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Abstract. Hydrologic events can be characterized as par-
ticular combinations of hydrological processes on a hills-
lope scale. To configure hydrological mechanisms, we an-
alyzed a dataset using an unsupervised machine learning al-
gorithm to cluster the hydrologic events based on the dis-
similarity distances between the weighting components of a
self-organizing map (SOM). The time series of soil mois-
ture was measured at 30 points (at 10 locations with three
different depths) for 356 rainfall events on a steep, forested
hillslope between 2007 and 2016. The soil moisture features
for hydrologic events can be effectively represented by the
antecedent soil moisture, soil moisture difference index, and
standard deviation of the peak-to-peak time between rainfall
and soil moisture response. Five clusters were delineated for
hydrologically meaningful event classifications in the SOM
representation. The two-dimensional spatial weighting pat-
terns in the SOM provided more insights into the relation-
ships between rainfall characteristics, antecedent wetness,
and soil moisture response at different locations and depths.
The distinction of the classified events could be explained by
several rainfall features and antecedent soil moisture condi-
tions that resulted in different patterns attributable to combi-
nations of hillslope hydrological processes, vertical flow, and
lateral flow along either surface or subsurface boundaries for
the upslope and downslope areas.

Highlights.

– A hydrologic dataset can be classified and characterized by ap-
plying a machine learning algorithm.

– The self-organizing map is useful to understand the soil mois-
ture response pattern at a hillslope scale.

– Five event clusters distinctively represent different combina-
tions of hydrological processes.

1 Introduction

Soil moisture information is critical for assessing water stor-
age, for estimating the quantity of runoff generated, and for
determining the slope stability of hillslopes during rainfall
(Angermann et al., 2017; Lu and Godt, 2008; Penna et al.,
2011; Tromp Van Meerveld and McDonnell, 2005). Hills-
lope hydrological processes are affected by several factors,
including topography, soil texture, and eco-hydrological pa-
rameters (Baroni et al., 2013; Liang et al., 2011; Rodriguez-
Iturbe et al., 2006; Rosenbaum et al., 2012; Western et al.,
1999), which result in highly nonstationary and heteroge-
neous spatiotemporal distributions of soil moisture (Penna et
al., 2009; Wilson et al., 2004). The relationship between pre-
cipitation and runoff is highly nonlinear, and the spatiotem-
poral variations in soil moisture, groundwater, and surface
runoff cannot be easily predicted (Ali et al., 2013; Curtu et
al., 2014).

Rainfall is the primary driver of rapid variations in soil
moisture and subsurface flow generation (Penna et al., 2011).
The response of soil moisture to rainfall events has been in-
vestigated for various topographic positions, depth profiles,
and land cover conditions (Feng and Liu, 2015; He et al.,
2012; Wang et al., 2013; Zhu et al., 2014). The functional re-
lationship between rainfall events and soil moisture depends
on several factors, such as soil texture, depth, topography,
and vegetation cover (Bachmair et al., 2012; Gwak and Kim,
2016; Liang et al., 2011). Rainfall characteristics, including
the total quantity, duration, intensity, and dry period dura-
tion, have also been explored to understand the soil mois-
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ture response (Albertson and Kiely, 2001; Heisler-White et
al., 2008). Other studies conducted on rainfall features have
reported the categorization of rainfall events to analyze soil
moisture variation (Lai et al., 2016; Wang et al., 2008).

Antecedent soil moisture (ASM) plays an essential role
in the hydrological response at the hillslope scale (Hardie et
al., 2011; Lee and Kim, 2020; Uber et al., 2018). The in-
teraction between the spatial distribution of ASM and rain-
fall events determines various hydrological processes, such
as the occurrence of preferential flow, soil moisture variation
patterns, subsurface stormflow, and runoff generation (Bach-
mair et al., 2012; Saffarpour et al., 2016; Wiekenkamp et al.,
2016; Zhang et al., 2011). The wetter ASM and the greater
rainfall events resulted in a higher variation in soil mois-
ture and deeper rainwater percolation (Lai et al., 2016; Lee
and Kim 2020; Zhu et al., 2014). Owing to the generation
of distinct hillslope flow paths, vertical flows (either matrix
or bypass flows) and lateral flows along different boundaries
(e.g., subsurface stormflow over bedrock and surface over-
land flow) can vary along a transect of the hillslope (Wien-
höfer and Zehe, 2014). Previous studies have investigated
the functional relationship between rainfall and soil water
storage (Castillo et al., 2003; Crow and Ryu, 2009; Tram-
blay et al., 2012). However, the influence of rainfall features
such as rainfall amount, intensity, duration, and ASM condi-
tions on the generation of hillslope flow paths and their dis-
tributions at the hillslope scale have not been sufficiently ex-
plored. Other studies on hillslope hydrology have focused on
several events to identify specific flow paths (e.g., subsurface
lateral flow) using intensively collected field measurements
over relatively short periods (Freer et al., 2004; Kim, 2009;
Penna et al., 2011; Wienhöfer and Zehe, 2014).

A comprehensive approach can be useful for address-
ing the holistic behavior of hydrological processes using a
dataset of a substantial number of events collected over sev-
eral years. Identification of specific hydrological processes
through visual inspection of field data can be labor-intensive,
and the accuracy of analysis can be marginal and subjective
if the size of the dataset is not substantial.

