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Abstract. Climate teleconnections are essential for the ver-
ification of valuable precipitation forecasts generated by
global climate models (GCMs). This paper develops a
novel approach to attributing correlation skill of dynami-
cal GCM forecasts to statistical El Niño–Southern Oscilla-
tion (ENSO) teleconnection by using the coefficient of deter-
mination (R2). Specifically, observed precipitation is respec-
tively regressed against GCM forecasts, Niño3.4 and both of
them, and then the intersection operation is implemented to
quantify the overlapping R2 for GCM forecasts and Niño3.4.
The significance of overlapping R2 and the sign of ENSO
teleconnection facilitate three cases of attribution, i.e., signif-
icantly positive anomaly correlation attributable to positive
ENSO teleconnection, attributable to negative ENSO tele-
connection and not attributable to ENSO teleconnection. A
case study is devised for the Climate Forecast System ver-
sion 2 (CFSv2) seasonal forecasts of global precipitation. For
grid cells around the world, the ratio of significantly positive
anomaly correlation attributable to positive (negative) ENSO
teleconnection is respectively 10.8 % (11.7 %) in December–
January–February (DJF), 7.1 % (7.3 %) in March–April–
May (MAM), 6.3 % (7.4 %) in June–July–August (JJA) and
7.0 % (14.3 %) in September–October–November (SON).
The results not only confirm the prominent contributions of
ENSO teleconnection to GCM forecasts, but also present
spatial plots of regions where significantly positive anomaly
correlation is subject to positive ENSO teleconnection, neg-
ative ENSO teleconnection and teleconnections other than

ENSO. Overall, the proposed attribution approach can serve
as an effective tool to investigate the sources of predictability
for GCM seasonal forecasts of global precipitation.

1 Introduction

Precipitation is one of the most important hydrological vari-
ables and is an integral part of the global water cycle (Huff-
man et al., 2007; Ushio et al., 2009; Scofield and Kuligowski,
2003; Schneider et al., 2016; Beck et al., 2019). It plays a
key role in driving hydrological processes at catchment, re-
gional and continental scales (e.g., Yuan et al., 2014; Greuell
et al., 2018; Robertson et al., 2013; Wu et al., 2014; Lak-
shmi and Satyanarayana, 2019). Despite the importance, the
forecasting of precipitation remains a formidable task due
to complex interactions of ocean, atmosphere and land sur-
face processes (Doblas-Reyes et al., 2013; Zhao et al., 2019;
Vano et al., 2014; Johnson et al., 2019; Tesfa et al., 2020).
Comparing multiple sets of global temperature and precipita-
tion forecasts from the North American Multi-Model Ensem-
ble (NMME) experiment, Becker et al. (2020) highlighted
that there have been substantial improvements in temperature
forecasts over both land and ocean during the past decades
and that there is still plenty of room for improvement of
global precipitation forecasts.

Global climate models (GCMs) generate valuable fore-
casts of worldwide precipitation for hydrological modeling

Published by Copernicus Publications on behalf of the European Geosciences Union.



5718 T. Zhao et al.: Attributing correlation skill of dynamical GCM precipitation forecasts

and water management (Kirtman et al., 2014; Doblas-Reyes
et al., 2013; Schepen et al., 2020). Nowadays, GCMs have
been employed by major climate centers around the world to
produce operational climate outlooks (Demargne et al., 2014;
Delworth et al., 2020). For example, the Climate Forecast
System version 2 (CFSv2) of the US National Centers for
Environmental Prediction (NCEP) has been implemented for
coupled ocean–atmosphere forecasting since 2011 (Saha et
al., 2010); the European Centre for Medium-Range Weather
Forecasts (ECMWF) System 5 model became operational
in 2017 (Johnson et al., 2019); and the Seamless System for
Prediction and Earth System Research (SPEAR) became the
next-generation modeling system at the Geophysical Fluid
Dynamics Laboratory (GFDL) in 2020 (Delworth et al.,
2020). In the meantime, GCM forecasts have been increas-
ingly incorporated into forecasting systems of streamflow,
crop yield and soil water, and they are shown to create enor-
mous socioeconomic benefits (e.g., Vano et al., 2014; Peng
et al., 2018; Wang et al., 2019).

Climate teleconnections, which are widely used in con-
ventional statistical hydrological forecasting (Wang et al.,
2020; Steinschneider and Lall, 2016; Mendoza et al., 2017;
Lima and Lall, 2010; Mortensen et al., 2018), are an es-
sential part of assessing the skill of GCM forecasts (Neelin
and Langenbrunner, 2013). That is, a number of teleconnec-
tion patterns are usually investigated upon the issuance of
a new set of GCM forecasts (Delworth et al., 2020; Jia et
al., 2015; Kim et al., 2012). For example, El Niño–Southern
Oscillation (ENSO) and Madden–Julian oscillation (MJO)
have been investigated for CFSv2 forecasts (Saha et al.,
2014). North Atlantic Oscillation (NAO), Arctic Oscilla-
tion (AO) and Pacific North American (PNA) teleconnec-
tions have been assessed for the Global Earth Observing Sys-
tem (GEOS) modeling and data assimilation system (Molod
et al., 2020). ENSO and Pacific decadal oscillation (PDO)
have been examined for GFDL-SPEAR forecasts (Delworth
et al., 2020). It is generally found that skillful GCM forecasts
are owing to effective formulations of teleconnection patterns
(e.g., Merryfield et al., 2013; Jia et al., 2015; Delworth et al.,
2020; Saha et al., 2014; Molteni et al., 2011).

