term temporal average of each cell. This allows us to
focus only on the temporal dimension and observe whether
the FoS is lower during triggering rainfall events (i.e. prior
to landsliding). We compare the histograms of the departures
in FoS from the local temporal mean of the triggering and
non-triggering events (Fig. 4). While there is a clear trend of
FoS being smaller than the mean (i.e. negative values) during
triggering events more than non-triggering events, the sepa-
ration is not sufficient to establish a warning system based on
a threshold of FoS.

Figure 4. Histograms of the departures of the minimum factor of
safety from its grid-based long-term mean during landslide trigger-
ing (T) and non-triggering (NT) rainfall events, combining spatial
(i.e. differences between landslide locations) and temporal (i.e. dif-
ferences between events in the cells) variability.

In addition to soil pore water pressure and the FoS, we
also consider the mean saturation over the top two model
layers estimated by TerrSysMP and compare the departure
of it from its long-term local temporal mean (Fig. 5a). This
not only allows us to directly compare the estimates of the
two modelling frameworks (PREVAH and TerrSysMP) but
also to further assess the usefulness and validity of the infi-
nite slope approach. For TerrSysMP, the difference between
the departure from the mean during triggering and non-
triggering events is barely noticeable for saturation. This sug-
gests that although modelled TerrSysMP soil saturation by
itself is not a good metric for a landslide warning system, its
inclusion into a FoS with additional local soil and topogra-
phy characteristics has some merit. Proof of this is the clearer
separation between the distribution of values of triggering
and non-triggering events for FoS departures from the mean
(Fig. 4).

3.2 Probabilistic approach

The role of antecedent wetness and the information con-
tent of the saturation estimates provided by the hydrologi-
cal model PREVAH (Viviroli et al., 2009) for landslide pre-
diction is explored in a similar way to the physically based
approach, but because we do not have an estimate of soil
pore water pressure in PREVAH, we use only soil saturation.
We expect patterns opposite to that of the FoS: the satura-
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Figure 5. Histograms of the departure of the maximum event satu-
ration from its long-term local temporal mean for landslide trigger-
ing and non-triggering events, considering (a) saturation estimates
from TerrSysMP and (b) from PREVAH.

tion to be exceptionally large on landslide days and gener-
ally larger during triggering than non-triggering events. The
separation of the distribution of the departure of saturation
during triggering and non-triggering events from the local
mean saturation (Fig. 5b) is evident and much clearer than for
TerrSysMP. This suggests that the saturation estimate pro-
vided by PREVAH might contain information useful for the
prediction of landslides. We explore this further by focus-
ing on the misclassification associated with a rainfall thresh-
old (i.e. false positives and false negatives). We first define
the optimum ED threshold for landsliding by maximising
the TSS (E = 20.1D0.74, TSS= 0.68), and we then compute
the average antecedent saturation for each duration and class
of events: false positives, false negatives, true positives, and
true negatives. Regardless of the number of days prior to the
beginning of the rainfall event over which the mean satura-
tion is computed, the false negatives (FNs, in Fig. 6) are al-
ways associated with the highest antecedent saturation, and
the false positives (non-triggering events above the threshold,
FPs in Fig. 6) with the lowest saturation. This confirms that at
least some of the false negatives were triggered by a smaller
rainfall amount than expected due to exceptionally high an-
tecedent soil wetness, whereas sometimes, although the ED
threshold was exceeded, no landslide event was observed due
to exceptionally low saturation prior to the rainfall event. The
only point for which the antecedent saturation prior to false
negatives is not the highest is for duration of 6 d. However,
this is due to the insufficient number of true negatives of such
duration that are available (see dashed red line in the bottom
right panel in Fig. 6).

Based on these results, we consider two alternative ap-
proaches to combine antecedent saturation and rainfall char-

acteristics for a landslide warning system. First we optimised
thresholds by combining N d (N = 1, 5, 10, 20, 30, 60 d)
antecedent saturation with the logarithm of maximum daily
rainfall, total rainfall, or mean daily intensity, in the shape of
log(R)= a · S+ b, where R is the rainfall characteristic, S
the N d mean antecedent saturation, and a and b the param-
eters optimised by maximising TSS. The best performances
are obtained with maximum daily rainfall intensity and 5 d
antecedent saturation (Fig. 7), with a TSS of 0.67.

While these results show clearly the usefulness of an-
tecedent soil saturation (i.e. smaller amounts of rainfall be-
ing necessary to trigger a landslide in wetter conditions), the
performances are not superior to that of a standard rainfall
threshold, which does not account for saturation. In fact, the
total rainfall–duration (ED) threshold obtained, considering
the same rainfall events, results in a maximum TSS of 0.68.