Machine learning techniques have been applied to soil
moisture data derived from in situ measurements (Van Arkel
and Kaleita, 2014; Carranza et al., 2021; Ley et al., 2011),
remote sensing applications (Ahmad et al., 2010; Srivastava
et al., 2013), and the analysis of hydrological model perfor-
mance (Herbst et al., 2009; Shrestha et al., 2009). Super-
vised learning algorithms have been used to improve pre-
dictions of subsurface flow in a hillslope (Bachmair et al.,
2012), to downscale satellite soil moisture data (Srivastava et
al., 2013), and to estimate the soil moisture obtained through
regression analysis (Ahmad et al., 2010). Critical soil mois-
ture sampling points have also been identified using unsu-
pervised learning algorithms (Liao et al., 2017; Van Arkel
and Kaleita, 2014). Most studies involving machine learn-
ing algorithms for the analysis of soil moisture have focused
on the estimation and determination of the appropriate mea-

surement locations for the assessment of variations in mean
soil moisture. However, the soil moisture response can be
further explored in the context of hydrometeorological (rain-
fall), hydro-historic (ASM), and topographic (location and
depth) controllers at the hillslope scale.

A self-organizing map (SOM), which is an unsupervised
neural network method, has been used to investigate datasets
representing ecosystems, animals, catchment classification,
and crop evapotranspiration (Casper et al., 2012; Farsadnia et
al., 2014; Ismail et al., 2012; Ley et al., 2011). The SOM can
be considered an effective tool for understanding substantial
hydrologic data by reducing the dimensionality of a dataset,
which can help provide hydrologic interpretation (Reusser et
al., 2009). Furthermore, an SOM can be used to successfully
address the nonlinear relationship between hydrologic vari-
ables (Chen et al., 2018; di Prinzio et al., 2011; Ley et al.,
2011; Toth, 2013). The highly heterogeneous and extremely
nonstationary variation in soil moisture between the upslope
and downslope areas alongside the upper, middle, and lower
soil layers of a hillslope can be analyzed using an SOM. We
aimed to answer the following research questions:

1. How can machine learning algorithms be used to under-
stand the soil moisture response patterns at the hillslope
scale?

2. Can delineated clusters of hydrologic events be ex-
plained by different hillslope hydrological processes?

In the present study, an alternative method for understand-
ing hillslope hydrologic behavior was explored through long-
term data analysis using SOM. Hydrologic events for the hill-
slope scale can be characterized through a rigorous classi-
fication of a substantial hydrologic dataset. The application
of machine learning algorithms provides several opportuni-
ties for understanding hydrologic events by transforming a
substantial dataset into compact clusters and by delineating
the hierarchical relationship between clusters, which can be
useful for exploring process-based interpretations and for ob-
taining an efficient monitoring network. We used hydrologic
data (rainfall and soil moisture) to analyze and character-
ize the highly complex relationships between ASM, rainfall
characteristics, and soil moisture responses, which included
variations in soil moisture and the time to peak. The SOM
was used to investigate the nonlinear interactions between
various rainfall characteristics and their effects on tempo-
ral changes in soil moisture and to classify the multivariate
datasets regarding the likely flow paths in the hillslope.

We used the following approaches to address these re-
search topics: first, we applied an SOM algorithm to datasets
composed of rainfall features, ASM, and soil moisture sta-
tus from upslope to downslope locations in the study area.
The dataset was reclassified based on the weighting vectors
of each neuron in the SOM using the Euclidean distances
between distinct hydrological variables from individual hy-
drologic events. Second, the nonlinear relationship between
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rainfall and soil moisture was evaluated by comparing spa-
tially weighted patterns of rainfall characteristics and soil
wetness variables. The relationships between rainfall char-
acteristics and soil moisture at varying depths and locations
were investigated, and these data were used to interpret the
hydrological processes.

2 Materials and methods

2.1 Study area and data acquisition

The hillslope (area: 4000 m2) selected for the study is in the
Sulmachun watershed (area: 8.5 km2), which is considered
the headwater of the Imjin River in northwestern South Ko-
rea (Fig. 1). The study area is primarily covered by a mixture
of Polemoniales, shrubby Quercus, and a coniferous canopy
of Pinus densiflora, with slopes varying between 30 and 45◦.
Data on rainfall, streamflow, and other hydrometeorological
records (e.g., temperature and relative humidity) have been
collected over the last 25 years from seven hydrologic mon-
itoring stations in this watershed (Fig. 1). The mean annual
rainfall for the last 2 decades was approximately 1500 mm;
70 % of the total rainfall occurred during the Asian monsoon
season between June and August. Precipitation in the form of
snowfall occurred between December and March. The mean
annual evaporation was approximately 420 mm and was esti-
mated using the eddy-covariance method, with data obtained
from a flux tower (adjacent hydrologic monitoring station)
located 50 m away from the study area. The average daily
temperature varied between −15 and 35◦C. The hillslope
bedrock consists of granite with extensively weathered areas.
Elevations range between 200 and 260 m above sea level, and
the surface slope varies between 20 and 35◦. Leptosols and
Cambisols (classifications according to the Food and Agri-
cultural Organization of the United Nations) are the domi-
nant soils in the upslope and downslope areas, respectively.
Analysis of 15 soil samples (based on the consideration of
five points each from the upslope and downslope areas at
depths of 30 cm) indicated that the predominant soil textures
were sandy loam and loamy sand. The average porosities for
the upslope and downslope areas were 49 % and 48 %, re-
spectively. Multiple insertions of an iron pole at each grid
cell (0.5×0.5 m) indicated that the soil depth along the hills-
lope varied between 25 and 95 cm. The depth of the root zone
was approximately 20–30 cm.

Rainfall data (used to describe rainfall characteristics)
were recorded at hourly intervals using a rainfall gauge (au-
tomatic rain gauge system, Eijkelkamp) placed under the
canopy. The soil moisture time series were assessed using
a multiplex-based time domain reflectometer (TDR; Mini-
TRASE, SoilMoisture, 2004) at five locations each for ups-
lope (UP1–UP5) and downslope areas (DO1–DO5) (Fig. 1).
At each location, three TDR sensors (waveguides) were in-
serted parallel to the surface at depths of 10, 30, and 60 cm

into the upslope side of the installation trench that was filled
with soil. Soil moisture measurements were collected hourly
between 2007 and 2016. There were 356 rainfall events doc-
umented during the study period. A rainfall event was defined
as a minimum dry period of 1 d and a minimum of 1 mm of
rainfall.