There have been in-depth investigations of ENSO for
GCM forecasts as it is one of the most prominent modes of
climate variability (Fu et al., 1997; Wang et al., 2003; Feng
and Hao, 2021). For example, the influence of ENSO on the
East Asian–western Pacific climate was studied for CFSv2
forecasts (Yang and Jiang, 2014) and also for climate projec-
tions in the Coupled Model Intercomparison Project Phase 5
(Gong et al., 2015; Kim et al., 2016; Kim and Kug, 2018).
The relationship between forecast skill and the state of sea
surface temperatures (SSTs) was evaluated for the seasonal
outlook of precipitation over the United States, and the skill
was found to be dominantly attributed to ENSO in late au-
tumn to late spring (Quan et al., 2006; Pegion and Kumar,
2013; Shin et al., 2019). Understanding the sources for pre-
dictability is important for physically based validations of

GCM forecasts (Neelin and Langenbrunner, 2013; Manzanas
et al., 2014; Shin et al., 2019). Nevertheless, previous studies
tended to pay attention to regions subject to prominent ENSO
influences (Vashisht et al., 2021; Kim et al., 2016; Rivera and
Arnould, 2020). At the global scale, the attribution of GCM
precipitation forecasts to ENSO teleconnection is yet to be
conducted.

This paper is devoted to attributing correlation skill of
dynamical CFSv2 forecasts (e.g., Saha et al., 2010; Yuan
et al., 2011; Jia et al., 2015; Becker et al., 2020; Zhao et
al., 2020a) to statistical ENSO teleconnection at the global
scale. A novel approach based on set theory is devised to
facilitate the attribution. With the coefficient of determina-
tion (R2) characterizing the ratio of explained variance and
the set operations illustrating the overlapping R2, the signifi-
cance test by grid cell is conducted by random permutations
in order to identify where correlation skill is attributable to
ENSO teleconnection. As will be demonstrated through the
case study of CFSv2 forecasts, three cases are effectively
revealed: (1) significantly positive anomaly correlation at-
tributable to positive ENSO teleconnection, (2) significantly
positive anomaly correlation attributable to negative ENSO
teleconnection and (3) significantly positive anomaly corre-
lation not attributable to ENSO teleconnection.

2 Data description

GCM forecasts comprise a typical high-dimensional dataset
(Becker et al., 2020; Chen and Kumar, 2016; Kirtman et al.,
2014; Saha et al., 2014; Zhao et al., 2020a). For the CFSv2
forecasts investigated in this paper, there are five dimensions:
(1) forecast start time s, (2) lead time l, (3) ensemble size n,
(4) latitude y and (5) longitude x. s represents the number of
months since the benchmark time that is January 1982; l is
the number of months ahead, which ranges from 0 to 9 month
for the CFSv2 forecasts; n= 1, . . . , 24; i.e., the total number
of ensemble members is 24; y ranges from −90 to 90, while
x is from 0 to 359, with a horizontal resolution of 1.0◦ lati-
tude by 1.0◦ longitude. The set of forecasts is denoted by

F =
[
fs,l,n,y,x

]
, (1)

in which f represents forecast values specified by the five
dimensions, and F is the dataset of forecasts.

There are three dimensions for the dataset of observed pre-
cipitation corresponding to forecasts (Infanti and Kirtman,
2015; Xie et al., 2007; Schneider et al., 2016). They are tar-
get time t , which is equal to the sum of start time s and lead
time l to align observations with forecasts; latitude y; and
longitude x. The set of observed precipitation corresponding
to the forecasts is denoted as

O =
[
ot,y,x

]
(t = s+ l). (2)

The NOAA Climate Prediction Center (CPC) global daily
Unified Rain-gauge Database (CPC-URD), which has been
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widely used in the analysis of regional and global precipita-
tion (Chen et al., 2008), is used as the referenced observed
precipitation.

Correlation skill, which is in the form of Pearson’s corre-
lation coefficient, is calculated so as to relate CFSv2 precip-
itation forecasts to CPC-URD observations:

r(o,f )=

∑
k

(ok − o)
(
fk − f

)
√∑

k

(ok − o)
2
√∑

k

(
fk − f

)2 . (3)

In Eq. (3), k represents the target year (k = 1982,
1983, . . . , 2010), where the other dimensions of o and f are
omitted for the sake of simplicity. The value of r(o,f ) mea-
sures how well CFSv2 forecasts correspond to observed pre-
cipitation. A significantly positive r(o,f ) implies that large
(small) forecasts are indicative of large (small) observations,
whereas a neutral or negative r(o,f ) indicates non-skillful
forecasts (Zhao et al., 2020a, b; Yuan et al., 2011).