We therefore explored an alternative approach, where pure
rainfall thresholds are defined but for different levels of an-
tecedent soil saturation conditions, similarly to what Sidle
and Ochiai (2006) did by splitting events according to an-
tecedent rainfall. For this sequential thresholds approach, we
first split the events according to the N d mean antecedent
saturation and then utilised two different ED thresholds for
wet (exceeding the saturation threshold) and dry (not ex-
ceeding it) conditions. Of the different antecedent periods
and saturation thresholds considered, we find 10 d antecedent
saturation with a 0.45 saturation threshold to lead to the
best performances (Fig. 8 and to the ED thresholds shown
in Fig. 9). It is interesting to notice that the parameters
of the best thresholds for the wet (E = 17 ·D0.75) and dry
(E = 23·D0.65) antecedent conditions suggest yet again that,
at least for shorter duration events for which antecedent con-
ditions are expected to be relevant, more rainfall is required
to generate a landslide in dry conditions. The overall TSS
value is 0.69, improving slightly upon the performances of
pure rainfall thresholds. We propose this sequential thresh-
old system as a candidate for the design of a regional warning
system.

4 Discussion

The results presented here suggest that the probabilistic ap-
proach with rainfall and soil saturation thresholds is superior
to the physically based approach with the factor of safety
calculation. It is important to stress that this is not a gen-
eral statement but rather a conclusion drawn from the spe-
cific models and data which we compared. In fact, if a phys-
ically based approach would accurately capture the pore wa-
ter pressure variations at the required high-resolution scales
and therefore reproduce and predict slope failure with the
FoS (or another geotechnical) model, we maintain that it
would be superior to a probabilistic approach. It is therefore
worthwhile to discuss the limitations of the tested physically
based approach and the results obtained with regards to the
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Figure 6. Plots of mean antecedent soil saturation averaged over 5, 10, 20, 30, and 60 d prior to the beginning of the corresponding rainfall
event for durations of 1–6 d. Events are divided into four groups: true positive (TP, triggering events above the threshold), false positive (FP,
non-triggering events above the threshold, also called false alarms), false negative (FN, triggering events below the threshold, also called
misses), and true negative (TN, non-triggering events below the threshold). The plot in the lower right shows the number of events in each
group of events for each duration, to check the robustness of the mean estimates.

Figure 7. Relative frequency plot of triggering (b) and non-triggering (a) events for the hydrometeorological threshold combining 5 d mean
antecedent saturation and the logarithm of maximum daily intensity. The threshold leading to the highest TSS is indicated with a yellow line.

geotechnical component (i.e. the infinite slope approach and
FoS calculations) and those related to the hydrological com-
ponent.

To consider the infinite slope approach independently
from the hydrology, we can focus on the analysis of condi-
tionally and unconditionally stable/unstable areas of Switzer-
land and their validation against the location of historical
landslides. There are two concerning aspects in these results:
the presence of many historical landslides (65 %–66 %) in
unconditionally stable areas and the existence of uncondi-

tionally unstable areas. The uncertainty in the location of the
landslides could explain some of the slope failures in uncon-
ditionally stable areas. Out of the 1354 landslides in uncondi-
tionally stable (US) areas, for 937 there are no US cells in the
24 neighbouring cells (area of 125 m× 125 m centred on the
cell) and for 739 not even in the 80-cell neighbourhood (area
of 275 m× 275 m centred on the cell). Furthermore, uncondi-
tionally unstable areas should theoretically not exist, because
they should have failed already or have no soil. Nevertheless
roughly 10 %–13 % of the country is classified as such. These
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Figure 8. True skill statistic values associated with the dual total
rainfall–duration (ED) thresholds for high/low antecedent satura-
tion conditions separated by thresholds of mean antecedent satura-
tion (x axis). Colour lines represent different N d antecedent condi-
tion time frames.

two outcomes are therefore failures of the infinite slope ap-
proach and uncertainties in the soil parameters in the model.
The FoS approach is based on strong simplifications and ig-
nores potentially important processes such as suction in un-
saturated soils, which temporarily increases stability. Never-
theless, we believe the uncertainties in the soil parameters
have the strongest influence. Proof of this is the results ob-
tained when neglecting apparent root cohesion (Fig. 3). The
fact that the map of (un)conditional (in)stability changes con-
siderably when removing cohesion shows the sensitivity of
the FoS calculations to this parameter. Other input param-
eters may be similarly influential. For instance, the friction
angle values obtained based on the soil texture map from
OpenLandMap (Fig. 1b) are practically homogeneous over
the country. We expect that friction angle is in reality much
more heterogeneous and, together with cohesion, is affecting
the unconditionally stable area. The sensitivity of the FoS
estimates to the uncertain soil parameters can be examined
theoretically or by Monte Carlo simulations, provided that
parameter distributions are known (Hammond et al., 1992;
Pack et al., 1998; Griffiths et al., 2011). Soil depth is also a
very uncertain and influential parameter. The UU areas in the
alpine region are very likely steep locations were the soil is
absent (exposed bedrock). This aspect is missed by most soil
datasets as well as soil depth models.