2.2 Data analysis for soil moisture response

For a given rainfall event, the variation in soil moisture at a
particular point in the hillslope depends not only on the rain-
fall, but also on other environmental factors such as the loca-
tion, depth, and soil texture. To consider the relative variation
(%) of water storage normalized by the ASM condition, we
used the soil moisture difference index, which is defined as
the percentage of maximum soil moisture difference (Zhu et
al., 2014), to represent the soil moisture variation as follows:

1θ(%)=
θmax− θant

θant
× 100, (1)

where θmax represents the maximum soil moisture during
a rainfall event and the subsequent period (≤ 4 h), and θant
represents the soil moisture measurement before the rainfall
event (2 h).

We also calculated the time from peak to peak (P2P, in h),
which is defined as the time difference between the peak of
rainfall and the maximum soil moisture variation. The stan-
dard deviation of P2P (SDP2P) for the measuring points was
used to represent the homogeneity of the soil moisture re-
sponses (Kim, 2009). The time series information of the soil
moisture was converted to address distinct response features
for rainfall events. Depending on the soil moisture responses
in the transect, location, and depth, 12 different soil moisture
response features were delineated as follows: behavior of all
measurements (total); measurements at upslope points (up-
slope) and those for downslope (downslope); measurements
at depths of 10, 30, and 60 cm; measurements for upslope
at depths of 10 cm (UP10 cm), 30 cm (UP30 cm), and 60 cm
(UP60 cm); and measurements for downslope at depths of
10 cm (DO10 cm), 30 cm (DO30 cm), and 60 cm (DO60 cm).

2.3 Unsupervised machine learning algorithm

The SOM utilizes an unsupervised learning algorithm that
can be useful for pattern recognition of multivariate datasets
from different observations. The SOM is typically a two-
dimensional (2D) grid composed of either hexagonal or rect-
angular elements. In this study, we used a hexagonal lattice
as the output layer because it resulted in better information
propagation when updating more neighborhood neurons than
those of the rectangular lattice (Kohonen, 2001).

Input variables for the SOM computation were obtained
from rainfall features such as rainfall duration (DUR), rain-
fall amount (AMO), rainfall intensity (INT), ASM, soil mois-
ture difference index and SDP2P for upslope areas at depths
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Figure 1. Location of the Sulmachun watershed in South Korea with hydrologic monitoring (rainfall and evapotranspiration) stations (lower
left) and study area with terrain contours, topographic wetness index (TWI), and soil moisture monitoring points (right).

of 10, 30, and 60 cm, and those for the downslope areas at
depths of 10, 30, and 60 cm, respectively. A log transforma-
tion was applied to all input variables to fit the bounds of data
between zero and one, except SDP2P, which was <1 in most
cases.

SOMs were established for each variable, and the distance
between the input vector and weighting vector could be cal-
culated as follows:

db =

√∑v

a=1
(wa,b− xa)2, (2)

where v represents the number of variables.
The best neuron can be identified as the neuron with the

minimum value of db, indicating the best fit to the character-
istics of each rainfall event among every neuron in the SOM.
Once the neuron is selected, the weighting vector should be
re-evaluated using Eq. (3) for the renewal weighting vector
expressed as follows:

1wa,b =

{
α(xa −wa,b) b = b∗

0 b 6= b∗

}
wnew
a,b = w

old
a,b+1wa,b, (3)

where α (i.e., 0.5) represents the acceleration coefficient, and
b represents the winner neuron.

After updating the algorithm, all neurons in the SOMs fit
weighting vectors to the multiple datasets used in this study.
The input variables in each neuron can be displayed in the
component planes, and these are depicted as spatial patterns
in SOMs. The nonlinear relationship between variables was
identified through visual comparison between the spatially
distributed weightings in each component plane (Adeloye et

al., 2011; Farsadnia et al., 2014; García and González, 2004;
Park et al., 2003).

2.4 Clustering of hydrologic events

Clusters within the dataset can be delineated by applying the
dendrogram classification method and by evaluating the dis-
similarity between the weighting vectors (Montero and Vilar,
2014). The Euclidean distance function was considered to
evaluate the dissimilarity, as it is suitable for deducing shape-
based comparisons between soil moisture series whose data
are collected simultaneously (Iglesias and Kastner, 2013).
This method has also been used to identify clusters of soil
moisture data (Van Arkel and Kaleita, 2014). The Euclidean
distance between two weighting vectors in neurons (b1 and
b2) can be expressed as follows:

db1b2 =

[∑v

a=1
(wa,b1 −wa,b2)

2
]0.5

. (4)

The relationship that exhibits the shortest distance between
neurons is assigned to the first cluster, and the weighting vec-
tors of the first cluster can be expressed as

µc1,a =
nb1µb1 + nb2µb2

nb1 + nb2

, (5)

where µb1 and µb2 represent the variable weighting vectors
in the neurons (b1 and b2), respectively; nb1 and nb2 are set
to a value of 1 in this relationship, but these values are set to
the number of components during the comparison of clusters.
Additionally, we used Ward’s method to evaluate the dissim-
ilarity between two weighting vectors of each neuron and be-
tween each cluster; i.e., this was the chosen algorithm in our
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hierarchical clustering method (Ward, 1963). When the dis-
similarity between two clusters (c1 and c2) is calculated, the
distance between clusters can be expressed as

dcluster =
∑v

a=1

∥∥µa,c1 −µa,c2

∥∥2

1
nc1
+

1
nc2

, (6)

where µa,c1 and µa,c2 represent the averages of clusters c1
and c2, respectively, and nc1 and nc2 represent the numbers
of components for clusters c1 and c2, respectively. A dendro-
gram can be constructed based on the resulting dcluster, and
the upper part from a designated horizontal line can be rec-
ognized as the structure of the final clusters.