It is noted that forecasts/observations, which are monthly,
are aggregated by season. The aggregation is meant to facil-
itate the analysis at the seasonal timescale. Attention is paid
to the latest forecasts. That is, seasonal precipitation forecasts
generated at the beginning of the season are investigated. For
example, the December–January–February (DJF) forecasts
are generated at the beginning of December. Similarly, sea-
sonal forecasts for March–April–May (MAM), June–July–
August (JJA) and September–October–November (SON)
are respectively produced at the start of March, June and
September.

The concurrent correlation between Niño3.4 and CPC-
URD observations is employed to represent ENSO telecon-
nection (Kim and Kug, 2018; Cai et al., 2009; Steptoe et al.,
2018):

r(o,Niño3.4)=

∑
k

(ok − o)
(
Niño3.4k −Niño3.4

)
√∑

k

(ok − o)
2
√∑

k

(
Niño3.4k −Niño3.4

)2 . (4)

Niño3.4 is a commonly used index of ENSO (Mason and
Goddard, 2001; Vashisht et al., 2021; Chen and Kumar,
2020). The sign of r(o, Niño3.4) indicates the effects of
ENSO. A positive r(o, Niño3.4) means that high (low) val-
ues of Niño3.4 correspond to large (small) values of ob-
served precipitation; i.e., El Niño events are associated with
wet conditions, whereas La Niña events relate to dry con-
ditions. By contrast, a negative r(o, Niño3.4) indicates that
high (low) values of Niño3.4 coincide with below-normal
(above-normal) precipitation.

3 Methods

3.1 Mathematical formulation

The approach to attributing correlation skill of GCM sea-
sonal forecasts to ENSO teleconnection is built upon the co-
efficient of determination, i.e.,R2 (Koster et al., 2010). Math-
ematically, R2 is equivalent to the squared value of Pearson’s
correlation coefficient r (Krause et al., 2005):

R2(Y ∼X)= r2(Y,X). (5)

There is a difference in the meanings of r in relating observed
precipitation to forecasts and ENSO. As for forecasts, r tends
to be positive; i.e., high (low) values of forecasts can be in-
dicative of high (low) values of observations (Zhao et al.,
2020a, b; Yuan et al., 2011). However, ENSO teleconnection
can be either positive or negative. For example, in DJF, posi-
tive r(o, Niño3.4) tends to be dominant over southern North
America, and negative r(o, Niño3.4) is generally prevalent
over northern South America (Mason and Goddard, 2001).

Both positive and negative correlations contribute to R2.
R2 is respectively derived for forecasts and ENSO in relating
them to observed precipitation. Specifically, simple linear re-
gression models are set up to regress observed precipitation
respectively against GCM forecasts and Niño3.4:

ok = α1+β1fk + ε1,k⇒ R2(o∼ f )= 1−

∑
k

ε2
1,k∑

k

(ok − o)
2 ,

ok = α2+β2Niño3.4k + ε2,k ⇒ R2(o∼ Niño3.4)= 1−

∑
k

ε2
2,k∑

k

(ok − o)
2 , (6)

where β1 and β2 are the regression coefficients; ε1 and
ε2 are the residuals; and k represents the target year. Further,
through bivariate linear regression, the variance explained by
the union of forecasts and Niño3.4 is calculated:

ok = α3+β3,1fk +β3,2Niño3.4k + ε3,k

⇒ R2(o∼ f ∪Niño3.4)= 1−

∑
k

ε2
3,k∑

k

(ok − o)
2 , (7)

in which the union operator is introduced to represent
the joint effect. If GCM forecasts were independent from
Niño3.4, then R2(o∼ f ∪Niño3.4) could conceptually be
obtained by simply adding up R2(o∼ f ) and R2(o∼

Niño3.4). On the other hand, if GCM forecasts were de-
pendent on Niño3.4, then there would be some overlaps
for R2(o∼ f ) and R2(o∼ Niño3.4). As a result, R2(o∼

f ∪Niño3.4) would not be as large as the sum of R2(o∼ f )

and R2(o∼ Niño3.4).
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Figure 1. Flowchart of the three steps that attribute significantly positive anomaly correlation of dynamical GCM forecasts to statistical
ENSO teleconnection.

According to set theory, the intersection between R2(o∼

f ) and R2(o∼ Niño3.4) is derived by subtracting R2(o∼

f ∪Niño3.4) from the sum of R2(o∼ f ) and R2(o∼

Niño3.4):

R2(o∼ f ∩Niño3.4)= R2(o∼ f )+R2(o∼ Niño3.4)

−R2(o∼ f ∪Niño3.4), (8)

in which the intersection operator is introduced to formulate
the overlapping R2 between forecasts and Niño3.4. Specifi-
cally, the value of R2(o∼ f ∩Niño3.4) quantifies the over-
lapping part of the explained variance of observed precipita-
tion accounted for by both GCM forecasts and Niño3.4.