Another important aspect to consider for the FoS calcula-
tion is the spatial resolution. Higher resolutions allow mod-
els to better capture the local heterogeneities (if data are
available), most importantly the topography (i.e. slope). On
the other hand, at high resolutions, the assumption of slope
length much greater than soil depth becomes invalid, and if
the cell size becomes much smaller than the typical detach-
ment area of landslides, the interactions between neighbour-
ing cells become even more critical. For this reason, geotech-
nical models have been developed that explicitly model pro-
gressive failure, lateral interactions, and stress redistribution

(Cohen et al., 2009; von Ruette et al., 2013; Anagnostopou-
los et al., 2015; Fan et al., 2015).

The limitations of the hydrological component in the
coarse-resolution TerrSysMP model, regardless of the
geotechnical model, are evident from the very weak separa-
tion between triggering and non-triggering events in the FoS
but even more in the soil saturation values themselves. In our
analysis we focused on the temporal variability (i.e. depar-
ture from the local mean, for triggering and non-triggering
events), and the only variable in the FoS calculation which
can vary in time is the soil pore water pressure. This means
that the lack of temporal variability in the FoS is a direct
consequence of the lack of temporal variability in the water
pressure head. While combining the hydrological estimates
with the infinite slope approach does improve the separation
compared to using saturation only, it is still insufficient to es-
tablish a threshold. The separation is instead mush stronger
when considering soil saturation obtained from PREVAH.

Theoretically, a physically based model like TerrSysMP
should be better capable of simulating the movement of wa-
ter in the soil and therefore predicting the saturation or pres-
sure more accurately. The lack of temporal variability in soil
water distribution in TerrSysMP is evident in the large num-
ber of both triggering and non-triggering events for which
the departure of maximum event saturation from the local
mean saturation is 0 (bars for x = 0 in Fig. 5a), suggesting
the saturation is constant in time for those cells. We believe
these results are a direct consequence of the spatial resolution
of the model. In fact, at such coarse resolution, the model
does not capture local changes driven by higher-resolution
topography, e.g. lateral subsurface flow. At this coarse res-
olution, vertical fluxes in the soil will dominate over lateral
fluxes (e.g. Lu et al., 2011). Simple downscaling techniques
which can be used to increase the spatial resolution of models
have been explored (e.g. TWI; Beven, 1995; Schmidt et al.,
2008; Wang et al., 2020; Leonarduzzi et al., 2021), but be-
cause they are static, they would not affect the results shown
here and compensate for the lack of temporal dynamics. If
the coarse hydrological variable does not include enough
temporal variability, neither will the higher-resolution spa-
tially downscaled estimate. Another possible reason for the
lack of spatial soil moisture variability in simulations is that
most models assume a homogeneous single or multilayer
soil without accounting for variable percolation and prefer-
ential flow at the soil–bedrock interface. This could reduce
soil moisture variability even without accounting for lateral
flow effects.

For the specific cases presented here, having a
higher spatial resolution (500 m× 500 m rather than
12.5 km× 12.5 km) in a conceptual hydrological model
seems more beneficial than the gain in accurate physical
representation of the soil flow processes. This stresses
once more the importance of adequate spatial resolution
of hydrological models, especially for the assessment of
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Figure 9. Relative frequency plot of triggering (b, d) and non-triggering (a, c) events for the total rainfall–duration (ED) threshold above (a,
b) and below (c, d) the soil saturation threshold of 0.45. The two ED thresholds curves are indicated as black lines in the upper panels, and
their equations are in the text.

slope and soil-saturation-dependent natural hazards such as
landslides.

5 Conclusions

We explore two approaches for the prediction of landslides
and the value of soil wetness in these predictions applied to a
regional-scale study in Switzerland. In the first approach we
use the soil water pressure estimates from a coarse-resolution
physically based model (TerrSysMP) and slope stability as-
sessment using the infinite slope approach. In the second ap-
proach we use rainfall–duration threshold curves informed
by soil saturation obtained by a high-resolution conceptual
hydrological model (PREVAH).

Our main findings are the following:

– The infinite slope approach for quantifying slope insta-
bility is largely affected by the accuracy of input soil
parameters, in particular cohesion in our case (removing

cohesion doubled the area where hydrology mattered in
FoS prediction), but the FoS can discern landslide trig-
gering events better than soil moisture only by account-
ing for local topography and stress/strength balance.

– According to the infinite slope approach and without
considering parameter uncertainty, hydrology can play
a role in the initiation of landslides over only ca. 20 %
of Switzerland (the conditionally (un)stable area, where
about 30 % of all observed landslides have occurred).
Soil depth does not seem to affect the estimate of
(un)conditionally (un)stable areas, although it is an es-
sential parameter for the estimate of local wetness and
determines the landslide volume.

– Soil saturation estimates from a high-resolution con-
ceptual hydrological model (PREVAH) are more use-
ful in improving landslide predictions than those from
a coarse-resolution physically based modelling frame-
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work (TerrSysMP), mainly due to effects related to the
coarse spatial resolution of the latter model.

– We suggest the use of sequential rainfall ED thresholds
that first consider antecedent soil saturation conditions
(with a optimal threshold of 10 d mean antecedent satu-
ration of 0.45) and then different rainfall ED curves for
wet and dry conditions.
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