3 Results

3.1 Soil moisture responses of all measuring points
during rainfall events

The statistics of soil moisture response based on the analysis
of 30 points are summarized in terms of the P2P and maxi-
mum variation, as displayed in Fig. 2a–f, which present ele-
vations as an order of locations on the x axis as UP1–UP4–
UP2–UP5–UP3–DO1–DO2–DO3–DO4–DO5 (Fig. 1) from
the hilltop to downslope. The means of P2P ranged from 0.2
to +0.5 d, indicating that the maximum soil moisture could
be achieved even before the occurrence of the rainfall peak.
Both standard deviation and average of P2P tended to in-
crease at deeper depths, except for locations with elevations
of 224 and 216 m (locations of DO2 and DO5 in Fig. 1).

Figure 2a, c, and e indicate that while the mean P2P for
the upslope area was 0.24 d, that of the downslope area was
0.02 d. The mean values of P2P at depths of 10, 30, and 60 cm
were −0.08, 0.04, and 0.011 d for the downslope and were
0.1, 0.24, and 0.38 d for the upslope, respectively. The dif-
ferences in P2P between other points at an identical depth
for the downslope were smaller than those for the upslope.
This suggests that the soil moisture response in the downs-
lope area is faster and more uniform than that in the ups-
lope area. The accumulated soil water flow from the upslope
area to the downslope area seems to be responsible for more
rapid and less spatially variable soil moisture responses in
the downslope area. As shown in Fig. 2b, d, and e, both av-
erage and standard deviation of maximum variation tend to
increase for locations with lower elevation. The average max-
imum variations at depths of 10 and 60 cm were higher than
those for the 30 cm depth, indicating that primary lateral flow
tended to be generated along boundaries (surface and subsur-
face).

3.2 Soil moisture response features in measuring
locations and depths

The soil moisture response features (e.g., ASM, soil mois-
ture difference index, and SDP2P) were expressed in differ-

ent spatially averaged responses (Fig. 3), depending on the
depth and location. As shown in Fig. 3a, the ASM in the
downslope area was higher than that in the upslope area. It
was apparent that the ASM in the downslope area increased
with increasing depth; however, ASM for the upslope area
did not display any notable trend in the depth profile. This
indicated that soil water infiltration in the upslope area did
not necessarily occur for all depth profiles.

The soil moisture difference index in the downslope area
was higher than that in the upslope area, as shown in Fig. 3b.
The average soil moisture difference index in the downs-
lope area (50.67 %) was higher than that of the upslope area
(38.73 %), and the average soil moisture difference indices
at depths of 10, 30, and 60 cm for the upslope area were
44.51 %, 34.27 %, and 37.39 %, while those for the downs-
lope area were 64.49 %, 40.83 %, and 46.69 %, respectively.
This indicates higher wetness along both the surface and
subsurface boundaries, and this trend is pronounced in the
downslope direction.

The SDP2Ps for the soil moisture datasets represent the
degree of spatial heterogeneity in the temporal soil mois-
ture response. The statistics of the SDP2P revealed that the
downslope response varied less than the upslope response
(Fig. 3c). While the SDP2Ps of the downslope displayed an
apparent increasing trend at deeper depths, those for the ups-
lope showed a similar in-depth profile. The difference in the
SDP2P profile between the upslope and downslope indicates
that the impact of rainfall on soil moisture response timing
can be completely different between the upslope and downs-
lope directions.

The relationships of each response feature (e.g., ASM, soil
moisture difference index, and SDP2P) among different soil
moisture datasets can be visualized through the heat map pre-
sented in Fig. 4. As displayed in Fig. 4, the heat maps for
ASM ranged from 0.88–0.99, and those for soil moisture dif-
ference indices and SDP2P ranged from 0.78–0.98 and from
0.40–0.90, respectively. The relationships between upslope
and downslope (2C2, i.e., the first combination), those be-
tween identical depths (3C2, i.e., the second combination),
and those for different depths and locations (6C2, i.e., the
third combination) indicate the heterogeneity of different soil
moisture features in the spatial context. The values for the
first combination for ASM, soil moisture difference index,
and SDP2P were 0.81, 0.72, and 0.53; the mean values of the
second and third combinations were 0.95, 0.84, and 0.62 and
0.83, 0.69, and 0.35 for ASM, soil moisture difference in-
dices, and SDP2P, respectively. This suggested that the spa-
tial distribution of ASM did not demonstrate meaningful spa-
tial variability, but the spatial distributions for soil moisture
difference indices and SDP2P were substantial. Therefore,
the soil moisture difference index and SDP2P can be deemed
useful variables for the characterization of the spatial varia-
tion of the soil moisture response for the application of SOM.
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Figure 2. Box plots illustrating soil moisture responses of P2P and maximum variation at 10 cm depth (a, b), at 30 cm depth (c, d), and at
60 cm depth (e, f), respectively. Elevations on the x axis are between 260 and 215 m in order of UP1–UP4–UP2–UP5–UP3–DO1–DO2–
DO3–DO4–DO5, shown in Fig. 1.