3.2 Attribution of correlation skill

There are three steps to attributing correlation skill of GCM
forecasts to ENSO teleconnection. As shown in Fig. 1, the
first step is the implementation of three linear regression
models to derive R2(o∼ f ), R2(o∼ Niño3.4) and R2(o∼

f ∪Niño3.4) so as to derive R2(o∼ f ∩Niño3.4). In the
absence of a theoretical distribution function for the over-
lapping R2, the significance is tested by randomly permu-
tating GCM forecasts and Niño3.4 1000 times under the
null hypothesis that observed precipitation was independent
from either GCM forecasts or Niño3.4. In this way, R2(o∼

f∩Niño3.4) is tested to examine whether the overlappingR2

between f and Niño3.4 is significant.
Secondly, the significance of correlation coefficient is cal-

culated for GCM forecasts in relating them to global precipi-
tation. Specifically, r(o,f ) is obtained for each grid cell over
global land. The two-tailed significance test is implemented,

and r(o,f ) is therefore identified to be significantly posi-
tive, neutral or significantly negative. In this paper, the sig-
nificance levels in the first and second steps are set to be 0.10.

The third step focuses on significantly positive r(o,f ) that
indicates informative forecasts (Becker et al., 2020; Zhao et
al., 2020a, b). There are two criteria: (1) the significance
of overlapping R2 and (2) the sign of ENSO teleconnec-
tion. Overall, three cases are obtained: (1) significantly pos-
itive anomaly correlation attributable to positive ENSO tele-
connection, (2) significantly positive anomaly correlation at-
tributable to negative ENSO teleconnection and (3) signifi-
cantly positive anomaly correlation not attributable to ENSO
teleconnection.

3.3 An illustrative example

An example based on synthetic data is devised to illustrate
how the overlapping R2 for the response variable y is in-
fluenced by the association between two explanatory vari-
ables x1 and x2. Samples of x1, x2 and y are randomly drawn
from a trivariate normal distribution[
x1,x2,y

]T
∼N(µ,6), (9)

where µ and 6 are the mean vector and covariance matrix,
respectively:

µT = [0,0,0], (10)

6 =

 1 r (x1,x2) 0.5
r (x1,x2) 1 0.5
0.5 0.5 1

 . (11)

In the example, the correlations of y with x1, x2 are fixed
to be 0.5 respectively. As a result, the focus is on r(x1,x2)
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Figure 2. Box plots of coefficient of determination (R2) for (a) R2(y ∼ x1), (b) R2(y ∼ x2), (c) R2(y ∼ x1 ∪ x2) and (d) R2(y ∼ x1 ∩ x2)
in the Monte Carlo experiments.

that determines the intersection between x1 and x2. The value
of r(x1,x2) is set to be 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5. For
each pre-specified r(x1,x2), 1000 samples of x1, x2 and
y are drawn to facilitate linear regression models to de-
rive R2(y ∼ x1), R2(y ∼ x2), R2(y ∼ x1 ∪ x2) and R2(y ∼

x1 ∩ x2). For R2, the median and interquartile ranges are es-
timated through 1000 Monte Carlo experiments.

Figure 2 illustrates the influences of r(x1,x2) on R2(y ∼

x1), R2(y ∼ x2), R2(y ∼ x1 ∪ x2) and R2(y ∼ x1 ∩ x2). Fig-
ure 2a and b show that the median values of R2(y ∼

x1) and R2(y ∼ x2) approximate the squared value of
pre-specified r(y,x1) and r(y,x2). That is, they remain
around 0.25, i.e., 0.52, as r(x1,x2) increases from 0.0 to
0.5. The indication is that the change in correlation between
forecasts and Niño3.4 does not influence the amount of in-
formation that they respectively provide for observed pre-
cipitation. By contrast, Fig. 2c shows that R2(y ∼ x1 ∪ x2),
which represents the ratio of variance explained by the union
of x1 and x2, decreases with the increase of r(x1,x2). This
phenomenon coincides with the increase of R2(y ∼ x1 ∩ x2)

with r(x1,x2).
Figure 3 further shows the influence of r(x1,x2) using a

Venn diagram that illustrates the extent to which R2(y ∼ x1)

and R2(y ∼ x2) intersect. The intersection is represented by
the overlapping area between the two circles. From this fig-
ure, it can be seen that it is the correlation between x1 and x2
that leads to the decrease of R2(y ∼ x1∪x2) and the increase
of R2(y ∼ x1 ∩ x2). For global precipitation forecasting, the
intersection reflects the overlapping R2 for GCM forecasts

and ENSO teleconnection. Figure 3 suggests that the corre-
lation between GCM forecasts and Niño3.4 would lead to a
decrease of total information and an increase of overlapping
information.

4 Results

4.1 Correlation skill and ENSO teleconnection in DJF

Global maps of correlation skill and ENSO teleconnection in
DJF, which is the peak season of ENSO, are shown in the
upper part of Fig. 4. In Fig. 4a, correlation skill is observed
to be largely positive, indicating that CFSv2 forecasts are
skillful in general (Saha et al., 2010). In Fig. 4b, ENSO tele-
connection exhibits both positive and negative values. That
is, observed precipitation around the world can be positively
or negatively correlated with Niño3.4 (Mason and Goddard,
2001; Vashisht et al., 2021; Chen and Kumar, 2020). The
two-tailed significance test is applied to anomaly correlation
and ENSO teleconnection at each grid cell. Figure 4c illus-
trates that correlation skills of CFSv2 forecasts are signifi-
cantly positive over extensive areas around the globe. More-
over, Fig. 4c is observed to correspond to Fig. 4d to some
extent – significantly positive correlation appears over south-
ern North America and East Africa in both Fig. 4c and d. In
addition, significantly positive anomaly correlation (Fig. 4c)
corresponds to significantly negative ENSO teleconnection
(Fig. 4d) in northern South America, southern Africa and
southeast Asia.

https://doi.org/10.5194/hess-25-5717-2021 Hydrol. Earth Syst. Sci., 25, 5717–5732, 2021
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Figure 3. Venn diagrams for the variance of y explained by x1 and x2 given six levels of correlation between x1 and x2.

The results of simple linear regressions that lay the foun-
dation for the attribution analysis are shown in Fig. 4e to h.
Figure 4e and f, which are respectively for CFSv2 forecasts
and Niño3.4, respectively conform to Fig. 4a and b. This out-
come is due to R2 being mathematically equal to the squared
value of the correlation coefficient (Krause et al., 2005). The
union in Fig. 4g exhibits a higher value of R2 than that in
either Fig. 4e or f. The subtraction of the union from the sum
facilitates the intersection. As illustrated in Fig. 4h, dark blue
grid cells are seen to distribute in southern North America,
northern South America, East Africa, southern Africa and
southeast Asia. Over these regions, both GCM forecasts and
the Niño3.4 index can explain a considerable ratio of the vari-
ance of observed precipitation (Fig. 4e and f). More impor-
tantly, their explained variances intersect (Fig. 4h).

4.2 Attribution at the global scale

The significance of the overlapping R2 for CFSv2 forecasts
and Niño3.4 is shown in Fig. 5. In Figure 5a, grid cells with
significant overlapping R2 are marked in orange. The cor-
responding anomaly correlation and ENSO teleconnection,
which are respectively obtained from Fig. 4a and b, are il-
lustrated using the scatter plot in Fig. 5b. The scatter points
tend to fall towards the upper right and left corners of the
plot. The implication is that both anomaly correlation and
ENSO teleconnection ought to be large enough to facilitate
a significant intersection. Largely owing to overlapping R2,
anomaly correlation is observed to increase with the increase
of positive ENSO teleconnection and also with the decrease
of negative ENSO teleconnection. For Fig. 5b, there are no-
tably some outliers that suggest ENSO teleconnection could
contribute to negative anomaly correlation. CFSv2 forecasts
are generally wrong in these cases, and the potentially prob-

lematic grid cells are marked in black in Fig. 5a. Further, the
scatter plot in Fig. 5c is for grid cells where overlapping R2

is non-significant. For a fair number of grid cells, anomaly
correlation can rise above 0.50, but ENSO teleconnection re-
mains at nearly 0.00. The implication is that the correspond-
ing anomaly correlation is not relevant to ENSO teleconnec-
tion.

Figure 6 presents the three cases of attribution of signif-
icantly positive anomaly correlation. The red color marks
grid cells where significantly positive anomaly correlation
is attributable to positive ENSO teleconnection. Some cor-
responding grid cells are observed in regions of known posi-
tive ENSO teleconnections, such as southern North America
(Strazzo et al., 2019) and equatorial eastern Africa (Vashisht
et al., 2021); and some are in less-investigated regions, such
as parts of central, southern and eastern Asia. The green color
indicates grid cells where significantly positive anomaly cor-
relation is attributable to negative ENSO teleconnection.
They appear in northern South America and southern Africa,
where negative ENSO teleconnection is known to exist (Cai
et al., 2020; Howard et al., 2019) and also in parts of Far East
and Alaska. There are also grey areas where significantly
positive anomaly correlation is not attributable to ENSO tele-
connection. The corresponding grid cells are generally lo-
cated in Europe, North Asia, northwestern Africa and south-
ern Australia. Therein, skillful forecasts can relate to telecon-
nections other than ENSO, such as AO and NAO (Minami
and Takaya, 2020).