3.3 Composition and clustering of SOM

The dataset of hydrologic measurements (356× 15) was
transformed through the application of 96 neurons and output
based on a matrix (16×6) through the iterative application of
Eqs. (5) and (6) respectively; i.e., 15 hydrologic variables de-
rived from 356 events were expressed in a compact manner in
the SOM. Many alternatives exist in the number of clusters,
depending on the complexity of the dendrogram structure. In
this study, five clusters were selected based on a heuristic ap-
proach to achieve a hydrologically meaningful classification
of events and parsimonious clustering. The relation to no-
table hydrological processes such as lateral flow or vertical
preferential flow and the redundancy check in cluster number
were essential factors in the implementation of the heuris-
tic approach. Figure 5a illustrates the resulting dendrogram
for the five clusters. The structure of the dendrogram demon-
strates the relationships between groups of clusters and be-
tween individual clusters. Figure 5b presents the output SOM
(16×6) delineated from the dendrogram analysis, which is a
structural array identical to the delineated dendrogram with
neurons for each cluster. The spatial distributions between

other clusters and the corresponding numbers of neurons in-
dicate the areal portion of each cluster from all clusters and
their connections with adjacent clusters.

Table 1 presents the average of vector components, such
as the AMO, DUR, INT, and average ASM among all mea-
suring points (ASMTOT) in volume percent, along with an
average of the soil moisture difference indices (1θ ) in five
upslope locations and five downslope locations at depths of
10, 30, and 60 cm, as VUP10, VUP30, VUP60, VDO10,
VDO30, and VDO60. Additionally, it presents the SDP2P
in five upslope and five downslope locations at depths of 10,
30, and 60 cm, as SUP10, SUP30, SUP60, SDO10, SDO30,
and SDO60, respectively, for the five clusters displayed in
Fig. 5b.

As displayed in Fig. 5b, Clusters 1 and 2 were located in
the upper part of the SOM. Table 1 indicates that the rainfall
characteristics of Clusters 1 and 2, such as DUR, AMO, and
INT, were relatively low, but those for the ASM were similar
to the mean ASM for all clusters (Table 1). The average soil
moisture difference indices were less than 5 % for Cluster 1
because the low AMO and intensity resulted in a limited in-
crease in soil water storage, and the loss due to evaporation
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Table 1. Arithmetic averages of SOM inputs for rainfall amount (AMO), rainfall duration (DUR), rainfall intensity (INT), antecedent soil
moisture for all points (ASMTOT), volumetric soil moisture difference index, and standard deviation of peak-to-peak time (SDP2P).

Variables Numbers AMO (mm) DUR (h) INT (mmh−1) ASMTOT (vol.%)

Cluster 1 108 3.61 6.50 0.66 14.6
Cluster 2 90 8.45 8.40 1.31 13.6
Cluster 3 75 26.08 17.28 1.88 16.4
Cluster 4 30 49.27 22.80 2.34 11.2
Cluster 5 53 97.80 27.02 4.19 16.3

Volumetric soil moisture VUP10 VUP30 VUP60 VDO10 VDO30 VDO60
difference index

Cluster 1 3.8 2.0 2.5 4.6 2.9 1.9
Cluster 2 13.2 5.7 6.8 17.5 8.6 7.2
Cluster 3 26.9 16.4 16.1 33.4 18.2 22.9
Cluster 4 59.1 33.0 23.4 96.1 56.6 54.8
Cluster 5 66.7 60.8 73.9 100.7 68.6 77.4

SDP2P SUP10 SUP30 SUP60 SDO10 SDO30 SDO60

Cluster 1 0.21 0.20 0.21 0.16 0.22 0.22
Cluster 2 0.37 0.35 0.33 0.30 0.35 0.42
Cluster 3 0.22 0.22 0.26 0.11 0.18 0.22
Cluster 4 0.56 0.65 0.63 0.36 0.59 0.72
Cluster 5 0.17 0.17 0.20 0.06 0.09 0.12

offset a substantial proportion of the precipitation (Albertson
and Kiely, 2001; Ramirez et al., 2007). Cluster 2 exhibited
higher AMO and intensities and more significant average soil
moisture differences indices than Cluster 1 (Table. 1). The
intermediate part of the SOM (Fig. 5b) was associated with
Cluster 3, which revealed higher rainfall durations, quanti-
ties, and intensities than those for Clusters 1 and 2, which
resulted in a higher soil moisture difference index for Clus-
ter 3 than for Clusters 1 and 2 (Table 1). One notable feature
of Cluster 3 was the increasing trend of soil moisture differ-
ence indices with depth (DO60>DO30) for the downslope
area, whereas Clusters 1 and 2 displayed decreased soil mois-
ture difference indices with depth (DO30>DO60) (Table 1).
The pattern of soil moisture difference index for Cluster 3
suggests vertical infiltration in all depth profiles for upslope
and apparent lateral flow for downslope areas (Table 1 and
Fig. 4), which seems to be completely different from Clusters
1 and 2. Clusters 4 and 5 demonstrated a greater soil moisture
difference index, with significant events in the SOM classifi-
cation (Table 1). Cluster 4 displayed two distinctive features
compared to other clusters. Firstly, the ASM of Cluster 4 was
the lowest among all clusters. However, the soil moisture
difference indices at depths of 30 and 60 cm in the downs-
lope area for Cluster 4 were significantly higher than those in
Clusters 1, 2, and 3. Secondly, the difference in soil moisture
difference index between the upslope and downslope areas
was the most pronounced in Cluster 4. This suggests that the
hydrological processes in the upslope and downslope areas
can be substantially distinct from each other. Both rainfall

characteristics and soil moisture difference index for Cluster
5 were significantly higher than those for all other clusters.
Several measurement data points in Cluster 5 exhibited satu-
ration during rainfall events, and the soil moisture at a depth
of 60 cm displayed higher variation than that at 30 cm, which
indicated that subsurface stormflow was generated along the
bedrock in both the upslope and downslope areas.