Figure 7 presents a sunburst diagram that quantifies the
percentages of significantly positive anomaly correlation and
its attribution results. As shown by the central cycle, anomaly
correlation is identified to be significantly positive, neutral
or significantly negative (Zhao et al., 2020a, b). The grey
segment suggests that more than half of grid cells around

Hydrol. Earth Syst. Sci., 25, 5717–5732, 2021 https://doi.org/10.5194/hess-25-5717-2021
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Figure 4. Correlation coefficients between observed precipitation in DJF with (a) 0-month lead CFSv2 forecasts generated at the beginning
of December and (b) concurrent Niño3.4. Significance tests of correlation for (c) CFSv2 forecasts and (d) Niño3.4. Coefficient of determina-
tion (R2) for the regression of observed precipitation against (e) CFSv2 forecasts, (f) Niño3.4, (g) the union of CFSv2 forecasts and Niño3.4
and (h) the intersection of CFSv2 forecasts and Niño3.4.

the globe are of neutral anomaly correlation, indicating that
GCM precipitation forecasts still have plenty of room for
improvement (Delworth et al., 2020; Jia et al., 2015; Kim
et al., 2012). The pink segment indicates that 39.4 % of the
grid cells exhibit significantly positive anomaly correlation.
There are three cases of attribution for significantly positive
anomaly correlation. The results are shown by the extended
segments, of which the color scheme is the same as that of
Fig. 6. It can be seen that significantly positive anomaly cor-
relation is attributable to positive (negative) teleconnections

for 10.8 % (11.7 %) of grid cells around the globe. Further-
more, significantly positive anomaly correlation is not at-
tributable to ENSO teleconnection for 16.9 % of grid cells
around the globe.

4.3 Attribution for selected grid cells

Four grid cells are selected from Figure 6a to showcase the
attribution of CFSv2 forecasts to ENSO teleconnection. As
is illustrated in the Methods section, there are three variables
under investigation. They are observed precipitation, forecast

https://doi.org/10.5194/hess-25-5717-2021 Hydrol. Earth Syst. Sci., 25, 5717–5732, 2021
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Figure 5. (a) Spatial distribution of grid cells with significant overlapping R2 for CFSv2 forecasts generated in December and Niño3.4
in DJF. Scatter plots of anomaly correlation against ENSO teleconnection for grid cells (b) with significant overlapping R2 and (c) with
non-significant overlapping R2. Grey points in panel (c) are marked in white in panel (a).

precipitation and Niño3.4. Their values are normalized, i.e.,
subtracting the mean and dividing by the standard deviation,
to facilitate the intercomparison of results across the four
grid cells. In Fig. 8, the first column plots normalized obser-
vation against normalized forecast; the second column plots
normalized observation against normalized Niño3.4; and the
third column plots normalized forecasts against normalized
Niño3.4. Furthermore, the last column of Fig. 8 presents the
Venn diagrams illustrating the set operation of intersection.

Grid cell A shown in the first row of Fig. 8 presents the
case of significantly positive anomaly correlation attributable
to positive ENSO teleconnection. The coordinates of the grid
cell are 38◦ N, 77◦W. In southern North America, DJF pre-
cipitation is known to be modulated by the ENSO-induced
Pacific North American (PNA) pattern (Jong et al., 2021).
Specifically, in southern North America, PNA tends to cause
an enhanced DJF Pacific jet stream that extends further east
than normal during El Niño events, and there are nearly re-
versed patterns during La Niña events. Since the jet stream
determines the paths of DJF storms, the PNA pattern en-
ables ENSO to affect precipitation in southern North Amer-
ica. It can be seen that forecasts exhibit a high correlation
with Niño3.4. This result suggests that CFSv2 forecasts can
reasonably represent the influence of ENSO. As a result,

R2 explained by forecasts and Niño3.4 largely overlap in grid
cell A.

Grid cell B shown in the second row of Fig. 8 is for
the case of significantly positive anomaly correlation at-
tributable to negative ENSO teleconnection. Its coordinates
are 5◦ N, 60◦W. In DJF, there is a negative ENSO telecon-
nection over northern South America; it is owing to ENSO-
related SSTs driving changes in the climatological Walker
circulation that promotes anomalous descending (ascending)
motion and contributes to negative (positive) precipitation
anomalies in El Niño (La Niña) events (Kayano and An-
dreoli, 2006). The high correlation between forecasts and
Niño3.4 highlights the effectiveness of CFSv2 in capturing
the negative ENSO teleconnection. There is a considerable
intersection between the variability explained by forecasts
and Niño3.4 in grid cell B. It is noted that some similarities
in the Venn diagrams are observed for grid cells A and B,
at which ENSO teleconnection is respectively positive and
negative. Specifically, r(o, Niño3.4) is respectively 0.46 and
−0.48 at grid cells A and B. R2 that is the focus of the Venn
diagrams mathematically represents the squared value of the
correlation coefficient. Therefore, the similar Venn diagrams
highlight that both positive and negative ENSO teleconnec-
tion can contribute to correlation skill.
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Figure 6. (a) Spatial distribution of grid cells for the three cases attributing anomaly correlation of CFSv2 forecasts to ENSO teleconnection.
Scatter plots of anomaly correlation against ENSO teleconnection for grid cells (b) with significant overlappingR2 and (c) without significant
overlapping R2. Grey points in panels (b) and (c) are marked in white in panel (a). Four grid cells are selected and labeled with capital letters
from panel (a) for the subsequent analysis of the attribution of CFSv2 forecasts to ENSO teleconnection.

Figure 7. Sunburst diagram of the attribution of significantly pos-
itive anomaly correlation to ENSO teleconnection for CFSv2 fore-
casts in DJF.

Grid cell C displayed in the third row of Fig. 8 is for the
case of significantly positive correlation not attributable to
ENSO teleconnection. Its coordinates are 49◦ N, 2◦ E. The
remote influence of ENSO on Europe has pathways through
the North Atlantic or Arctic regions, including the tropo-
spheric and stratospheric bridges (Butler et al., 2014). How-

ever, the amplitude of ENSO impacts is weak and generally
not significant in the European region (Butler et al., 2014).
In addition, DJF precipitation in Europe is known to be mod-
ulated by the NAO (Greuell et al., 2018), the Eurasian snow
cover extent and the Quasi-biennial Oscillation (Butler et al.,
2014). It can be seen that while observed precipitation shows
a neutral correlation with Niño3.4, CFSv2 forecasts explain a
substantial fraction of observed precipitation variability. This
result indicates the capability of CFSv2 in capturing telecon-
nection patterns other than ENSO.

Grid cell D shown in the last row of Fig. 8 represents
the case of neutral anomaly correlation. The coordinates are
40◦ N, 116◦ E. Over East Asia, precipitation is known to be
influenced by the response of Rossby waves to ENSO (Yang
et al., 2018). Also, winter monsoon activities in East Asia
are profoundly influenced by wind–SST–evaporation feed-
backs over tropical central Pacific to northwestern Pacific
(Kim and Kug, 2018). It can be observed that there is a mod-
erate but not significant correlation between observed pre-
cipitation and Niño3.4. However, CFSv2 forecasts exhibit a
neutral anomaly correlation, suggesting that the information
of ENSO teleconnection is not represented in the forecasts.
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Figure 8. Scatter plots of the relationships between normalized observation, forecast and Niño3.4 and Venn diagrams of the union and
intersection operations for four selected grid cells.

4.4 Extended analysis of the other seasons

The attribution analysis is further extended to the other sea-
sons, i.e., MAM, JJA and SON. Global maps of the three
cases of attribution are illustrated by season in Fig. 9 and
also in Figs. S1 to S6 in the Supplement. Overall, the re-
sults of attribution vary considerably across the four seasons.
This is generally owing to the fact that ENSO teleconnec-
tion varies by season (Kim and Kug, 2018; Steptoe et al.,
2018; Wang et al., 2019) and that GCMs formulate not only
ENSO, but also other teleconnections (Saha et al., 2014; Jia
et al., 2015; Delworth et al., 2020). Overall, the percentage of
significantly positive anomaly correlation is 27.0 %, 24.0 %
and 34.6 % respectively in MAM, JJA and SON, which tends
to be smaller than that in DJF. This result can be due to the
seasonal cycle of ENSO; i.e., ENSO forcing tends to be the
strongest in DJF, and it translates into weaker precipitation
variability in the other seasons (Yang et al., 2018).

The percentage of significantly positive anomaly correla-
tion attributable to positive ENSO teleconnection is respec-
tively 7.1 %, 6.3 % and 7.0 % in MAM, JJA and SON. Rep-
resentative regions for this case are the western United States
in MAM (Pegion and Kumar, 2013), parts of South America
in JJA (Cai et al., 2020) and the Middle East in SON (Mari-
otti, 2007). In total, 7.3 %, 7.4 % and 14.3 % of grid cells are
with significantly positive anomaly correlation attributable
to negative ENSO teleconnection respectively in MAM, JJA
and SON. One representative region is southeast Asia, where
precipitation is strongly correlated with ENSO in MAM, JJA
and SON (Jiang and Li, 2017); also, in Australia, precipita-
tion in SON is found to be substantially influenced by the ex-
tratropical teleconnection pathway of ENSO (Cai and Weller,
2013). Furthermore, 12.6 %, 10.3 % and 13.3 % of grid cells
are with significantly positive anomaly correlation not at-
tributable to ENSO teleconnection. This result calls for the
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Figure 9. Spatial maps (a–c) and sunburst diagrams (d–f) of the three cases of attribution of significantly positive anomaly correlation in
MAM (a, b), JJA (c, d) and SON (e, f).

investigation of other teleconnection patterns for GCM sea-
sonal precipitation forecasts.