The centroid for each cluster was calculated by averaging
combinations of weighting vectors in the neurons. The event
having the smallest root mean squared error between input
variables of each event and the centroid of each cluster was
selected as the exemplary event for corresponding cluster.
Appendix A presents exemplary events with rainfall and soil
moisture responses at several upslope and downslope points
for Clusters 1 to 5. The exemplary event for Cluster 1 showed
almost no response to rainfall, and that of Cluster 2 resulted
in limited responses in designated downslope locations. Both
events from Clusters 3 and 4 showed an apparent response in
many points, with a difference in lower antecedent soil mois-
ture condition for Cluster 4. The exemplary event for Clus-
ter 5 showed significant recharge impact in soil moisture for
most points.

3.4 Component planes for variables

Information on the component planes of 16 variables and
their visual comparisons can help provide insights into the
nonlinear relationships between the 16 hydrological vari-
ables. Figure 6 illustrates the SOM distributions for the com-
ponent weightings of the 16 variables. Both the spatial dis-
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Figure 3. Box plots illustrating antecedent soil moisture (a), soil
moisture difference index (b), and standard deviation of peak time
(SDP2P) (c) of 12 time series of soil moisture.

tributions and the scales of weightings (scale bar) in Fig. 6
represent the characteristics of impacts (rainfall features and
ASM) and consequences (average of soil moisture difference
and SDP2P).

The visual comparison of Fig. 6a–d indicates a negligible
relationship between rainfall features and ASM. The com-
ponent planes for upslope soil moisture difference indices
at depths of 10, 30, and 60 cm (Fig. 6e–g) displayed simi-
lar spatial weightings to those for rainfall features. The high
weightings for the soil moisture difference index at a 10 cm
depth were mainly distributed to Clusters 4 and 5, and the
weightings tended to concentrate in Cluster 5 at higher val-
ues of depths (Fig. 5). The comparison between ASM and
soil moisture difference index indicated that ASM did not in-
fluence the soil moisture difference index.

The exclusive vertical flow impact can be proposed as one
possible explanation for the relationship between the compo-
nent plane for VUP10 and the component planes for VUP30
or VUP60 (Fig. 6e, f, and g) because there were negligi-
ble contributing areas or small values of topographic wet-
ness indices (Fig. 1) in upslope locations. Weightings in
VUP10 were associated with AMO and INT, but those for

Figure 4. Heat maps depicted for the coefficient of determination
(R2) among combinations of (a) antecedent soil moisture, (b) soil
moisture difference index, and (c) standard deviation of peak time.
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Figure 5. Structure of (a) dendrogram for five clusters and (b) SOM
classifications in 96 neurons through the application of a 16×6 ma-
trix.

VUP60 correlated only with AMO. This pattern of weight-
ing shift was observed between VUP30 and VUP60, which
could be attributed to the effect of vertical infiltration (Li et
al., 2013). This relationship along the vertical profile differed
between the upslope and downslope. The development of the
vertical gradient in weightings (Fig. 6e–g) from VUP10 to
VUP60 can barely be observed in weightings from VDO10
to VDO60 (Fig. 6h–j). This suggests that the flow path in the
downslope area cannot be completely explained by the verti-
cal flow.

Figure 6k–m display the component planes of SDP2P at
depths of 10, 30, and 60 cm in the upslope area. The weight-
ing distributions between upslope SDP2P (Fig. 6k–m) and
ASM (Fig. 6d) were completely reversed. The spatial dis-
tribution of SDP2P in the downslope did not reveal a no-
table difference in the in-depth profile (Fig. 6n–p). This could
be explained by the possibility that the time to peak in the
downslope was not only determined by rainfall, but it was
more affected by other drivers such as topography.

4 Discussion

4.1 Characterization of the classified hydrologic events

The hydrologic events classified by the SOM can be char-
acterized through a comparative feature presentation for all
clusters (Fig. 7). The lower ASM matched with a higher
mean and wider bound in SDP2P, which could also be
confirmed by the component planes of ASM and SDP2P.
With increasing depth, the heterogeneity in response time in-
creased (greater SDP2P) in most locations. This can be ex-
plained by the response time between rainfall and soil mois-

ture decreasing with depth. The SDP2P response between
the upslope and downslope can be distinctly expressed de-
pending on the cluster. Clusters 1 and 2 exhibited negligible
differences in hillslope transects, but those for Clusters 3, 4,
and 5 were substantially different. This is because the gen-
eration of lateral flow can be more significant under greater
rainfall events in downslope areas than in upslope areas. The
soil moisture peak formations matched well with the soil
moisture difference indices in soil moisture at the downslope.
Events in Cluster 1 demonstrated less variation in SDP2P for
both depth profile and hillslope transact location because of
the lowest AMO and INT values. The impact of depth on
the variation of SDP2P can be observed in Clusters 2, 3, and
5, and with increasing depth, the bound was higher in both
upslope and downslope areas. However, this pattern was dif-
ferent between the upslope and downslope in Cluster 4 that
presented the lowest ASM. The lowest ASM led to substan-
tially less response variation at a 60 cm depth in the upslope,
while that for the downslope revealed higher variation at a
60 cm depth compared to that reported at shallower depths.
This suggested that the dominant flow path between the ups-
lope and downslope was different in Cluster 4.

The increasing pattern of the soil moisture difference in-
dices corresponds to increasing rainfall features such as DUR
and INT from Clusters 1 to 5. However, the depth profile of
the soil moisture difference index differed between Clusters 4
and 5. While the scale of soil moisture recharge demonstrated
an apparent decrease in the depth profile for Cluster 4, that
for Cluster 5 demonstrated different surface and subsurface
boundaries (at depths of 10 and 60 cm). This indicated that
the dominant hydrological processes for Cluster 4 appear re-
stricted to the surface as the vertical flow, but those for Clus-
ter 5 existed at both the surface and subsurface boundaries as
both vertical and lateral flows.