5 Discussion

Correlation skill between forecast and observed precipitation
is one of the most important indicators of the usefulness of
GCM forecasts (Yuan et al., 2011; Becker et al., 2020; Vano
et al., 2014; Johnson et al., 2019; Zhao et al., 2020b). To
facilitate forecast applications, correlation skill is conven-
tionally calculated from data and then presented using spa-
tial plotting (Zhao et al., 2020a, b). Focusing on the relation-
ship between correlation skill and ENSO teleconnection, the
present paper highlights that significantly positive anomaly
correlation, which is always advantageous for practical ap-
plications of GCM forecasts (Vano et al., 2014; Yuan et al.,
2014; Peng et al., 2018), can be attributed to positive (nega-
tive) ENSO teleconnection or not to ENSO. In DJF, signifi-
cantly positive anomaly correlation for CFSv2 forecasts is at-
tributable to positive ENSO teleconnection in southern North
America and East Africa, and it is attributable to negative
ENSO teleconnection in northern South America and south-

ern Africa. Moreover, significantly positive anomaly corre-
lation in Europe can be attributable to teleconnections other
than ENSO. The different cases of attribution also exist for
MAM, JJA and SON, but their spatial extents vary consider-
ably (Figs. S4–S6). These results conform to previous find-
ings that regions exhibiting positive (negative) ENSO tele-
connection change substantially by season (Mason and God-
dard, 2001; Vashisht et al., 2021; Chen and Kumar, 2020) and
that performances of GCM forecasts vary by season (Vano et
al., 2014; Johnson et al., 2019; Zhao et al., 2020b).

Lagged ENSO teleconnection and correlation skill by lead
time are important issues for seasonal forecasting (Schepen
et al., 2012; Peng et al., 2014; Steinschneider and Lall,
2016). A numerical experiment of attribution is performed
for Niño3.4 indices at different time lags. Specifically, for
precipitation in DJF, the concurrent Niño3.4 in the analysis
is replaced by Niño3.4 in November, October and Septem-
ber so as to investigate the overlapping R2 for 1-, 2- and
3-month lag ENSO teleconnection. Figures S7 to S10 show
that the results tend to be similar at the three lags; the sim-
ilarities are generally owing to the temporal persistency of
Niño3.4 (Yang et al., 2018). Furthermore, another experi-
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ment is devised for GCM forecasts at the lead time of 1,
2 and 3 months. That is, for precipitation in DJF, forecasts
generated in November, October and September are used
to replace forecasts generated in December in the analysis
(Figs. S11 to S14). It can be observed that the case of signif-
icantly positive anomaly correlation attributable to positive
ENSO teleconnection remains for southern North America
and that the case of significantly positive anomaly correla-
tion attributable to negative ENSO teleconnection remains
for northern South America and southern Africa.

The capability to formulate climate teleconnections is an
essential part in the evaluation of GCM forecasts (Jong et al.,
2021; Molod et al., 2020). Adding to previous studies that
investigated GCM forecasts for regions subject to prominent
ENSO influences (Jha et al., 2016; Manzanas et al., 2014; Pe-
gion and Kumar, 2013), this paper presents an investigation
of ENSO teleconnection at the global scale. For grid cells
around the world, the ratio of significantly positive anomaly
correlation attributable to positive (negative) ENSO telecon-
nection is respectively 10.8 % (11.7 %) in DJF, 7.1 % (7.3 %)
in MAM, 6.3 % (7.4 %) in JJA and 7.0 % (14.3 %) in SON.
Furthermore, the ratio of significantly positive anomaly cor-
relation not attributable to ENSO teleconnection, which sug-
gests that other climate teleconnections are at play in deter-
mining the skill of GCM forecasts, is respectively 16.9 %,
12.6 %, 10.3 % and 13.3 % in DJF, MAM, JJA and SON.
Overall, the spatial plots and the attribution results can serve
as a reference for further investigations of the effects of
ENSO teleconnections and other climate patterns on the pre-
dictive performance of GCM forecasts.

6 Conclusions

Climate teleconnections, in particular ENSO, have been ex-
tensively used in conventional statistical hydrological fore-
casting. This paper is devoted to investigating the relation-
ship between statistical ENSO teleconnection and correla-
tion skill of dynamical CFSv2 forecasts. A novel mathemat-
ical approach is built upon set theory by making use of the
coefficient of determination (R2) that measures the ratio of
explained variance to total variance. Specifically, taking ad-
vantage of simple linear regression, the ratios of variance ex-
plained by GCM forecasts, Niño3.4 and their union are re-
spectively obtained; then, the overlapping R2 for GCM fore-
casts and Niño3.4 is derived based on the intersection oper-
ation. Based on the significance of overlapping R2 and the
sign of ENSO teleconnection, three cases of attribution are
derived. They are significantly positive anomaly correlation
attributable to positive ENSO teleconnection, attributable to
negative ENSO teleconnection and not attributable to ENSO
teleconnection. The effectiveness of the developed approach
is demonstrated through the case study of CFSv2 seasonal
forecasts of global precipitation. Spatial plots of the attribu-
tion are illustrated by season. The spatial patterns of fore-

cast skill attributed to different types of ENSO teleconnec-
tions confirm previous studies associating seasonal precipi-
tation variability with ENSO and highlight the capability of
CFSv2 in capturing the pathways of ENSO teleconnections.
The attribution method proposed in this paper can lay a basis
for future evaluations of other teleconnections and investiga-
tions of predictability sources for GCM seasonal precipita-
tion forecasts.
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