The impact of rainfall events on water storage can be use-
ful for understanding the changes in various hydrological sta-
tuses for each cluster. The storage changes (Table 2) were es-
timated by multiplying the soil moisture change by the corre-
sponding depth for each waveguide (e.g., 200 mm for 10 and
30 cm depths, and 300 mm for 60 cm depth). Water storage
analysis for Cluster 1 demonstrated negligible changes un-
der 2 % (the measurement accuracy of TDR) in soil moisture
that occurred in both the upslope and downslope areas. Rain-
fall impacts to Cluster 2 can be classified as an intermediate
category because both clusters introduced remarkable stor-
age changes (mm) in the downslope area. Significant changes
in water storage were observed for Clusters 3, 4, and 5, re-
gardless of the quantity of rainfall. Substantial increases in
storage change at a depth of 60 cm in the downslope area
indicated the generation of subsurface stormflow for Clus-
ters 3, 4, and 5. The main difference between Clusters 3, 4,
and 5 was in terms of whether the subsurface lateral flow
was generated in the upslope area. Clusters 3 and 5 could be
characterized by high rainfall and high ASM, which resulted
in subsurface lateral flow in both the upslope and downslope
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Figure 6. (a–p) Component planes of variable weightings for rainfall amount (AMO) (a); rainfall duration (DUR) (b); rainfall intensity
(INT) (c); antecedent soil moisture (ASM) (d); soil moisture difference indices for the upslope and downslope at depths of 10, 30, and 60 cm
(VUP10, VUP30, VUP60, VDO10, VDO30, and VDO60) (e–j); standard deviation of peak time for the upslope and downslope at depths of
10, 30, and 60 cm (SUP10, SUP30, SUP60, SDO10, SDO30, and SDO60) (k–p).

areas. The soil moisture changes and storage for Cluster 4
indicated an apparent decreasing trend in the depth profile
in the upslope area. The storage changes and soil moisture
difference indices at depths of 10 and 30 cm in the upslope
area for Cluster 4 were greater than those for Cluster 3 due
to higher AMO, DUR, and INT. However, the storage change
at a depth of 60 cm in the upslope for Cluster 4 was smaller
than that of Cluster 3, which could be explained by the lower
infiltration under comparatively dry ASM conditions (Zhu et
al., 2014; Mei et al., 2018; He et al., 2020). The machine
learning algorithm (SOM) can be considered a useful analy-
sis platform, not only for elucidating soil moisture response
patterns in conjunction with rainfall and ASM (Fig. 7), but
also for an effective characterization of soil water storage
changes at different locations and depths (Table 2).

4.2 Configuration of hydrological processes

The application of SOM, an unsupervised machine learning
algorithm, to the dataset provided an integrated assessment
for the evaluation and characterization of hydrologic events.
The recharge patterns of water storage for the soil layers of

the hillslope were characterized by several distinct clusters.
The distinct distribution of characteristics of soil moisture re-
sponses could be explained by the different combinations of
drivers (rainfall and ASM) and hydrological processes (verti-
cal flow, surface, and subsurface lateral flows) for each clus-
ter. The hillslope hydrological flow path was characterized by
comparing the component planes between UP10 and UP30
or UP60 and other combinations of soil moisture component
planes, such as those of DO10 and DO30 or DO60 regarding
SDP2P and soil moisture difference index.

The rainfall events can be classified into three distinct cat-
egories, which depend on the rainfall characteristics, and five
refined clusters as follows: insignificant events for Cluster 1,
intermediate events for Cluster 2, and significant events for
Clusters 3, 4, and 5 (Table 3). Further classification of signif-
icant events indicated that the effects of antecedent moisture
conditions and AMO were critical for delineating Clusters
3, 4, and 5. The generation of hydrological processes based
on significant soil moisture changes over 2 % and increas-
ing patterns of SDP2P (0.11 for 10 cm, 0.18 for 30 cm, and
0.22 for 60 cm, respectively) at greater depths was the thresh-
old feature between the insignificant and intermediate events.
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Figure 7. SDP2Ps with mean AMO and ASM for each cluster (a) soil moisture difference indices with mean DUR and INT for each cluster
(b) for total, upslope, and downslope at depths of 10, 30, and 60 cm, and the corresponding depths for upslope and downslope.

Table 2. Soil moisture changes and storage changes for all clusters at depths of 10, 30, and 60 cm and those recorded for upslope and
downslope.

Average Cluster 10 (cm) 30 (cm) 60 (cm) Upslope Downslope

10 (cm) 30 (cm) 60 (cm) 10 (cm) 30 (cm) 60 (cm)

1 0.5 0.4 0.3 0.4 0.3 0.3 0.6 0.5 0.4
2 1.9 1.0 1.0 1.5 0.6 0.7 2.3 1.5 1.4

Soil moisture change (vol. %) 3 4.5 2.9 3.5 3.7 2.4 2.1 5.2 3.5 5.1
4 7.4 5.2 4.9 5.3 3.1 2.0 9.8 7.8 9.0
5 12.0 10.8 13.3 8.9 8.7 10.0 15.4 13.3 16.8

1 1.0 0.8 0.9 0.8 0.6 0.9 1.2 1.0 1.2
2 3.8 2.0 3.0 3.0 1.2 2.1 4.6 3.0 4.2

Storage change (mm) 3 9.0 5.8 10.5 7.4 4.8 6.3 10.4 7.0 15.3
4 14.8 10.4 14.7 10.6 6.2 6.0 19.6 15.6 27.0
5 24.0 21.6 39.9 17.8 17.4 30.0 30.8 26.6 50.4

The primary difference between the intermediate and signif-
icant events was deemed the significant response in both the
upslope and downslope areas and the substantial develop-
ment of interface flow between the bedrock and soil layer in
the downslope area. This indicated that the lateral flow along
boundaries (subsurface and surface) was stronger than that at

intermediate depths, and the downslope lateral flow tended
to be generated through boundaries either along the surfaces
or bedrock. Furthermore, ASM was substantially higher for
Clusters 3 and 5 than that for Cluster 4, and the SDP2Ds
in Clusters 3 and 5 were lower for all points than those for
Cluster 4. This can be explained by the development of pref-
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Table 3. Combinations of flow paths and its hydrologic conditions for all clusters.

Cluster No. Rainfall impact Antecedent soil moisture Upslope Downslope

Vertical flow Lateral flow SF/SB Vertical flow Lateral flow SF/SB

1 108 Insignificant Mid No response (under 2 vol. %) No response (under 2 vol. %)
2 90 Intermediate Mid No response (under 2 vol. %) Yes No
3 30 High Yes No/yes Yes No/yes
4 53 Significant Low Yes No/no Yes No/yes
5 75 High Yes No/yes Yes Yes/yes

SF: surface; SB: subsurface.

erential pipe flow, which is more common at greater depths
under comparatively wet conditions (Lai et al., 2016; Uber
et al., 2018; Uchida et al., 2001; Wienhöfer and Zehe, 2014).
Low variation and soil moisture changes in UP60 for Clus-
ter 4 indicated that low antecedent moisture conditions could
limit the generation of lateral flow in the upslope area, and
for Cluster 3, this could be explained by even fewer rainfall
events than in Cluster 4, and these were sufficient to acti-
vate subsurface lateral flow in the upslope. Extreme rainfall
events were mainly associated with Cluster 5. Lateral storm
flow likely occurred in both the upslope and downslope ar-
eas of Cluster 5. Effective drainage during extreme events
seems to be strongly associated with lateral flow generation
along the two boundaries in the soil media (i.e., surface and
bedrock) (Angermann et al., 2017; Freer et al., 2004; Haga
et al., 2005; Kim, 2009; Uchida et al., 2001; Wienhöfer and
Zehe, 2014). The impact of extreme rainfall conditions domi-
nates other controls (e.g., land cover and topography) regard-
ing hillslope runoff generation (Feng and Liu, 2015).

As presented in Table 3, delineated clusters of hydrologic
events can be considered to distinctly explain the combina-
tions of hydrological processes such as vertical and lateral
flows (either surface and subsurface boundaries) between the
upslope and downslope directions. Events from Cluster 1
were insignificant in terms of the hydrologic response, and
the primary driver of Cluster 2 was rainfall that partially af-
fected soil water storage (downslope). While the bedrock to-
pography was important for Clusters 3, 4, and 5, the surface
topography played an important role for Cluster 5.

Several studies have been conducted to model the behavior
of hillslope hydrology (Fan et al., 2019; Loritz et al., 2017).
The SOM analysis for a large dataset showed an apparent
distinct pattern in soil moisture response and flow path gen-
eration between upslope and downslope areas depending on
antecedent soil moisture and rainfall conditions. This sug-
gests that the performance of the model can be improved as
the storage structure of the model (fast and slow reservoirs)
(Gao et al., 2014; Gharari et al., 2014) is further classified
into upslope and downslope categories. The appearance of
Cluster 4 (Table 3) demonstrates nonlinear behaviors in the
hydrologic response, which can be explained by the apparent
role of macropore flow. even under low soil moisture condi-

tions (Beven and Germann, 2013; Nimmo, 2012). The im-
plementation of bypass flow under low ASM and high rain-
fall conditions into the model structure can help improve the
modeling of soil water travel time (Kim, 2014). Further elab-
oration in modeling to represent dual lateral boundary flows
in Cluster 5 can be useful to address multiple drain flow path-
ways under extreme rainfall conditions.

5 Conclusions

Rainfall characteristics and responses of soil moisture at the
hillslope scale were explored by applying SOM to a dataset
comprising information on a considerable number of hy-
drologic events. Hydrologic events were characterized us-
ing rainfall and soil moisture data collected over a period of
10 years from a steep hillside. Based on a delineated den-
drogram, the classification of neurons into five clusters pro-
vided meaningful interpretations for understanding hydro-
logic events.

The nonlinear relationships between the hydrologic vari-
ables were effectively expressed in the 2D SOM presen-
tations of the variables. The apparent relationship between
ASM and peak time variation indicates that the hydrologic
response is more feasible under comparatively wet condi-
tions. Water storage analysis for each event from different
clusters suggests that spatially different combinations of soil
moisture difference index can be attributed to the identified
hydrologic response for each cluster. Combinations of ups-
lope and downslope spatial patterns of hillslope hydrological
processes, vertical flow, and lateral flow along surface or sub-
surface boundaries were attributable to the distinctions ob-
served between the event clusters. Depending on the rainfall
and ASM conditions delineated from each cluster, the spa-
tial distribution of hydrological processes can be predicted to
be useful for obtaining systematic insights into the hillslope
hydrological response. The SOM can be considered a useful
analysis tool, not only to understand the different soil mois-
ture response patterns between the upslope and downslope
areas, but also to configure particular hydrological processes
for delineated clusters. The meta-heuristic classification of
hydrologic events provides a better understanding of hydro-
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logic conditions and their drivers, which is vital for designing
a process-based hillslope hydrology model.

Appendix A: Exemplary events for Clusters 1 to 5

Figure A1. Exemplary event (rainfall and soil moisture) for Clusters 1, 2, 3, 4, and 5.
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